APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution)

Ukuran: px
Mulai penontonan dengan halaman:

Download "APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG (Aproximations of the Future Lifetime Distribution)"

Transkripsi

1 Jural Bareeg Vol 5 No Hal 47 5 (2) APROKSIMASI DISRIBUSI WAKU HIDUP YANG AKAN DAANG (Aproimatios of te Future Lifetime Distributio) HOMAS PENURY RUDY WOLER MAAKUPAN 2 LEXY JANZEN SINAY 3 Guru Besar Jurusa Matematia FMIPA UNPAI 23 Staf Jurusa Matematia FMIPA UNPAI Jl Ir M Putuea Kampus Upatti Poa-Ambo tomypetury@yaoocom rwmataupa@yaoocom leyz@gmailcom ABSRAC is paper give a aalitical tecique to approimate future lifetime distributios Approimatios of te future lifetime distributio based o te sifted Jacobi polyomials ad it yielded te sequeces of a epoetials combiatio e results of approimatios of te future lifetime distributio i tis cases study based o Maeam s Law It is very accurate i te case study Keywords: approimatios future lifetime distributio sifted Jacobi polyomials epoetials combiatio Maeam s law PENDAHULUAN Dalam matematia da statistia betu espoesial sagat petig dalam peerapaya Secara usus betu espoesial diguaa dalam membetu fugsi-fugsi usus utu meetua suatu distribusi peluag Sala satu distribusi peluag yag megguaa betu espoesial adala distribusi espoesial Distribusi ii memberia suatu emudaa dalam berbagai pegituga Peulisa ii memberia suatu cara utu megaprosimasi distribusi peluag dari suatu ombiasi espoesial Dega demiia masala yag diemuaa dalam peulisa ii adala megostrusi suatu betu aprosimasi distribusi watu idup yag aa datag (future lifetime) e dalam betu ombiasi espoesial da emudia memperliata eaurata dari asil-asil aprosimasi tersebut secara umeri INJAUAN PUSAKA Pada umumya betu dari ombiasi espoesial merupaa suatu betu ombiasi dari fugsi epadata peluag distribusi espoesial Secara umeri betu ombiasi espoesial tersebut memilii emudaa utu diterapa Hal ii diareaa distribusi espoesial memberia suatu pegituga yag sagat sederaa seigga muda utu dapat diapliasia e berbagai bidag seperti teori resio teori atria teori euaga teori atuaria da lai-lai Sala satu sifat petig dari ombiasi espoesial adala suatu betu yag dese dalam impua distribusi peluag atas Betu ombiasi espoesial dari aprosimasi distribusi peluag dapat dibetu dega berbagai metode Suatu metode aprosimasi distribusi peluag dega megguaa sifat-sifat dari poliomial Jacobi merupaa sesuatu betu yag ostrutif utu megaprosimasi distribusi peluag Hasil yag diperole dari aprosimasi distribusi peluag ii merupaa suatu fugsi distribusi yag terdiri atas barisa-barisa yag berbetu ombiasi espoesial yag maa barisabarisa tersebut merupaa barisa-barisa yag overge (Dufrese 26) Selai ulasa beberapa pustaa megeai peulisa ii pada bagia ii aa diberia beberapa simbol da teori-teori dasar yag aa diguaa dalam pembaasa Beriut ii aa diberia defiisi dari beberapa fugsi usus Sebelumya simbol Pocammer utu suatu bilaga a diotasia dega a didefiisia seperti beriut a a aa a 2 Dega demiia fugsi ipergeometri Gauss yag diotasia dega 2F ; dapat didefiisia seperti beriut

2 Bareeg Vol 5 No Hal 47 5 (2) 2F a b c; z dega c b c b a b a b z c! z RecReb cb zt t t dt Beriut aa diberia ulasa sigat tetag distribusi watu idup yag didasara atas uum Maeam Misal X adala variabel radom otiu yag megiuti usia idup seseorag (dari elaira sampai ematia) Utu usia idup diberia percepata mortalitas yag didasara atas uum Maeam seperti beriut A Bc Betu ii serig disebut sebagai azard rate atau failure rate Kemudia berdasara uum Maeam maa dapat diperole fugsi survival dari distribusi Maeam seperti beriut y ep S ep y dy A Bc dy HASIL DAN PEMBAHASAN Distribusi Watu Hidup Yag Aa Datag Misal variabel radom X memilii distribusi watu idup Dega demiia adala usia idup dari seseorag yag diotasia dega Watu idup yag aa datag (future lifetime) dari adala X yag diotasia dega atau atau utu lebi simpel cuup ditulis dega otasi ; merupaa variabel radom yag bergatug pada diberia cdf dari yaitu F t P t t Beriut aa Betu cdf dari yag diberia pada persamaa (2) merupaa peluag meiggal dalam aga watu t tau Betu ii serig diotasia dega t q Dega demiia peluag utu idup selama t tau adala y c ep Ay B log c c ep A B log c B ep A mc dega m () log c p q P t t t t (2) 48 Karea t q adala suatu cdf utu variabel radom maa t p merupaa ccdf dari yag dapat ditulis sebagai F t Peratia bawa F t merupaa peluag dapat idup mecapai t tau seigga dapat diperole ubuga atara fugsi survival F t seperti beriut: F t t P P X t X P X t X t S S utu setiap t S da ccdf 2 Kombiasi Espoesial dari Aprosimasi Distribusi Peluag a Kombiasi Espoesial Beriut ii aa diberia betu umum dari suatu ombiasi epoesial dega medefiisia sebua fugsi yag berbetu t t f t a e dimaa a adala osta Fugsi ii adala fugsi desitas peluag (pdf) ia (a) a ; (b) utu setiap ; (c) f utu setiap Kodisi (a) da (b) meyataa bawa fugsi teritegral utu atas f amu tida utu odisi (c) Jia a utu semua maa persamaa (4) disebut sebua miture of epoetials atau disebut uga sebagai distribusi iper-espoesial eorema memperliata eovergea dari barisa variabel radom yag maa pdf dari variabel radom tersebut merupaa suatu ombiasi espoesial Buti dari eorema dapat di liat di Siay (2) eorema (a) Misal variabel radom o egatif Maa terdapat suatu barisa variabel radom masig-masig dega suatu pdf yag diberia ole suatu ombiasi espoesial da sedemiia seigga overge dalam distribusi e (b) Jia distribusi tida mempuyai atom maa t lim sup F t F t (3) (4) Petury Mataupa Siay

3 Bareeg Vol 5 No Hal 47 5 (2) b Poliomial Jacobi eralia Pada umumya betu poliomial Jacobi dapat didefiisia seperti beriut P 2F ;! 2 utu da Dietaui uga bawa poliomial Jacobi ortogoal atas iterval utu fugsi bobot Kemudia betu poliomial Jacobi teralia (sifted Jacobia polyomials) dapat diturua seperti beriut: R P 2! 2F ; dimaa 2 F adala fugsi ipergeometri Gauss da!! Dega demiia poliomial Jacobi teralia ortogoal atas dega fugsi bobotya adala w Sifat-sifat dari poliomial Jacobi teralia dapat diberia utu suatu fugsi yag terdefiisi atas (termasu semua fugsi otiu da terbatas) sedemia seiga c w R d 2 2! R d c Aprosimasi Distribusi Watu Hidup Yag Aa Datag Berdasara teori sifted Jacobi polyomials yag diberia pada bagia sebelumya maa teori tersebut dapat diterapa e dalam suatu distribusi peluag atas dega cara seperti beriut ii Misal Ft adala cdf da misal F t F t P t Ft merupaa ccdf (ompleme cdf) Ft serig disebut uga sebagai fugsi survival Jia F da F utu t Misal meyataa watu sampai ematia dari usia idup maa F t t p Dietaui bawa r 49 g F log r g Pemetaa yag teradi dari betu ii merupaa yag maa t pemetaa pada berorespodesi dega da t berorespodesi dega Dietaui uga bawa F maa dapat diperole sedemiia rupa g seigga Misal parameter-parameter p da b dietaui sedemiia seigga dega meerapa sifted Jacobi polyomials dapat diperole Euivale dega F t g e rt p g b R prt e b e rt prt b e Betu di atas memilii esamaa dega betu (4) ia pr utu 2 Jia p suatu ombiasi espoesial dapat diperole dega cara pemotoga umlaa dari deret di atas Berdasara betu dari deret yag diberia di atas maa ostata b dapat ditemua seperti beriut: p b g R d r p rt rt rt e e R e F tdt Dega demiia betu (5) merupaa ombiasi dari betu p rt rt e e F tdt Jia maa dapat diperole st st st e F t dt F t d e e E s dega s Hal ii berarti ostata b dapat diperole dega megguaa trasformasi Laplace dari distribusi eorema beriut ii merupaa oseuesi lagsug dari sifted Jacobia polyomials eorema 2 Misal da diberia fugsi beriu ii prt e s F otiu atas F t (5) Petury Mataupa Siay

