TEORI ESTIMASI DAN ESTIMASI INTERVAL

Save this PDF as:

Ukuran: px
Mulai penontonan dengan halaman:

Download "TEORI ESTIMASI DAN ESTIMASI INTERVAL"

Transkripsi

1 TEORI ETIMAI DAN ETIMAI INTERVAL Jika proe pegambila ampel dari populai, dimaa diharapka ampel aka berifat euai dega populaiya, kita ebut ebagai amplig. Diii keberadaa atau ifat dari populai udah diketahui terlebih dahulu. Namu erig terjadi bahwa ifat dari populai tidak dapat diketahui ecara pati. Utuk itu dilakuka pembalika dari ampel yaitu iferei (iferece), dimaa dalam hal ii kita melakuka peakira ifat atau keberadaa uatu populai melalui ampel yag ada. ETIMAI DAN ETIMATOR uatu etimai adalah uatu harga pegamata yag peifik dari uatu tatitik, da etimator (peakir) adalah uatu ampel tatitik yag diguaka utuk megetimai (meakir) parameter populai. Kriteria etimator yag baik. Ubiaed, iitilah ii megacu pada fakta bahwa uatu rata-rata ampel adalah etimator ubiaed dari uatu populai karea rata-rata ampel dari ditribui amplig yag diambil dari populai yag ama adalah ama dega mea dari populai itu ediri.. Efficiecy, hal ii berkeaa dega ukura tadard error dari tatitik. Dikataka efiie jika uatu tatitik mempuyai tadard error yag kecil (dalam hal ii tadard error diukur dega atua tadard deviai). 3. Coitecy, jika ada peigkata ukura ampel aka hampir pati bahwa ilai tatitik aka medekati ilai parameter populai. 4. ufficiecy, jika ampel da tatitik yag dikumpulka diaggap udah mecukupi utuk melakuka pegamata terhadap populai. Etimai Wachjoekato hal

2 ETIMAI INTERVAL Pada uatu ampel radom ilai ujia tatitika berada pada retag 50 da 55, maka diatara kedua ilai terebut aka berada parameter populai utuk ilai ujia tatitika. Kedua ilai bata, 50 da 55, aka tergatug pada rata-rata ampel x yag diperoleh dari hail perhituga da ditribui ampel X. Jika ukura ampel membear, maka variai ampel = / aka megecil, ehigga kemugkia bear X etimator aka bertambah dekat dega parameter populai μ. Dega demikia, etimator iterval juga meujukka keyakia etimator titik. ebuah etimator aka berada pada uatu retag atau iterval tertetu jika diterapka tigkat kepercayaa (level of cofidece ; α) tertetu, dega bata-bataya (L da U), maka ecara umum etimai iterval adalah : P(L θ U) = ( α) dimaa θ L = k dikeal ebagai akurai etimai Iterval yag dihitug dari uatu ampel tertetu diebut ebagai iterval kepercayaa (cofidece iterval) ( α) 00%. α adalah koefiie kepercayaa (cofidece coefficiet). Etimai Wachjoekato hal

3 ETIMAI MENGENAI MEAN. ETIMAI INTERVAL UNTUK μ DENGAN DIKETAHUI Jika ampel beraal dari populai ormaal atau cukup bear, cofidece iterval utuk μ dapat dibetuk dega megguaka ditribui ampel x yag juga ormal dega rata-rata μ x = μ dari tadard deviai x = /, maka etimai itervalya adalah : X Z < μ < X Z Cotoh : Rata-rata da tadard deviai ilai tatitika Idutri 64 mahaiwa maig-maig adalah 55 da 6.. Dega level of cofidece 95%, maka etimai itervalya adalah : (.96) < μ < 55 (.96) atau < μ < ii berarti bahwa mea populai utuk ilai tatitika Idutri yag berlaku berada dalam iterval terebut dega tigkat kepercayaa pegukur 95 %. Jika igi diketahui ukura ampel yag haru diambil agar kealaha dalam megetimai μ aka lebih kecil pada uatu tigkat kealaha (e = μ x ), maka haru dipilih ehigga memeuhi Z α/ / = e atau Z = e Berapa bear ampel yag diperluka pada kau diata, jika diigika kealahaya tidak lebih dari 0.05?, maka (.96)(6.) = = (0.05) Etimai Wachjoekato hal 3

4 . ETIMAI INTERVAL UNTUK μ DENGAN TIDAK DIKETAHUI Kita erig igi megetimai mea populai padahal variaiya tidak diketahui ehigga x perlu dikoreki atau yag dikeal dega ditribui tudet-t. Dega cara yag ama, maka etimai itervalya adalah : t ; υ < μ < X t υ ; dega derajat kebebaa ν = X ; Diperoleh data ii kaleg miyak maig-maig 9.8 ; 0. ; 0.4 ; 9.8 ; da 9.6 liter. Dega level of cofidece 95 %, maka etimai itervalya adalah : (.447) < μ < 0.00 (.447) atau 9.74 < μ < ETIMAI INTERVAL UNTUK ELIIH DUA MEAN DENGAN DAN DIKETAHUI Jika dua populai dega mea μ da μ da variai da, maka etimator utuk eliih atara μ da μ diberika oleh x x. Utuk itu diperluka dua ampel radom yag idepede da maigmaig berukura da. Jika kedua ampel beraal dari populai ormal, maka etimai itervalya adalah : ( x x ) Z < μ μ < ( x x ) Z Etimai Wachjoekato hal 4

5 Cotoh : uatu tudi dilakuka pada 50 waita da 75 pria. Nilai rata-rata waita adalah 76 dega tadard deviai 6, da ilai rata-rata pria adalah 8 dega tadard deviai 8. Pada level of cofidece 96 %, maka etimai iterval utuk eliih dua mea adalah : ( 6).054 < μ μ < ( 6).054 atau < μ μ < ETIMAI INTERVAL UNTUK ELIIH DUA MEAN DENGAN = TETAPI TIDAK DIKETAHUI Diii kedua variai dari ampel radom dari dua populai idepede tidak diketahui amu diaumika atau diaggap ama dega, maka etimai itervalya megikuti ditribui tudet-t ebagai berikut : ( x x ) t < μ μ < ( x x ) dim aa p ; υ = ( ) ( ) p ; υ = t ; υ p Etimai Wachjoekato hal 5

6 5. ETIMAI INTERVAL UNTUK ELIIH DUA MEAN DENGAN DAN TIDAK DIKETAHUI Jika kedua variai populai tidak diketahui, maka etimai itervalya megikuti ditribui tudet-t ebagai berikut : ( x x ) t < μ μ < ( x x ) dega υ = ; υ [( / ) ( / )] ( / ) /( ) / t [ ] [( ) /( ) ] ; υ ETIMAI MENGENAI PROPORI. ETIMAI PROPORI TUNGGAL Etimai propori p dalam uatu percobaa biomial diberika dega tatitik pˆ = x /. Utuk ukura ampel bear, maka etimator p diperoleh dari pˆ = x / dimaa x adalah jumlah uke dalam ampel dari percobaa Beroulli, maka etimai itervalya adalah : pˆqˆ pˆ Z < p < pˆ Z pˆqˆ Etimai Wachjoekato hal 6

7 Cotoh : Dari ampel acak berukura 500 keluarga diketahui bahwa 30 keluarga meyukai ietro teleovela. Tetuka 95 % cofidece iterval utuk propori keluarga yag meyukai ietro teleovela. pˆ = x / = 30/500 = 0.6 ; qˆ = pˆ = 0.38 (0.6)(0.38) 0.6 (.96) < p < 0.6 (.96) 500 atau 0.58 < p < 0.66 (0.6)(0.38) 500 Utuk megtimai ukura ampel dega memperhatika proproi adalah : Z pˆqˆ Z = atau jika pˆ ama dega 0.5, maka = e 4e Jika pada cotoh diata diigiaka kealaha tidak lebih dari 0., berapa jumlah ampel yag haru dikumpulka? (.96)(0.6)(0.38) = = (0.). ETIMAI ELIIH DUA PROPORI Jika diigika medapatka etimai eliih dua propori dari dua ampel idepedet dimaa pˆ = x / da pˆ = x /, maka etimai itervalya adalah : ( pˆ ) Z < p p < ( pˆ pˆ ) pˆ qˆ pˆ qˆ pˆ qˆ pˆ Z pˆ qˆ Etimai Wachjoekato hal 7

8 Cotoh : uatu metoda baru diujika dalam pembuata produk, dimaa dega metoda lama dari 500 produk didapatka 75 produk cacat da etelah diguaka metoda baru, maka dari 000 produk didapatka 80 produk cacat. Tetuka 90 % cofidece iterval utuk eliih propori kedua metoda terebut. Diii diketahui bahwa pˆ = 75 / 500 = 0.05 da pˆ = 80 / 000 = 0.04 dega qˆ = pˆ = da qˆ = pˆ = 0.96, maka etimai itervalya adalah : ( 0.0).65 (0.05)(0.95) 500 (0.04)(0.96) 000 < p p (0.05)(0.95) (0.04)(0.96) < ( 0.0).65 atau < p p < Dega kata lai, karea didapatka iterval yag mempuyai ilai lebih keci dari 0, maka tidak ada alaa meyataka bahwa metoda baru ecara igifika meuruka proproi cacat produk. ETIMAI MENGENAI VARIANI. ETIMAI INTERVAL VARIANI TUNGGAL Etimai ubiaed utuk variai populai adalah variai ampel. Iterval etimator utuk dapat ( ) dituruka dega megguaka tatitik chi-quare χ = dega derajat kebebaa (ν) = (aumi ampel beraal dari populai ormal), maka etimai itervalya adalah : ( ) ( ) < < χ χ ; υ ( ); υ Etimai Wachjoekato hal 8

9 Cotoh : Diperoleh data berat produk ebagai berikut : 46.4 ; 46. ; 45.8 ; 47.0 ; 46. ; 45.9 ; 45.8 ; 46.9 ; 45. da Tetuka 95 % cofidece iterval utuk variai. Variai ampel diperoleh dari ( ) ( 9) (0.86) ( 9 )(0.86) < < atau 0.35 < < x i ( x ) = = 0.86, maka etimai itervalya adalah :. ETIMAI INTERVAL RAIO DUA VARIANI Etimai raio dua variai populai / diberika oleh dua variai ampel /. Jika da dari dua populai ormal, maka etimai iterval utuk / diperoleh dega tatitik F = dega derajat kebebaa ν = da ν =, maka etimai itevalya adalah : f ;( υ, υ) < < f ;( υ, υ) Etimai Wachjoekato hal 9

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

A.Interval Konfidensi pada Selisih Rata-rata

A.Interval Konfidensi pada Selisih Rata-rata A.Iterval Kofidei pada Seliih Rata-rata. Bila kita mempuyai da maig-maig adalah mea ample acak beba berukura da yag diambil dari populai dega ragam da diketahui, maka elag kepercayaa 00-% bagi - adalah

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

Metode Statistika Pertemuan IX-X

Metode Statistika Pertemuan IX-X /7/0 Metode Statitika Pertemua IX-X Statitika Ifereia: Pedugaa Parameter Populai : Parameter Cotoh : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ditribui amplig PENDUGA TAK

Lebih terperinci

Teori Penaksiran. Oleh : Dadang Juandi

Teori Penaksiran. Oleh : Dadang Juandi Teori Peakira Oleh : Dadag Juadi Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam

Lebih terperinci

Tetapi apabila n < 5% N maka digunakan :

Tetapi apabila n < 5% N maka digunakan : Jei- jei pedugaa Iterval:. Pedugaa Parameter dega ampel bear (>30) a. Pedugaa terhadap parameter rata-rata Diketahui; z Maka; Z Z Tetapi apabila tadard deviai populai tidak diketahui, maka diguaka tadar

Lebih terperinci

Teori Penaksiran. Oleh : Dewi Rachmatin

Teori Penaksiran. Oleh : Dewi Rachmatin Teori Peakira Oleh : Dewi Rachmati Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam

Lebih terperinci

BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model

BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model 3 BAB III METODE PENELITIAN A. Jei Peelitia Tujua peelitia ii yaki membadigka kemampua berpikir kriti dega kemampua berpikir kreatif dega megguaka dua model pembelajara yaitu model pembelajara berbai maalah

Lebih terperinci

MINGGU KE XII PENDUGAAN INTERVAL

MINGGU KE XII PENDUGAAN INTERVAL MINGGU KE XII PENDUGAAN INTERVAL Tujua Itrukioal Umum :. Mahaiwa mampu memahami apa yag dimakud dega pedugaa iterval. Mahaiwa mampu memahami pedugaa iterval utuk ample bear da utuk ample kecil 3. Mahaiwa

Lebih terperinci

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas X SMA Al-Azhar 3

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas X SMA Al-Azhar 3 0 III. METODE PENELITIAN A. Populai da Sampel Populai dalam peelitia ii adalah emua iwa kela X SMA Al-Azhar 3 Badarlampug tahu pelajara 0/0 yag berjumlah 38 iwa da terebar dalam delapa kela. Pegambila

Lebih terperinci

A. Interval Konfidensi untuk Mean

A. Interval Konfidensi untuk Mean ESTIMASI INTERVAL A. Iterval Kofidei utuk Mea Defiii Jika ˆ merupaka etimator utuk parameter da P ˆ ˆ, maka ˆ ˆ diebut Dimaa iterval kofidei(-)00% utuk. :- koefiie kofidei ˆ, ˆ bata iterval tigkat kealaha

Lebih terperinci

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya

Lebih terperinci

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1)

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1) STATISTICS Cofidece Iterval (Retag Keyakia) Cofidece Iterval () Etimai Parameter Ditribui abilita memiliki ejumlah parameter. Parameter-parameter tb umumya tak diketahui. Nilai parameter terebut diperkiraka

Lebih terperinci

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Pedugaa Parameter HAZMIRA YOZZA JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Kompetei meyebutka klp ifereia tatitika & ruag ligkupya mejelaka metode pedugaa klaik da yarat-yarat peduga yag baik pada pedugaa

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial STATISTIK INFERENSIAL Prof. Dr. H. Almadi Syahza, SE., MP Email: ayahza@yahoo.co.id PROGRAM STUDI PENDIDIKAN EKONOMI FKIP UNIVERSITAS RIAU DISTRIBUSI SAMPLING 2 Bagia I Statitik Iduktif Metode da Ditribui

Lebih terperinci

Pendugaan Parameter Populasi (4 sesi)

Pendugaan Parameter Populasi (4 sesi) Pedugaa Parameter Populai (4 ei) Diuu oleh : Sigit Nugroho Uiverita Begkulu Pedugaa Dalam bagia ii aka dibaha tetag pedugaa titik da pedugaa iterval dari parameter populai yag tidak diketahui. Pedugaaa

Lebih terperinci

Pengujian Hipotesis untuk selisih dua nilai tengah populasi

Pengujian Hipotesis untuk selisih dua nilai tengah populasi Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui

Lebih terperinci

Bab6 PENAKSIRAN PARAMETER

Bab6 PENAKSIRAN PARAMETER Bab6 PENAKSIRAN PARAMETER MENAKSIR RATARATA μ Mialka kita memuyai ebuah oulai berukura N dega ratarata µ da imaga baku σ Dari oulai ii arameter ratarata µ aka ditakir Utuk keerlua ii,ambil ebuah amel acak

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

BAB II ESTIMASI STATISTIK 2.1 Pengertian Estimasi a. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai

BAB II ESTIMASI STATISTIK 2.1 Pengertian Estimasi a. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai 3 BAB II ESTIMASI STATISTIK. Pegertia Etimai a. Etimai merupaka uatu metode dimaa kita dapat memperkiraka ilai Populai dega memakai ilai ampel. b. Etimai merupaka kegiata pearika keimpula tatitik yag berawal

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Al Azhar-3

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Al Azhar-3 III. METODOLOGI PENELITIAN A. Populai da Sampel Peelitia Populai dalam peelitia ii adalah emua iwa kela I IPA SMA Al Azhar-3 Badar Lampug tahu ajara 0/0 yag berjumlah 48 iwa da terebar dalam empat kela.

Lebih terperinci

PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH

PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH PENDUGAAN PARAMETER Populai : Parameter Sampel : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ebara cotoh PENDUGA TAK BIAS DAN MEMPUNYAI

Lebih terperinci

1. Ilustrasi. Materi 2 Pendugaan Parameter

1. Ilustrasi. Materi 2 Pendugaan Parameter Materi Pedugaa Parameter. Ilutrai Ifereia Statitika : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai megeai oulai dega melakuka egambila amel (amlig) Etimai / Pedugaa Parameter Yaitu

Lebih terperinci

A. PENGERTIAN DISPERSI

A. PENGERTIAN DISPERSI UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain:

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain: Peahulua Peugaa Parameter Peugaa Parameter Populai ilakuka ega megguaka ilai Statitik Sampel, Mial :. x iguaka ebagai peuga bagi µ. iguaka ebagai peuga bagi σ 3. p atau p$ iguaka ebagai peuga bagi π Peugaa

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc. Statitika Toik Bahaa: Pedugaa Parameter Oleh : Edi M Pribadi, SP, MSc E-mail: edi_m@taffguadarmaacid edi_m@ymailcom Ilutrai Statitika Ifereia : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai

Lebih terperinci

INFERENSI STATISTIK Inferensi statistik mencakup semua metode yang digunakan dalam penarikan kesimpulan atau generalisasi mengenai populasi.

INFERENSI STATISTIK Inferensi statistik mencakup semua metode yang digunakan dalam penarikan kesimpulan atau generalisasi mengenai populasi. INFERENSI STATISTIK Iferei tatitik mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai populai. Iferei Statitik Pedugaa Parameter Pegujia Hipotei PENDUGAAN PARAMETER Pedugaa parameter

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial SOAL PELATIHAN. Jelaka pegertia hipotei?. Seorag peeliti biaaya tertarik meguji atu hipotei dari eam alteratif hipotei. Sebutka eam alteratif hipotei terebut? 3. Apa yag dimakud dega pegujia hipotei? 4.

Lebih terperinci

= μ RANDOM SAMPLING, DISTRIBUSI SAMPLING

= μ RANDOM SAMPLING, DISTRIBUSI SAMPLING RANDOM SAMPLING, DISTRIBUSI SAMPLING Total observasi yag diamati, apakah jumlahya terbatas (fiite) atau takterbatas (ifiite) disebut sebagai Populasi. Da Sample adalah himpua bagia (subset) dari populasi

Lebih terperinci

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University --Fiherie Data Aalyi-- Perbadiga ragam By. Ledhyae Ika Harlya Faculty of Fiherie ad Marie Sciece Brawijaya Uiverity Tujua Itrukioal Khuu Mahaiwa dapat megguaka aalii tatitika ederhaa dega berfoku ukura

Lebih terperinci

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F BAB III AALISIS EMODELA ATRIA HAULER EGAGKUTA OVERBURDE ADA JALA 7F 3.. edahulua ada Bab II telah dijelaka beberapa teori yag diguaka utuk melakuka aalii yag tepat dalam memecahka maalah yag ada. ada bab

Lebih terperinci

III. METODE PENELITIAN. Populasi penelitian ini yaitu seluruh siswa kelas X SMA Negeri 2 Bandar

III. METODE PENELITIAN. Populasi penelitian ini yaitu seluruh siswa kelas X SMA Negeri 2 Bandar 7 III. METDE PENELITIAN A. Populai Peelitia Populai peelitia ii yaitu eluruh iwa kela MA Negeri Badar Lampug dega ampel kela, pada emeter geap Tahu Pelajara 0/0. B. ampel Peelitia Tekik pegambila ampel

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

Metode Statistika Pertemuan XI-XII

Metode Statistika Pertemuan XI-XII /4/0 Metode Statitika Pertemua XI-XII Statitika Ifereia: Pegujia Hipotei Populai : = 0 Butuh pembuktia berdaarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : 5 Ok, itu adalah pegujia hipotei,

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui Statitika, Vol. No., 5 6 Mei Diagram Kedali Simpaga Baku Ekak utuk Proe Berditribui Normal dega Parameter Diketahui Aceg Komarudi Mutaqi, Suwada Program Studi Statitika Fakulta MIPA Uiverita Ilam Badug,

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil Statitika, Vol. 8 No. 1, 13 17 Mei 008 Selag Kepercayaa dari Parameter Ditribui Log-Normal Megguaka Metode Boottrap Peretil Akhmad Fauzy Jurua Statitika FMIPA Uiverita Ilam Idoeia Yogyakarta Abtract I

Lebih terperinci

BAB IV DESKRIPSI ANALISIS DATA

BAB IV DESKRIPSI ANALISIS DATA BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

Pengujian Hipotesis EDISI KETIGA. Pusat Pendidikan dan Pelatihan Badan Pusat Statistik

Pengujian Hipotesis EDISI KETIGA. Pusat Pendidikan dan Pelatihan Badan Pusat Statistik egujia Hipotei EDISI KETIGA uat edidika da elatiha Bada uat Statitik MODUL ENGUJIAN HIOTESIS eyuu Novi Hidayat upoegoro, S.Si, M.Stat Editor Dr. Eri Tri Atuti, M.Math. Edii Ketiga Deember, 03 Bada uat

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

Pendugaan Parameter. Statistika Industri 1 Semester Genap 2017/2018 Jurusan Teknik Industri - Universitas Brawijaya

Pendugaan Parameter. Statistika Industri 1 Semester Genap 2017/2018 Jurusan Teknik Industri - Universitas Brawijaya Pedugaa Parameter 4 Statistika Idustri Semester Geap 07/08 Jurusa Tekik Idustri - Uiversitas Brawijaya Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa

Lebih terperinci

Bab I Dasar Teori. Inferensi Statistik

Bab I Dasar Teori. Inferensi Statistik Bab I Daar Teori Iferei Statitik Iferei tatitik adalah pegambila keimpula tetag parameter populai berdaarka aalia pada ampel. Beberapa hal yag perlu diketahui berhubuga dega iferei tatitik yaitu etimai

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi Pedugaa Parameter: Kau Dua amel alig beba Seliih rataa dua oulai - x x.96 x x.96 x x - SAMPLING ERROR Dugaa Selag bagi µ - µ ( x x z ( x x z Formula klik diketahui ama & Syarat : & Tidak ama Formula klik

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Peelitia ii bertujua utuk megetahui apakah terdapat perbedaa hasil belajar atara pegguaa model pembelajara Jigsaw dega pegguaa model pembelajara Picture ad Picture

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Berdaarka rumua maalah pada BAB I, peelitia kuatitatif ii bertujua utuk megetahui efektivita metode pembelajara dicovery dega megguaka Papa Tempel egi Empat

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jei Peelitia Metode peelitia yag diguaka dalam kripi ii adalah metode peelitia kuatitatif ekperime yag berdeai pottet-oly cotrol deig, karea tujua dalam peelitia ii utuk mecari

Lebih terperinci

INFERENSI STATISTIS: UJI HIPOTESIS

INFERENSI STATISTIS: UJI HIPOTESIS Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga INFERENSI STATISTIS: UJI HIPOTESIS Statistika da Probabilitas Model Matematis vs Pegukura komparasi garis teoretik (prediksi meurut

Lebih terperinci

Pengujian Hipotesis Statistika. Sigit Nugroho. Universitas Bengkulu. Disusun oleh. (7 sesi)

Pengujian Hipotesis Statistika. Sigit Nugroho. Universitas Bengkulu. Disusun oleh. (7 sesi) Pegujia Hipotesis Statistika (7 sesi) Disusu oleh Sigit Nugroho Uiversitas Begkulu Hipotesis Hipotesis merupaka dugaa semetara yag diaggap bear. Dalam Statistika, Hipotesis merupaka peryataa yag bisa diuji

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN A III METODOLOGI PENELITIAN A. Jei da Deai Peelitia. Jei Peelitia Jei peelitia ii adalah peelitia ekperime. Metode peelitia ekperime merupaka metode peelitia yag diguaka utuk mecari treatmet (perlakua)

Lebih terperinci

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT Proidig emirata05 bidag MIPA BK-PT Barat Uiverita Tajugpura Potiaak PEAKIR RAIO DA PRODUK EKPOEIAL YAG EFIIE UTUK VARIAI POPULAI PADA AMPLIG ACAK EDERHAA EXPOETIAL RATIO AD PRODUCT ETIMATIO FOR POPULATIO

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3. Deain Penelitian yaitu: Pengertian deain penelitian menurut chuman dalam Nazir (999 : 99), Deain penelitian adalah emua proe yang diperlukan dalam perencanaan dan pelakanaan

Lebih terperinci

BAB 6. Penggunaan SPSS dalam STATISTIK INFERENSI

BAB 6. Penggunaan SPSS dalam STATISTIK INFERENSI 54 Modul Statitika TI oleh Hartatik,M.Si BAB 6 Pegguaa SPSS dalam STATISTIK INFERENSI Tujua : a. Mahaiwa mampu melakuka uji beda mea dua ample b. Mahaiwa mampu melakuka uji beda propori c. Mahaiwa mampu

Lebih terperinci

JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA

JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Achmad Samudi, M.Pd. JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA 6. MENGUJI PROPORSI π : UJI DUA PIAK Mialka kia mempuyai populai biom dega propori periiwa A π Berdaarka ebuah ampel

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA PEAKIR RAIO UTUK VARIAI POPULAI MEGGUAKA KUARTIL DARI KARAKTER TAMBAHA PADA AMPLIG ACAK EDERHAA Ari Elvita *, Arima Ada, Hapoa irait Mahaiwa Program Matematika Doe Jurua Matematika Fakulta Matematika da

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi)

BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi) Pertemua0 BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuaku Tambusai Bagkiag 7. PENAKSIRAN ( Taksira Iterval utuk rataa, varia da proporsi) 7.1 Pedahulua Pada pembahasa sebelumya adalah meletakka

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

III. METODE PENELITIAN. yang terdistribusi dalam enam kelas. Setiap kelas memiliki kemampuan matematika

III. METODE PENELITIAN. yang terdistribusi dalam enam kelas. Setiap kelas memiliki kemampuan matematika III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VII SMP Negeri 10 Badar Lampug semester geap tahu pelajara 011/01 sebayak 195 siswa yag terdistribusi

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

Bab 6 PENAKSIRAN PARAMETER

Bab 6 PENAKSIRAN PARAMETER Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN FRAKSI PENGAMBILAN SAMPEL

PENAKSIR RASIO YANG EFISIEN UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN FRAKSI PENGAMBILAN SAMPEL PENAKIR RAIO YANG EFIIEN UNTUK VARIANI POPULAI PADA AMPLING ACAK EDERHANA MENGGUNAKAN FRAKI PENGAMBILAN AMPEL Rio Permadi 1*, Bustami, Haposa irait 1 Mahasiswa Program 1 Matematika Dose Jurusa Matematika

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

1. Pendahuluan. Materi 3 Pengujuan Hipotesis

1. Pendahuluan. Materi 3 Pengujuan Hipotesis Materi 3 Pegujua Hiotesis. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu atau lebih oulasi) Kebeara suatu hiotesis diuji dega megguaka statistik samel hiotesis

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi 5 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMPN 0 Badar Lampug, dega populasi seluruh siswa kelas VII. Bayak kelas VII disekolah tersebut ada 7 kelas, da setiap kelas memiliki

Lebih terperinci

BAB IV ENTROPI GAS SEMPURNA

BAB IV ENTROPI GAS SEMPURNA BAB IV ENROPI GAS SEMPURNA Itilah etroi ecara literatur berarti traformai, da dierkealka oleh lauiu. Etroi adalah ifat termodiamika yag etig dari ebuah zat, dimaa hargaya aka meigkat ketika ada eambaha

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci