BAB IV HASIL DAN PEMBAHASAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV HASIL DAN PEMBAHASAN"

Transkripsi

1 Hs (m) BAB IV HASIL DAN PEMBAHASAN 4.1 Uji Sensitifitas Model Uji sensitifitas yang dilakukan menggunakan empat parameter, yaitu kecepatan angin, langkah waktu perhitungan, kondisi fisik dan resolusi grid. Tujuan dari uji sensitifitas ini adalah untuk mengetahui seberapa sensitif variabel yang diuji terhadap model yang dihasilkan. Uji ini dilakukan dengan mengambil tiga titik sampel yang mewakili wilayah pemodelan. Hasil dari uji sensitifitas ini berupa grafik tinggi signifikan gelombang terhadap waktu. a. Uji Sensitifitas dengan Parameter Kecepatan Angin Kecepatan angin yang digunakan adalah 2,5 m/s, 5 m/s dan 10 m/s. Uji ini dilakukan untuk mengetahui pengaruh kecepatan angin terhadap model gelombang yang dihasilkan. Hasil analisis sensitifitas terhadap angin di masing-masing titik sampel disajikan dalam pembahasan berikut. 1) Titik ,5 m/s 5 m/s 10 m/s Waktu Gambar 4.1. Grafik Tinggi Gelombang Signifikan berdasarkan Angin di Titik 1 27

2 Hs (m) Hs (m) 2) Titik ,5 m/s 5 m/s 10 m/s Waktu Gambar 4.2. Grafik Tinggi Gelombang Signifikan berdasarkan Pengaruh Angin di Titik 2 3) Titik ,5 m/s 5 m/s 10 m/s Waktu Gambar 4.3. Grafik Tinggi Gelombang Signifikan berdasarkan Angin di Titik 3 Pada Gambar 4.1, 4.2 dan 4.3 sumbu X merupakan waktu pemodelan sedangkan sumbu Y merupakan tinggi signifikan gelombang dalam satuan meter. Garis berwarna merah merupakan tinggi signifikan gelombang yang dihasilkan oleh angin dengan kecepatan 2,5 m/s. Garis berwarna biru dan hijau masing-masing menggambarkan tinggi signifikan gelombang dengan kecepatan angin 5 m/s dan 10 m/s. Dari Gambar 4.1, 4.2 dan 4.3 terlihat bahwa dengan kecepatan angin yang berbeda akan menimbulkan tinggi signifikan gelombang 28

3 Hs (m) yang berbeda pula. Hal ini berarti bahwa kecepatan angin mempunyai pengaruh yang sangat besar terhadap pemodelan gelombang yang dilakukan. Hal ini sejalan dengan teori yang menyebutkan bahwa angin merupakan faktor utama penyebab terjadinya gelombang laut. Dari grafik tersebut terlihat bahwa semakin besar kecepatan angin akan menyebabkan tinggi signifikan gelombang yang semakin besar dan begitu pula sebaliknya semakin kecil kecepatan angin maka gelombang yang dihasilkan pun semakin kecil. b. Uji Sensitifitas dengan Parameter Resolusi Grid Pada uji sensitifitas ini, digunakan tiga jenis resolusi grid yang berbeda. Resolusi grid yang digunakan tersebut adalah 109 m x 116 m, 218 m x 232 m, dan 436 m x 464 m. Uji sensitifitas ini dilakukan untuk mengetahui pengaruh resolusi grid terhadap model gelombang yang dihasilkan. Seperti halnya dengan uji sensitifitas berdasarkan parameter kecepatan angin, uji ini juga dilakukan di tiga titik sampel yang menyebar di wilayah pemodelan. Hasil dari uji sensitifitas berdasarkan resolusi grid ditampilkan dalam pembahasan berikut. 1) Titik m X 116 m 218 m x 232 m 436 m x 464 m Waktu Gambar 4.4. Grafik Tinggi Gelombang Signifikan berdasarkan Resolusi Grid di Titik 1 29

4 Hs (m) Hs (m) 2) Titik m x 116 m 218 m x 232 m 436 m x 464 m Waktu Gambar 4.5. Grafik Tinggi Gelombang Signifikan berdasarkan Resolusi Grid di Titik 2 3) Titik m x 116 m 218 m x 232 m 436 m x 464 m Waktu Gambar 4.6. Grafik Tinggi Gelombang Signifikan berdasarkan Resolusi Grid di Titik 3 30

5 Dari Gambar 4.4, 4.5 dan 4.6 terlihat bahwa hasil pemodelan dengan resolusi grid yang berbeda menghasilkan model yang hampir sama untuk resolusi grid 109 m x 116 m (garis berwarna merah) dan 218 m x 232 m (garis berwarna biru). Model gelombang yang dihasilkan dari pemodelan yang menggunakan kedua resolusi grid tersebut memberikan hasil yang stabil. Tetapi model yang menggunakan resolusi grid 436 m x 464 m (garis berwarna hijau) menghasilkan tinggi signifikan gelombang yang kurang stabil. Kestabilan ini dapat terlihat dari grafik tinggi signifikan gelombang yang dihasilkan. Selain berpengaruh pada model gelombang yang dihasilkan, resolusi grid juga berpengaruh terhadap lamanya waktu pemodelan. Semakin rapat resolusi grid yang dipakai akan semakin lama waktu pemodelan dan begitu pula sebaliknya. Jadi, untuk pemodelan gelombang ini digunakan model dengan resolusi grid 218 m x 232 m untuk menghasilkan model gelombang yang optimal. c. Uji Sensitifitas dengan Parameter Langkah Waktu Perhitungan Dalam uji sensitifitas ini langkah waktu perhitungan yang digunakan adalah 0,5 jam, 1 jam dan 2 jam. Uji sensitifitas ini dilakukan untuk mengetahui pengaruh langkah waktu perhitungan terhadap model gelombang yang dihasilkan di tiga titik sampel yang mewakili seluruh wilayah pemodelan. Hasil dari uji sensitifitas ini akan ditampilkan dalam pembahasan berikut. 31

6 1) Titik 1 Gambar 4.7. Grafik Tinggi Gelombang Signifikan berdasarkan Langkah Waktu Perhitungan di Titik 1 2) Titik 2 Gambar 4.8. Grafik Tinggi Gelombang Signifikan berdasarkan Langkah Waktu Perhitungan di Titik 2 32

7 3) Titik 3 Gambar 4.9. Grafik Tinggi Gelombang Signifikan berdasarkan Langkah Waktu Perhitungan di Titik 3 Setelah melihat hasil dari semua titik sampel pada Gambar 4.7, 4.8 dan 4.9, dapat disimpulkan bahwa parameter langkah waktu perhitungan tidak memberikan pengaruh yang signifikan terhadap model gelombang yang dihasilkan. Langkah waktu perhitungan pada model ini berpengaruh pada lamanya waktu pemodelan. Semakin cepat langkah waktu perhitungan yang digunakan akan menyebabkan semakin lama waktu pemodelan dan begitu pula sebaliknya. d. Uji Sensitifitas dengan Parameter Kondisi Fisik (GEN3) Parameter yang digunakan dalam uji sensitifitas ini adalah kondisi fisik (GEN3). Jenis GEN3 yang digunakan adalah KOMEN, JANSSEN, dan WESTHUYSEN. Uji ini dilakukan untuk mengetahui pengaruh kondisi fisik terhadap model gelombang yang dihasilkan. Uji ini juga dilakukan di tiga titik sampel yang mewakili wilayah pemodelan. Hasil dari uji sensitifitas ini ditampilkan dalam pembahasan berikut. 33

8 Hs (m) Hs (m) 1) Titik KOMEN JANSsen WESTHuysen Waktu Gambar Grafik Tinggi Gelombang Signifikan berdasarkan Kondisi Fisik di Titik 1 2) Titik KOMEN JANSsen WESTHuysen Waktu Gambar Grafik Tinggi Gelombang Signifikan berdasarkan Kondisi Fisik di Titik 2 34

9 Hs (m) 3) Titik KOMEN JANSsen WESTHuysen /3/2011 7/3/2011 7/3/2011 7/3/2011 7/4/2011 7/4/2011 7/4/2011 7/4/2011 7/5/2011 7/5/2011 7/5/2011 7/5/2011 Waktu Gambar Grafik Tinggi Gelombang Signifikan berdasarkan Kondisi Fisik di Titik 3 Dari Gambar 4.10, 4.11 dan 4.2 terlihat bahwa kondisi fisik sangat berpengaruh terhadap model gelombang yang dihasilkan. Tinggi gelombang yang dihasilkan oleh KOMEN hampir sama dengan WESTHUYSEN. Tetapi JANSSEN menghasilkan nilai tinggi gelombang yang berbeda. Nilai tinggi gelombang yang dihasilkan oleh JANSSEN lebih dari dua kali lipat nilai tinggi gelombang yang dihasilkan KOMEN dan WESTHUYSEN. Pada uji sensitifitas ini ditentukan bahwa iterasi dilakukan maksimal sepuluh kali. Iterasi akan berhenti jika telah mencapai jumlah maksimal iterasi atau solusi pendekatannya cukup akurat. Pada uji sensitifitas dengan kondisi fisik JANSSEN proses pemodelan berhenti setelah mencapai iterasi maksimal sedangkan akurasi yang diperoleh hanya berkisar antara 40-60%. Hal tersebut menyebabkan tinggi signifikan yang dihasilkan dengan GEN3 JANSSEN berbeda dengan yang lainnya. Sedangkan akurasi yang dihasilkan dari pemodelan dengan kondisi fisik KOMEN dan WESTHUYSEN adalan diatas 98%. Akurasi yang dimaksud pada pemodelan ini merupakan jumlah area yang menghasilkan nilai konstan dari tahap iterasi sebelumnya. Oleh karena itu, untuk menghasilkan model gelombang yang optimal pada pemodelan gelombang ini digunakan GEN3 KOMEN. 35

10 Berdasarkan uji sensitifitas yang dilakukan, variabel yang digunakan pada pemodelan gelombang ini adalah sebagai berikut. Variabel angin yang digunakan adalah berdasarkan data sekunder dari NCEP. Variabel langkah waktu perhitungan yang digunakan adalah setiap satu jam. Variabel resolusi grid yang digunakan adalah 218 m x 232 m. Variabel kondisi fisik yang digunakan adalah KOMEN. 4.2 Simulasi Dua Musim Setelah dilakukan uji sensitifitas terhadap model gelombang dan ditentukan variabel yang akan digunakan untuk pemodelan, langkah selanjutnya adalah melakukan simulasi dua musim. Simulasi dua musim dilakukan karena di Indonesia terdapat musim angin barat dan musim angin timur. Pada simulasi ini, dilakukan simulasi selama satu bulan untuk masing-masing musim. Dari musim angin timur dilakukan pemodelan pada bulan Juli, sedangkan untuk mewakili musim angin barat dilakukan pemodelan pada bulan Januari. Model yang digunakan dalam simulasi ini adalah model yang dipilih berdasarkan uji sensitifitas berdasarkan parameter kecepatan angin, langkah waktu perhitungan, resolusi grid dan kondisi fisik (GEN3) Simulasi pada Musim Angin Timur Simulasi pada musim angin timur merupakan bagian dari simulasi dua musim yang dilakukan. Hasil pemodelan gelombang musim angin timur yang akan dibahas adalah tinggi signifikan gelombang. Gambar 4.13 menunjukkan tinggi signifikan dan arah gelombang di perairan Cirebon hasil dari pemodelan numerik pada tanggal 31 Juli 2011 pukul dan pukul

11 Gambar Tinggi Signifikan dan Arah Gelombang pada tanggal 16 Juli 2011 Sebagai perwakilan dari musim angin timur dilakukan pemodelan pada bulan Juli selama satu bulan. Di wilayah pemodelan ini diambil 24 titik sampel yang tersebar sepanjang pantai Cirebon. Pada titik-titik pengamatan tersebut diketahui tinggi signifikan dan arah gelombang selama masa pemodelan. Pada bulan Juli, tinggi signifikan gelombang maksimal diantara semua titik pengamatan adalah 0,616 m terletak di titik pengamatan 2 pada tanggal 31 Juli 2011 pukul Sedangkan rata-rata tinggi signifikan gelombangnya adalah 0,286 m. Arah gelombang cenderung menuju ke arah barat dan barat laut. Hal ini sejalan dengan arah datangnya angin yang berhembus dari arah timur sehingga menyebabkan gelombang bergerak ke arah barat dan barat laut. Periode gelombang maksimum pada bulan Juli yaitu 5,56 detik. Dengan menganalisis titik sampel yang tersebar, dapat diketahui tinggi signifikan gelombang pada titik-titk sampel tersebut selama kurun waktu pemodelan dilakukan. Karakteristik gelombang di titik-titik sampel tersebut diasumsikan mewakili karakteristik wilayah perairan kecamatan pesisir Cirebon yang terdekat dengan titik pengamatan tersebut. Tabel 4.1 berisi mengenai kecamatan pesisir di wilayah Cirebon dan titik pengamatan yang mewakilinya. 37

12 Hs (m) Tabel 4.1. Kecamatan Pesisir dan Titik Pengamatan yang Mewakilinya No Kecamatan Pesisir Titik Pengamatan 1 Kapetakan 3 2 Suranenggala 7 3 Gunung Jati 9 4 Kejaksaan 10 5 Lemahwungkuk 11 6 Mundu 12 7 Astanajapura 13 8 Pangenan 16 9 Gebang Losari 22 Dari titik-titik pengamatan yang mewakili masing-masing kecamatan seperti pada Tabel 4.1, dianalisis tinggi signifikan gelombang di titik-titik pengamatan tersebut dan digambarkan dalam bentuk grafik seperti pada Gambar Tinggi signifikan gelombang tersebut merupakan tinggi signifikan gelombang yang dihasilkan dari pemodelan selama satu bulan. 0.7 Kapetakan Suranenggala Gunung Jati Kejaksaan Lemahwungkuk Mundu Astanajapura Pangenan Gebang Losari /2/11 7/7/11 7/12/11 7/17/11 7/22/11 7/27/11 8/1/11 Waktu Gambar 4.14 Tinggi Signifikan Gelombang di Titik Pengamatan Kecamatan Pesisir pada Bulan Juli 2011 Pada Gambar 4.14 terlihat bahwa di semua titik pengamatan memiliki pola tinggi signifikan gelombang yang sama, yang berbeda adalah besarnya nilai tinggi signifikan gelombang di setiap titik pengamatan yang menyebabkan berbeda pula tingkat kerentanan wilayah pesisir terhadap abrasi. Tinggi signifikan gelombang maksimal terdapat pada titik pengamatan dua dengan tinggi mencapai 0,616 m. 38

13 Simulasi pada Musim Angin Barat Gambar Tinggi Signifikan Gelombang dan Arah Gelombang pada tanggal 15 Januari 2012 Selain dilakukan simulasi pada musim angin timur, pada simulasi dua musim ini juga dilakukan simulasi pada musim angin barat. Pada musim ini dilakukan simulasi selama satu bulan pada bulan Januari sebagai perwakilan dari periode musim angin barat. Dengan menyebar 24 titik pengamatan di sepanjang pantai, maka akan diketahui karakteristik gelombang di titik-titik pengamatan tersebut. Pada bulan ini, tinggi signifikan maksimal di titik-titik pengamatan mencapai 0,744 m di titik pengamatan 24 pada tanggal 26 Januari 2012 pukul Sedangkan rata-rata tinggi gelombang signifikan adalah 0,172 m dan arah gelombang yang terjadi pada bulan ini cenderung ke arah tenggara dan selatan. Periode gelombang maksimum pada bulan Januari yaitu 5,56 detik. Seperti halnya dengan pemodelan gelombang pada musim angin timur, pemodelan pada musim angin barat juga dapat diketahui tinggi signifikan gelombang pada titik-titk sampel yang tersebar selama kurun waktu pemodelan dilakukan. Dengan menggunakan titik pengamatan yang sama untuk setiap kecamatan pesisir, Gambar 4.16 menunjukkan tinggi signifikan gelombang di setiap titik pengamatan yang mewakili kecamatan pesisir di wilayah pesisir Cirebon selama satu bulan pada musim angin barat. 39

14 Hs (m) 0.80 Kapetakan Suranenggala Gunung Jati Kejaksaan Lemahwungkuk Mundu Astanajapura Pangenan Gebang Losari /2/12 1/7/12 1/12/12 1/17/12 1/22/12 1/27/12 2/1/12 Waktu Gambar Tinggi Signifikan Gelombang di Titik Pengamatan Kecamatan Pesisir pada Bulan Januari 2012 Pada Gambar 4.16 terlihat pola tinggi signifikan gelombang yang sama untuk setiap titik pengamatan. Hampir di semua titik pengamatan, terjadi kenaikan tinggi gelombang signifikan yang drastis dimulai tanggal 23 Januari 2012 sampai mencapai tinggi gelombang maksimal pada tanggal 26 Januari 2012 pukul Setelah mencapai tinggi gelombang maksimal tersebut, pola tinggi signifikan gelombang akan menurun sampai akhir waktu pemodelan. 4.3 Kerentanan Wilayah Pesisir Cirebon terhadap Abrasi Setelah didapatkan karakteristik gelombang dari pemodelan, selanjutnya adalah melakukan identifikasi kerentanan wilayah pesisir terhadap abrasi. Untuk mengetahui tingkat kerentanan di wilayah pesisir Cirebon terhadap abrasi yang diakibatkan oleh gelombang, dianalisis terlebih dahulu tinggi gelombang signifikan dan arah rata-rata gelombang datang pada masing-masing titik pengamatan. Karakteristik gelombang di titik pengamatan mewakili karakteristik gelombang secara keseluruhan di perairan sekitar wilayah kecamatan pesisir. Tabel 4.2 berisi mengenai kecamatan pesisir cirebon dan titik pengamatan yang terdekat. 40

15 Tabel 4.2. Kecamatan Peisisir dan Titik Pengamatan Terdekat Titik No Kecamatan Pengamatan 1 Kapetakan Suranenggala Gunung Jati Kejaksaan Lemahwungkuk 11 6 Mundu 12 7 Astanajapura 13 8 Pangenan Gebang Losari Karakteristik gelombang yang mempengaruhi kerentanan wilayah pesisir terhadap abrasi adalah arah datang dan tinggi signifikan gelombang. Pada masing-masing titik pengamatan terdapat informasi tinggi gelombang signifikan dan arah datang gelombang. Dengan informasi yang tersedia pada titik pengamatan tersebut akan diketahui tingkat kerentanan wilayah pesisir terhadap abrasi yang terdekat dengan titik pengamatannya. Gambar 4.17 menunjukkan persebaran titik-titik pengamatan di sekitar wilayah pesisir Kabupaten dan Kota Cirebon. Gambar Peta Persebaran Titik-Titik Pengamatan di Perairan Cirebon 41

16 Tabel 4.3 merupakan tabel yang memuat informasi mengenai indeks kerentanan masing-masing titik pengamatan berdasarkan tinggi gelombang signifikan dan sudut dating gelombang pada bulan Juli Sedangkan Tabel 4.4 merupakan tabel yang memuat informasi mengenai indeks kerentanan pada bulan januari 2012 di masingmasing titik pengamatan. Tabel 4.3. Indeks Kerentanan terhadap Abrasi di Titik Pengamatan pada Bulan Juli 2011 No IKPA berdasarkan Hs (m) SG ( o ) IKPA Berdasarkan SG Titik Hs Kurang Rentan 58 Rentan Kurang Rentan 60 Rentan Kurang Rentan 61 Rentan Kurang Rentan 72 Rentan Kurang Rentan 62 Rentan Kurang Rentan 63 Rentan Kurang Rentan 62 Rentan Kurang Rentan 65 Rentan Kurang Rentan 66 Rentan Kurang Rentan 67 Rentan Aman 69 Rentan Aman 45 Sangat Rentan Aman 30 Sangat Rentan Aman 0 Kurang Rentan Aman 0 Kurang Rentan Aman 15 Kurang Rentan Aman 39 Sangat Rentan Aman 26 Rentan Aman 36 Sangat Rentan Aman 52 Sangat Rentan Aman 74 Kurang Rentan Aman 67 Rentan Aman 39 Sangat Rentan Aman 31 Rentan 42

17 Tabel 4.4. Indeks Kerentanan terhadap Abrasi di Titik Pengamatan pada Bulan Januari 2012 IKPA No Titik Hs (m) SG ( o ) IKPA berdasarkan SG berdasarkan Hs keterangan : Aman 78 Kurang Rentan Aman 67 Rentan Aman 66 Rentan Aman 71 Rentan Aman 48 Sangat Rentan Aman 44 Sangat Rentan Aman 47 Sangat Rentan Kurang Rentan 43 Sangat Rentan Kurang Rentan 31 Rentan Kurang Rentan 26 Rentan Kurang Rentan 13 Kurang Rentan Kurang Rentan 17 Kurang Rentan Kurang Rentan 17 Kurang Rentan Kurang Rentan 47 Sangat Rentan Kurang Rentan 51 Sangat Rentan Kurang Rentan 0 Kurang Rentan Kurang Rentan 47 Sangat Rentan Kurang Rentan 50 Sangat Rentan Kurang Rentan 50 Sangat Rentan Kurang Rentan 50 Sangat Rentan Kurang Rentan 54 Sangat Rentan Kurang Rentan 42 Sangat Rentan Kurang Rentan 71 Rentan Kurang Rentan 69 Rentan Hs SG = Tinggi Signifikan Gelombang = Sudut Datang Gelombang terhadap Garis Pantai Untuk menentukan indeks kerentanan di masing-masing titik pengamatan hasil dari penggabungan indeks kerentanan berdasarkan variabel tinggi signifikan gelombang dan sudut datang gelombang terhadap garis pantai, dilakukan pembobotan dengan bobot untuk masing-masing variabel seperti pada Tabel 2.2. Hasil pembobotan tersebut dapat dilihat pada Tabel 4.5 untuk Bulan Juli 2011 dan Tabel 4.6 untuk Bulan Januari

18 No Titik Hs Tabel 4.5 IKPA Hasil Pembobotan pada Bulan Juli 2011 Klasifikasi Variabel Tinggi Signifikan Klasifikasi Nilai IKPA SG Sudut Datang Klasifikasi Nilai IKPA Nilai Hasil Klasifikasi Kurang Rentan 2 58 Rentan Rentan Kurang Rentan 2 60 Rentan Rentan Kurang Rentan 2 61 Rentan Rentan Kurang Rentan 2 72 Rentan Rentan Kurang Rentan 2 62 Rentan Rentan Kurang Rentan 2 63 Rentan Rentan Kurang Rentan 2 62 Rentan Rentan Kurang Rentan 2 65 Rentan Rentan Kurang Rentan 2 66 Rentan Rentan Kurang Rentan 2 67 Rentan Rentan Aman 1 69 Rentan 3 2 Kurang Rentan Aman 1 45 Sangat Rentan Rentan Aman 1 30 Sangat Rentan Rentan Aman 1 0 Kurang Rentan Kurang Rentan Aman 1 0 Kurang Rentan Kurang Rentan Aman 1 15 Kurang Rentan Kurang Rentan Aman 1 39 Sangat Rentan Kurang Rentan Aman 1 26 Rentan 3 2 Kurang Rentan Aman 1 36 Sangat Rentan Rentan Aman 1 52 Sangat Rentan Rentan Aman 1 74 Kurang Rentan Kurang Rentan Aman 1 67 Rentan 3 2 Kurang Rentan Aman 1 39 Sangat Rentan Rentan Aman 1 31 Rentan 3 2 Kurang Rentan 44

19 No Titik Hs Tabel 4.6 IKPA Hasil Pembobotan pada Bulan Januari 2012 Klasifikasi Variabel Tinggi Signifikan Klasifikasi Nilai IKPA SG Sudut Datang Klasifikasi Nilai IKPA Nilai Hasil Klasifikasi Aman 1 78 Kurang Rentan Kurang Rentan Aman 1 67 Rentan 3 2 Kurang Rentan Aman 1 66 Rentan 3 2 Kurang Rentan Aman 1 71 Rentan 3 2 Kurang Rentan Aman 1 48 Sangat Rentan Rentan Aman 1 44 Sangat Rentan Rentan Aman 1 47 Sangat Rentan Rentan Kurang Rentan 2 43 Sangat Rentan 4 3 Rentan Kurang Rentan 2 31 Rentan Rentan Kurang Rentan 2 26 Rentan Rentan Kurang Rentan 2 13 Kurang Rentan 2 2 Kurang Rentan Kurang Rentan 2 17 Kurang Rentan 2 2 Rentan Kurang Rentan 2 17 Kurang Rentan 2 2 Rentan Kurang Rentan 2 47 Sangat Rentan 4 3 Rentan Kurang Rentan 2 51 Sangat Rentan 4 3 Rentan Kurang Rentan 2 0 Kurang Rentan 2 2 Kurang Rentan Kurang Rentan 2 47 Sangat Rentan 4 3 Rentan Kurang Rentan 2 50 Sangat Rentan 4 3 Rentan Kurang Rentan 2 50 Sangat Rentan 4 3 Rentan Kurang Rentan 2 50 Sangat Rentan 4 3 Rentan Kurang Rentan 2 54 Sangat Rentan 4 3 Rentan Kurang Rentan 2 42 Sangat Rentan 4 3 Rentan Kurang Rentan 2 71 Rentan Rentan Kurang Rentan 2 69 Rentan Rentan Seperti yang telah dicantumkan pada Tabel 4.2, karakteristik gelombang di wilayah perairan masing-masing kecamatan pesisir di Cirebon diwakili oleh titik-titik pengamatan. Dari indeks kerentanan di titik-titik pengamatan tersebut, diambil indeks kerentanan yang dominan untuk menentukan indeks kerentanan di kecamatan pesisir yang diwakili oleh titik-titik pengamatan. Untuk mengetahui kerentanan terhadap abrasi di masing-masing kecamatan dapat dilihat pada Tabel 4.7 untuk bulan Juli 2011, dan Tabel 4.8 untuk bulan Januari

20 Tabel 4.7. Indeks Kerentanan terhadap Abrasi di setiap Kecamatan pada Bulan Juli 2011 No Kecamatan Titik Pengamatan Kerentanan 1 Kapetakan 1 6 Rentan 2 Suranenggala 6 7 Rentan 3 Gunung Jati 8 10 Rentan 4 Kejaksaan Rentan 5 Lemahwungkuk 11 Kurang Rentan 6 Mundu 12 Rentan 7 Astanajapura 13 Rentan 8 Pangenan Kurang Rentan 9 Gebang Rentan 10 Losari Kurang Rentan Tabel 4.8. Indeks Kerentanan terhadap Abrasi di setiap Kecamatan pada Bulan Januari 2012 Titik No Kecamatan Kerentanan Pengamatan 1 Kapetakan 1 6 Kurang Rentan 2 Suranenggala 6 7 Rentan 3 Gunung Jati 8 10 Rentan 4 Kejaksaan Rentan 5 Lemahwungkuk 11 Kurang Rentan 6 Mundu 12 Rentan 7 Astanajapura 13 Rentan 8 Pangenan Rentan 9 Gebang Rentan 10 Losari Rentan Dari indeks kerentanan yang diperoleh dari analisis, dapat digambarkan peta kerentanan berdasarkan Tabel 4.7 untuk bulan Juli 2011 dan Tabel 4.8 untuk bulan Januari Peta kerentanan wilayah pesisir Cirebon berdasarkan indeks kerentanan wilayah pesisir terhadap abrasi untuk bulan Juli 2011 dapat dilihat pada gambar

21 Gambar Peta Kerentanan Wilayah Pesisir Cirebon terhadap Abrasi pada Bulan Juli 2011 Pada Gambar 4.18 terdapat dua indeks kerentanan terhadap abrasi untuk kecamatankecamatan pesisir di Cirebon berdasarkan gelombang hasil pemodelan bulan Juli 2011 (musim angin timur). Kecamatan Lemahwungkuk, Pangenan dan Losari berwarna kuning menunjukkan bahwa di kecamatan pesisir ini kurang rentan terhadap abrasi yang disebabkan oleh gelombang laut. Sedangkan kecamatan Kapetakan, Suranenggala, Gunung Jati, Kejaksaan, Mundu, Astanajapura dan Gebang berwarna jingga menunjukkan bahwa kecamatan-kecamatan pesisir yang rentan terhadap abrasi yang disebabkan oleh gelombang laut. Sedangkan peta kerentanan wilayah pesisir Cirebon terhadap abrasi berdasarkan indeks kerentanan pada bulan Januari 2012 dapat dilihat pada Gambar

22 Gambar Peta Kerentanan Wilayah Pesisir Cirebon terhadap Abrasi pada Bulan Januari 2012 Pada Gambar 4.19 terlihat bahwa terdapat dua kecamatan yang termasuk ke dalam wilayah kurang rentan, yaitu kecamatan Kapetakan dan Lemahwungkuk. Sedangkan Kecamatan Suranenggala, Gunung Jati, Kejaksaan, Mundu, Astanajapura, Pangenan, Gebang dan Losari termasuk ke dalam daerah yang rentan terhadap abrasi yang disebabkan oleh gelombang laut. Dari hasil pemodelan gelombang dua musim, dapat disimpulkan kerentanan wilayah pesisir terhadap abrasi untuk masing-masing musim simulasi. Untuk mendapatkan peta kerentanan pesisir Cirebon terhadap abrasi, maka data kerentanan dari simulasi dua musim tersebut digabungkan. Penggabungan indeks kerentanan dari dua musim ini dengan cara mengambil nilai indeks kerentanan yang paling rentan diantara dua musim. Indeks kerentanan yang paling rentan diantara dua data kerentanan tersebut disimpulkan sebagai indeks kerentanan untuk wilayah pesisir Cirebon terhadap abrasi. Hasil dari penggabungan data ini adalah peta kerentanan wilayah pesisir Cirebon terhadap abrasi seperti pada Gambar

23 Gambar Peta Kerentanan Wilayah Pesisir Cirebon terhadap Abrasi Pada Gambar 4.20 terlihat bahwa terdapat satu kecamatan yang termasuk dalam kategori kurang rentan terhadap abrasi dan sembilan kecamatan lainnya termasuk dalam kategori rentan Kecamatan yang kurang rentan terhadap abrasi adalah kecamatan Lemahwungkuk. Sedangkan kecamatan yang rentan terhadap abrasi adalah kecamatan Kapetakan, Suranenggala, Gunung Jati, Kejaksaan, Mundu, Astanajapura, Pangenan, Gebang dan Losari. 49

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Pengumpulan dan Pengolahan Data Data yang digunakan dalam penelitian ini adalah data batimetri, garis pantai dan data angin. Pada Tabel 3.1 dicantumkan mengenai data yang

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS 4.1 Uji Sensitifitas Sensitifitas parameter diuji dengan melakukan pemodelan pada domain C selama rentang waktu 3 hari dan menggunakan 3 titik sampel di pesisir. (Tabel 4.1 dan

Lebih terperinci

PEMETAAN GELOMBANG LAUT DENGAN METODE PEMODELAN NUMERIK DAN PEMANFAATANNYA UNTUK MENGIDENTIFIKASI KERENTANAN WILAYAH PESISIR TERHADAP ABRASI

PEMETAAN GELOMBANG LAUT DENGAN METODE PEMODELAN NUMERIK DAN PEMANFAATANNYA UNTUK MENGIDENTIFIKASI KERENTANAN WILAYAH PESISIR TERHADAP ABRASI PEMETAAN GELOMBANG LAUT DENGAN METODE PEMODELAN NUMERIK DAN PEMANFAATANNYA UNTUK MENGIDENTIFIKASI KERENTANAN WILAYAH PESISIR TERHADAP ABRASI (Wilayah Studi: Kabupaten dan Kota Cirebon) TUGAS AKHIR Karya

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS IV.1 Uji Sensitifitas Model Uji sensitifitas dilakukan dengan menggunakan 3 parameter masukan, yaitu angin (wind), kekasaran dasar laut (bottom roughness), serta langkah waktu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Wilayah pesisir merupakan wilayah yang sangat dinamis dan mempunyai karakteristik yang beragam di setiap tempatnya. Hal tersebut disebabkan oleh interaksi antara litosfer,

Lebih terperinci

BAB III METODOLOGI. Tabel 3.1 Data dan Sumber No Data Sumber Keterangan. (Lingkungan Dilakukan digitasi sehingga 1 Batimetri

BAB III METODOLOGI. Tabel 3.1 Data dan Sumber No Data Sumber Keterangan. (Lingkungan Dilakukan digitasi sehingga 1 Batimetri BAB III METODOLOGI 3.1 Pengumpulan Data Data awal yang digunakan dalam Tugas Akhir ini adalah data batimetri (kedalaman laut) dan data angin seperti pada Tabel 3.1. Tabel 3.1 Data dan Sumber No Data Sumber

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Pengumpulan Data Dalam suatu penelitian perlu dilakukan pemgumpulan data untuk diproses, sehingga hasilnya dapat digunakan untuk analisis. Pengadaan data untuk memahami

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pemodelan Hidrodinamika Arus dan Pasut Di Muara Gembong

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pemodelan Hidrodinamika Arus dan Pasut Di Muara Gembong BAB IV HASIL DAN PEMBAHASAN 4.1 Pemodelan Hidrodinamika Arus dan Pasut Di Muara Gembong Pemodelan ini menghasilkan dua model yaitu model uji sensitifitas dan model dua musim. Dalam model uji sensitifitas

Lebih terperinci

Oleh. Muhammad Legi Prayoga

Oleh. Muhammad Legi Prayoga PEMETAAN ARUS DAN PASUT LAUT DENGAN METODE PEMODELAN NUMERIK DAN PEMANFAATANNYA DALAM ANALISIS KERENTANAN WILAYAH PESISIR TERHADAP ABRASI (STUDI KASUS: PESISIR KABUPATEN INDRAMAYU, JAWA BARAT) TUGAS AKHIR

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Hasil Pengukuran Beda Tinggi Antara Bench Mark Dengan Palem Dari hasil pengukuran beda tinggi dengan metode sipat datar didapatkan beda tinggi antara palem dan benchmark

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Wilayah pesisir merupakan wilayah yang sangat dinamis dan mempunyai karakteristik yang beragam pada setiap wilayah di kabupaten/kota. Wilayah pesisir itu sendiri merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Penelitian Pada pemodelan gelombang ini, yang menjadi daerah pemodelannya adalah wilayah pesisir Kabupaten dan Kota Cirebon. Terkait dengan wilayah pesisir ini, akan

Lebih terperinci

BAB V ANALISIS PERAMALAN GARIS PANTAI

BAB V ANALISIS PERAMALAN GARIS PANTAI 80 BAB V ANALISIS PERAMALAN GARIS PANTAI 5.1 Tinjauan Umum Bagian hilir muara Kali Silandak mengalami relokasi dan menjadi satu dengan Kali Jumbleng yang menyebabkan debit hilirnya menjadi lebih besar

Lebih terperinci

Gambar 15 Mawar angin (a) dan histogram distribusi frekuensi (b) kecepatan angin dari angin bulanan rata-rata tahun

Gambar 15 Mawar angin (a) dan histogram distribusi frekuensi (b) kecepatan angin dari angin bulanan rata-rata tahun IV HASIL DAN PEMBAHASAN 4.1 Karakter Angin Angin merupakan salah satu faktor penting dalam membangkitkan gelombang di laut lepas. Mawar angin dari data angin bulanan rata-rata selama tahun 2000-2007 diperlihatkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Kondisi Fisik Daerah Penelitian II.1.1 Kondisi Geografi Gambar 2.1. Daerah Penelitian Kabupaten Indramayu secara geografis berada pada 107 52-108 36 BT dan 6 15-6 40 LS. Berdasarkan

Lebih terperinci

BERITA DAERAH KABUPATEN CIREBON

BERITA DAERAH KABUPATEN CIREBON BERITA DAERAH KABUPATEN CIREBON NOMOR? TAHUN 2016 SERI E. 2 PERATURAN BUPATI CIREBON NOMOR 2 TAHUN 2016 TENTANG PENGELOLAAN SEMPADAN PANTAI DI KABUPATEN CIREBON DENGAN RAHMAT TUHAN YANG MAHA ESA BUPATI

Lebih terperinci

4 KEADAAN UMUM DAERAH PENELITIAN

4 KEADAAN UMUM DAERAH PENELITIAN 25 4 KEADAAN UMUM DAERAH PENELITIAN 4.1 Keadaan Umum Kabupaten Cirebon 4.1.1 Kondisi geografis dan topografi Kabupaten Cirebon dengan luas wilayah 990,36 km 2 merupakan bagian dari wilayah Provinsi Jawa

Lebih terperinci

Gambar 2 Sebaran Sawah Irigasi dan Tadah Hujan Jawa dan Bali

Gambar 2 Sebaran Sawah Irigasi dan Tadah Hujan Jawa dan Bali 7 Lambang p menyatakan produktivitas (ton/ha), Δp persentase penurunan produktivitas (%). Penggunaan formula linest dengan menggunakan excel diatas akan menghasilkan nilai m yang dapat diinterpretasikan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 Penutupan Lahan Tahun 2003 2008 4.1.1 Klasifikasi Penutupan Lahan Klasifikasi penutupan lahan yang dilakukan pada penelitian ini dimaksudkan untuk membedakan penutupan/penggunaan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perikanan tangkap nasional masih dicirikan oleh perikanan tangkap skala kecil. Hal ini dapat dibuktikan dengan keberadaan perikanan tangkap di Indonesia yang masih

Lebih terperinci

3. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan April Oktober 2011 meliputi

3. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan April Oktober 2011 meliputi 3. METODOLOGI PENELITIAN 3.1. Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan pada bulan April Oktober 2011 meliputi penyusunan basis data, pemodelan dan simulasi pola sebaran suhu air buangan

Lebih terperinci

BAB V Analisa Peramalan Garis Pantai

BAB V Analisa Peramalan Garis Pantai 155 BAB V ANALISA PERAMALAN GARIS PANTAI. 5.1 Bentuk Pantai. Pantai selalu menyesuaikan bentuk profilnya sedemikian sehingga mampu menghancurkan energi gelombang yang datang. Penyesuaian bentuk tersebut

Lebih terperinci

4 KEADAAN UMUM 4.1 Keadaan Geografi

4 KEADAAN UMUM 4.1 Keadaan Geografi 20 4 KEADAAN UMUM 4.1 Keadaan Geografi Kabupaten Cirebon dengan luas wilayah 990,36 km 2 merupakan bagian dari wilayah propinsi Jawa Barat yang terletak di bagian timur Jawa Barat dan merupakan batas sekaligus

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Menurut UU No.27 tahun 2007, tentang pengelolaan wilayah pesisir dan pulau-pulau kecil, wilayah pesisir adalah daerah peralihan antara ekosistem darat dan laut yang

Lebih terperinci

Jurusan Teknik Kelautan - FTK

Jurusan Teknik Kelautan - FTK Oleh : Gita Angraeni (4310100048) Pembimbing : Suntoyo, ST., M.Eng., Ph.D Dr. Eng. Muhammad Zikra, ST., M.Sc 6 Juli 2014 Jurusan Teknik Kelautan - FTK Latar Belakang Pembuangan lumpur Perubahan kualitas

Lebih terperinci

Sekapur Sirih. Ir. R. Basworo Wahyu Utomo NIP

Sekapur Sirih. Ir. R. Basworo Wahyu Utomo NIP Sekapur Sirih Sebagai pengemban amanat Undang-undang Nomor 16 Tahun 1997 tentang Statistik dan sejalan dengan rekomendasi Perserikatan Bangsa-Bangsa mengenai Sensus Penduduk dan Perumahan Tahun 2010 (Population

Lebih terperinci

Gambar 8. Pola Hubungan Curah Hujan Rata-rata Harian RegCM3(Sebelum dan Sesudah Koreksi) dengan Observasi

Gambar 8. Pola Hubungan Curah Hujan Rata-rata Harian RegCM3(Sebelum dan Sesudah Koreksi) dengan Observasi BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil Koreksi Bias Data Curah Hujan dan Suhu Luaran Model RegCM3 Data luaran RegCM3 merupakan hasil simulasi kondisi iklim yang memiliki resolusi spasial yang

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

5 KEADAAN PERIKANAN TANGKAP KECAMATAN MUNDU KABUPATEN CIREBON

5 KEADAAN PERIKANAN TANGKAP KECAMATAN MUNDU KABUPATEN CIREBON 28 5 KEADAAN PERIKANAN TANGKAP KECAMATAN MUNDU KABUPATEN CIREBON Perikanan tangkap di Kabupaten Cirebon memiliki prasarana perikanan seperti pangkalan pendaratan ikan (PPI). Pangkalan pendaratan ikan yang

Lebih terperinci

PRISMA FISIKA, Vol. V, No. 3 (2014), Hal ISSN :

PRISMA FISIKA, Vol. V, No. 3 (2014), Hal ISSN : Studi Faktor Penentu Akresi dan Abrasi Pantai Akibat Gelombang Laut di Perairan Pesisir Sungai Duri Ghesta Nuari Wiratama a, Muh. Ishak Jumarang a *, Muliadi a a Prodi Fisika, FMIPA Universitas Tanjungpura,

Lebih terperinci

KONDISI UMUM LOKASI PENELITIAN

KONDISI UMUM LOKASI PENELITIAN 26 IV. KONDISI UMUM LOKASI PENELITIAN 4.1 Gambaran Umum Wilayah Penelitian Dua kecamatan yang dipilih di Kabupaten Indramayu, yaitu: Kecamatan Patrol dan Lelea. Batas administratif Kabupaten Indramayu

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN A. Data Kecepatan Angin dan Windrose Data angin dibutuhkan untuk menentukan distribusi arah angin dan kecepatan angin yang terjadi di lokasi pengamatan. Data angin yang digunakan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Geomorfologi Bentuk lahan di pesisir selatan Yogyakarta didominasi oleh dataran aluvial, gisik dan beting gisik. Dataran aluvial dimanfaatkan sebagai kebun atau perkebunan,

Lebih terperinci

Gambar 8. Peta lokasi penelitian

Gambar 8. Peta lokasi penelitian 22 III. METODE PENELITIAN A. Lokasi Penelitian Lokasi penelitian ini dilakukan di sekitar Pantai Kelapa Rapat Kabupaten Pesawaran. Seperti pada gambar 8 berikut ini : Gambar 8. Peta lokasi penelitian 23

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Analisis Perubahan Rasio Hutan Sebelum membahas hasil simulasi model REMO, dilakukan analisis perubahan rasio hutan pada masing-masing simulasi yang dibuat. Dalam model

Lebih terperinci

POLA ARUS DAN TRANSPOR SEDIMEN PADA KASUS PEMBENTUKAN TANAH TIMBUL PULAU PUTERI KABUPATEN KARAWANG

POLA ARUS DAN TRANSPOR SEDIMEN PADA KASUS PEMBENTUKAN TANAH TIMBUL PULAU PUTERI KABUPATEN KARAWANG POLA ARUS DAN TRANSPOR SEDIMEN PADA KASUS PEMBENTUKAN TANAH TIMBUL PULAU PUTERI KABUPATEN KARAWANG Andi W. Dwinanto, Noir P. Purba, Syawaludin A. Harahap, dan Mega L. Syamsudin Universitas Padjadjaran

Lebih terperinci

HINDCASTING GELOMBANG MENGGUNAKAN DATA ANGIN DARI MRI-JMA (METEOROLOGY RESEARCH INSTITUTE/JAPAN METEOROLOGY AGENCY) DALAM KURUN WAKTU

HINDCASTING GELOMBANG MENGGUNAKAN DATA ANGIN DARI MRI-JMA (METEOROLOGY RESEARCH INSTITUTE/JAPAN METEOROLOGY AGENCY) DALAM KURUN WAKTU JURUSAN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2013 HINDCASTING GELOMBANG MENGGUNAKAN DATA ANGIN DARI MRI-JMA (METEOROLOGY RESEARCH INSTITUTE/JAPAN METEOROLOGY

Lebih terperinci

IDENTIFIKASI KERUSAKAN PESISIR AKIBAT KONVERSI HUTAN BAKAU (MANGROVE) MENJADI LAHAN TAMBAK DI KAWASAN PESISIR KABUPATEN CIREBON

IDENTIFIKASI KERUSAKAN PESISIR AKIBAT KONVERSI HUTAN BAKAU (MANGROVE) MENJADI LAHAN TAMBAK DI KAWASAN PESISIR KABUPATEN CIREBON IDENTIFIKASI KERUSAKAN PESISIR AKIBAT KONVERSI HUTAN BAKAU (MANGROVE) MENJADI LAHAN TAMBAK DI KAWASAN PESISIR KABUPATEN CIREBON IDENTIFICATION COASTAL DAMAGE DUE TO THE MANGROVE FOREST CONVERSION INTO

Lebih terperinci

BAB 5 PEMBAHASAN. 39 Universitas Indonesia

BAB 5 PEMBAHASAN. 39 Universitas Indonesia BAB 5 PEMBAHASAN Dua metode penelitian yaitu simulasi dan eksperimen telah dilakukan sebagaimana telah diuraikan pada dua bab sebelumnya. Pada bab ini akan diuraikan mengenai analisa dan hasil yang diperoleh

Lebih terperinci

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa G174 Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa Muhammad Ghilman Minarrohman, dan Danar Guruh Pratomo Departemen Teknik Geomatika, Fakultas Teknik Sipil dan Perencanaan,

Lebih terperinci

PEMODELAN GENESIS. KL 4099 Tugas Akhir. Bab 5. Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara

PEMODELAN GENESIS. KL 4099 Tugas Akhir. Bab 5. Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara Bab 5 PEMODELAN GENESIS Bab 5 PEMODELAN GENESIS Desain Pengamanan Pantai Pulau Karakelang Kabupaten Kepulauan

Lebih terperinci

Simulasi Pola Arus Dua Dimensi Di Perairan Teluk Pelabuhan Ratu Pada Bulan September 2004

Simulasi Pola Arus Dua Dimensi Di Perairan Teluk Pelabuhan Ratu Pada Bulan September 2004 Simulasi Pola Arus Dua Dimensi Di Perairan Teluk Pelabuhan Ratu Pada Bulan September 2004 R. Bambang Adhitya Nugraha 1, Heron Surbakti 2 1 Pusat Riset Teknologi Kelautan-Badan (PRTK), Badan Riset Kelautan

Lebih terperinci

Ir. H. Yayan Eka Tavipian, MT MT

Ir. H. Yayan Eka Tavipian, MT MT SEUNTAI KATA Sensus Pertanian 2013 (ST2013) merupakan sensus pertanian keenam yang diselenggarakan Badan Pusat Statistik (BPS) setiap 10 (sepuluh) tahun sekali sejak 1963. Pelaksanaan ST2013 merupakan

Lebih terperinci

ANALISA PENCEMARAN LIMBAH ORGANIK TERHADAP PENENTUAN TATA RUANG BUDIDAYA IKAN KERAMBA JARING APUNG DI PERAIRAN TELUK AMBON

ANALISA PENCEMARAN LIMBAH ORGANIK TERHADAP PENENTUAN TATA RUANG BUDIDAYA IKAN KERAMBA JARING APUNG DI PERAIRAN TELUK AMBON ANALISA PENCEMARAN LIMBAH ORGANIK TERHADAP PENENTUAN TATA RUANG BUDIDAYA IKAN KERAMBA JARING APUNG DI PERAIRAN TELUK AMBON OLEH : CAROLUS NIRAHUA NRP : 000 PROGRAM PASCASARJANA BIDANG KEAHLIAN TEKNIK MANAJEMEN

Lebih terperinci

Analisis Pola Sirkulasi Arus di Perairan Pantai Sungai Duri Kabupaten Bengkayang Kalimantan Barat Suandi a, Muh. Ishak Jumarang a *, Apriansyah b

Analisis Pola Sirkulasi Arus di Perairan Pantai Sungai Duri Kabupaten Bengkayang Kalimantan Barat Suandi a, Muh. Ishak Jumarang a *, Apriansyah b Analisis Pola Sirkulasi Arus di Perairan Pantai Sungai Duri Kabupaten Bengkayang Kalimantan Barat Suandi a, Muh. Ishak Jumarang a *, Apriansyah b a Jurusan Fisika, Fakultas MIPA Universitas Tanjungpura

Lebih terperinci

Gambar 3 Sebaran curah hujan rata-rata tahunan Provinsi Jawa Barat.

Gambar 3 Sebaran curah hujan rata-rata tahunan Provinsi Jawa Barat. 11 yang akan datang, yang cenderung mengalami perubahan dilakukan dengan memanfaatkan keluaran model iklim. Hasil antara kondisi iklim saat ini dan yang akan datang dilakukan analisis dan kemudian dilakukan

Lebih terperinci

DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG

DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG Fathu Rofi 1 dan Dr.Ir. Syawaluddin Hutahaean, MT. 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan,

Lebih terperinci

PERENCANAAN BANGUNAN PEMECAH GELOMBANG (PENGAMAN PANTAI LABUHAN) DI KABUPATEN SUMBAWA

PERENCANAAN BANGUNAN PEMECAH GELOMBANG (PENGAMAN PANTAI LABUHAN) DI KABUPATEN SUMBAWA Perencanaan Bangunan Pemecah Gelombang Erni Yulianti PERENCANAAN BANGUNAN PEMECAH GELOMBANG (PENGAMAN PANTAI LABUHAN) DI KABUPATEN SUMBAWA Erni Yulianti Dosen Program Studi Teknik Sipil Sumberdaya Air

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Bahan organik merupakan komponen tanah yang terbentuk dari jasad hidup (flora dan fauna) di tanah, perakaran tanaman hidup maupun mati yang sebagian terdekomposisi

Lebih terperinci

REFRAKSI GELOMBANG DI PERAIRAN PANTAI MARUNDA, JAKARTA (Puteri Kesuma Dewi. Agus Anugroho D.S. Warsito Atmodjo)

REFRAKSI GELOMBANG DI PERAIRAN PANTAI MARUNDA, JAKARTA (Puteri Kesuma Dewi. Agus Anugroho D.S. Warsito Atmodjo) JURNAL OSEANOGRAFI. Volume 4, Nomor 1, Tahun 2015, Halaman 215-222 Online di : http://ejournal-s1.undip.ac.id/index.php/jose REFRAKSI GELOMBANG DI PERAIRAN PANTAI MARUNDA, JAKARTA (Puteri Kesuma Dewi.

Lebih terperinci

V. INTERPRETASI DAN ANALISIS

V. INTERPRETASI DAN ANALISIS V. INTERPRETASI DAN ANALISIS 5.1.Penentuan Jenis Sesar Dengan Metode Gradien Interpretasi struktur geologi bawah permukaan berdasarkan anomali gayaberat akan memberikan hasil yang beragam. Oleh karena

Lebih terperinci

PETA MIKROZONASI PENGARUH TSUNAMI KOTA PADANG

PETA MIKROZONASI PENGARUH TSUNAMI KOTA PADANG PETA MIKROZONASI PENGARUH TSUNAMI KOTA PADANG Nama : I Made Mahajana D. NRP : 00 21 128 Pembimbing : Ir. Theodore F. Najoan, M. Eng. FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG ABSTRAK Pesisir pantai

Lebih terperinci

BAB IV INTERPRETASI KUANTITATIF ANOMALI SP MODEL LEMPENGAN. Bagian terpenting dalam eksplorasi yaitu pengidentifikasian atau

BAB IV INTERPRETASI KUANTITATIF ANOMALI SP MODEL LEMPENGAN. Bagian terpenting dalam eksplorasi yaitu pengidentifikasian atau BAB IV INTERPRETASI KUANTITATIF ANOMALI SP MODEL LEMPENGAN Bagian terpenting dalam eksplorasi yaitu pengidentifikasian atau pengasumsian bentuk dan kedalaman benda yang tertimbun. Berbagai macam metode

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Purwadany Samuel Pouw, 2013

BAB I PENDAHULUAN Latar Belakang Purwadany Samuel Pouw, 2013 BAB I PENDAHULUAN A. Latar Belakang Indonesia merupakan salah satu negara kepulauan yang terbesar di dunia, dengan sekitar 13.487 pulau, yang terbentang sepanjang 5.210 Km dari Timur ke Barat sepanjang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Penelitian Kecamatan Muara Gembong merupakan daerah pesisir di Kabupaten Bekasi yang berada pada zona 48 M (5 0 59 12,8 LS ; 107 0 02 43,36 BT), dikelilingi oleh perairan

Lebih terperinci

BAB I PENDAHULUAN. Secara geografis wilayah Indonesia terletak di daerah tropis yang terbentang

BAB I PENDAHULUAN. Secara geografis wilayah Indonesia terletak di daerah tropis yang terbentang BAB I PENDAHULUAN 1.1 Latar Belakang Secara geografis wilayah Indonesia terletak di daerah tropis yang terbentang antara 95 o BT 141 o BT dan 6 o LU 11 o LS (Bakosurtanal, 2007) dengan luas wilayah yang

Lebih terperinci

KERANGKA RAPERMEN TENTANG TATA CARA PENGHITUNGAN BATAS SEMPADAN PANTAI

KERANGKA RAPERMEN TENTANG TATA CARA PENGHITUNGAN BATAS SEMPADAN PANTAI KERANGKA RAPERMEN TENTANG TATA CARA PENGHITUNGAN BATAS SEMPADAN PANTAI BAB I BAB II BAB III BAB IV BAB V : KETENTUAN UMUM : PENGHITUNGAN BATAS SEMPADAN PANTAI Bagian Kesatu Indeks Ancaman dan Indeks Kerentanan

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN CIREBON REKAP PESERTA UJIAN NASIONAL SMP TAHUN AJARAN 2012/2013 ** DAFTAR KELAS DAN SAMPUL UJIAN NASIONAL **

DINAS PENDIDIKAN KABUPATEN CIREBON REKAP PESERTA UJIAN NASIONAL SMP TAHUN AJARAN 2012/2013 ** DAFTAR KELAS DAN SAMPUL UJIAN NASIONAL ** SR 01 1 '02-16-001 ' SMP NEGERI 1 BABAKAN 340 17 17 0 0 0 0 2 '02-16-002 ' SMP NEGERI 2 BABAKAN 165 9 7 1 10 1 15 3 '02-16-003 ' SMP NEGERI 1 GEBANG 328 17 16 0 0 1 8 4 '02-16-004 ' SMP NEGERI 2 GEBANG

Lebih terperinci

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya.

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. I. PENDAHULUAN A. Latar Belakang Turbin angin pada awalnya dibuat untuk mengakomodasi kebutuhan para petani dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. Turbin angin

Lebih terperinci

Sebaran Arus Permukaan Laut Pada Periode Terjadinya Fenomena Penjalaran Gelombang Kelvin Di Perairan Bengkulu

Sebaran Arus Permukaan Laut Pada Periode Terjadinya Fenomena Penjalaran Gelombang Kelvin Di Perairan Bengkulu Jurnal Gradien Vol. 11 No. 2 Juli 2015: 1128-1132 Sebaran Arus Permukaan Laut Pada Periode Terjadinya Fenomena Penjalaran Gelombang Kelvin Di Perairan Bengkulu Widya Novia Lestari, Lizalidiawati, Suwarsono,

Lebih terperinci

Studi Variabilitas Tinggi dan Periode Gelombang Laut Signifikan di Selat Karimata Mulyadi 1), Muh. Ishak Jumarang 1)*, Apriansyah 2)

Studi Variabilitas Tinggi dan Periode Gelombang Laut Signifikan di Selat Karimata Mulyadi 1), Muh. Ishak Jumarang 1)*, Apriansyah 2) Studi Variabilitas Tinggi dan Periode Gelombang Laut Signifikan di Selat Karimata Mulyadi 1), Muh. Ishak Jumarang 1)*, priansyah 2) 1) Program Studi Fisika Jurusan Fisika niversitas Tanjungpura 2) Program

Lebih terperinci

PEMETAAN ARUS DAN PASUT LAUT DENGAN METODE PEMODELAN HIDRODINAMIKA DAN PEMANFAATANNYA DALAM ANALISIS PERUBAHAN GARIS PANTAI TUGAS AKHIR

PEMETAAN ARUS DAN PASUT LAUT DENGAN METODE PEMODELAN HIDRODINAMIKA DAN PEMANFAATANNYA DALAM ANALISIS PERUBAHAN GARIS PANTAI TUGAS AKHIR PEMETAAN ARUS DAN PASUT LAUT DENGAN METODE PEMODELAN HIDRODINAMIKA DAN PEMANFAATANNYA DALAM ANALISIS PERUBAHAN GARIS PANTAI (STUDI KASUS : PESISIR MUARA GEMBONG, KABUPATEN BEKASI, JAWA BARAT) TUGAS AKHIR

Lebih terperinci

KAJIAN GELOMBANG RENCANA DI PERAIRAN PANTAI AMPENAN UNTUK PERENCANAAN BANGUNAN PANTAI ABSTRAK

KAJIAN GELOMBANG RENCANA DI PERAIRAN PANTAI AMPENAN UNTUK PERENCANAAN BANGUNAN PANTAI ABSTRAK KAJIAN GELOMBANG RENCANA DI PERAIRAN PANTAI AMPENAN UNTUK PERENCANAAN BANGUNAN PANTAI Sugiri Handoko 1, Purwanto 2, Jazaul Ikhsan 3 1 Mahasiswa (NIM. 20120110093), 2 Dosen Pembimbing I, 3 Dosen Pembimbing

Lebih terperinci

DAFTAR ISI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN BAB 1. PENDAHULUAN

DAFTAR ISI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN BAB 1. PENDAHULUAN DAFTAR ISI KATA PENGANTAR... ii DAFTAR ISI... vi DAFTAR GAMBAR... ix DAFTAR TABEL... xi DAFTAR LAMPIRAN... xii BAB 1. PENDAHULUAN... 1 1.1. Latar Belakang... 1 1.2. Perumusan Masalah... 5 1.3. Tujuan Penelitian...

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Validasi Data Pasang surut merupakan salah satu parameter yang dapat digunakan untuk melakukan validasi model. Validasi data pada model ini ditunjukkan dengan grafik serta

Lebih terperinci

MODEL LOGISTIK UNTUK SATU SPESIES

MODEL LOGISTIK UNTUK SATU SPESIES Bab 3 MODEL LOGISTIK UNTUK SATU SPESIES Dalam pembahasan bab ini penulis akan mencoba menjelaskan mengenai model untuk satu pohon. Pada bab sebelumnya telah dijelaskan bahwa untuk pengamatan data secara

Lebih terperinci

BAB V HASIL DAN ANALISIS

BAB V HASIL DAN ANALISIS BAB V HASIL DAN ANALISIS Dalam bab ini akan dibahas berbagai macam hasil dan analisis dari simulasi yang telah dilakukan. Simulasi dibagi dalam beberapa bagian yaitu : A. Studi numerik : 1. Simulasi dengan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Suhu Udara Hasil pengukuran suhu udara di dalam rumah tanaman pada beberapa titik dapat dilihat pada Gambar 6. Grafik suhu udara di dalam rumah tanaman menyerupai bentuk parabola

Lebih terperinci

KESIMPULAN DAN SARAN

KESIMPULAN DAN SARAN BAB V KESIMPULAN DAN SARAN V.1 Kesimpulan Dari pemodelan yang telah dilakukan, ada beberapa kesimpulan yang dapat diambil. 1. Pemodelan rambatan gelombang dilakukan dengan menggunakan 2 persamaan pengatur

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN Melalui penerapan metode bedahingga dengan interpolasi Lagrange sebagai syarat batas terkait, maka solusi numerik dari dinamika dan interaksi soliton DNA model PBD dapat dicari

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Gelombang air laut merupakan salah satu fenomena alam yang terjadi akibat adanya perbedaan tekanan. Panjang gelombang air laut dapat mencapai ratusan meter

Lebih terperinci

BAB I PENDAHULUAN. Itik merupakan salah satu jenis unggas yang dianggap sebagai hewan asli

BAB I PENDAHULUAN. Itik merupakan salah satu jenis unggas yang dianggap sebagai hewan asli BAB I PENDAHULUAN A. Latar Belakang Itik merupakan salah satu jenis unggas yang dianggap sebagai hewan asli ternak Indonesia yang sangat potensial menjadi sumber tumpuan hidup dan itik juga banyak diternakkan

Lebih terperinci

BAB III PENJELASAN SIMULATOR. Bab ini akan menjelaskan tentang cara pemakaian simulator robot pencari kebocoran gas yang dibuat oleh Wulung.

BAB III PENJELASAN SIMULATOR. Bab ini akan menjelaskan tentang cara pemakaian simulator robot pencari kebocoran gas yang dibuat oleh Wulung. 18 BAB III PENJELASAN SIMULATOR Bab ini akan menjelaskan tentang cara pemakaian simulator robot pencari kebocoran gas yang dibuat oleh Wulung. 3.1 Antar Muka Gambar 0.1 GUI Simulator Error! Reference source

Lebih terperinci

Kecepatan angin meningkat pada rasio H/W kecil dan sebaliknya Jarak >, rasio H/W < Kecepatan angin tinggi pada rongga yang dipengaruhi elevasi

Kecepatan angin meningkat pada rasio H/W kecil dan sebaliknya Jarak >, rasio H/W < Kecepatan angin tinggi pada rongga yang dipengaruhi elevasi Kecepatan angin meningkat pada rasio H/W kecil dan sebaliknya Jarak >, rasio H/W < Kecepatan angin tinggi pada rongga yang dipengaruhi elevasi Kecepatan angin tidak menunjukkan pengaruh yang signifikan

Lebih terperinci

PENGARUH BESAR GELOMBANG TERHADAP KERUSAKAN GARIS PANTAI

PENGARUH BESAR GELOMBANG TERHADAP KERUSAKAN GARIS PANTAI PENGARUH BESAR GELOMBANG TERHADAP KERUSAKAN GARIS PANTAI Hansje J. Tawas, Pingkan A.K. Pratasis Jurusan Teknik Sipil Fakultas Teknik Universitas Sam Ratulangi ABSTRAK Pantai selalu menyesuaikan bentuk

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN. A. Data Penelitian

BAB V HASIL DAN PEMBAHASAN. A. Data Penelitian BAB V HASIL DAN PEMBAHASAN A. Data Penelitian Pada penelitian ini dimodelkan dengan menggunakan Software iric: Nays2DH 1.0 yang dibuat oleh Dr. Yasuyuki Shimizu dan Hiroshi Takebayashi di Hokkaido University,

Lebih terperinci

II. TINJAUAN PUSTAKA WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk

II. TINJAUAN PUSTAKA WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk II. TINJAUAN PUSTAKA 2.1. WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk mempresentasikan data kecepatan angin dalam bentuk mawar angin sebagai

Lebih terperinci

BAB IV GAMBARAN UMUM PENELITIAN. batas-batas wilayah sebagai berikut : - Sebelah Utara dengan Sumatera Barat. - Sebelah Barat dengan Samudera Hindia

BAB IV GAMBARAN UMUM PENELITIAN. batas-batas wilayah sebagai berikut : - Sebelah Utara dengan Sumatera Barat. - Sebelah Barat dengan Samudera Hindia BAB IV GAMBARAN UMUM PENELITIAN A. Gambaran Umum Objek Penelitian 1. Kondisi Geografis Daerah Kota Bengkulu merupakan ibukota dari Provinsi Bengkulu dengan batas-batas wilayah sebagai berikut : - Sebelah

Lebih terperinci

ANALISIS TRANSFORMASI DAN SPEKTRUM GELOMBANG DI PERAIRAN BALONGAN, INDRAMAYU, JAWA BARAT

ANALISIS TRANSFORMASI DAN SPEKTRUM GELOMBANG DI PERAIRAN BALONGAN, INDRAMAYU, JAWA BARAT ANALISIS TRANSFORMASI DAN SPEKTRUM GELOMBANG DI PERAIRAN BALONGAN, INDRAMAYU, JAWA BARAT Denny Nugroho Sugianto, Aris Ismanto, Astuti Ferawati *) Program Studi Oseanografi, Jurusan Ilmu Kelautan, Fakultas

Lebih terperinci

Gambar 3. Peta Resiko Banjir Rob Karena Pasang Surut

Gambar 3. Peta Resiko Banjir Rob Karena Pasang Surut BAB IV HASIL DAN PEMBAHASAN 4.1 Kajian Peta Daerah Berpotensi Banjir Rob Karena Pasang Surut Analisis daerah yang berpotensi terendam banjir rob karena pasang surut dilakukan dengan pemetaan daerah berpotensi

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 8 eigenvalue masing-masing mode terhadap nilai total eigenvalue (dalam persen). PC 1 biasanya menjelaskan 60% dari keragaman data, dan semakin menurun untuk PC selanjutnya (Johnson 2002, Wilks 2006, Dool

Lebih terperinci

DAFTAR ISI BAB I PENDAHULUAN Latar Belakang Permasalahan Penelitian Tujuan Penelitian Manfaat Penelitian...

DAFTAR ISI BAB I PENDAHULUAN Latar Belakang Permasalahan Penelitian Tujuan Penelitian Manfaat Penelitian... DAFTAR ISI Halaman Judul.. Halaman Pengesahan Halaman Pernyataan. i ii iii Kata Pengantar... iv Daftar Isi.. vi Daftar Tabel... Daftar Gambar.. Daftar Lampiran Intisari Abstract.. ix x xiii xiv xv BAB

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 : Definisi visual dari penampang pantai (Sumber : SPM volume 1, 1984) I-1

BAB I PENDAHULUAN. Gambar 1.1 : Definisi visual dari penampang pantai (Sumber : SPM volume 1, 1984) I-1 BAB I PENDAHULUAN Pantai merupakan suatu sistem yang sangat dinamis dimana morfologi pantai berubah-ubah dalam skala ruang dan waktu baik secara lateral maupun vertikal yang dapat dilihat dari proses akresi

Lebih terperinci

Perbandingan Peramalan Gelombang dengan Metode Groen Dorrestein dan Shore Protection Manual di Merak-Banten yang di Validasi dengan Data Altimetri

Perbandingan Peramalan Gelombang dengan Metode Groen Dorrestein dan Shore Protection Manual di Merak-Banten yang di Validasi dengan Data Altimetri Reka Racana Teknik Sipil Itenas No. x Vol. xx Jurnal Online Institut Teknologi Nasional Juni 2015 Perbandingan Peramalan Gelombang dengan Metode Groen Dorrestein dan Shore Protection Manual di Merak-Banten

Lebih terperinci

Rancangan Peta Rute Evakuasi Bancana Tsunami Pantai Puger Jember

Rancangan Peta Rute Evakuasi Bancana Tsunami Pantai Puger Jember JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-5 1 Rancangan Peta Rute Evakuasi Bancana Tsunami Pantai Puger Jember Mughni Cokrobasworo, Kriyo Sambodho dan Haryo Dwito Armono Jurusan Teknik Kelautan, Fakultas

Lebih terperinci

BAB IV IMPLEMENTASI SKEMA RUNGE-KUTTA. Pada bab ini akan dibahas implementasi skema skema yang telah

BAB IV IMPLEMENTASI SKEMA RUNGE-KUTTA. Pada bab ini akan dibahas implementasi skema skema yang telah BAB IV IMPLEMENTASI SKEMA RUNGE-KUTTA Pada bab ini akan dibahas implementasi skema skema yang telah dijelaskan pada Bab II dan Bab III pada suatu model pergerakan harga saham pada Bab II. Pada akhir bab

Lebih terperinci

Analisa Perubahan Kualitas Air Akibat Pembuangan Lumpur Sidoarjo Pada Muara Kali Porong

Analisa Perubahan Kualitas Air Akibat Pembuangan Lumpur Sidoarjo Pada Muara Kali Porong JURNAL TEKNIK POMITS Vol. 2, No. 1, (2014) ISSN: 2337-3539 (2301-9271 Print) 1 Analisa Perubahan Kualitas Air Akibat Pembuangan Lumpur Sidoarjo Pada Muara Kali Porong Gita Angraeni (1), Suntoyo (2), dan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 12 4. HASIL DAN PEMBAHASAN 4.1. Kondisi Umum Berdasarkan buku Perum Perhutani Unit III Jawa Barat & Banten (9), wilayah mangrove desa Jayamukti Kecamatan Blanakan secara administrasi kehutanan termasuk

Lebih terperinci

METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian

METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian 3. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan di pesisir utara Kabupaten Brebes, yaitu di kawasan pertambakan Desa Grinting, Kecamatan Bulakamba. Secara geografis letak

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN ./ 3.3.2 Penentuan nilai gradien T BB Gradien T BB adalah perbedaan antara nilai T BB suatu jam tertentu dengan nilai

Lebih terperinci

KONDISI UMUM LOKASI. Gambaran Umum Kabupaten Cirebon

KONDISI UMUM LOKASI. Gambaran Umum Kabupaten Cirebon KONDISI UMUM LOKASI Gambaran Umum Kabupaten Cirebon Letak Administrasi Kabupaten Cirebon Kabupaten Cirebon merupakan salah satu wilayah yang terletak di bagian timur Propinsi Jawa Barat. Selain itu, Kabupaten

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dinamika bentuk dan struktur bumi dijabarkan dalam berbagai teori oleh para ilmuwan, salah satu teori yang berkembang yaitu teori tektonik lempeng. Teori ini

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia sebagai negara kepulauan mempunyai lebih dari 3.700 pulau dan wilayah pantai sepanjang 80.000 km. Wilayah pantai ini merupakan daerah yang cukup banyak

Lebih terperinci

ANALISA PENGINDERAAN JARAK JAUH UNTUK MENGINDENTIFIKASI PERUBAHAN GARIS PANTAI DI PANTAI TIMUR SURABAYA. Di susun Oleh : Oktovianus Y.S.

ANALISA PENGINDERAAN JARAK JAUH UNTUK MENGINDENTIFIKASI PERUBAHAN GARIS PANTAI DI PANTAI TIMUR SURABAYA. Di susun Oleh : Oktovianus Y.S. ANALISA PENGINDERAAN JARAK JAUH UNTUK MENGINDENTIFIKASI PERUBAHAN GARIS PANTAI DI PANTAI TIMUR SURABAYA Di susun Oleh : Oktovianus Y.S.Gainau 4108205002 PROGRAM MAGISTER BIDANG KEAHLIAN TEKNIK DAN MANAJEMEN

Lebih terperinci

Hasil dan Analisis. IV.1.2 Pengamatan Data IR1 a) Identifikasi Pola Konveksi Diurnal dari Penampang Melintang Indeks Konvektif

Hasil dan Analisis. IV.1.2 Pengamatan Data IR1 a) Identifikasi Pola Konveksi Diurnal dari Penampang Melintang Indeks Konvektif Bab IV Hasil dan Analisis IV.1 Pola Konveksi Diurnal IV.1.1 Pengamatan Data OLR Pengolahan data OLR untuk periode September 2005 Agustus 2006 menggambarkan perbedaan distribusi tutupan awan. Pada bulan

Lebih terperinci

BAB IV ANALISIS KORELASI INFORMASI GEOLOGI DENGAN VARIOGRAM

BAB IV ANALISIS KORELASI INFORMASI GEOLOGI DENGAN VARIOGRAM BAB IV ANALISIS KORELASI INFORMASI GEOLOGI DENGAN VARIOGRAM Tujuan utama analisis variogram yang merupakan salah satu metode geostatistik dalam penentuan hubungan spasial terutama pada pemodelan karakterisasi

Lebih terperinci

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa JURNAL TEKNIK ITS Vol. 6 No. 2, (2017) ISSN: 2337-3539 (2301-9271 Print) G-172 Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa Muhammad Ghilman Minarrohman, dan Danar Guruh

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN digilib.uns.ac.id 40 BAB IV HASIL DAN PEMBAHASAN Dalam bab IV ini dibahas tentang rangkaian proses pengolahan data EKG. Bagian pertama dibahas proses pengambilan data EKG dan hasil ekstraksi fitur EKG

Lebih terperinci

PENYUSUNAN RANCANGAN KALENDER TANAM BAWANG MERAH DAN CABE

PENYUSUNAN RANCANGAN KALENDER TANAM BAWANG MERAH DAN CABE PENYUSUNAN RANCANGAN KALENDER TANAM BAWANG MERAH DAN CABE Perubahan iklim global yang berimbas terhadap pola hujan dan menjadi kendala bagi Program Peningkatan Produksi Sayuran terutama cabai dan bawang

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 Kondisi Lingkungan Mengetahui kondisi lingkungan tempat percobaan sangat penting diketahui karena diharapkan faktor-faktor luar yang berpengaruh terhadap percobaan dapat diketahui.

Lebih terperinci