4 Bareeg Vol 5 No Hal 47 5 (2) yag memilii sebua limit yag berigga utu t meuu ta igga utu beberapa p (al ii selalu bear di maa p ) Maa berlau Utu setiap t setiap iterval Buti liat Siay (2) prt rt F t e b R e da overge seragam atas a b utu a b (6) 5 Dega demiia tigat etelitia pada saat N 8 cuup bai (liat abel ) ida semua distribusi terodisi dalam eorema 2 Hasil dalam teorema beriut tida membutua asumsi ii eorema 3 Misal da utu beberapa p da r (ii selalu bear ia lim N 2 prt rt 2 e e F t dt p ) Maa 2 N prt F t e br e Buti liat Siay (2) 2 rt 2prt rt e e dt Pemotoga umlaa dari deret yag diperole dega megguaa metode ii buala fugsi distribusi yag sebearya Ii merupaa suatu aprosimasi dari betu ccdf distribusi Fugsi yag diperole dari metode ii bisa lebi ecil dari atau lebi besar dari atau fugsi tersebut mugi saa turu pada beberapa iterval 3 Implemetasi Numeri Hasil-asil yag diperole pada bagia ii didasara atas uum Maeam seperti yag diberia pada persamaa () dega megguaa asumsi parameter-parameter seperti beriut: 5 4 A 7 ; B 5 ; c yag megiuti Bowers et al (997) a Aprosimasi Distribusi Watu Hidup Yag Aa Datag Hasil aprosimasi yag diperole pada bagia ii megguaa persamaa (6) dega megguaa parameter-parameter beriut = = p = 2 r = 8 Berdasara persamaa (3) maa dapat diperole S t Ft S t 7 t e dega t Hasil ii dapat diterapa pada persamaa (6) utu usia idup = 3 da = 65 dega N 8 Hasil secara visual dapat diliat pada Gambar Gambar Distribusi watu idup yag aa datag Dari Gambar dapat diliat bawa aprosimasi yag diguaa utu megaprosimasi distribusi watu idup yag aa datag sagat aurat Dega demiia asil aprosimasi sagat aurat utu diterapa Utu meliat tigat etelitia dari asil aprosimasi dari distribusi watu idup yag aa datag utu beberapa N yag berbeda dapat diliat pada abel dimaa tigat etelitia semai bai utu usia idup 65 tau da utu ilai yag semai besar abel Estimasi tigat etelitia ( ) ( ) KESIMPULAN Berdasara asil-asil peelitia yag diberia dalam peulisa ii maa dapat disimpula bawa Betu aprosimasi ccdf (fugsi survival) dari distribusi watu idup yag aa datag adala prt rt F t e b R e yaitu dega melaua pemotoga teradap umlaa dari deret tersebut Misal pemotoga deret di atas dalam Petury Mataupa Siay

5 Bareeg Vol 5 No Hal 47 5 (2) 5 N bagia maa asil dari aprosimasi tersebut dapat diyataa dalam betu dega F t N t c e p r N Dega demiia betu aprosimasi yag diasila adala suatu betu ombiasi espoesial igat etelitiaya semai membai ia N semai meigat Hasil-asil yag diberia dalam peulisa ii dapat diguaa utu pegituga ilai-ilai auitas idup otiu (betu esa) maupu auitas idup stoasti Hal ii diareaa ole asil yag didapat secara umeri sagat aurat DAFAR PUSAKA Bowers N L Jr Gerber H U Hicma J C Joes D A da Nesbitt C J 997 Actuarial Matematics edisi edua Society of Actuaries Scaumburg IL Dufrese D 26 Fittig Combiatios of Epoetials to Probability Distributios o Appear i Applied Stocastic Models i Busiess ad Idustry Dufrese D 27 Stocastic Life Auities Nort America Actuarial Joural Siay L J 2 Auitas Hidup yag didasara atas Kombiasi Espoesial dari Aprosimasi Distribusi Watu Hidup Yag Aa Datag esis pada Program Studi S2 Matematia Faultas MIPA Uiversitas Gada Mada Yogyaarta Petury Mataupa Siay

Jurnal MIPA 38 (1) (2015): Jurnal MIPA.

Jurnal MIPA 38 (1) (2015): Jurnal MIPA. Jural MIPA 38 () (5): 68-78 Jural MIPA http://ouraluesacid/u/idephp/jm APROKSIMASI ANUIAS HIDUP MENGGUNAKAN KOMBINASI EKSPONENSIAL LJ Siay S Gurito Guardi 3 Jurusa Matematia FMIPA Uiversitas Pattimura

Lebih terperinci

STATISTIKA-38 APROKSIMASI TABEL MORTALITA MENGGUNAKAN PERSAMAAN DUFRESNE

STATISTIKA-38 APROKSIMASI TABEL MORTALITA MENGGUNAKAN PERSAMAAN DUFRESNE STATISTIKA-38 APROKSIMASI TABEL MORTALITA MENGGUNAKAN PERSAMAAN DUFRESNE Ley Jaze Siay 1 Neva Satyahadewi 2 1 PS Matematika FMIPA Uiversitas Pattimura Ambo 2 PS Statistika FMIPA Uiversitas Tajugpura Potiaak

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial 5 BAB II LANDASAN TEORI A. Persamaa Diferesial Dari ata persamaa da diferesial, dapat diliat bawa Persamaa Diferesial beraita dega peelesaia suatu betu persamaa ag megadug diferesial. Persamaa diferesial

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual-

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual- Jural MIPA FST UNDANA, Volume 2, Nomor, April 26 DUAL-, DUAL- DAN DUAL- DARI RUANG BARISAN CS Albert Kumaereg, Ariyato 2, Rapmaida 3,2,3 Jurusa Matematia, Faultas Sais da Tei Uiversitas Nusa Cedaa ABSTRACT

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia?

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia? Kartia Yuliati, SPd, MSi MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK Masalah Terdapat berapa caraah ita dapat memilih baju dari 0 baju yag tersedia? Cara Misala baju diberi omor dari sampai

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

MAKALAH TEOREMA BINOMIAL

MAKALAH TEOREMA BINOMIAL MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)

Lebih terperinci

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan JMP : Vol. 8 No., Des. 016, al. 33-40 ISSN 085-1456 ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI Novita Eka Cadra Uiversitas Islam Darul Ulum Lamoga ovitaekacadra@gmail.com Masriai Mayuddi Uiversitas

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

Gerak Brown Fraksional dan Sifat-sifatnya

Gerak Brown Fraksional dan Sifat-sifatnya SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 06 S - 3 Gera Brow Frasioal da Sifat-sifatya Chataria Ey Murwaigtyas, Sri Haryatmi, Guardi 3, Herry P Suryawa 4,,3 Uiversitas Gadjah Mada,4 Uiversitas

Lebih terperinci

Model Antrian Multi Layanan

Model Antrian Multi Layanan Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah

Lebih terperinci

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI

MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Vol. 11, No. 1, 45-55, Juli 2014 MASALAH DISTRIBUSI BOLA KE DALAM WADAH SEBAGAI FUNGSI ATAU KUMPULAN FUNGSI Fauziah Baharuddi 1, Loey Haryato 2, Nurdi 3 Abstra Peulisa ii bertujua utu medapata perumusa

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

Proses Kelahiran dengan Imigrasi dan Kematian Password

Proses Kelahiran dengan Imigrasi dan Kematian Password Statistia, Vol. 6 No., 7 Mei 26 Proses Kelaira dega Imigrasi da Kematia Password Sri Mulyai Saro i, Neeg Suegsi da Gatot Riwi Setyato Jurusa Statistia FMIPA Upad ABSTRAK Dalam peelitia dibaas megeai sebua

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL Karmila 1*, Hasriati 2, Haposa Sirait 2 1 Mahasiswa Program S1 Matematika 2 Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal BAB. Limit Fugsi Ole : Bambag Supraptoo, M.Si. Referesi : Kalkulus Edisi 9 Jilid (Varberg, Purcell, Rigdom) Hal 56 - Defiisi: Pegertia presisi tetag it Megataka bawa f ( ) L berarti bawa utuk tiap yag

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pegertia Turua Fugsi Defiisi Turua fugsi f adala fugsi f yag ilaiya di c adala f c f c f c 0 asalka it ii ada. Coto Jika f 3 + +4, maka turua f di adala f f f 0 3 4 3.. 4 0 34 4 4 4

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR Ole: LIA NURLIANA PROGRAM STUDI MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

PERENCANAAN PREMI OPTIMAL UNTUK PERUSAHAAN REASURANSI DENGAN REINSTATEMENT INDAH ROSLIYANA G

PERENCANAAN PREMI OPTIMAL UNTUK PERUSAHAAN REASURANSI DENGAN REINSTATEMENT INDAH ROSLIYANA G PERENCANAAN PREMI OPTIMAL UNTUK PERUSAHAAN REASURANSI DENGAN REINSTATEMENT INDAH ROSLIYANA G54335 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 7 ABSTRACT

Lebih terperinci

ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE

ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE 2 ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE Sri Purwati 1, Johaes Kho 2, Aziskha 2 1 Mahasiswa Program S1 Matematika FMIPA Uiversitas Riau email : srii_purwatii@yahoo.co.id

Lebih terperinci

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p ) βeta -ISSN: 85-5893 e-issn: 54-458 Vol. 3 No. (Noember), Hal. 79-89 βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALPHA CRONBACH SKRIPSI JANUARINA ANGGRIANI

UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALPHA CRONBACH SKRIPSI JANUARINA ANGGRIANI UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALHA CRONBACH SKRISI JANUARINA ANGGRIANI 080655 FAKULTAS MATEMATIKA DAN ILMU ENGETAHUAN ALAM ROGRAM STUDI SARJANA

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA

BAB 3 PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA BAB PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA Meode Euler Meode Euler adala Meode ampira palig sederaa uu meelesaia masala ilai awal: ( Biasaa diasumsia bawa peelesaia ( dicari pada ierval erbaas ag dieaui

Lebih terperinci

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS (Tati Octavia et al.) STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS Tati Octavia Dose Faultas

Lebih terperinci

PENYELESAIAN NUMERIK INTEGRAL LIPAT DUA DENGAN MENGGUNAKAN INTEGRASI ROMBERG BERBANTUAN MATLAB

PENYELESAIAN NUMERIK INTEGRAL LIPAT DUA DENGAN MENGGUNAKAN INTEGRASI ROMBERG BERBANTUAN MATLAB PENYELESAIAN NUMERIK INTEGRAL LIPAT DUA DENGAN MENGGUNAKAN INTEGRASI ROMBERG BERBANTUAN MATLAB SKRIPSI Ole : ISWATUL KHASANAH NIM.05006 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak METODE PEGEMBAGA PEDEKATA RATA- RATA SAMPEL UTUK PROGRAM STOKASTIK DUA TAHAP Faridawaty Marpaug Abstra Peelitia ii megemuaa metode pegembaga pedeata rata rata sampel utu program stoasti dua tahap. Metodologi

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

h h h n 2! 3! n! h h h 2! 3! n!

h h h n 2! 3! n! h h h 2! 3! n! Dieresiasi Numerik Sala satu perituga kalkulus yag serig diguaka adala turua/ dieresial. Coto pegguaa dieresial adala utuk meetuka ilai optimum (maksimum atau miimum) suatu ugsi y x mesyaratka ilai turua

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika

Lebih terperinci

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug

Lebih terperinci

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t)

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t) BAB II KONSEP DASAR Kosep dasar yag dtuls dalam bab, merupaa beberapa dasar acua yag aa dguaa utu megaalsa model rso las da meetua fugs sebara peluag bertaha dalam model rso las Datara dasar acua tersebut

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

REGRESI KERNEL DENGAN METODE NADARAYA WATSON. Oleh : Esty

REGRESI KERNEL DENGAN METODE NADARAYA WATSON. Oleh : Esty REGRESI KERNEL DENGAN METODE NADARAYA WATSON REGRESI KERNEL DENGAN METODE NADARAYA WATSON Ole : SKRIPSI Diajuka Kepada Fakultas Matematika da Ilmu Pegetaua Alam Uiversitas Negeri Yogyakarta Utuk Memeui

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

x x x1 x x,..., 2 x, 1

x x x1 x x,..., 2 x, 1 0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012)

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012) BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di ota Maassar pada tahu 003 sampai tahu 0) PAISAL, H, HERDIANI, E.T. DAN SALEH, M 3 Jurusa Matematia, Faultas

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk

Lebih terperinci

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK Jural Matematika UNAND Vol. 2 No. 2 Hal. 71 75 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK SUCI SARI WAHYUNI,

Lebih terperinci

PENDUGA TERBAIK UNTUK DISTRIBUSI PARETO DENGAN MENGGUNAKAN TEOREMA BATAS BAWAH CRAMMER-RAO SKRIPSI

PENDUGA TERBAIK UNTUK DISTRIBUSI PARETO DENGAN MENGGUNAKAN TEOREMA BATAS BAWAH CRAMMER-RAO SKRIPSI PENDUGA TERBAIK UNTUK DISTRIBUSI PARETO DENGAN MENGGUNAKAN TEOREMA BATAS BAWAH CRAMMER-RAO SKRIPSI Diajua Utu Memeuhi Sebagia Persyarata Mecapai Derajat Sarjaa S-1 OLEH: RISKA JULIANI F1A1 11 031 PROGRAM

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Jenis data yang digunakan berupa data sekunder yang menggunakan Tabel

BAB III METODOLOGI PENELITIAN. Jenis data yang digunakan berupa data sekunder yang menggunakan Tabel 49 BAB III METODOLOGI PENELITIAN 3.1 Jeis da Sumber Data Jeis data yag diguaka berupa data sekuder yag megguaka Tabel Iput Output Idoesia Tau 2005 dega klasifikasi 9 sektor. Data tersebut berasal dari

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

RUANG BANACH PADA RUANG BARISAN, DAN

RUANG BANACH PADA RUANG BARISAN, DAN RUANG BANACH PADA RUANG BARISAN, DAN Wahidah Alwi* * Dose ada Jurusa Mateatia Faultas Sais da Teologi UIN Alauddi Maassar e-ail: wahidah.alwi79@gail.co Abstract: The ai object of the vectors are the vectors

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm

Lebih terperinci

SIMULASI MODEL RLC BERBANTUAN MS EXCEL ASSISTED RLC MODEL SIMULATION MS EXCEL

SIMULASI MODEL RLC BERBANTUAN MS EXCEL ASSISTED RLC MODEL SIMULATION MS EXCEL SIMULASI MODEL RLC BERBANTUAN MS EXCEL ASSISTED RLC MODEL SIMULATION MS EXCEL Edag Habiuddi (Staf Pegajar UP MKU Politei Negeri Badug (Email : ed_.hab@yahoo.co.id ABSTRAK Sistem ragaia listri RLC seri

Lebih terperinci

Jurnal Ilmu Matematika dan Terapan Maret 2016 Volume 10 Nomor 1 Hal

Jurnal Ilmu Matematika dan Terapan Maret 2016 Volume 10 Nomor 1 Hal Jural Ilmu Matematia da Terapa Maret 16 Volume 1 Nomor 1 Hal. 61 68 ANALISIS FAKTOR-FAKTOR YANG MEMPERNGARUHI KANKER LEHER RAHIM DI KOTA AMBON DENGAN MENGGUNAKAN REGRESI LOGISTIK BINER (Studi asus: Pasie

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Buleti Ilmia Mat. Stat. da Terapaa (Bimaster) Volume 0, No. (0), al 07 6. METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Apriadi, Bau Priadoo, Evi Noviai INTISARI Metode

Lebih terperinci

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed.

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajara Barisa, Deret Bilaga da Notasi Sigma di SMA Peulis: Dra. Puji Iryati, M.Sc. Ed. Peilai: Al. Krismato, M.Sc. Editor: Sri Purama Surya, S.Pd,

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi RUANG BARISAN USIELAK-ORLICZ Oleh: Ecu Suiat da Yedi Kuriadi Disapaia pada Seiar Nasioal ateatia ada taggal 8 Deseber 2008, di Jurusa edidia ateatia FIA UI JURUSAN ENDIDIKAN ATEATIKA FAKULTAS ENDIDIKAN

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM07 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pd metode ii, utuk meetuka

Lebih terperinci

Volume 8 Nomor 1 Maret 2014m

Volume 8 Nomor 1 Maret 2014m Volume 8 Nomor Maret 04m Volume 8 Nomor Maret 04 PENANGGUNG JAWAB Ketua Jurusa Matematia FMIPA - Uiversitas Pattimura KETUA DEWAN REDAKSI H. J. Wattimaela, S.Si, M.Si PENYUNTING AHLI Prof. Drs. Subaar,

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci