DAFTAR PUSTAKA Browder, A Mathematical Analysis: An Introduction. Springer. New York. Casella, G. dan R. L. Berger

Ukuran: px
Mulai penontonan dengan halaman:

Download "DAFTAR PUSTAKA Browder, A Mathematical Analysis: An Introduction. Springer. New York. Casella, G. dan R. L. Berger"

Transkripsi

1 DAFTAR PUSTAKA Browder, A Mathematical Analysis: An Introduction. Springer. New York. Casella, G. dan R. L. Berger Statistical Inference. Ed. ke-1. Wadsworth & Brooks/Cole, Pasific Grove, California. Dudley, R. M Real Analysis and Probability. Wadsworth & Brooks. California. Grimmett, G. R. and D. R. Stirzaker Probability and Random Processes. Ed. ke-2. Clarendon Press. Oxford. Helmers, R On estimating the intensity of oil-pollution in the North-Sea. CWI Note BS-N9501. Helmers, R, and Mangku, I. W Estimating the intensity of a cyclic Poisson process in the presence of linear trend. Accepted by Annals of the Institute of Statistical Mathematics, Tokyo. Helmers, R, and Zitikis, R On estimation of process Poisson intensity function. Annal Institute of Statistical Mathematics, 51,2, Helmers, R, Mangku, I. W. and Zitikis, R Consistent estimation of the intensity function of a cyclic Poisson process. Journal of Multivariate analysis Helmers, R, Mangku, I. W and Zitikis, R.2005 Statistical properties of a kerneltype estimator of the intensity function of a cyclic Poisson process. Journal of Multivariate analysis Helmers, R, Mangku, I. W and Zitikis, R A non-parametric estimator for the doubly-periodic Poisson intensity function. Statistical Methodology, 4, Helms, L.L Introduction to Probability Theory: With Contemporary aplications. New York: W.H. Freeman and Company. Hogg, R. V. and A. T. Craig Introduction to Mathematical Statistics. Ed.ke-5. Prentice Hall, Englewood Cliffs. New Jersey. Mangku, I. W Nearest neighbor estimation of the the intensity function of a cyclic Poisson process. CWI Report PNA-R9914. Mangku, I. W Estimating the Intensity of a Cyclic Poisson Process. University of Amsterdam, Amsterdam.

2 44 Mangku, I. W A note on estimaton of the global intensity of a cyclic Poisson process in the presence of linear trend. Journal of Mathematics and Its Aplications, 4. Mangku, I. W, Siswadi, and R.Budiarti Consistency of a kernel type estimator of the intensity of a cyclic Poisson process with linear trend. Submited for publication. Mangku, I. W, Siswadi, and R.Budiarti Statistical properties of a kernel type estimator of the intensity of a cyclic Poisson process with linear trend. Submited for publication. Nurrahmi Sifat-Sifat Statistika Penduga Fungsi Intensitas Proses Poisson Periodik dengan Tren Linear. Departemen Matematika IPB. Skripsi. Bogor. Purcell, E.J dan D. Varberg Kalkulus dan Geometri Analisis. Jilid 2. Ed. ke-5. Jakarta: Erlangga Ross, S. M Introduction to Probability Models. Ed. ke-8. Academic Press Inc. Orlando, Florida. Serfling, R. J Approximation Theorems of Mathematical Statistics. John Wiley & Sons. New York. Wheeden, R. L. and A. Zygmund Measure and Integral : An Introduction to real Analysis. Marcel Dekker, Inc. New York.

3 LAMPIRAN 45

4 46 Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Berbagai macam pengamatan diperoleh melalui pengulangan percobaan yang dilakukan dalam kondisi yang sama. Dalam banyak kasus, hasil percobaan tersebut bergantung pada faktor kebetulan dan tidak dapat diprediksikan dengan tepat. Tetapi, kita bisa mengetahui semua kemungkinan hasil untuk setiap percobaan. Definisi 14 (Ruang Contoh) Himpunan semua hasil dari suatu percobaan acak disebut ruang contoh dan dilambangkan dengan. Definisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari ruang contoh. Definisi 16 (Medan- ) Medan- adalah himpunan F yang anggotanya merupakan himpunan bagian dari yang memenuhi syarat-syarat berikut : a. F b. F maka F c. F maka F Medan- terkecil yang mengandung semua selang berbentuk (, disebut medan Borel, dan anggotanya disebut himpunan Borel. Definisi 17 (Ukuran Peluang) Ukuran peluang P pada (, F ) adalah suatu fungsi P : F [0, 1] yang memenuhi

5 47 a. P ( ) = 0, P ( ) = 1 b. Jika.. adalah himpunan anggota-anggota F yang saling lepas, yaitu untuk semua pasangan i, j dengan i j maka : Pasangan (, F, P) yang terdiri atas himpunan, medan- F yang anggotanya merupakan himpunan bagian dari, dan suatu ukuran peluang P pada (, F ) disebut ruang peluang. Definisi 18 (Kejadian Saling Bebas) Kejadian-kejadian A dan B dikatakan saling bebas jika : P (A B) = P (A) P(B). Secara umum, himpunan kejadian { } dikatakan saling bebas jika : untuk semua himpunan bagian berhingga J dari I. Peubah Acak dan Fungsi Sebaran Definisi 19 (Peubah Acak) Peubah acak adalah suatu fungsi X : R dengan sifat bahwa { : X( ) x} F untuk setiap x R. Peubah acak dinotasikan dengan huruf kapital seperti X, Y, dan Z. Sedangkan nilai peubah acak dinotasikan dengan huruf kecil seperti x, y, dan z. Setiap peubah acak memiliki fungsi sebaran, sebagaimana didefinisikan berikut ini.

6 48 Definisi 20 (Fungsi Sebaran) Fungsi sebaran dari pebah acak X adalah fungsi oleh yang diberikan Definisi 21 (Peubah Acak Diskret) Peubah acak X disebut diskret jika nilainya hanya pada himpunan bagian tercacah { } dari R. Definisi 22 (Fungsi Kerapatan Peluang) Fungsi kerapatan peluang dari peubah acak diskret X adalah fungsi p : R [0, 1] yang diberikan oleh : Definisi 23 (Peubah Acak Poisson) Jika suatu peubah acak X nilai-nilainya dalam himpunan {0, 1, 2,.} dengan fungsi kerapatan peluang dengan > 0, maka X dikatakan memiliki sebaran Poisson dengan parameter. Nilai Harapan, Ragam, Momen Definisi 24 (Nilai Harapan, Momen, Ragam) Misalkan X adalah peubah acak diskret dengan fungsi kerapatan peluang p(x). Nilai harapan dari peubah acak X adalah

7 49 Momen ke-k, dengan k merupakan bilangan bulat positif, dari suatu peubah acak X adalah Misalkan momen ke-1, E(X) = Maka momen pusat ke-k atau dari peubah acak X adalah Nilai harapan dari peubah acak X merupakan momen pertama dari X, sedangkan ragam merupakan momen pusat ke-2 dari peubah acak X. Ragam (Variance) dari X, dan dilambangkan dengan Var(X) atau adalah nilai harapan dari kuadrat perbedaan antara peubah acak X dengan nilai harapannya yaitu : (Hogg and Craig, 1995) Penduga dan Sifat-sifatnya Definisi 25 (Statistik) Statistik adalah suatu fungsi dari satu atau lebih peubah acak yang tidak bergantung pada satu atau beberapa parameter. (Hogg and Craig, 1995) Definisi 26 (Penduga) Misalkan adalah contoh acak. Suatu statistik U = U( ) = U(X) yang digunakan untuk menduga fungsi parameter g( ) dikatakan sebagai penduga (estimator) bagi g( ), yang dilambangkan oleh ( ). Nilai U( ) dari U dengan nilai amatan disebut sebagai dugaan (estimate) bagi g( ). (Hogg and Craig, 1995)

