BAB III DISTRIBUSI FREKUENSI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III DISTRIBUSI FREKUENSI"

Transkripsi

1 BAB III DISTRIBUSI FREKUENSI A. Pengertian Distribusi Frekuensi Distribusi frekuensi adalah suatu susunan data mulai dari data terkecil sampai dengan data terbesar dan membagi banyaknya data menjadi beberapa kelas. Untuk membuat sebuah tabel distribusi frekuensi, beberapa hal yang perlu diketahui adalah: a. Kelas interval: yaitu banyak data dikelompokkan dalam bentuk a-b, dimana data dimulai dari data yang bernilai a sampai dengan data yang bernilai b. Diurutkan dari data terkecil sampai dengan data terbesar, secara berurutan mulai kelas interval pertama sampai dengan interval terakhir. b. Frekuensi: yaitu banyaknya bilangan dalam suatu kelas interval tertentu. c. Ujung kelas interval: yaitu bilangan yang terletak disebelah kiri dan kanan suatu kelas interval, meliputi ujung bawah dan ujung atas. d. Panjang kelas interval: yaitu selisih antara tiap dua ujung bawah yang berurutan. e. Batas kelas interval: yaitu ujung bawah kelas dikurangi 0,5 sedangkan batas atas adalah ujung atas ditambah dengan 0,5 (untuk data yang dicatat sampai dengan satu satuan, untuk data hingga satu desimal desimal batas bawah yaitu ujung bawah dikurangi 0,05 dan batas atas yaitu ujung atas ditambah 0,05, jika tercatat hingga dua desimal maka angka pengurang/penambahnya menjadi 0,005 dan begitu seterusnya). f. Nilai Tengah: yaitu nilai data yang diambil sebagai wakil dari kelas interval itu yaitu dengan menggunakan rumus : ½ (ujung bawah + ujung atas) 1

2 B. Menyusun Distribusi Frekuensi Untuk penyusunan daftar distribusi frekuensi kita lihat contoh berikut ini, misalkan kita mempunyai kumpulan data nilai tentang pelajaran matematika dari sebanyak 0 siswa.. Data nilai matematika dari 0 siswa adalah sebagai berikut : Untuk membuat daftar distribusi frekuensi, langkah-langkahnya adalah sebagai berikut ini : a. Menentukan Rentang (Jangkauan) Rentang atau Jangkauan adalah selisih antara data terbesar dengan data terkecil. Dinotasikan sebagai : Keterangan : R = rentang x max = data terbesar x min = data terkecil Contoh : Rentang dari data nilai matematika 0 siswa adalah : R = x max - x min X maks = data terbesar = 97 X min = data terkecil = 53

3 R = = b. Menentukan Banyak Kelas Interval Banyak kelas harus dibuat sedemikian rupa agar semua data nilai bisa tercakup didalamnya. Bila kelas intervalnya terlalu sedikit maka informasi yang diberikan akan menjadi tidak lengkap, karena jumlah kelas yang sedikit maka akibatnya interval kelasnya menjadi besar sehingga variasi yang terinci secara individual akan hilang. Atau sebaliknya bila jumlah interval terlalu banyak maka perhitungan menjadi tidak praktis dan pola frekuensinya menjadi kosong. Untuk menetapkan banyak kelas interval, dapat digunakan aturan Sturges yaitu sebagai berikut ini : Keterangan: K = banyak kelas n = banyak data Contoh : Dari data nilai matematika diatas diperoleh : K= 1+ (3,3) log 0 K = 1 + (3,3) (1,9091) K = 1 + 6,3 = 7,3 (dibulatkan menjadi 7 ) Jadi banyak kelas intrerval dari data nilai matematika adalah sebanyak : 7 kelas interval. c. Panjang Kelas Interval Panjang kelas interval adalah rentang dibagi dengan banyaknya kelas. Maka untuk menentukan panjang kelas interval ini digunakan rumus : 3

4 Contoh : Dari data nilai matematika diatas : Rentang = = Banyak kelas (K) = 7 Panjang kelas = = 6, 7 d. Pilih ujung bawah kelas interval pertama yaitu sama dengan data terkecil dari sekumpulan data tadi, atau nilai data yang lebih kecil dari data terkecil tetapi selisihnya harus lebih kecil dari panjang kelasnya. e. Dari perhitungan yang telah dilakukan, kita mulai menyusun kelas interval pertama dengan panjang kelas 7 dan ujung bawah kelas pertama kita ambil 5. Dengan demikian kelas interval pertama adalah 5-5, kelas interval kedua dan seterusnya. f. Dalam menyusun daftar sebaiknya kita gunakan daftar penolong, untuk memudahkan dalam menghitung berapa frekuensi data yang terdapat dalam suatu kelas interval, misalnya seperti dibawah ini : Tabel Distribusi Frekuensi Nilai Matematika Nilai Turus Frekuensi ll llll llll llll l llll llll ll llll llll llll llll llll ll llll llll llll lll llll J u m l a h 0

5 Dengan demikian daftar distribusi frekuensi dari data nilai sebanyak 0 siswa tadi adalah sebagai berikut ini : Tabel Nilai Matematika Siswa NILAI FREKUENSI Jumlah 0 C. Distribusi Frekuensi Relatif dan Komulatif 1. Distribusi Frekuensi Relatif Daftar Distribusi Frekuensi Relatif yaitu frekuensi dari sebuah daftar distribusi yang dinyatakan dalam bentuk persen, maka untuk mencari frekuensi relatif setiap kelas intervalal adalah : Frekuensi Relatif kelas pertama : F rel = x 100%.5% 0 Frekuensi Relatif Kelas kedua 15 : F rel = x 100% 1.75% 0 Dari daftar distribusi Frekuensi diatas diperoleh Daftar Distribusi Frekuensi Relatif sebagai berikut : 5

6 Tabel Nilai Matematika Siswa NILAI FREKUENSI FREKUENSI ABSOLUT RELATIF (%) ,50 0,00 15,00 33,75 1,50 10,00 6, Distribusi Frekuensi Komulatif Distribusi Frekuensi Kumulatif ada dua macam yaitu: a. Distribusi Kumulatif Kurang Dari b. Distribusi Kumulatif Lebih Dari 6

7 Tabel NILAI UJIAN SISWA (KUMULATIF KURANG DARI) Tabel NILAI UJIAN SISWA (KUMULATIF ATAU LEBIH) NILAI FREKUENSI NILAI FREKUENSI KUM KUM Kurang dari atau Lebih 0 Kurang dari atau Lebih 7 Kurang dari atau Lebih 6 Kurang dari atau Lebih 50 Kurang dari atau Lebih 3 Kurang dari atau Lebih 13 Kurang dari atau Lebih 5 Kurang dari atau Lebih 3. Histogram dan Poligon Frekuensi Apabila dari data telah dikelompokkan untuk menggambarakan grafiknya adalah sebagai berikut : 7

8 30 5 poligon frekuensi ,5 5,5 65,5 7,5 79,5 6,5 93,5

9 BAB IV UKURAN PEMUSATAN DATA Ukuran pemusatan data adalah nilai tunggal dari data yang dapat memberikan gambaran yang lebih jelas dan singkat mengenai keadaan pusat data yang dapat mewakili seluruh data. A. Rata-rata Hitung (mean) Rerata atau mean merupakan salah satu ukuran gejala pusat. Mean merupakan wakil kumpulan data. Untuk menentukan rata-rata hitung data tunggal dapat diperoleh dengan cara menjumlahkan seluruh nilai data dan membagi dengan banyak data. Rumus (1) : Dengan: = rata-rata = jumlah seluruh data = banyak data Contoh : Penyelesaian : Hitung rata-rata dari 6, 5, 9, 7,,, 7, 6. = = 7 9

10 Rumus () : Keterangan: = rata-rata = frekuensi data ke - i = data kelas ke i = jumlah hasil kali data kelas ke i dikali dengan frekuensi data ke i = jumlah frekuensi Contoh : Dari 0 siswa yang mengikuti ulangan matematika didapat data sebagai berikut : siswa yang memperoleh nilai ada 5 orang, nilai 5 ada 10 orang, nilai 6 ada 1 orang,nilai 7 nilai ada 3 orang dan nilai 9 ada orang. Penyelesaian : X i f i f i x i JUMLAH 0 0 _ x = f i f x i i =

11 Untuk mencari rata-rata dari data yang telah dikelompokkan dalam daftar distribusi frekuensi misalnya, rumus yang dapat digunakan ada dua yaitu cara yang menggunakan nilai tengah (titik tengah) dan cara Coding. Rumus(3) menggunakan titik tengah yang digunakan adalah : Keterangan : = rata-rata = frekuensi data ke - i = nilai tengah kelas ke i = jumlah hasil kali nilai tengah kelas ke i dikali dengan frekuensi data ke i = jumlah frekuensi Contoh : Tentukan rata-rata dari tabe berikut ini : Nilai x i f i f i x i J u m l a h Rata-rata = = = 76 11

12 Sedangkan rumus () coding adalah sebagai berikut ini : Keterangan : = rata-rata = frekuensi data ke i p = panjang kelas = nilai tengah yang dipilih sebagai coding = jumlah hasil kali frekuensi kelas ke i dikali dengan coding data ke i = jumlah frekuensi Dalam menggunakan cara coding, yaitu pilih salah satu nilai (bisa dipilih kelas interval yang mana saja), misalkan ambil kelas interval yang mempunyai frekuensi terbesar. Untuk kelas interval terbesar tersebut diberikan harga c=0, harga c untuk kelas yang lainnya adalah 1,-,- 3,.(untuk kelas interval sebelum kelas interval yang terpilih tadi) dan 1,,3.. (untuk kelas setelah kelas interval yang terpilih). Contoh : Tentukan nilai rata-rata dari tabel di atas! Nilai f i x i c i f i c i J u m l a h

13 = 76 B. Median Median (Me) adalah nilai tengah dari sekumpulan data yang telah diurutkan, mulai dari data terkecil sampai dengan data terbesar. Contoh : a. Tentukan median dari : 65, 70, 90, 0, 35, 5, 70, 0, 5 Setelah diurutkan datanya menjadi : Jadi Me = 65. b. Tentukan median dari : Setelah diurutkan : Jadi Me = 35, 0, 5, 50, 65, 70, 70, 0, 90 3,, 5,,, 6, 6, 7, 9, 6,, 3,, 5, 6, 6, 6, 7, = 5,5 Untuk menentukan Me data yang telah dikelompokkan digunakan rumus : Keterangan : Me = Median b = batas bawah kelas Median p = panjang kelas Median f = frekuensi kelas Median 13

14 F n = jumlah semu frekuensi dengan sebelum kelas Median = banyak data Contoh : Carilah median dari daftar distribusi frekuensi berikut ini : Nilai f i J u m l a h 50 Dari tabel diatas diketahui : n = 50 p = 7 F = +6+7 = 15 f = 0 b = 7,5 Jadi = 7, = 7, = 7, = 7,5 + 7 (1/) = 7,5 + 3,5 = 76 1

15 C. Modus Modus adalah untuk menyatakan fenomena yang paling banyak terjadi atau data yang paling sering muncul. Modus ini bila dibandingkan dengan ukuran lainnya, tidak tunggal adanya. Berarti sekumpulan data bisa mempunyai lebih dari sebuah Modus. Contoh: Diketahui : 65, 70, 90, 0, 0, 0, 0, 35, 5, 70, 0, 50. Tentukan Modus dari data tersebut! Setelah diurutkan datanya menjadi : 35, 0, 0, 0, 0, 5, 50, 65, 70, 70, 0, 90 Jadi Mo = 0 Untuk mencari Mo data yang telah dikelompokkan digunakan rumus b1 : Mo b p b1 b Keterangan : Mo = Modus b = batas bawah kelas Modus p = panjang kelas Modus b 1 = frekuensi kelas modus dikurangi frekuensi kelas sebelumnya b = frekuensi kelas modus dikurangi frekuensi kelas berikutnya. 15

16 Contoh : Carilah modus dari daftar distribusi frekuensi berikut ini : Nilai f i J u m l a h 50 b 1 = 0-7= 13 ; b = 1 ; p = 7 Maka modusnya adalah : b1 Mo b p b1 b 13 = 7, = 7,5 + 5 = 7,5 + 3,6 = 76,1 D. Kuartil Kuartil adalah sekumpulan data yang dibagi menjadi empat bagian yang sama banyak. Karena dibagi empat sama banyak maka terdapat 3 buah kuartil yaitu : Kuartil pertama (K 1 ), Kuartil kedua (K ) dan Kuartil ke tiga (K 3 ) Untuk menentukan nilai dari kuartil yaitu : a. Susun data menurut urutan nilainya. b. Tentukan letak kuartil c. Tentukan nilai kuartil 16

17 Menentukan letak kuartil digunakan rumus : i( n 1), Contoh : Diketahui sekelompok data : 7, 6,, 5, 6, 9, 7, 6,,, 7, Setelah data diurutkan :,, 5, 6, 6, 6, 7, 7, 7,,, 9. 1(1 1) - letak K 1 : data ke = 3 1 nilai K 1 = (6-5) = 5 ¼ (1 1) 6 - letak K : data ke 6 1 nilai K = (7 6) 6 ½ 3(1 1) 39 - letak K 3 : data ke 9 3 nilai K 3 = ( 7) 7 ¼ Untuk mencari Kuartil data yang telah dikelompokkan digunakan rumus: in F K b p i f Keterangan : Ki = Kuartil ke - i b = batas bawah kelas Ki p = panjang kelas Ki F = frekuensi kelas sebelum kelas Ki f = frekuensi kelas Ki. 17

18 Contoh : 1. Carilah kuartil ke3 dari daftar distribusi frekuensi berikut ini : Nilai f i J u m l a h 50 Tentukan K 3 dari data distribusi frekuensi diatas.. Letak data 3.50 = 37,5 in F K b p i f K 3 79,5 10 = 79,5 +1,5 0 = 0,75 1

BAB I DASAR-DASAR STATISTIKA

BAB I DASAR-DASAR STATISTIKA DAFTAR ISI BAB I DASAR DASAR STATISTIKA... A. Pengertian Statistik dan Statistika... B. Data... C. Macam Macam Data... 3 BAB II PENYAJIAN DATA... 5 A. Penyajian Data dalam Bentuk Tabel... 5 B. Penyajian

Lebih terperinci

9. STATISTIKA. f u. X s = Rataan sementara, pilih x i dari data dengan f i terbesar. Ukuran Pemusatan Data A. Rata-rata. 1.

9. STATISTIKA. f u. X s = Rataan sementara, pilih x i dari data dengan f i terbesar. Ukuran Pemusatan Data A. Rata-rata. 1. 9. STATISTIKA Ukuran Pemusatan Data A. Rata-rata 1. Data tunggal: X = 2. Data terkelompok: x1 + x 2 + x3 +... + x n n Cara konvensional Cara sandi f = i xi X f u X Xs i i = + c f i f i Keterangan: f i

Lebih terperinci

Distribusi Frekuensi

Distribusi Frekuensi Distribusi Frekuensi Statistik Industri Beberapa Istilah 1 Beberapa (cont ) Kelas interval : banyaknya objek yang dikumpulkan dalam kelompok tertentu, berbentuk interval a b ex: kelas interval pertama

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS B. Pembelajaran 2 1. Silabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah

Lebih terperinci

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata Probabilitas dan Analisis dan Adam Hendra Brata Deskriptif Induktif Pembagian Deskriptif Metode guna mengumpulkan, menghitung, dan menyajikan suatu data secara kwantitatif sehingga memberikan informasi

Lebih terperinci

PENYAJIAN DATA. Cara Penyajian Data meliputi :

PENYAJIAN DATA. Cara Penyajian Data meliputi : PENYAJIAN DATA Cara Penyajian Data meliputi : 1. Tabel Tabel terbagi menjadi : - Tabel Biasa - Tabel Kontingensi - Tabel Distribusi Tabel Distribusi terbagi menjadi : Tabel Distribusi Mutlak Tabel Distribusi

Lebih terperinci

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT UKURAN NILAI SENTRAL&UKURAN PENYEBARAN Tita Talitha, MT DISTRIBUSI FREKWENSI PENGERTIAN distribusi frekwensi adalah suatu tabel dimana banyaknya kejadian / frekwensi didistribusikan ke dalam kelas-kelas

Lebih terperinci

Statistika Deskriptif & Distribusi Frekuensi

Statistika Deskriptif & Distribusi Frekuensi Statistika Deskriptif & Distribusi Frekuensi Oleh: Zulhan Widya Baskara FAKULTAS TEKNOLOGI PERTANIAN Mataram, September 2014 Statistika Statistika Deskriptif Statistika Inferensial Statistika Deskriptif

Lebih terperinci

STATISTIKA 2 UKURAN PEMUSATAN

STATISTIKA 2 UKURAN PEMUSATAN STATISTIKA 2 UKURAN PEMUSATAN TUJUAN Melatih berfikir dan bernalar secara logis dan kritis serta dapat mengembangkan aktifitas, kreatifitas dalam memecahkan masalah dan mengkomunikasikan ide dan gagasannya.

Lebih terperinci

STATISTIKA: UKURAN LOKASI DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN LOKASI DATA. Tujuan Pembelajaran KTSP & K-13 matematika K e l a s XI STATISTIKA: UKURAN LOKASI DATA Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan sebagai berikut. 1. Dapat menentukan kuartil data

Lebih terperinci

Pengumpulan & Penyajian Data

Pengumpulan & Penyajian Data Pengumpulan & Penyajian Data Cara Pengumpulan Data 1. Mengadakan penelitian langsung ke lapangan atau laboratorium terhadap obyek yang diteliti, hasilnya dicatat dan dianalisis 2. Mengambil atau menggunakan

Lebih terperinci

LAMPIRAN III PERHITUNGAN MEAN, MEDIAN, MODUS STANDAR DEVIASI DAN DISTRIBUSIFREKUENSI

LAMPIRAN III PERHITUNGAN MEAN, MEDIAN, MODUS STANDAR DEVIASI DAN DISTRIBUSIFREKUENSI LAMPIRAN III PERHITUNGAN MEAN, MEDIAN, MODUS STANDAR DEVIASI DAN DISTRIBUSIFREKUENSI 1. Proses perhitungan tabel distribusi frekuensi, mean, median, modus dan standar deviasi pendapat siswa tentang strategi

Lebih terperinci

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Beberapa bentuk penyajian data, sebagai berikut: Kompetensi Dasar (KURIKULUM 2013): 3.15 Memahami dan menggunakan berbagai ukuran

Lebih terperinci

DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA

DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA a. Tabel distribusi frekuensi Kelas Tabulasi Frekuensi 4 IIII 7 IIII IIII 9 8 1 IIII IIII II 1 11 13 IIII IIII IIII IIII 19 14 16 IIII IIII IIII IIII IIII 4 17

Lebih terperinci

Materi II STATISTIK DESKRIPTIF STMIK KAPUTAMA BINJAI

Materi II STATISTIK DESKRIPTIF STMIK KAPUTAMA BINJAI Materi II STATISTIK DESKRIPTIF STMIK KAPUTAMA BINJAI DISTRIBUSI FREKUENSI Frekuensi adalah kekerapan atau keseringan suatu data berulang atau berada dalam deretan angka tersebut. Distribusi adalah penyaluran,

Lebih terperinci

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd.

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd. Tutorial : ke-1 Nama Tutor : a. Menjelaskan pengertian statistik; b. Menjelaskan pengertian statistika; c. Menjelaskan pengertian data statistik; d. Menjelaskan contoh macam-macam data; e. Menjelaskan

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) III. DISTRIBUSI FREKUENSI 3.1 Pendahuluan Tujuan dari pembuatan tabel distribusi frekuensi adalah untuk mengatur data mentah (data yang belum dikelompokkan) ke dalam bentuk yang rapi tanpa mengurangi inti

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

7.1 ISTILAH-ISTILAH DALAM STATISTIKA A.

7.1 ISTILAH-ISTILAH DALAM STATISTIKA A. STATISTIKA Dalam statistika, angka dikumpulkan dan diatur sedemikian rupa sehingga orang dapat memahaminya, menarik kesimpulan, dan membuat perkiraan berdasarkan angka angka itu. 7.1 ISTILAH-ISTILAH DALAM

Lebih terperinci

Statistika Pendidikan

Statistika Pendidikan Statistika Pendidikan Statistika adalah metode ilmiah yang mempelajari pengumpulan, pengaturan, perhitungan, penggambaran dan penganalisisan data, serta penarikan kesimpulan yang valid berdasarkan penganalisisan

Lebih terperinci

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b

5. STATISTIKA PENYELESAIAN. a b c d e Jawab : b . STATISTIKA A. Membaca Sajian Data dalam Bentuk Diagram. UN 00 IPS PAKET A Diagram lingkaran berikut menunjukan persentase jenis pekerjaan penduduk di kota X. Jumlah penduduk seluruhnya adalah 3.600.000

Lebih terperinci

Susunan data menurut kelas-kelas interval tertentu atau menurut kategori tertentu dalam sebuah daftar. Distribusi frekwensi menyajikan keterangan

Susunan data menurut kelas-kelas interval tertentu atau menurut kategori tertentu dalam sebuah daftar. Distribusi frekwensi menyajikan keterangan MINGGU KEEMPAT Susunan data menurut kelas-kelas interval tertentu atau menurut kategori tertentu dalam sebuah daftar. Distribusi frekwensi menyajikan keterangan atau gambaran sederhana dan sistematis dari

Lebih terperinci

STATISTIK DAN STATISTIKA

STATISTIK DAN STATISTIKA STATISTIK DAN STATISTIKA MAKNA DARI PENGERTIAN STATISTIK DAN STATISTIKA DATA STATISTIK Pengertian : Data adalah keterangan atau fakta mengenai suatu persoalan bisa berupa kategori (rusak, baik senang,

Lebih terperinci

PENGUKURAN DESKRIPTIF

PENGUKURAN DESKRIPTIF PENGUKURAN DESKRIPTIF STATISTIK INDUSTRI I Jurusan Teknik Industri Universitas Brawijaya Malang 1 PENGUKURAN DESKRIPTIF Suatu pengukuran yang bertujuan untuk memberikan gambaran tentang data yang diperoleh

Lebih terperinci

A. PENYAJIAN DATA. Nama Dwi Willi Nita Wulan Dani. Tabel 3.1

A. PENYAJIAN DATA. Nama Dwi Willi Nita Wulan Dani. Tabel 3.1 A. PENYAJIAN DATA 1. Pengertian Data dan Statistika Statistika sangat erat kaitannya dengan data. Oleh karena itu, sebelum membahas mengenaistatistika, akan dijelaskan terlebih dahulu mengenai data. Data

Lebih terperinci

Statistika & Probabilitas. Pancaran Frekuensi

Statistika & Probabilitas. Pancaran Frekuensi Statistika & Probabilitas Pancaran Frekuensi Membentuk Pancaran Frekuensi raw data (data mentah) Sekelompok data yang belum tersusun & belum teratur sehingga belum dapat dijelaskan ataupun dipahami. Tabel

Lebih terperinci

King s Learning Be Smart Without Limits NAMA : KELAS :

King s Learning Be Smart Without Limits NAMA : KELAS : NAMA : KELAS : A. PENGERTIAN STATISTIKA Statistika adalah ilmu yang mempelajari cara mengumpulkan dan menyusun data, mengolah dan menganalisis data, serta menyajikan data. Statistik adalah hasil dari pengolahan

Lebih terperinci

Materi tentang Statistika dapat digambarkan sebagai berikut. Statistika. terdiri atas. Rata-Rata Median Modus. Rentang Antarkuartil

Materi tentang Statistika dapat digambarkan sebagai berikut. Statistika. terdiri atas. Rata-Rata Median Modus. Rentang Antarkuartil Peta Konsep Materi tentang dapat digambarkan sebagai berikut. Sampel Populasi meliputi Data membangun konsep Tabel Statistik Tabel Distribusi Frekuensi meliputi Tabel Histogram Penyajian Data meliputi

Lebih terperinci

BAB V UKURAN LETAK. Statistika-Handout 5 26

BAB V UKURAN LETAK. Statistika-Handout 5 26 BAB V UKURAN LETAK Selain ukuran pemusatan terdapat pula ukuran letak. Salah satu dari ukuran letak adalah median yang menunjukkan nilai skor tengah dalam susunan skor yang diurutkan mulai dari yang terkecil

Lebih terperinci

STATISTIKA & PROBABILITAS. PANCARAN FREKUENSI

STATISTIKA & PROBABILITAS. PANCARAN FREKUENSI STATISTIKA & PROBABILITAS. PANCARAN FREKUENSI Statistika & Probabilitas Pancaran Frekuensi Pancaran Frekuensi Membentuk Pancaran Frekuensi raw data (data mentah) Sekelompok data yang belum tersusun & belum

Lebih terperinci

STAND N AR R K OMP M E P T E EN E S N I:

STAND N AR R K OMP M E P T E EN E S N I: Silabus Matematika Kelas XI IPS Smester 1 STANDAR KOMPETENSI: Menggunakan aturan statistika, kaidah pencacahan, dan sifat- sifat peluang dalam pemecahan masalah. u Kompetensi Dasar 1.1 Membaca data dalam

Lebih terperinci

STATISTIKA LINGKUNGAN. DISTRIBUSI FREKUENSI DAN NILAI SENTRAL Minggu ke-2

STATISTIKA LINGKUNGAN. DISTRIBUSI FREKUENSI DAN NILAI SENTRAL Minggu ke-2 STATISTIKA LINGKUNGAN DISTRIBUSI FREKUENSI DAN NILAI SENTRAL Minggu ke-2 PENGUMPULAN DATA Data yang terkumpul variabel Variabel sebuah karakteristik yang dapat bervariasi dari satu item ke item yang lain

Lebih terperinci

UKURAN PEMUSATAN. Disiapkan oleh: Bambang Sutrisno, S.E., M.S.M. Blog: bsutrisno.wordpress.com

UKURAN PEMUSATAN. Disiapkan oleh: Bambang Sutrisno, S.E., M.S.M. Blog: bsutrisno.wordpress.com UKURAN PEMUSATAN Disiapkan oleh: Bambang Sutrisno, S.E., M.S.M. Blog: bsutrisno.wordpress.com 1 PENDAHULUAN Ukuran pemusatan merupakan nilai tunggal yang mewakili karakteristik sekumpulan data. Ukuran

Lebih terperinci

STATISTIKA LINGKUNGAN

STATISTIKA LINGKUNGAN STATISTIKA LINGKUNGAN DISTRIBUSI FREKUENSI DAN NILAI SENTRAL Minggu ke-2 PENGUMPULAN DATA Data yang terkumpul variabel Variabel sebuah karakteristik yang dapat bervariasi dari satu item ke item yang lain

Lebih terperinci

SATUAN ACARA TUTORIAL (SAT) Tutorial ke : 1 Kode/ Nama Mata Kuliah : PAMA 3225 / Statistika Dasar

SATUAN ACARA TUTORIAL (SAT) Tutorial ke : 1 Kode/ Nama Mata Kuliah : PAMA 3225 / Statistika Dasar Tutorial ke : 1 : 3 Kompetensi Umum : Setelah mempelajari bahan ajar matakuliah ini diharapkan mahasiswa 1. Memahami pengetahuan dasar statistika. 2. Memahami tehnik penyajian data dalam bentuk tabel.

Lebih terperinci

STATISTIK DAN STATISTIKA

STATISTIK DAN STATISTIKA STATISTIK DAN STATISTIKA A. Penyajian data dan membaca data dalam bentuk table dan diagram a. Diagram Lambang atau Piktogram Piktogram adalah digram yang menggunakan gambar benda untuk menunjukkan banyak

Lebih terperinci

BAB IV PEMBAHASAN HASIL PENELITIAN. yang diperoleh dari pengisian tes dengan menggunakan instrument

BAB IV PEMBAHASAN HASIL PENELITIAN. yang diperoleh dari pengisian tes dengan menggunakan instrument BAB IV PEMBAHASAN HASIL PENELITIAN A. Deskripsi Data Data yang dideskripsikan dalam penelitian ini adalah berupa data yang diperoleh dari pengisian tes dengan menggunakan instrument instrument yang telah

Lebih terperinci

RANCANGAN AKTIVITAS TUTORIAL (RAT)

RANCANGAN AKTIVITAS TUTORIAL (RAT) RANCANGAN AKTIVITAS TUTORIAL (RAT) Nama Mata Kuliah/ sks/ Kode : Statistika Dasar/ 3/ PAMA 3226 Nama Tutor/ NPP : Adi Nur Cahyono, S.Pd., M.Pd./088201206 Deskripsi Singkat Mata Kuliah : Mata kuliah ini

Lebih terperinci

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA

TUGAS II STATISTIKA. Oleh. Butsiarah / 15B Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA TUGAS II STATISTIKA Oleh Butsiarah / 15B20020 Kelas B PROGRAM STUDI PENDIDIKAN TEKNOLOGI DAN KEJURUAN PROGRAM PASCASARJANA UNIVERSITAS NEGERI MAKASSAR 2015 1. Penelitian terhadap nilai mahasiswa S1 Jurusan

Lebih terperinci

Statistika Materi 3 UKURAN PEMUSATAN. Nilai Tunggal yang mewakili Karakteristik Sekumpulan data. Hugo Aprilianto, M.Kom

Statistika Materi 3 UKURAN PEMUSATAN. Nilai Tunggal yang mewakili Karakteristik Sekumpulan data. Hugo Aprilianto, M.Kom Statistika Materi 3 UKURAN PEMUSATAN Nilai Tunggal yang mewakili Karakteristik Sekumpulan data UKURAN PEMUSATAN Adalah nilai tunggal yang mewakili suatu kumpulan data dan menunjukkan karakteristik dari

Lebih terperinci

BAB1 PENgantar statistika

BAB1 PENgantar statistika BAB1 PENgantar statistika A. PENGERTIAN STATISTIK 1. Dalam arti sempit, Statistik merupakan sekumpulan angka-angka yang menerangkan sesuatu.. Dalam arti luas, Statistik merupakan kumpulan cara atau metode

Lebih terperinci

STATISTIKA MATEMATIKA KELAS XI MIA

STATISTIKA MATEMATIKA KELAS XI MIA STATISTIKA MATEMATIKA KELAS XI MIA STATISTIKA Matematika Kelas XI MIA 90 80 70 60 50 40 30 20 10 0 East West North 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Disusun oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2016

Lebih terperinci

BAB II DISTRIBUSI FREKUENSI

BAB II DISTRIBUSI FREKUENSI BAB II DISTRIBUSI FREKUENSI 1. Pengertian Distribusi Frekuensi 1. Merupakan penyusunan data ke dalam kelas-kelas tertentu di mana setiap indiividu/item hanya termasuk ke dalam salah satu kelas tertentu.

Lebih terperinci

STK 211 Metode statistika. Agus Mohamad Soleh

STK 211 Metode statistika. Agus Mohamad Soleh STK 211 Metode statistika Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan dan diringkas? --> PEUBAH Univariate vs Bivariate vs Multivariate

Lebih terperinci

Pengukuran Deskriptif. Debrina Puspita Andriani /

Pengukuran Deskriptif. Debrina Puspita Andriani    / Pengukuran Deskriptif 3 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi Pengukuran

Lebih terperinci

Ukuran gejala pusat. Nugraeni

Ukuran gejala pusat. Nugraeni Ukuran gejala pusat Nugraeni UKURAN PEMUSATAN Merupakan nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran pemusatan : 1.

Lebih terperinci

Gejala Pusat - Statistika

Gejala Pusat - Statistika Gejala Pusat - Statistika Desma Eka Rindiani desmarindi@yahoo.co.id http://ladies-kopites.blogspot.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan disebarkan

Lebih terperinci

Djayadi Nugroho, M.Kom

Djayadi Nugroho, M.Kom PERTEMUAN IV Djayadi Nugroho, M.Kom nugroho.stiemj.ac.id DISTRIBUSI FREKUENSI Pendahuluan Hasil pengukuran yang kita peroleh disebut dengan data mentah. Besarnya hasil pengukuran yang kita peroleh biasanya

Lebih terperinci

Pengukuran Deskriptif

Pengukuran Deskriptif Pengukuran Deskriptif 2.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi

Lebih terperinci

STATISTIKA 1. A. Ukuran Pemusatan Data 11/16/2015. Peta Konsep. A. Ukuran Pemusatan Data

STATISTIKA 1. A. Ukuran Pemusatan Data 11/16/2015. Peta Konsep. A. Ukuran Pemusatan Data //0 Jurnal Daftar Hadir Materi A Materi Umum STATISTIKA Kelas X, Semester Pemusatan Statistika Letak Penyebaran Peta Konsep Data Tunggal A. Pemusatan Data Pemusatan Letak Penyebaran SoalLatihan Menggambar

Lebih terperinci

STATISTIKA 1. Menerapkan aturan konsep statistika dalam pemecahan masalah

STATISTIKA 1. Menerapkan aturan konsep statistika dalam pemecahan masalah STATISTIKA 1 Standar Kompetensi Menerapkan aturan konsep statistika dalam pemecahan masalah Kompetensi Dasar Mengidentifikasi pengertian statistik, statistika, populasi dan sampel Menyajikan data dalam

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK. a. Rata rata Hitung adalah jumlah harga harga variabel dibagi banyak harga harga variabel tersebut.

UKURAN GEJALA PUSAT DAN UKURAN LETAK. a. Rata rata Hitung adalah jumlah harga harga variabel dibagi banyak harga harga variabel tersebut. UKURAN GEJALA PUSAT DAN UKURAN LETAK Ukuran Gejala Pusat: rata rata hitung Rata rata ukur Rata rata harmonik Modus Ukuran Letak : Median Kuartil Ukuran Gejala Pusat a. Rata rata Hitung adalah jumlah harga

Lebih terperinci

STK 211 Metode statistika. Materi 2 Statistika Deskriptif

STK 211 Metode statistika. Materi 2 Statistika Deskriptif STK 211 Metode statistika Materi 2 Statistika Deskriptif 1 Statistika Deskriptif Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Penyajian data dapat dilakukan

Lebih terperinci

UKURAN LOKASI DAN VARIANSI MEAN:

UKURAN LOKASI DAN VARIANSI MEAN: UKURAN LOKASI DAN VARIANSI MEAN: Mean merupakan ukuran rata-rata dari data. Dua metode yang akan dibahas untuk menentukan rata-rata adalah rata-rata hitung dan rata-rata harmonik. Rata-rata hitung Merupakan

Lebih terperinci

Statistika Deskriptif

Statistika Deskriptif Statistika Deskriptif Materi 2 - STK511 AnalisisStatistika September 26, 2017 Sep, 2017 1 Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

Distribusi Frekuensi

Distribusi Frekuensi Distribusi Frekuensi STATISTIKA DESKRIPTIF: DISTRIBUSI FREKUENSI A. Dasar 1. Populasi Data Data berasal dari berbagai sumber dan terdapat pada berbagai bidang ilmu Pada statistika, data berbentuk bilangan

Lebih terperinci

STATISTIKA. A Pengertian Statistik dan Statistika. B Populasi dan Sampel. C Pengertian Data PENGERTIAN STATISTIKA, POPULASI, DAN SAMPEL

STATISTIKA. A Pengertian Statistik dan Statistika. B Populasi dan Sampel. C Pengertian Data PENGERTIAN STATISTIKA, POPULASI, DAN SAMPEL STATISTIKA PENGERTIAN STATISTIKA, POPULASI, DAN SAMPEL A Pengertian Statistik dan Statistika Statistik adalah kumpulan akta berbentuk angka yang disusun dalam datar atau tabel, yang menggambarkan suatu

Lebih terperinci

Penyajian data histrogram

Penyajian data histrogram Modul ke: Distribusi Frekuensi Penyajian data histrogram Fakultas EKONOMI & BISNIS Sediyanto, ST. MM Program Studi Akuntansi www.mercubuana.ac.id Pengelompokan data Pengelompokkan data menjadi tabulasi

Lebih terperinci

PENGERTIAN STATISTIK. Tim Dosen Mata Kuliah Statistika Pendidikan 1. Rudi Susilana, M.Si. 2. Riche Cynthia Johan, S.Pd., M.Si. 3. Dian Andayani, S.Pd.

PENGERTIAN STATISTIK. Tim Dosen Mata Kuliah Statistika Pendidikan 1. Rudi Susilana, M.Si. 2. Riche Cynthia Johan, S.Pd., M.Si. 3. Dian Andayani, S.Pd. PENGERTIAN STATISTIK Tim Dosen Mata Kuliah Statistika Pendidikan 1. Rudi Susilana, M.Si. 2. Riche Cynthia Johan, S.Pd., M.Si. 3. Dian Andayani, S.Pd. PENGERTIAN STATISTIK Statistik adalah kesimpulan fakta

Lebih terperinci

Ledhyane Ika Harlyan Jurusan Pemanfaatan Sumberdaya Perikanan & Kelautan Universitas Brawijaya 2013

Ledhyane Ika Harlyan Jurusan Pemanfaatan Sumberdaya Perikanan & Kelautan Universitas Brawijaya 2013 UKURAN STATISTIK BAGI DATA Ledhyane Ika Harlyan Jurusan Pemanfaatan Sumberdaya Perikanan & Kelautan Universitas Brawijaya 2013 Konten Definisi: -Data dan Jenis Data -Parameter dan Statistik -Ukuran Statistik

Lebih terperinci

UKURAN PEMUSATAN : MEAN, MEDIAN, MODUS

UKURAN PEMUSATAN : MEAN, MEDIAN, MODUS UKURAN PEMUSATAN : MEAN, MEDIAN, MODUS PERTEMUAN IV EvanRamdan DATA BERKELOMPOK Data berkelompok adalah data yang telah dikelompokan ke dalam kelaskelas dan disajikan dalam tabel frekuensi UKURAN PEMUSATAN

Lebih terperinci

STATISTIKA 4 UKURAN LETAK

STATISTIKA 4 UKURAN LETAK TUJUAN STATISTIKA 4 UKURAN LETAK MODUL 4 Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas, kreatifitas dalam memecahkan masalah serta mampu mengkomunikasikan ide dan

Lebih terperinci

PROBABILITAS &STATISTIK. Oleh: Kholistianingsih, S.T., M.Eng.

PROBABILITAS &STATISTIK. Oleh: Kholistianingsih, S.T., M.Eng. PROBABILITAS &STATISTIK ke-1 Oleh: Kholistianingsih, S.T., M.Eng. KONTRAK PEMBELAJARAN UAS : 35% UTS : 35% TUGAS : 20% KEHADIRAN :10% SEMUA KOMPONEN HARUS ADA KEHADIRAN 0 NILAI MAKS D PEUBAH DAN GRAFIK

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. pengumpulan data. Soal yang digunakan adalah soal yang telah teruji validitasnya

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. pengumpulan data. Soal yang digunakan adalah soal yang telah teruji validitasnya 20 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil Penelitian Dalam penelitian ini, peneliti menggunakan tes berupa tes essay yang sudah diuji validitas dan reliabilitas tesnya untuk digunakan sebagai

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 11

MODUL MATEMATIKA SMA IPA Kelas 11 SMA IPA Kelas A. Data Tunggal No. Jenis Rumus Rumus. Rata-rata (rataan) hitung _ x x x x n Median Me x, untuk n ganjil _ x : rata-rata x n : data ke-n n : banyaknya data. Modus Modus (Mo) merupakan data

Lebih terperinci

Penyajian Data. Teori Probabilitas

Penyajian Data. Teori Probabilitas Penyajian Data Teori Probabilitas Sub Materi Tabel distribusi frekuensi Tabel distribusi frekuensi relatif Tabel distribusi frekuensi kumulatif, histogram dan kurva ogive Teori Probabilitas - Onggo Wr

Lebih terperinci

STATISTIKA DAN PROBABILITAS (CIV -110)

STATISTIKA DAN PROBABILITAS (CIV -110) STATISTIKA DAN PROBABILITAS (CIV -110) OUTLINE Penggolongan data statistik Definisi statistik deskriptif Penyajian data Distribusi frekuensi Central tendency Dispersion Pengolahan dengan SPSS ver.23 Diukur

Lebih terperinci

DISTRIBUSI FREKUENSI. Oleh Dr. Ratu Ilma I.P. Bahan Mata kuliah Di FKIP Universitas Sriwijaya

DISTRIBUSI FREKUENSI. Oleh Dr. Ratu Ilma I.P. Bahan Mata kuliah Di FKIP Universitas Sriwijaya DISTRIBUSI FREKUENSI Oleh Dr. Ratu Ilma I.P. Bahan Mata kuliah Di FKIP Universitas Sriwijaya DEFINISI Pengelompokkan data menjadi tabulasi data dengan memakai kelaskelas data dan dikaitkan dengan masing-masing

Lebih terperinci

DISTRIBUSI FREKUENSI MODUL DISTRIBUSI FREKUENSI

DISTRIBUSI FREKUENSI MODUL DISTRIBUSI FREKUENSI DISTRIBUSI FREKUENSI MODUL 3 DISTRIBUSI FREKUENSI 1. Penyajian Data Statistik deskriptif mempelajari tentang cara penyusunan dan penyajian data yang dikumpulan dalam penelitian. Biasanya data ini diucapkan

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA UKURAN PEMUSATAN DATA DAN UKURAN LETAK FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA PENDAHULUAN Untuk mendapatkan gambaranyang lebih jelas tentang sekumpulan data data itu disajikan dalam

Lebih terperinci

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip

STATISTIKA KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip MODUL MATEMATIKA STATISTIKA 11.1. KELAS : XI BAHASA SEMESTER : I (SATU) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.1981.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI Jalan Mayjen Sungkono

Lebih terperinci

Materi W11a S T A T I S T I K A. Kelas X, Semester 2. A. Ukuran Pemusatan Data.

Materi W11a S T A T I S T I K A. Kelas X, Semester 2. A. Ukuran Pemusatan Data. Materi W11a S T A T I S T I K A Kelas X, Semester 2 A. Ukuran Pemusatan Data www.yudarwi.com A. Ukuran Pemusatan Data Ukuran pemusatan kumpulan data merupakan ukuran yang nilainya cenderung memusat (sama

Lebih terperinci

STATISTIK 1. PENDAHULUAN

STATISTIK 1. PENDAHULUAN STATISTIK. PENDAHULUAN Statistika yaitu ilmu pengetahuan yang mempelajari cara pengumpulan, pengolahan, penyajian, analisa data dan pengambilan kesimpulan dari siat-siat data. Statistik yaitu kumpulan

Lebih terperinci

C. Ukuran Letak dan Ukuran Penyebaran Data

C. Ukuran Letak dan Ukuran Penyebaran Data C. Ukuran Letak dan Ukuran Penyebaran Data. Ukuran Letak Data Tunggal a. Kuartil Pada data dengan banyak data n 4, Kuartil membagi data menjadi 4 bagian sama banyak, sehingga diperoleh tiga nilai yang

Lebih terperinci

DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA

DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA BAB lll Soal dan jawaban DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA 1. Bedakanlah antara daftar-daftar distribusi frekuensi,kontingensi,dan baris kolom! Jawaban : distribusi frekuensi ;merupakan sususnan

Lebih terperinci

Statistika Bisnis. Penyajian Data. Retno Puji Astuti, SE, M.Ak. Modul ke: Fakultas Ekonomi & Bisnis. Program Studi Akuntansi.

Statistika Bisnis. Penyajian Data. Retno Puji Astuti, SE, M.Ak. Modul ke: Fakultas Ekonomi & Bisnis. Program Studi Akuntansi. Statistika Bisnis Modul ke: Penyajian Data Fakultas Ekonomi & Bisnis Retno Puji Astuti, SE, M.Ak Program Studi Akuntansi www.mercubuana.ac.id Outline Pengertian Statistika BAGIAN I Statistik Deskriptif

Lebih terperinci

Penyajian Data Bab 2 PENGANTAR. Tujuan:

Penyajian Data Bab 2 PENGANTAR. Tujuan: PENYAJIAN DATA 1 PENGANTAR Tujuan: Untuk menyajikan data mentah yang diperoleh dari populasi atau sampel menjadi data yang tertata dengan baik, sehingga bermakna informasi bagi pengambilan keputusan manajerial.

Lebih terperinci

. Rumus untuk rata-rata gabungan adalah

. Rumus untuk rata-rata gabungan adalah Jawaban Bab IV 1. Macam-macam ukuran gejala pusat dan ukuran letak yang dikenal hingga sekarang terdiri dari golongan pertama yang meliputi rata-rata atau rata-rata hitung, rata-rata ukur, rata-rata harmonic,

Lebih terperinci

PENYAJIAN DATA. Firmansyah, S.Kom. MODUL 2

PENYAJIAN DATA. Firmansyah, S.Kom. MODUL 2 PENYAJIAN DATA Firmansyah, S.Kom. MODUL 2 A. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Penyajian data 2. Fokus Pembahasan Materi Pokok : 1. Arti dan tujuan distribusi frekuensi 2. Tabel distribusi

Lebih terperinci

Penyajian Data dalam Bentuk Tabel

Penyajian Data dalam Bentuk Tabel Penyajian Data dalam Bentuk Tabel Misalkan, hasil ulangan Bahasa Indonesia 37 siswa kelas XI SMA 3 disajikan dalam tabel di bawah. Penyajian data pada Tabel 1.1 dinamakan penyajian data sederhana. Dari

Lebih terperinci

DESKRIPSI DATA. sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu:

DESKRIPSI DATA. sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu: DESKRIPSI DATA A. Ukuran Pemusatan Ukuran pemusatan ini digunakan untuk memudahkan peneliti dalam membuat deskripsi sekumpulan data yang sudah dikumpulkan. Ukuran pemusatan dibagi menjadi dua yaitu: rata-rata

Lebih terperinci

BAB III UKURAN TENGAH DAN DISPERSI

BAB III UKURAN TENGAH DAN DISPERSI BAB III UKURAN TENGAH DAN DISPERSI Dalam pembicaraan yang lalu kita telah mempresentasikan data dalam bentuk tabel dan grafik yang bertujuan meringkaskan dan menggambarkan data kuantitatif, untuk mendapatkan

Lebih terperinci

BAB IV PENYAJIAN DATA

BAB IV PENYAJIAN DATA BAB IV PENYAJIAN DATA Setiap peneliti harus dapat menyajikan data yang telah diperoleh, baik yang diperoleh melalui observasi, wawancara, angket, tes maupun dokumentasi. Prinsip dasar penyajian data adalah

Lebih terperinci

BAB V PENUTUP 5.1 Kesimpulan

BAB V PENUTUP 5.1 Kesimpulan V-1 BAB V PENUTUP 5.1 Kesimpulan Berdasarkan penulisan laporan akhir ini, maka dapat dibuat kesimpulan dari setiap modul. Berikut adalah kesimpulan dari masingmasing modul tersebut: 1. Distribusi Frekuensi

Lebih terperinci

Menemukan Pola Data yang Bermakna

Menemukan Pola Data yang Bermakna Menemukan Pola Data yang Bermakna Terdapat beberapa cara untuk mengurutkan data : Data kuantitatif, dapat diurutkan dari pengamatan terkecil hingga terbesar Data kualitatif/verbal, dapat diurutkan berdasarkan

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

TUGAS MANAJEMEN DATA MAKALAH ANALISIS DATA KUANTITATIF

TUGAS MANAJEMEN DATA MAKALAH ANALISIS DATA KUANTITATIF TUGAS MANAJEMEN DATA MAKALAH ANALISIS DATA KUANTITATIF OLEH ARFAN KAFTARU 1307012285 FAKULTAS KESEHATAN MASYARAKAT UNIVERSITAS NUSA CENDANA KUPANG 2017 i KATA PENGANTAR Puji syukur kehadirat Tuhan Yang

Lebih terperinci

STATISTIK. dwipurnama2.blogspot.com

STATISTIK. dwipurnama2.blogspot.com STATISTIK dwipurnama2.blogspot.com adalah sebuah cabang ilmu dari matematika yang mempelajari cara cara : Mengumpulkan dan menyusun data,mengelolah dan menganalisa data,serta menyajikan dalam bentuk kurva

Lebih terperinci

BAB 2 PENYAJIAN DATA

BAB 2 PENYAJIAN DATA BAB 2 PENYAJIAN DATA A. PENGERTIAN DISTRIBUSI FREKUENSI Daftar yang memuat data berkelompok. Susunan data menurut kelas-kelas interval tertentu atau menurut kategori tertentu dalam sebuah daftar. 1. Kelas-kelas

Lebih terperinci

BAB 1. STATISTIKA. A. PENYAJIAN DATA B. PENYAJIAN DATA STATISTIK C. PENYAJIAN DATA UKURAN MENJADI DATA STATISTIK DESKRIPTIF

BAB 1. STATISTIKA. A. PENYAJIAN DATA B. PENYAJIAN DATA STATISTIK C. PENYAJIAN DATA UKURAN MENJADI DATA STATISTIK DESKRIPTIF BAB 1. STATISTIKA. A. PENYAJIAN DATA B. PENYAJIAN DATA STATISTIK C. PENYAJIAN DATA UKURAN MENJADI DATA STATISTIK DESKRIPTIF 1.fli c kr. co m Bab b Su m tic ta.s m r fa er: Statistika Setelah mempelajari

Lebih terperinci

Abstrak/Ringkasan. A.Pendahuluan. Judul Artikel Tabel Distribusi Frekuensi. Bimo Prasetyo 4115122250 Prasetyobimo95@yahoo.co.id

Abstrak/Ringkasan. A.Pendahuluan. Judul Artikel Tabel Distribusi Frekuensi. Bimo Prasetyo 4115122250 Prasetyobimo95@yahoo.co.id Judul Artikel Tabel Distribusi Frekuensi Bimo Prasetyo 4115122250 Prasetyobimo95@yahoo.co.id http://prasetyobimo95@yahoo.co.id Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan,

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB II STATISTIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara, S.Si.,M.Si

Lebih terperinci

Laporan Tugas dan Quiz Statistik Deskriptif. 1. Berikan penjelasan secara singkat apa yang dimaksud dengan:

Laporan Tugas dan Quiz Statistik Deskriptif. 1. Berikan penjelasan secara singkat apa yang dimaksud dengan: Nama : Purnomo Satria NIM : 1133467162 Evaluasi Pertemuan 4 dan 5 Laporan Tugas dan Quiz Statistik Deskriptif 1. Berikan penjelasan secara singkat apa yang dimaksud dengan: a. Rata-rata hitung, median,

Lebih terperinci

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan 1 DAFTAR ISI Mean Median Modus Kuartil, Desil dan Presentil Hubungan Mean-Median-Modus 2 Ukuran Statistik Untuk menjelaskan ciri-ciri

Lebih terperinci

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih

SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih SOAL STATISTIKA KELAS XI Oleh: Erni Kundiarsih MATEMATIKANET.COM Data berikut untuk soal nomor 1 4 Nilai ulangan harian matematika dari 14 orang siswa yang diambil secara acak adalah 7, 5, 8, 6, 7, 8,

Lebih terperinci

PELATIHAN INSTRUKTUR/PENGEMBANG SMU. 28 JULI s.d. 10 AGUSTUS 2003 S T A T I S T I K A. Oleh: Drs. Marsudi Raharjo, M. Sc., Ed

PELATIHAN INSTRUKTUR/PENGEMBANG SMU. 28 JULI s.d. 10 AGUSTUS 2003 S T A T I S T I K A. Oleh: Drs. Marsudi Raharjo, M. Sc., Ed PELATIHAN INSTRUKTUR/PENGEMBANG SMU 8 JULI s.d. 0 AGUSTUS 00 S T A T I S T I K A Oleh: Drs. Marsudi Raharjo, M. Sc., Ed DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH

Lebih terperinci

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation) DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

Lebih terperinci

Ukuran Nilai Sentral

Ukuran Nilai Sentral Ukuran Nilai Sentral Nilai Sentral Pengertian Nilai Sentral Nilai sentral suatu rangkaian data adalah nilai dalam rangkaian data yang dapat mewakili data tersebut. Suatu rangkaian data biasanya memiliki

Lebih terperinci

MATERI W11A S T A T I S T I K A. KELAS X, SEMESTER 2. A. UKURAN PEMUSATAN DATA

MATERI W11A S T A T I S T I K A. KELAS X, SEMESTER 2. A. UKURAN PEMUSATAN DATA MATERI W11A S T A T I S T I K A. KELAS X, SEMESTER 2. A. UKURAN PEMUSATAN DATA Materi W11a STATISTIKA Kelas X, Semester 2 A. Ukuran Pemusatan Data www.yudarwi.com A. Ukuran Pemusatan Data Ukuran pemusatan

Lebih terperinci