8 50 Definisi 27 (Penduga Tak Bias) a. Suatu statistik U(X) yang nilai harapannya sama dengan parameter g( ), dituliskan E[U(X)] = g( ), disebut penduga tak bias bagi g( ). Selainnya statistik dikatakan berbias. b. Jika [U(X)] = g( ), maka penduga U(X) disebut penduga tak bias asimtotik. (Hogg and Craig, 1995) Definisi 28 (Penduga Konsisten) Suatu statistik U(X) yang konvergen dalam peluang ke suatu parameter g( ), disebut penduga konsisten bagi g( ). (Hogg and Craig, 1995) Definisi 29 (MSE suatu Penduga) Mean Square Error (MSE) dari suatu penduga untuk parameter adalah fungsi dari yang didefinisikan oleh Dengan kata lain MSE adalah nilai harapan kuadrat dari selisih antara penduga dan parameter. Dari sini diperoleh = Var (W) + (Cassela dan Berger, 1990) Definisi 30 (Fungsi Terintegralkan Lokal) Fungsi intensitas dikatakan terintegralkan lokal, jika untuk sembarang himpunan Borel terbatas B kita peroleh

9 51 (Dudley, 1989) Definisi 31 [( (.))] Simbol big-oh ini merupakan cara untuk membandingkan besarnya dua fungsi u(x) dan v(x) dengan x menuju suatu limit L. Notasi u (x) = (v(x)), x L, menyatakan bahwa terbatas, untuk x L. Definisi 32 [o(h)] (Serfling, 1980) Suatu fungsi f disebut o(h), h 0, jika Hal ini berarti f(h) 0 lebih cepat dari h 0. Dengan menggunakan definisi 31 dan 32 kita peroleh hal berikut. (Ross, 2003) a. Suatu barisan bilangan nyata disebut terbatas dan ditulis untuk, jika ada bilangan terhingga A dan B sehingga B < < A untuk semua bilangan asli n. b. Suatu barisan yang konvergen ke nol, untuk n, dapat ditulis untuk (Purcell and Varberg, 1998) Definisi 33 (Fungsi Indikator) Misalkan A adalah suatu kejadian. Fungsi indikator dari A adalah suatu fungsi I : [0, 1], yang diberikan oleh :

10 52 Definisi 35 (Titik Lebesgue) Suatu titik s dikatakan titik Lebesgue dari fungsi jika (Wheeden and Zygmund, 1977) Lema 2 (Ketaksamaan Cauchy-Schwarz) Jika X dan Y adalah peubah acak dengan momen kedua terbatas maka dan akan bernilai sama dengan jika dan hanya jika P(X = 0)=1 atau P(Y =ax)=1 untuk suatu konstanta a. (Helms, 1996) Bukti : Lihat Lampiran 2 Lema 3 (Formula Young dari Teorema Taylor) Misalkan g memiliki turunan ke-n yang terhingga pada suatu titik x. Maka g (y) = g (x) + + o untuk y x. Bukti : Lihat Serfling (1980) Lema 4 (Pertidaksamaan Chebyshev) Jika X adalah peubah acak dengan nilai harapan dari ragam, maka untuk setiap k > 0, Bukti : Lihat Lampiran 3 (Helms, 1996)

11 53 Lampiran 2. Lema 2 ( Ketaksamaan Cauchy-Schwarz) Jika X dan Y adalah peubah acak dengan momen kedua terbatas maka Dan akan bernilai sama dengan jika dan hanya jika P(X = 0)=1 atau untuk suatu konstanta a. Bukti: Pilihlah salah satu dari P(X =0) =1 atau P(X =0) 1. Pada kasus pertama, persamaan akan terpenuhi karena kedua ruas mempunyai nilai nol, sehingga kita bisa mengasumsikan P(X =0) <1, yang berarti bahwa X mempunyai suatu nilai dengan peluang positif, sehingga. Definisikan fungsi kuadrat Fungsi kuadrat di atas akan bernilai minimum pada saat Sehingga Untuk yang real ganti dengan. Sehingga Di satu sisi, hal ini berimplikasi bahwa

12 54 dan di sisi lain jika sama akan Jika menempati nilai yang tidak nol dengan peluang yang positif, akan didapatkan. Hal ini mengakibatkan kontradiksi, maka haruslah P Jadi terbukti

13 55 Lampiran 3 Lema 5 (Pertidaksamaan Markov) Jika X adalah peubah acak dengan nilai harapan terbatas dan maka (Ross, 2003) Bukti: Misalkan { adalah nilai dari peubah acak konvergen mutlak, maka Sehingga diperoleh Jadi Lema 5 terbukti. Lema 4 (Pertidaksamaan Chebyshev) Jika X adalah peubah acak dengan nilai harapan dan ragam, maka untuk setiap k > 0, Bukti :

14 56 Karena adalah peubah acak tak negatif, kita dapat menggunakan pertidaksamaan Markov di atas, dengan, sehingga kita peroleh Sehingga diperoleh Jadi Lema 3 terbukti.

SIFAT-SIFAT STATISTIKA TIKA ORDE-2 FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA

SIFAT-SIFAT STATISTIKA TIKA ORDE-2 FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA SIFAT-SIFAT STATISTIKA TIKA ORDE-2 PENDUGA TIPE KERNEL L BAGI K KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA SEKOLAH PASCASARJANASARJANA

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis DAFTAR PUSTAKA Browder, A. 1996. Mathematical Analysis : An Introduction. Springer. New York. Dudley, R.M. 1989. Real Analysis and Probability. Wadsworth & Brooks. California. Durret, R. 1996. Probability

Lebih terperinci

Lampiran A. Beberapa Definisi dan Lema Teknis

Lampiran A. Beberapa Definisi dan Lema Teknis LAMPIRAN 33 Lampiran A. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Definisi A.1 (Ruang contoh dan kejadian) Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK PERKALIAN FUNGSI PERIODIK DENGAN TREN LINEAR DARI SUATU PROSES POISSON NON-HOMOGEN LIA YULIAWATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN

Lebih terperinci

ABSTRACT JOKO DWI SURAWU. Keywords:

ABSTRACT JOKO DWI SURAWU. Keywords: ABSTRACT JOKO DWI SURAWU. Asymptotic Distribution of an Estimator for Periodic Component of Intensity Function of a Periodic Poisson Process in the Presence of Linear Trend. Supervised by I WAYAN MANGKU

Lebih terperinci

PENDAHULUAN LANDASAN TEORI

PENDAHULUAN LANDASAN TEORI 1 PENDAHULUAN Latar Belakang Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan dengan proses stokastik. Proses stokastik dapat dibedakan menjadi dua yaitu proses stokastik dengan waktu

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH

KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Defenisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari Nang contoh a. (Grimmett dan Stirzaker 2001)

Defenisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari Nang contoh a. (Grimmett dan Stirzaker 2001) Lampiran: Beberapa Definisi dan Lema Teknis Ruang contoh, kejadian dan peluang Berbagai macam pengamatan diperoleh melalui penggulangan percobaan yang dilakukan dalam kondisi yang sama. Dalarn banyak kasus,

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL Ro fah Nur Rachmawati Jurusan Matematika, Fakultas Sains dan Teknologi, Binus University Jl.

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Mathematics & Statistics Department, School of Computer Science, Binus

Lebih terperinci

SEBARAN ASIMTOTIK PENDUGA TURUNAN N PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

SEBARAN ASIMTOTIK PENDUGA TURUNAN N PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR SEBARAN ASIMTOTIK PENDUGA TURUNANN PERTAMA DAN KEDUA DARI KOMPONE EN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR SALIWATI SEKOLAH PASCASARJANAA INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO

KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

LAMPIRAN. Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. (Grimmett dan Stirzaker, 2001) Definisi A.3 (Medan-σ)

LAMPIRAN. Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. (Grimmett dan Stirzaker, 2001) Definisi A.3 (Medan-σ) LAMPIRAN 55 56 LAMPIRAN Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian, dan Peluang Berbagai macam kejadian diperoleh melalui pengamatan dari serangkaian percobaan yang dilakukan

Lebih terperinci

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN LINEAR BONNO ANDRI WIBOWO

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN LINEAR BONNO ANDRI WIBOWO PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN LINEAR BONNO ANDRI WIBOWO DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2014

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang Latar Belaang Terdapat banya permasalahan atau ejadian dalam ehidupan sehari hari yang dapat dimodelan dengan suatu proses stoasti Proses stoasti merupaan permasalahan yang beraitan dengan suatu aturan-aturan

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

BAB IV REDUKSI BIAS PADA PENDUGAAN

BAB IV REDUKSI BIAS PADA PENDUGAAN BAB IV REDUKSI BIAS PADA PENDUGAAN 4.1. Asimtotik Orde-2 Berdasarkan hasil simulasi pada Helmers dan Mangku (2007) kasus kernel seragam, aproksimasi asimtotik orde pertama pada ragam dan bias, gagal memprediksikan

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K.

PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K. PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K. NASIB SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik, adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu ruang states. Jadi,

Lebih terperinci

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang LANDASAN TEORI Ruang Contoh Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam ondisi yang sama yang hasilnya tida dapat dipredisi secara tepat tetapi ita dapat mengetahui semua emunginan hasil

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN WENTI ISMAYULIA

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN WENTI ISMAYULIA PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN WENTI ISMAYULIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 3 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu ruang state. Jika

Lebih terperinci

PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA

PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2013 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER

Lebih terperinci

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 9 BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT (T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Universitas Bina Nusantara Jl. K.H. Syahdan No. 9 Palmerah Jakarta Barat 11480 rrachmawati@binus.edu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log II. TINJAUAN PUSTAKA Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log Normal Menggunakan Metode Generalized Moment digunakan beberapa definisi, dan teorema yang berkaitan dengan

Lebih terperinci

PENDUGAAN FUNGSI RAGAM PADA PROSES POISSON PERIODIK MAJEMUK FITRIANI IDA MAKHMUDAH

PENDUGAAN FUNGSI RAGAM PADA PROSES POISSON PERIODIK MAJEMUK FITRIANI IDA MAKHMUDAH PENDUGAAN FUNGSI RAGAM PADA PROSES POISSON PERIODIK MAJEMUK FITRIANI IDA MAKHMUDAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2016 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI SERTA PELIMPAHAN

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T} adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan selanjutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

PEMILIHAN MODEL REGRESI LINIER DENGAN BOOTSTRAP. Tarno. Jurusan Matematika FMIPA UNDIP Semarang. Subanar Jurusan Matematika FMIPA UGM Yogyakarta

PEMILIHAN MODEL REGRESI LINIER DENGAN BOOTSTRAP. Tarno. Jurusan Matematika FMIPA UNDIP Semarang. Subanar Jurusan Matematika FMIPA UGM Yogyakarta PEMILIHAN MODEL REGRESI LINIER DENGAN BOOTSTRAP Tarno Jurusan Matematika FMIPA UNDIP Semarang Subanar Jurusan Matematika FMIPA UGM Yogyakarta Abstrak Tulisan ini membicarakan tentang penerapan bootstrap

Lebih terperinci

SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT RO FAH NUR RACHMAWATI

SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT RO FAH NUR RACHMAWATI SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT RO FAH NUR RACHMAWATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2010 PERNYATAAN

Lebih terperinci

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY Joko Sungkono* Abstrak : Tujuan yang ingin dicapai pada tulisan ini adalah mengetahui kekuatan konvergensi dalam probabilitas dan konvergensi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

Penentuan Daerah Kritis Terbaik dengan Teorema Neyman- Pearson

Penentuan Daerah Kritis Terbaik dengan Teorema Neyman- Pearson Vol. 6, No.1, 44-48, Juli 2009 Penentuan Daerah Kritis Terbaik dengan Teorema Neyman- Pearson Georgina M. Tinungki Abstrak Terdapat beberapa metode untuk membangun uji statistik yang baik, diantaranya

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR Oleh: LIA NURLIANA PROGRAM STUDI MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN Sudarno Jurusan Matematika FMIPA UNDIP Abstrak Dalam proses stokhastik yang mana kejadian dapat muncul kembali membentuk proses pembahauruan. Proses pembaharuan

Lebih terperinci

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti 4 II. LANDASAN TEORI 2.1 Distribusi F Distribusi F merupakan salah satu distribusi kontinu. Dengan variabel acak X memenuhi batas X > 0, sehingga luas daerah dibawah kurva sama dengan satu, sementara grafik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

Hukum Iterasi Logaritma

Hukum Iterasi Logaritma Hukum Iterasi Logaritma Sorta Purnawanti 1, Helma 2, Dodi Vionanda 3 1 Mathematics Department State University of Pag, Indonesia 2,3 Lecturers of Mathematics Department State University of Pag, Indonesia

Lebih terperinci

RANCANGAN KURIKULUM PROGRAM DOKTOR STATISTIKA (STK) DALAM KERANGKA KUALIFIKASI NASIONAL INDONESIA (KKNI)

RANCANGAN KURIKULUM PROGRAM DOKTOR STATISTIKA (STK) DALAM KERANGKA KUALIFIKASI NASIONAL INDONESIA (KKNI) RANCANGAN KURIKULUM PROGRAM DOKTOR STATISTIKA (STK) DALAM KERANGKA KUALIFIKASI NASIONAL INDONESIA (KKNI) PROGRAM DOKTOR STATISTIKA DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN IPA 2 0 1 2 I. Deskripsi

Lebih terperinci

SIFAT-SIFAT STATISTIK PENDUGA FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI

SIFAT-SIFAT STATISTIK PENDUGA FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI SIFAT-SIFAT STATISTIK PENDUGA FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2016 PERNYATAAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 21 Beberapa Pengertian Definisi 1 [Ruang Contoh] Ruang contoh adalah himpunan semua hasil yang mungkin dari suatu percobaan acak, dan dinotasikan dengan (Grimmet dan Stirzaker,1992)

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan Ilmu pengetahuan merupakan hal yang mengalami perkembangan secara terus-menerus. Diantaranya teori integral yaitu ilmu bidang matematika analisis yang

Lebih terperinci

PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM

PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM BIAStatistics (2015) Vol. 9, 2, hal. 28-32 PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM Munawar Jurusan Matematika FMIPA Universitas Syiah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Peluang Definisi 2.1.1 Percobaan Acak (Ross 2000) Suatu percobaan yang dapat diulang dalam kondisi yang sama dan semua kemungkinan hasil yang muncul dapat diketahui tetapi

Lebih terperinci

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan:

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan: II. TINJAUAN PUSTAKA Dalam tinjauan pustaka penelitian Karakteristik Penduga Parameter Distribusi Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan beberapa definisi dan teorema yang

Lebih terperinci

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari

TINJAUAN PUSTAKA. Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari II. TINJAUAN PUSTAKA Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari penduga tersebut, maka dalam hal ini penulis menggunakan beberapa definisi dan teorema yang berkaitan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM.

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. HUKUM ITERASI LOGARITMA TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. 00290 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2009 2 DAFTAR ISI DAFTAR ISI 2 1 Sistem Bilangan Kompleks (C) 1 1 Pendahuluan...............................

Lebih terperinci

ANALISA SISTEM ANTRIAN M/M/1/N DENGAN RETENSI PELANGGAN YANG MEMBATALKAN ANTRIAN

ANALISA SISTEM ANTRIAN M/M/1/N DENGAN RETENSI PELANGGAN YANG MEMBATALKAN ANTRIAN Analisa Sistem Antrian (Ayi Umar Nawawi) 11 ANALISA SISTEM ANTRIAN M/M/1/N DENGAN RETENSI PELANGGAN YANG MEMBATALKAN ANTRIAN ANALYSIS OF M/M/1/N QUEUEUING SYSTEM WITH RETENTION OF RENEGED CUSTOMERS Oleh:

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan seringkali dilakukan pengulangan yang biasanya dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul

Lebih terperinci

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi II.TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi generalized weibull menggunakan metode generalized momen ini, penulis menggunakan definisi dan konsep dasar

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA Erpan Gusnawan 1, Arisman Adnan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

BAB 7 DISTRIBUSI-COMPOUND DAN GENERALIZED SPASIAL MUHAMMAD NUR AIDI

BAB 7 DISTRIBUSI-COMPOUND DAN GENERALIZED SPASIAL MUHAMMAD NUR AIDI 7.1. Pendahuluan BAB 7 DISTRIBUSI-COMPOUND DAN GENERALIZED SPASIAL MUHAMMAD NUR AIDI Pada bab sebelumnya, penyebaran spatial (konfigurasi spasial) dimana ditunjukan sebagai ragam sampel quadran. Bab ini

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi yang memiliki fungsi kepekatan peluang kontinu. Bentuk kurva distribusi logistik adalah simetris dan uni modal. Bentuk

Lebih terperinci

ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI

ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI 34 Jurnal Matematika Vol 6 No 1 Tahun 2017 ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI THE CONVERGENCE ANALYZE ON THE SEQUENCE OF FUNCTION Oleh: Restu Puji Setiyawan 1), Dr. Hartono 2) Program Studi Matematika,

Lebih terperinci

III PEMBAHASAN. dengan kendala. Solusi dari permasalahan di atas diberikan oleh Teorema 1 berikut. Teorema 1 R = R (X) didefinisikan oleh

III PEMBAHASAN. dengan kendala. Solusi dari permasalahan di atas diberikan oleh Teorema 1 berikut. Teorema 1 R = R (X) didefinisikan oleh 4 III PEMBAHASAN 3.1. Meminimumkan Peluang Keangkrutan (Ruin Proaility) Keijakan suatu perusahaan asuransi dalam memilih kontrak reasuransi sangatlah penting, salah satu pendekatan rasional untuk memilih

Lebih terperinci

PENDUGAAN FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK NADIROH

PENDUGAAN FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK NADIROH PENDUGAAN FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK NADIROH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2011

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data 5 II. TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data panel ini, penulis menggunakan definisi, teorema dan konsep dasar yang berkaitan dengan pendugaan parameter,

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Tentang Mata Kuliah MA3231 Mata kuliah ini merupakan mata kuliah wajib bagi mahasiswa program studi S1 Matematika, dengan

Lebih terperinci

PENAKSIR RATA-RATA DISTRIBUSI EKSPONENSIAL TERPOTONG. Agustinus Simanjuntak ABSTRACT

PENAKSIR RATA-RATA DISTRIBUSI EKSPONENSIAL TERPOTONG. Agustinus Simanjuntak ABSTRACT PENAKSIR RATA-RATA DISTRIBUSI EKSPONENSIAL TERPOTONG Agustinus Simanjuntak Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya Pekanbaru

Lebih terperinci

SILABUS. 5. Evaluasi a. Kehadiran = 10% b. Tugas = 20% c. UTS = 30% d. UAS = 40%

SILABUS. 5. Evaluasi a. Kehadiran = 10% b. Tugas = 20% c. UTS = 30% d. UAS = 40% 0 SILABUS 1. Identitas Mata Kuliah Nama Mata Kuliah : Statistika Matematik 1 Kode Mata Kuliah : MT 404 Jumlah SKS : 3 Semester : 6 Kelompok Mata Kuliah : Mata Kuliah Keahlian (MKK) Program Studi Jurusan/Program

Lebih terperinci

BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI

BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI 5.1. Pendahuluan Untuk mendeteksi bagaimana konfigurasi titik dalam ruang apakah bersifat acak atau random, regular, ataupun cluster (kelompok); pertama-tama

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI STATISTIKA. B. TUJUAN PEMBELAJARAN Setelah menempuh mata kuliah ini mahasiswa diharapkan mampu:

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI STATISTIKA. B. TUJUAN PEMBELAJARAN Setelah menempuh mata kuliah ini mahasiswa diharapkan mampu: RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI STATISTIKA A. MATA KULIAH Nama Mata Kuliah Statistika Maa I Kode/sks : MAS 4111/ 3 Semester : III Status (Wajib/Pilihan) : Wajib (W) Prasyarat : MAS 4218

Lebih terperinci

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( )

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( ) LAMPIRAN 21 Lampiran 1 (Pembuktian Lema 2.1 Lema 2.1 (Eksistensi Fungsi Intensitas global Jika ([ ] adalah proses Poisson periodik dengan fungsi intensitas, maka ([ ] pada Definisi 2.28 ada dan nilainya

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

PENAKSIRAN RATAAN DAN VARIANSPOPULASI PADA SAMPEL ACAK TERSTRATIFIKA DENGAN AUXILIARY VARIABLE

PENAKSIRAN RATAAN DAN VARIANSPOPULASI PADA SAMPEL ACAK TERSTRATIFIKA DENGAN AUXILIARY VARIABLE Vol. 12, No. 1, 9-18, Juli 2015 PENAKSIRAN RATAAN DAN VARIANSPOPULASI PADA SAMPEL ACAK TERSTRATIFIKA DENGAN AUXILIARY VARIABLE Raupong, M. Saleh AF, Hasruni Satya Taruma Abstrak Penaksiran rataan dan variansi

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF

ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF Agung Anggoro, Siti Fatimah 1, Encum Sumiaty 2 Departemen Pendidikan Matematika FPMIPA UPI *Surel: agung.anggoro@student.upi.edu ABSTRAK. Misalkan

Lebih terperinci

MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n ABSTRACT

MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n ABSTRACT MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n Polorida 1, Asli Sirait, Musraini M. 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas

Lebih terperinci

Menampilkan Penaksir Parameter pada Model Linear * Mulyana **

Menampilkan Penaksir Parameter pada Model Linear * Mulyana ** Menampilkan Penaksir Parameter pada Model Linear * Abstrak Pada model linear Mulyana ** Y = X + ε, jika penaksir untuk, maka dua peran. Yaitu sebagai penaksir faktual, hitung, X memiliki Y = X, dan penaksir

Lebih terperinci

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding

Lebih terperinci

4. Mahasiswa mampu melakukan estimasi parameter, melakukan uji hipotesis statistic serta estimasi interval. Diskripsi Singkat MK

4. Mahasiswa mampu melakukan estimasi parameter, melakukan uji hipotesis statistic serta estimasi interval. Diskripsi Singkat MK INSTITUT TEKNOLOGI KALIMANTAN JURUSAN MATEMATIKA DAN TEKNOLOGI INFORMASI PROGRAM STUDI MATEMATIKA RENCANA PEMBELAJARAN MATA KULIAH KODE Rumpun MK BOBOT (sks) SEMESTER Tgl Penyusunan Matematika Statistika

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci