4. HASIL DAN PEMBAHASAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "4. HASIL DAN PEMBAHASAN"

Transkripsi

1 25 4. HASIL DAN PEMBAHASAN 4.1. Integrasi Threshold Integrasi file-file data memperlihatkan jumlah kohort atau kelompok yang beragam (Tabel 5), dalam satu file data ada yang memiliki hingga 3 sampai 4 kohort. Tabel 5. Hasil integrasi pada 60 file data dengan threshold berjenjang File Kohort Threshold File Kohort Threshold /-73.5/-67.5/ / / / /-61.5/ / /-61.5/ / /-61, / / / / / / /-64.5/ / / / / / / / / /-61/ / / / / / / / / / / / /-64.5/-60/ / / / / / / Hal ini menunjukkan bahwa dalam satu wilayah perairan memiliki karakteristik akustik yang berbeda. Sehingga dalam menentukkan range threshold untuk melihat sebaran Sa di suatu perairan perlu dilakukan pengintegrasian threshold 25

2 26 terlebih dahulu. Kohort-kohort yang dominan (sering muncul padaa file-file data yang lain) ini yang nantinya akan digunakan untuk melihat sebaran Sadi Laut Flores. Frekuensi kemunculan kohort yang dominan dapat dilihat pada Gambar 10. Frekuensi Kemunculan Threshold Gambar 10. Grafik frekuensi kemunculan puncak threshold semua file data Berdasarkan grafik di atas dapat dilihat terdapat dua puncak threshold yang paling dominan (frekuensi kemunculan >15 kali). Kedua puncak tersebut yaitu -73,5 db dan -60 db yang memiliki frekuensi kemunculan sebesar 16 kali. Setelah dilakukan penambahan batas atas dan bawah masing-masing 3 db, maka akan diperoleh range threshold masing -76,5 db sampai -70,5 db, dan -63 db sampai -57 db. Range threshold tersebut yang akan digunakan untuk melihat sebaran Sa di perairan Laut Flores. Puncak threshold -70,5 db yang memiliki nilai kemunculan 14 kali akan tercover oleh puncak threshold -73,5 db setelah dilakukan penambahan batas atas dan bawah. Puncak-puncak threshold yang memiliki frekuensi kemunculan kurang dari 15 kali tidak digunakan untuk melihat sebaran Sa di perairan Laut Flores.

3 Sebaran Sa (Backscattering Area) Sebaran Sa di perairan Laut Flores dilihat berdasarkan leg, dimana terdapat 7 leg. Leg 1 sampai leg 4 terletak di perairan NTB dan leg 6 sampai 7 terletak di perairan NTT, sedangkan leg 5 terletak diperbatasan antara perairan NTB dan NTT (Gambar 6) Sebaran Sa pada range threshold -76,5 db sampai -70,5 db Sebaran Sa pada leg 1 dan leg 2 menyebar secara kontinu. Sa banyak tersebar di permukaan perairan dan bagian dasar kolom, namun Sa yang paling banyak tersebar pada dasar kolom perairan. Sebaran Sa pada kedua leg tersebut membentuk suatu pola, pada pertengahan kolom perairan tidak ditemukan adanya Sa (Gambar 11 dan Gambar 12). Sa tidak ditemukan pada kolom perairan, diduga pada kolom tersebut terdapat internal wave atau pelapisan massa air. Sebaran Sa pada leg 2, pertengahan kolom perairan yang tidak ditemukan adanya Sa kurang lebih berada pada kedalaman m. Gambar 11. Sebaran Sa pada Leg 1

4 28 Gambar 12. Sebaran Sa pada Leg 2 Gambar 13. Sebaran Sa pada Leg 3 Sebaran Sa pada leg 3 dan leg 4 tidak terlalu banyak, terutama pada leg 4 hampir tidak ditemukan adanya Sa (Gambar 14). Sebaran Sa pada leg 3 masih terlihat adanya Sa yang bergerombol (Gambar 13). Gambar 14. Sebaran Sa pada Leg 4

5 29 Gambar 15. Sebaran Sa pada Leg 5 Sebaran pada leg 5, Sa menyebar hampir diseluruh perairan. Hanya terdapat sedikit celah-celah kosong perairan yang tidak ditemukan adanya Sa (Gambar 15). Gambar 16. Sebaran Sa pada Leg 6 Sebaran Sa pada leg 6 hanya terlihat gerombolan-gerombolan kecil, yaitu pada bagian dasar kolom. Sa tidak tersebar merata di perairan, pada bagian permukaan terlihat tidak ditemukan adanya Sa (Gambar 16). Sa yang menyebar pada leg 6 adalah Sa yang memiliki nilai besar. Sedangkan pada leg 7 sebaran Sa lebih banyak dari pada leg 6. Pada leg 7 ukuran gerombolan Sa lebih besar dari

6 30 pada leg 6 (Gambar 17). Gambar 17. Sebaran Sa pada Leg 7 Berdasarkan gambar sebaran Sa setiap leg di atas, Sa banyak tersebar pada leg 1, 2, 3, 5 dan 7. Sebaran Sa pada leg 4 dan 6 hanya sedikit yang ditemukan. Hal ini diduga karena pengaruh dari ARLINDO. Laut Flores merupakan salah satu perairan Indonesia yang dilintasi oleh ARLINDO, sehingga sebaran target (ikan, zooplankton, dll) di Laut Flores dipengaruhi oleh massa air yang diangkut dari Samudera Pasifik ke Samudera Hindia. Bersama massa air tersebut juga terangkut massa air bersalinitas maksimum, bahang dan nutrient. Ketiga unsur ini sangat mempengaruhi kelimpahan suatu target, baik ikan, plankton maupun organisme laut lainnya. Pengambilan data akustik yang digunakan dalam penelitian ini dilakukan pada bulan Oktober, pada bulan tersebut merupakan musim peralihan dua (MP- II), yaitu pola angin peralihan dari pola angin musim timur bergerak ke musim barat. Pada MP-II ini diduga salinitas di Laut Flores tinggi (Hadikusumah 2009). Selama musim timur, dibeberapa bagian dari perairan Indonesia seperti Selat Makassar, Laut Banda, dan beberapa perairan lainnya mengalami upwelling dan

7 31 percampuran massa air yang mengakibatkan terjadinya pengkayaan nutrient pada lapisan permukaan tercampur dan mengakibatkan tingginya produktivitas primer perairan bila dibandingkan dengan musim barat (Hadikusumah 2009) Sebaran Sa tiap grid kedalaman kelipatan 10 m Sebaran Sa di perairan Laut Flores dilihat mulai dari grid kedalaman m. Sebaran Sayang dibahas dalam bab ini hanya pada grid kedalaman kelipatan 10 m. Hal ini dianggap sudah mewakili grid kedalaman yang lainnya. Gambar sebaran Sapada grid kedalaman yang lainnya dapat dilihat pada Lampiran 3. Sebaran Sa pada grid kedalaman 10 m Sa bergerombol pada leg 1, leg 2, leg 5 dan sedikit padaa leg 7, sedangkan pada leg yang lainnya tidak ditemukan gerombolan Sa (Gambar 18). Gambar 18. Sebaran Sa pada grid kedalaman 10 m Nilai Sa pada grid kedalaman 10 m sedikit beragam. Sebaran Sa lebih banyak terdapat pada wilayah laut Nusa Tenggara Barat (NTB) dari pada wilayah laut Nusa Tenggara Timur (NTT). Sa juga banyak terdapat pada wilayah laut perbatasan antara NTB dan NTT.

8 32 Gambar 19. Sebaran Sa pada grid kedalaman 20 m Sebaran Sa pada grid kedalaman 20 m semakin berkurang jika dibandingkan dengan sebaran Sa pada grid kedalaman 10 m. Hal ini dapat dilihat dari jumlah nilai Sa pada leg 1 dan leg 2 yang berkurang (Gambar 19). Sebaran Sa pada leg 7 terdapat sedikit penambahan penambahan Sa dari pada grid kedalaman sebelumnya. Sebaran Sa pada grid kedalaman 20 m pada leg 7 sedikit lebih banyak dari pada grid kedalaman 10 m. Sebaran Sa pada leg 5 terlihat tidak berubah. Gambar 20. Sebaran Sa pada grid kedalaman 30 m Sebaran Sa pada grid kedalaman 30 m terlihat semakin sedikit jika dibandingkan dengan grid kedalaman sebelumnya, hal ini dapat dilihat dari

9 33 banyaknya sebaran Sa yang semakin berkurang (Gambar 20). Menurunnya sebaran Sa pada grid kedalaman ini terjadi pada semua leg (leg 1, leg 2, leg 5 dan leg 7), namun sebaran Sa paling banyak berada pada leg 5. Gambar 21. Sebaran Sa pada grid kedalaman 40 m Sebaran Sa pada grid kedalaman 40 m jauh lebih sedikit dari pada sebaran Sapada grid kedalaman sebelumnya. Bahkan Bahkan pada leg 1 dan 2 hampir tidak ditemukan adanya sebaran Sa. Gerombolan Sa terlihat pada leg 5 dan sedikit pada leg 7 (Gambar 21). Gambar 22. Sebaran Sa pada grid kedalaman 50 m Sebaran Sa pada grid kedalaman 50 m sama dengan sebaran Sa pada grid kedalaman 40 m. Tidak ditemukan adanya Sa pada leg 2 dan sedikit pada

10 34 leg 1. Gerombolan Sa terlihat pada leg 5 dan leg 7 (Gambar 22). Gambar 23. Sebaran Sa pada grid kedalaman 60 m Sebaran Sa pada grid kedalaman 60 m, gerombolan Sa banyak ditemukan pada leg 5. Sebaran Sa pada leg 1 dan leg 3 hanya terlihat sedikit sekali target, sedangkan pada leg-leg yang lain tidak ditemukan adanya Sa (Gambar 23). Gambar 24. Sebaran Sa pada grid kedalaman 70 m Sebaran Sa pada grid kedalaman 70 m, gerombolan Sa juga banyak ditemukan pada leg 5 (Gambar 24). Pada leg 1, leg 2 dan leg 3 hanya terlihat sedikit sekali target, tetapi jika dibandingkan dengan sebaran Sa pada grid kedalaman 60 m jumlah Sa pada leg 1 dan leg 3 lebih banyak. Tidak ditemukan adanya Sa pada leg-leg yang lain.

11 35 Gambar 25. Sebaran Sa pada grid kedalaman 80 m Sebaran Sa pada grid kedalaman 80 m, Sa ditemukan pada pada sepanjang leg 5 dan leg 2 (Gambar 25). Sebaran Sa pada leg 1, leg 3 dan leg 7 hanya terlihat sedikit target. jumlah Sa pada leg 3 lebih banyak dari pada leg 1 dan leg 7. Gambar 26. Sebaran Sa pada grid kedalaman 90 m Sebaran Sa pada grid kedalaman 90 m sama dengan sebaran Sa pada grid kedalaman 80 m. Gerombolan Sa juga banyak ditemukan pada leg 5 dan leg 2 (Gambar 26). Sebaran Sa pada leg 1, leg 3 dan leg 7 terlihat lebih banyak jika dibandingkan dengan sebaran Sa pada grid kedalaman 80 m.

12 36 Gambar 27. Sebaran Sapada grid kedalaman 100 m Sebaran Sa pada grid kedalaman 100 m sama seperti sebaran Sa pada grid kedalaman 90 meter, yang berbeda adalah besarnya nilai Sa (Gambar 27). Nilai Sa pada grid kedalaman 100 m lebih kecil dari pada nilai Sa pada grid kedalaman 90 m. Gambar 28. Sebaran Sa pada grid kedalaman 110 m Gambar 29. Sebaran Sa pada grid kedalaman 120 m

13 37 Gambar 30. Sebaran Sa pada grid kedalaman 130 m Sebaran Sa pada pada grid kedalaman 110, 120 dan 130 m terlihat lebih padat jika dibandingkan dengan grid kedalaman yang lainnya. Sebaran Sa terdapat pada leg 1, leg 2, leg 3, leg 5 dan leg 7 (Gambar 28, Gambar 29 dan Gambar 30). Sebaran Sa pada leg 3 hanya sedikit dan sebaran sebaran Sa pada leg 7 lebih banyak jika dibandingkan dengan sebaran pada grid kedalaman sebelunya. Gambar 31. Sebaran Sapada grid kedalaman 140 m Pada grid kedalaman 140 m sebaran Sa hanya ditemukan pada 3 leg, yaitu leg 1, leg 5 dan leg 7. Namun hanya sedikit sekali ditemukan Sa pada leg leg tersebut (Gambar 31).

14 38 Gambar 32. Sebaran Sa pada grid kedalaman 150 m Pada grid kedalaman 150 m tidak ditemukan Sa (Gambar 32). Berdasarkan gambar-gambar diatas, sebaran Sa banyak menyebar dari kedalaman 6 30 m dan m. Sebaran Sa berkurang pada grid kedalaman m dan 140 m dan pada grid kedalaman 150 m tidak ditemukan Sa sama sekali Sebaran Sa pada Range Threshold -63 db sampai -57 Nilai Sa pada range threshold -63 db sampai -57 db tidak sebanyak pada range threshold -76,5 db sampai -70,5 db. Sa pada range threshold ini saat dikonversi dari satuan mil ke satuan meter hasilnya semua nol. Sehingga tidak dilakukan pengeplotan data Kelompok Sa Kelompok Sa di perairan Laut Flores terlihat pada range threshold -63 db sampai -57 db. Pada range threshold -76,5 db samapi -70,5 db sebaran data bersifat kontinu (Gambar 9 Gambar 15), sehingga tidak ditemukan adanya kelompok Sa. Kelompok Sa di perairan Laut Flores ditemukan pada semua leg kecuali leg 7. Pada leg 7 Sa yang terekam bersifat kontinu dan tidak membentuk kelompok.

15 39 Kelompok Sa banyak ditemukan pada leg 1, leg 3, leg 4 dan leg 6, berturut-turut 9, 11, 7, dan 5 kelompok target. Pada leg 2 dan leg 5, hanya ditemukan 1 kelompok target, pada leg tersebut data banyak bersifat kontinu dari pada membentuk kelompok. Pada umumnya panjang horizontal kelompok Sa lebih panjang dari pada panjang vertikalnya. Panjang horizontal kelompok Saberkisar antara m, dan panjang vertikal Saberkisar antara 3 40 m. Tabel 6. Panjang horizontal dan vertikal kelompok Sa setiap leg Leg Kelompok Horizontal Panjang Esdu Persentase Vertikal (m) (m) ( ) (m) Setiap leg memiliki panjang ESDU berbeda-beda. ESDU terpanjang ditemukan pada leg 2, yaitu sebesar 94 m. sedangkan panjang ESDU terkecil

16 40 ditemukan pada leg 5, yaitu sebesar 59 m. Jika panjang horizontal Sa dibandingkan dengan panjang ESDU maka diperoleh kisaran persentase antara Kisaran persentase diartikan bahwa panjang horizontal Sa yang ditemukan pada setiap leg memiliki panjang kali lebih besar dari panjang ESDU. Persentase terendah berada pada leg 3, sedangkan persentase tertinggi berada pada leg 5. Secara horizontal kelompok Sa terpanjang ditemukan pada leg 5 dan terpendek ditemukan pada leg 4 kelompok ke-4. Secara vertikal kelompok Saterpanjang ditemukan pada leg 4 kelompok ke-1 dan terpendek pada leg 3 kelompok ke-7 (Tabel 6). Mengutip dari pernyataan Steel (1976) in Lytle dan Maxwell (1983) bahwa densitas zooplankton umumnya terdistribusi tidak homogen atau dikatakan sebagai bagian-bagian yang terpisah, maka Sa yang terdeteksi di perairan Laut Flores diduga sebagai nilai Sa dari zooplankton (krill). Kelompok Sa yang ditemukan di perairan Laut Flores ini dianggap sebagai bagian-bagian dari distribusi zooplankton yang terpisah. Selain itu jika dilihat dari sebaran nilai Sv (Backscettering volume strength) yang diperoleh yaitu berkisar antara -81 db sampai -63 db, namun Sv yang paling banyak berkisar antara -81 db sampai -71 db (Gambar 33). Mengutip dari hasil penelitian Duror (2004) menyebutkan bahwa kisaran nilai backscattering volume zooplankton (krill) pada kedalaman m untuk frekuensi 120 khz berkisar antara -92,75 db sampai -73,49 db, sementara untuk frekuensi 38 khz antara -86,75 db sampai dengan -62,64 db. Penelitian ini menggunakan frekuensi 120 khz. Kisaran Sv yang diperoleh pada penelitian ini

17 41 masuk dalam kisaran Sv krill pada penelitian Duron (2004), sehingga dapat disimpulkan Sayang terdeteksi pada range threshold -63 db sampai -57 db adalah krill Sv (db) Frekuensi Kejadian Gambar 33. Grafik sebaran Sv keseluruhan di perairan Laut Flores (leg 1 leg 7) depth m.

PENENTUAN SEBARAN Sa (Backscattering Area) DI LAUT FLORES BERDASARKAN METODE PROGRESSIVE THRESHOLD

PENENTUAN SEBARAN Sa (Backscattering Area) DI LAUT FLORES BERDASARKAN METODE PROGRESSIVE THRESHOLD PENENTUAN SEBARAN Sa (Backscattering Area) DI LAUT FLORES BERDASARKAN METODE PROGRESSIVE THRESHOLD SITI KOMARIYAH SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 17 3. METODOLOGI PENELITIAN 3.1. Waktu dan Lokasi Penelitian Penelitian ini dilakukan pada bulan Februari sampai Juni 211, sedangkan survei data dilakukan oleh pihak Balai Riset Perikanan Laut (BRPL) Departemen

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 21 4. HASIL DAN PEMBAHASAN 4.1. Batimetri Daerah Penelitian Penelitian hidroakustik meliputi daerah tubir bagian luar (perairan Teluk Tomini), daerah tubir bagian dalam (perairan pulau Una-una) dan daerah

Lebih terperinci

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian 3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini merupakan bagian dari Ekspedisi Selat Makassar 2003 yang diperuntukkan bagi Program Census of Marine Life (CoML) yang dilaksanakan oleh

Lebih terperinci

2. KONDISI OSEANOGRAFI LAUT CINA SELATAN PERAIRAN INDONESIA

2. KONDISI OSEANOGRAFI LAUT CINA SELATAN PERAIRAN INDONESIA 2. KONDISI OSEANOGRAFI LAUT CINA SELATAN PERAIRAN INDONESIA Pendahuluan LCSI terbentang dari ekuator hingga ujung Peninsula di Indo-Cina. Berdasarkan batimetri, kedalaman maksimum perairannya 200 m dan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Verifikasi Model Visualisasi Klimatologi Suhu Permukaan Laut (SPL) model SODA versi 2.1.6 diambil dari lapisan permukaan (Z=1) dengan kedalaman 0,5 meter (Lampiran 1). Begitu

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 23 4 HASIL DAN PEMBAHASAN 4.1. Pola Sebaran Suhu Permukaan Laut (SPL) Hasil olahan citra Modis Level 1 yang merupakan data harian dengan tingkat resolusi spasial yang lebih baik yaitu 1 km dapat menggambarkan

Lebih terperinci

Gambar 1. Diagram TS

Gambar 1. Diagram TS BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Karakteristik Massa Air 4.1.1 Diagram TS Massa Air di Selat Lombok diketahui berasal dari Samudra Pasifik. Hal ini dibuktikan dengan diagram TS di 5 titik stasiun

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Pelapisan Massa Air di Perairan Raja Ampat Pelapisan massa air dapat dilihat melalui sebaran vertikal dari suhu, salinitas dan densitas di laut. Gambar 4 merupakan sebaran menegak

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Arus Lintas Indonesia atau ITF (Indonesian Throughflow) yaitu suatu sistem arus di perairan Indonesia yang menghubungkan Samudra Pasifik dengan Samudra Hindia yang

Lebih terperinci

1. PENDAHULUAN. 1.1 Latar Belakang

1. PENDAHULUAN. 1.1 Latar Belakang 1 1. PENDAHULUAN 1.1 Latar Belakang Perairan Indonesia merupakan area yang mendapatkan pengaruh Angin Muson dari tenggara pada saat musim dingin di wilayah Australia, dan dari barat laut pada saat musim

Lebih terperinci

2. TINJAUAN PUSTAKA. hidroakustik merupakan data hasil estimasi echo counting dan echo integration

2. TINJAUAN PUSTAKA. hidroakustik merupakan data hasil estimasi echo counting dan echo integration 3 2. TINJAUAN PUSTAKA 2.1. Metode Hidroakustik 2.1.1. Prinsip Kerja Metode Hidroakustik Hidroakustik merupakan ilmu yang mempelajari gelombang suara dan perambatannya dalam suatu medium, dalam hal ini

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang PENDAHULUAN Latar Belakang Perubahan iklim global sekitar 3 4 juta tahun yang lalu telah mempengaruhi evolusi hominidis melalui pengeringan di Afrika dan mungkin pertanda zaman es pleistosin kira-kira

Lebih terperinci

4. HUBUNGAN ANTARA DISTRIBUSI KEPADATAN IKAN DAN PARAMETER OSEANOGRAFI

4. HUBUNGAN ANTARA DISTRIBUSI KEPADATAN IKAN DAN PARAMETER OSEANOGRAFI 4. HUBUNGAN ANTARA DISTRIBUSI KEPADATAN IKAN DAN PARAMETER OSEANOGRAFI Pendahuluan Ikan dipengaruhi oleh suhu, salinitas, kecepatan arus, oksigen terlarut dan masih banyak faktor lainnya (Brond 1979).

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Sebaran Angin Di perairan barat Sumatera, khususnya pada daerah sekitar 2, o LS hampir sepanjang tahun kecepatan angin bulanan rata-rata terlihat lemah dan berada pada kisaran,76 4,1

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Variabilitas Kesuburan Perairan dan Oseanografi Fisika 4.1.1. Sebaran Ruang (Spasial) Suhu Permukaan Laut (SPL) Sebaran Suhu Permukaan Laut (SPL) di perairan Selat Lombok dipengaruhi

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Total Data Sebaran Klorofil-a citra SeaWiFS Total data sebaran klorofil-a pada lokasi pertama, kedua, dan ketiga hasil perekaman citra SeaWiFS selama 46 minggu. Jumlah data

Lebih terperinci

KONDISI OSEANOGRAFIS SELAT MAKASAR By: muhammad yusuf awaluddin

KONDISI OSEANOGRAFIS SELAT MAKASAR By: muhammad yusuf awaluddin KONDISI OSEANOGRAFIS SELAT MAKASAR By: muhammad yusuf awaluddin Umum Perairan Indonesia memiliki keadaan alam yang unik, yaitu topografinya yang beragam. Karena merupakan penghubung dua system samudera

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Distribusi SPL Dari pengamatan pola sebaran suhu permukaan laut di sepanjang perairan Selat Sunda yang di analisis dari data penginderaan jauh satelit modis terlihat ada pembagian

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Sedimen Dasar Perairan Berdasarkan pengamatan langsung terhadap sampling sedimen dasar perairan di tiap-tiap stasiun pengamatan tipe substrat dikelompokkan menjadi 2, yaitu:

Lebih terperinci

PENGUKURAN KARAKTERISTIK AKUSTIK SUMBER DAYA PERIKANAN DI LAGUNA GUGUSAN PULAU PARI KEPULAUAN SERIBU

PENGUKURAN KARAKTERISTIK AKUSTIK SUMBER DAYA PERIKANAN DI LAGUNA GUGUSAN PULAU PARI KEPULAUAN SERIBU PENGUKURAN KARAKTERISTIK AKUSTIK SUMBER DAYA PERIKANAN DI LAGUNA GUGUSAN PULAU PARI KEPULAUAN SERIBU Oleh: Arief Wijaksana C64102055 PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori 4. HASIL DAN PEMBAHASAN 4.1 Profil Peta Batimetri Laut Arafura Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori perairan dangkal dimana kedalaman mencapai 100 meter. Berdasarkan data

Lebih terperinci

FENOMENA UPWELLING DAN KAITANNYA TERHADAP JUMLAH TANGKAPAN IKAN LAYANG DELES (Decapterus Macrosoma) DI PERAIRAN TRENGGALEK

FENOMENA UPWELLING DAN KAITANNYA TERHADAP JUMLAH TANGKAPAN IKAN LAYANG DELES (Decapterus Macrosoma) DI PERAIRAN TRENGGALEK FENOMENA UPWELLING DAN KAITANNYA TERHADAP JUMLAH TANGKAPAN IKAN LAYANG DELES (Decapterus Macrosoma) DI PERAIRAN TRENGGALEK Indri Ika Widyastuti 1, Supriyatno Widagdo 2, Viv Djanat Prasita 2 1 Mahasiswa

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, diperoleh data yang diuraikan pada Tabel 4. Lokasi penelitian berada

Lebih terperinci

terdistribusi pada seluruh strata kedalaman, bahkan umumnya terdapat dalam frekuensi yang ringgi. Secara horisontal, nilai target strength pada

terdistribusi pada seluruh strata kedalaman, bahkan umumnya terdapat dalam frekuensi yang ringgi. Secara horisontal, nilai target strength pada Dian Herdiana (C06499072). Pendugaan Pola Distribnsi Spasio-Temporal Target Strettgth Ikan Pelagis dengan Split Beam Acor~stic System di Perairan Teluk Tomini pada Bulan Juli-Amstus 2003. Di bawah bimbin~an

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Distribusi SPL secara Spasial dan Temporal Pola distribusi SPL sangat erat kaitannya dengan pola angin yang bertiup pada suatu daerah. Wilayah Indonesia sendiri dipengaruhi

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Hasil Pengambilan Contoh Dasar Gambar 16 merupakan hasil dari plot bottom sampling dari beberapa titik yang dilakukan secara acak untuk mengetahui dimana posisi target yang

Lebih terperinci

3 METODE PENELITIAN. Gambar 8 Peta lokasi penelitian.

3 METODE PENELITIAN. Gambar 8 Peta lokasi penelitian. 30 3 METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian ini menggunakan data hasil survei akustik yang dilaksanakan oleh Balai Riset Perikanan Laut (BRPL), Dirjen Perikanan Tangkap, KKP RI pada bulan Juni

Lebih terperinci

POLA DISTRIBUSI SUHU DAN SALINITAS DI PERAIRAN TELUK AMBON DALAM

POLA DISTRIBUSI SUHU DAN SALINITAS DI PERAIRAN TELUK AMBON DALAM POLA DISTRIBSI SH DAN SALINITAS DI PERAIRAN TELK AMBON DALAM PENDAHLAN Suhu suatu badan air dipengaruhi oleh musim, lintang, ketinggian dari permukaan laut, waktu dalam hari, sirkulasi udara, penutupan

Lebih terperinci

PERTEMUAN KE-5 M.K. DAERAH PENANGKAPAN IKAN SIRKULASI MASSA AIR (Bagian 2) ASEP HAMZAH

PERTEMUAN KE-5 M.K. DAERAH PENANGKAPAN IKAN SIRKULASI MASSA AIR (Bagian 2) ASEP HAMZAH PERTEMUAN KE-5 M.K. DAERAH PENANGKAPAN IKAN SIRKULASI MASSA AIR (Bagian 2) ASEP HAMZAH What is a thermocline? A thermocline is the transition layer between warmer mixed water at the ocean's surface and

Lebih terperinci

4. HASIL DAN PEMBAHASAN. 4.1 Pola Sebaran Suhu Permukaan Laut dan Salinitas pada Indomix Cruise

4. HASIL DAN PEMBAHASAN. 4.1 Pola Sebaran Suhu Permukaan Laut dan Salinitas pada Indomix Cruise 4. HASIL DAN PEMBAHASAN 4.1 Pola Sebaran Suhu Permukaan Laut dan Salinitas pada Indomix Cruise Peta sebaran SPL dan salinitas berdasarkan cruise track Indomix selengkapnya disajikan pada Gambar 6. 3A 2A

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Distribusi Spasial Arus Eddy di Perairan Selatan Jawa-Bali Berdasarkan hasil visualisasi data arus geostropik (Lampiran 3) dan tinggi paras laut (Lampiran 4) dalam skala

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang PENDAHULUAN Latar Belakang Konsentrasi klorofil-a suatu perairan sangat tergantung pada ketersediaan nutrien dan intensitas cahaya matahari. Bila nutrien dan intensitas cahaya matahari cukup tersedia,

Lebih terperinci

STUDI VARIASI TEMPERATUR DAN SALINITAS DI PERAIRAN DIGUL IRIAN JAYA, OKTOBER 2002

STUDI VARIASI TEMPERATUR DAN SALINITAS DI PERAIRAN DIGUL IRIAN JAYA, OKTOBER 2002 1 STUDI VARIASI TEMPERATUR DAN SALINITAS DI PERAIRAN DIGUL IRIAN JAYA, KTBER 2002 Ankiq Taofiqurohman S Jurusan Perikanan Fakultas Pertanian Universitas Padjadjaran Jatinangor, Bandung 40600 ABSTRACT Ankiq

Lebih terperinci

Gambar 8. Lokasi penelitian

Gambar 8. Lokasi penelitian 3. METODOLOGI PENELITIAN 3.1 Waktu dan lokasi penelitian Penelitian ini dilaksanakan pada tanggal 30 Januari-3 Februari 2011 yang di perairan Pulau Gosong, Pulau Semak Daun dan Pulau Panggang, Kabupaten

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN 4.1 Pengaruh Gangguan Pada Audio Generator Terhadap Amplitudo Gelombang Audio Yang Dipancarkan Pengukuran amplitudo gelombang audio yang dipancarkan pada berbagai tingkat audio generator

Lebih terperinci

3 METODOLOGI PENELITIAN

3 METODOLOGI PENELITIAN 3 METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Waktu penelitian dimulai pada tanggal 20 Januari 2011 dan menggunakan data hasil survei Balai Riset Perikanan Laut (BRPL). Survei ini dilakukan mulai

Lebih terperinci

DISTRIBUSI SPASIAL KEPADATAN IKAN PELAGIS DI PERAIRAN ENGGANO

DISTRIBUSI SPASIAL KEPADATAN IKAN PELAGIS DI PERAIRAN ENGGANO DISTRIBUSI SPASIAL KEPADATAN IKAN PELAGIS DI PERAIRAN ENGGANO Oleh: Deddy Bakhtiar deddy_b2@yahoo.co.id Prodi Ilmu Kelautan Fakultas Pertanian Universitas Bengkulu Jl. Raya Kandang Limun Bengkulu 38371A.

Lebih terperinci

V. GAMBARAN UMUM PERAIRAN SELAT BALI

V. GAMBARAN UMUM PERAIRAN SELAT BALI V. GAMBARAN UMUM PERAIRAN SELAT BALI Perairan Selat Bali merupakan perairan yang menghubungkan Laut Flores dan Selat Madura di Utara dan Samudera Hindia di Selatan. Mulut selat sebelah Utara sangat sempit

Lebih terperinci

Variabilitas Suhu dan Salinitas Perairan Selatan Jawa Timur Riska Candra Arisandi a, M. Ishak Jumarang a*, Apriansyah b

Variabilitas Suhu dan Salinitas Perairan Selatan Jawa Timur Riska Candra Arisandi a, M. Ishak Jumarang a*, Apriansyah b Variabilitas Suhu dan Salinitas Perairan Selatan Jawa Timur Riska Candra Arisandi a, M. Ishak Jumarang a*, Apriansyah b a Program Studi Fisika, Fakultas MIPA, Universitas Tanjungpura, b Program Studi Ilmu

Lebih terperinci

PERTEMUAN KE-6 M.K. DAERAH PENANGKAPAN IKAN HUBUNGAN SUHU DAN SALINITAS PERAIRAN TERHADAP DPI ASEP HAMZAH

PERTEMUAN KE-6 M.K. DAERAH PENANGKAPAN IKAN HUBUNGAN SUHU DAN SALINITAS PERAIRAN TERHADAP DPI ASEP HAMZAH PERTEMUAN KE-6 M.K. DAERAH PENANGKAPAN IKAN HUBUNGAN SUHU DAN SALINITAS PERAIRAN TERHADAP DPI ASEP HAMZAH Hidup ikan Dipengaruhi lingkungan suhu, salinitas, oksigen terlarut, klorofil, zat hara (nutrien)

Lebih terperinci

III METODE PENELITIAN

III METODE PENELITIAN III METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian ini dilakukan di Waduk Ir. H. Djuanda dan Laboratorium Akustik Fakultas Perikanan dan Ilmu Kelautan IPB Bogor. Kegiatan penelitian ini terbagi

Lebih terperinci

HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011

HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 Jurnal Teknologi Perikanan dan Kelautan. Vol. 4. No. 1 Mei 2013: 31-39 ISSNN 2087-4871 HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 (THE RELATION

Lebih terperinci

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan 4. HASIL PEMBAHASAN 4.1 Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, ditemukan 3 jenis spesies lamun yakni Enhalus acoroides, Cymodocea

Lebih terperinci

HASIL DAN PEMBAHASAN Pola Arus Tiap Lapisan Kedalaman di Selat Makassar Fluktuasi Arus dalam Ranah Waktu di Lokasi Mooring Stasiun 1

HASIL DAN PEMBAHASAN Pola Arus Tiap Lapisan Kedalaman di Selat Makassar Fluktuasi Arus dalam Ranah Waktu di Lokasi Mooring Stasiun 1 HASIL DAN PEMBAHASAN Pola Arus Tiap Lapisan Kedalaman di Selat Makassar Fluktuasi Arus dalam Ranah Waktu di Lokasi Mooring Stasiun 1 Pada bulan Desember 1996 Februari 1997 yang merupakan puncak musim barat

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Batimetri Selat Sunda Peta batimetri adalah peta yang menggambarkan bentuk konfigurasi dasar laut dinyatakan dengan angka-angka suatu kedalaman dan garis-garis yang mewakili

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1 Arus Eddy Penelitian mengenai arus eddy pertama kali dilakukan pada sekitar tahun 1930 oleh Iselin dengan mengidentifikasi eddy Gulf Stream dari data hidrografi, serta penelitian

Lebih terperinci

hujan, penguapan, kelembaban udara, suhu udara, kecepatan angin dan intensitas

hujan, penguapan, kelembaban udara, suhu udara, kecepatan angin dan intensitas 2.3 suhu 2.3.1 Pengertian Suhu Suhu merupakan faktor yang sangat penting bagi kehidupan organisme di lautan. Suhu mempengaruhi aktivitas metabolisme maupun perkembangbiakan dari organisme-organisme tersebut.

Lebih terperinci

DISTRIBUSI, DENSITAS IKAN DAN KONDISI FISIK OSEANOGRAFI DI SELAT MALAKA

DISTRIBUSI, DENSITAS IKAN DAN KONDISI FISIK OSEANOGRAFI DI SELAT MALAKA 2003 Julius A.N. Masrikat Posted 11 December 2003 Makalah Pribadi Pengantar Ke Falsafah Sains (PPS702) Program Pasca Sarjana / S3 Institut Pertanian Bogor Desember 2003 Dosen: Prof. Dr. Ir. Rudy C. Tarumingkeng

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN 30 IV HASIL DAN PEMBAHASAN 4.1. Peta co-tidal Perairan Indonesia Arah rambatan konstanta Pasut ditentukan dengan menganalisis kontur waktu air tinggi (satuan jam) suatu perairan. Jika kontur waktu air

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 4.1 Karakteristik Massa Air 4.1.1 Sebaran Suhu BAB IV HASIL DAN PEMBAHASAN Pada bagian ini akan menjelaskan sebaran suhu menjadi dua bagian penting yakni sebaran secara horisontal dan vertikal. Sebaran

Lebih terperinci

PENENTUAN PERBEDAAN ANTARA IKAN DENGAN MEGAPLANKTON MELALUI ANALISIS BEDA MEAN VOLUME BACKSCATTERING STRENGTH ( MVBS) Oleh: Fahad C

PENENTUAN PERBEDAAN ANTARA IKAN DENGAN MEGAPLANKTON MELALUI ANALISIS BEDA MEAN VOLUME BACKSCATTERING STRENGTH ( MVBS) Oleh: Fahad C PENENTUAN PERBEDAAN ANTARA IKAN DENGAN MEGAPLANKTON MELALUI ANALISIS BEDA MEAN VOLUME BACKSCATTERING STRENGTH ( MVBS) Oleh: Fahad C64101049 PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN

Lebih terperinci

Horizontal. Kedalaman. Laut. Lintang. Permukaan. Suhu. Temperatur. Vertikal

Horizontal. Kedalaman. Laut. Lintang. Permukaan. Suhu. Temperatur. Vertikal Temperatur Air Laut Dalam oseanografi dikenal dua istilah untuk menentukan temperatur air laut yaitu temperatur insitu (selanjutnya disebut sebagai temperatur saja) dan temperatur potensial. Temperatur

Lebih terperinci

KARAKTERISTIK MASSA AIR ARLINDO DI PINTASAN TIMOR PADA MUSIM BARAT DAN MUSIM TIMUR

KARAKTERISTIK MASSA AIR ARLINDO DI PINTASAN TIMOR PADA MUSIM BARAT DAN MUSIM TIMUR KARAKTERISTIK MASSA AIR ARLINDO DI PINTASAN TIMOR PADA MUSIM BARAT DAN MUSIM TIMUR Oleh : Agus Dwi Jayanti Diah Cahyaningrum C64104051 PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Parameter Gauss Untuk dapat melakukan pengolahan data menggunakan ANN, maka terlebih dahulu harus diketahui nilai set data input-output yang akan digunakan. Set data inputnya yaitu

Lebih terperinci

ANALISIS CURAH HUJAN DASARIAN III MEI 2017 DI PROVINSI NTB

ANALISIS CURAH HUJAN DASARIAN III MEI 2017 DI PROVINSI NTB BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KELAS I LOMBOK BARAT NTB Jl. TGH. Ibrahim Khalidy Telp.(0370)674134, Fax.(0370)674135, Kediri-Lobar, NTB 83362 Website : http://iklim.ntb.bmkg.go.id

Lebih terperinci

HUBUNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERUHAN PADA PERAIRAN TELUK AMBON DALAM

HUBUNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERUHAN PADA PERAIRAN TELUK AMBON DALAM HBNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERHAN PADA PERAIRAN TELK AMBON DALAM PENDAHLAN Perkembangan pembangunan yang semakin pesat mengakibatkan kondisi Teluk Ambon, khususnya Teluk Ambon Dalam (TAD)

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Hidroakustik 4.1.1. Profil Batimetri Laut Selatan Jawa Pada Gambar 10. terlihat profil batimetri Laut Selatan Jawa yang diperoleh dari hasil pemetaan batimetri, dimana dari

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 27 4 HASIL DAN PEMBAHASAN 4.1 Profil Menegak Temperatur, Salinitas, dan Densitas Selat Ombai merupakan perairan laut dalam, sehingga perbedaan temperatur, salinitas, dan densitas sampai dasar perairan

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 4 HASIL DAN PEMBAHASAN 4.1 Identifikasi Lifeform Karang Secara Visual Karang memiliki variasi bentuk pertumbuhan koloni yang berkaitan dengan kondisi lingkungan perairan. Berdasarkan hasil identifikasi

Lebih terperinci

PENDUGAAN KELIMPAHAN DAN SEBARAN IKAN DEMERSAL DENGAN MENGGUNAKAN METODE AKUSTIK DI PERAIRAN BELITUNG

PENDUGAAN KELIMPAHAN DAN SEBARAN IKAN DEMERSAL DENGAN MENGGUNAKAN METODE AKUSTIK DI PERAIRAN BELITUNG Pendugaan Kelimpahan dan Sebaran Ikan... Metode Akustik di Perairan Belitung (Fahmi, Z.) PENDUGAAN KELIMPAHAN DAN SEBARAN IKAN DEMERSAL DENGAN MENGGUNAKAN METODE AKUSTIK DI PERAIRAN BELITUNG ABSTRAK Zulkarnaen

Lebih terperinci

PERBEDAAN KETEBALAN INTEGRASI DASAR PERAIRAN DENGAN INSTRUMEN HIDROAKUSTIK SIMRAD EY-60 DI PERAIRAN KEPULAUAN PARI

PERBEDAAN KETEBALAN INTEGRASI DASAR PERAIRAN DENGAN INSTRUMEN HIDROAKUSTIK SIMRAD EY-60 DI PERAIRAN KEPULAUAN PARI PERBEDAAN KETEBALAN INTEGRASI DASAR PERAIRAN DENGAN INSTRUMEN HIDROAKUSTIK SIMRAD EY-60 DI PERAIRAN KEPULAUAN PARI SANTI OKTAVIA SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Peta lokasi penelitian disajikan pada Lampiran A. Hasil pengolahan data arus polar current rose disajikan pada Lampiran B. Hasil pengolahan data komponen arus setelah

Lebih terperinci

Oleh : HARDHANI EKO SAPUTRO C SKRIPSI

Oleh : HARDHANI EKO SAPUTRO C SKRIPSI PENGUKURAN NILAI DAN SEBARAN TARGET STRENGTH IKAN PELAGIS DAN DEMERSAL DENGAN MENGGUNAKAN SISTEM AKUSTIK BIM TERBAGI (SPLIT BEAM ACOUSTIC SYSTEM) DI LAUT A MFUM PADA BULAN OKTOBER-NOPEMBER 2003 Oleh :

Lebih terperinci

Gambar 1. Pola sirkulasi arus global. (www.namce8081.wordpress.com)

Gambar 1. Pola sirkulasi arus global. (www.namce8081.wordpress.com) Arus Geostropik Peristiwa air yang mulai bergerak akibat gradien tekanan, maka pada saat itu pula gaya coriolis mulai bekerja. Pada saat pembelokan mencapai 90 derajat, maka arah gerak partikel akan sejajar

Lebih terperinci

Praktikum M.K. Oseanografi Hari / Tanggal : Dosen : 1. Nilai SUHU DAN SALINITAS. Oleh. Nama : NIM :

Praktikum M.K. Oseanografi Hari / Tanggal : Dosen : 1. Nilai SUHU DAN SALINITAS. Oleh. Nama : NIM : Praktikum M.K. Oseanografi Hari / Tanggal : Dosen : 1. 2. 3. Nilai SUHU DAN SALINITAS Nama : NIM : Oleh JURUSAN PERIKANAN FAKULTAS PERTANIAN UNIVERSITAS SULTAN AGENG TIRTAYASA 2015 MODUL 3. SUHU DAN SALINITAS

Lebih terperinci

JOURNAL OF OCEANOGRAPHY. Volume 1, Nomor 1, Tahun 2012, Halaman Online di :

JOURNAL OF OCEANOGRAPHY. Volume 1, Nomor 1, Tahun 2012, Halaman Online di : JOURNAL OF OCEANOGRAPHY. Volume 1, Nomor 1, Tahun 2012, Halaman 33-39 Online di : http://ejournal-s1.undip.ac.id/index.php/joce *) Penulis Penanggung Jawab STUDI STRUKTUR LAPISAN TERMOKLIN DI PERAIRAN

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang s

BAB I PENDAHULUAN 1.1 Latar Belakang s BAB I PENDAHULUAN 1.1 Latar Belakang Pulau Morotai yang terletak di ujung utara Provinsi Maluku Utara secara geografis berbatasan langsung dengan Samudera Pasifik di sebelah utara, sebelah selatan berbatasan

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 1.1. Kondisi Umum Perairan Selatan Jawa Perairan Selatan Jawa merupakan perairan Indonesia yang terletak di selatan Pulau Jawa yang berhubungan secara langsung dengan Samudera Hindia.

Lebih terperinci

KERAGAMAN SUHU DAN KECEPATAN ARUS DI SELAT MAKASSAR PERIODE JULI 2005 JUNI 2006 (Mooring INSTANT)

KERAGAMAN SUHU DAN KECEPATAN ARUS DI SELAT MAKASSAR PERIODE JULI 2005 JUNI 2006 (Mooring INSTANT) KERAGAMAN SUHU DAN KECEPATAN ARUS DI SELAT MAKASSAR PERIODE JULI 2005 JUNI 2006 (Mooring INSTANT) Oleh: Ince Mochammad Arief Akbar C64102063 PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN

Lebih terperinci

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 6. DINAMIKA HIDROSFERLATIHAN SOAL 6.4

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 6. DINAMIKA HIDROSFERLATIHAN SOAL 6.4 SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 6. DINAMIKA HIDROSFERLATIHAN SOAL 6.4 1. Berdasarkan letaknya laut-laut yang berada di Indonesia merupakan contoh laut jenis... transgresi pedalaman pertengahan regresi

Lebih terperinci

Gambar 15 Mawar angin (a) dan histogram distribusi frekuensi (b) kecepatan angin dari angin bulanan rata-rata tahun

Gambar 15 Mawar angin (a) dan histogram distribusi frekuensi (b) kecepatan angin dari angin bulanan rata-rata tahun IV HASIL DAN PEMBAHASAN 4.1 Karakter Angin Angin merupakan salah satu faktor penting dalam membangkitkan gelombang di laut lepas. Mawar angin dari data angin bulanan rata-rata selama tahun 2000-2007 diperlihatkan

Lebih terperinci

Analisis Kondisi Atmosfer Pada Saat Kejadian Banjir Bandang Tanggal 2 Mei 2015 Di Wilayah Kediri Nusa Tenggara Barat

Analisis Kondisi Atmosfer Pada Saat Kejadian Banjir Bandang Tanggal 2 Mei 2015 Di Wilayah Kediri Nusa Tenggara Barat Analisis Kondisi Atmosfer Pada Saat Kejadian Banjir Bandang Tanggal 2 Mei 2015 Di Wilayah Kediri Nusa Tenggara Barat Oleh: Drs. Achmad Sasmito dan Rahayu Sapta Sri S, S.Kel Perekayasa dan Peneliti di Pusat

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.. Parameter Curah Hujan model REMO Data curah hujan dalam keluaran model REMO terdiri dari 2 jenis, yaitu curah hujan stratiform dengan kode C42 dan curah hujan konvektif dengan

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 99 4 HASIL DAN PEMBAHASAN 4.1 Validasi Data Asimilasi GFDL 4.1.1 TRITON Stasiun pengamatan data TRITON yang digunakan untuk melakukan validasi data asimilasi GFDL sebanyak 13 stasiun dengan 12 TRITON berada

Lebih terperinci

VARIABILITAS SUHU DAN SALINITAS DI PERAIRAN BARAT SUMATERA DAN HUBUNGANNYA DENGAN ANGIN MUSON DAN IODM (INDIAN OCEAN DIPOLE MODE)

VARIABILITAS SUHU DAN SALINITAS DI PERAIRAN BARAT SUMATERA DAN HUBUNGANNYA DENGAN ANGIN MUSON DAN IODM (INDIAN OCEAN DIPOLE MODE) VARIABILITAS SUHU DAN SALINITAS DI PERAIRAN BARAT SUMATERA DAN HUBUNGANNYA DENGAN ANGIN MUSON DAN IODM (INDIAN OCEAN DIPOLE MODE) Oleh : HOLILUDIN C64104069 SKRIPSI PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN

Lebih terperinci

PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER. Septian Nanda dan Aprillina Idha Geomatics Engineering

PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER. Septian Nanda dan Aprillina Idha Geomatics Engineering PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER Septian Nanda - 3311401055 dan Aprillina Idha - 3311401056 Geomatics Engineering Marine Acoustic, Batam State Politechnic Email : prillyaprillina@gmail.com ABSTRAK

Lebih terperinci

METODE PENELITIAN Bujur Timur ( BT) Gambar 5. Posisi lokasi pengamatan

METODE PENELITIAN Bujur Timur ( BT) Gambar 5. Posisi lokasi pengamatan METODE PENELITIAN Lokasi Penelitan Penelitian ini dilakukan pada perairan barat Sumatera dan selatan Jawa - Sumbawa yang merupakan bagian dari perairan timur laut Samudera Hindia. Batas perairan yang diamati

Lebih terperinci

4. HASIL DAN PEMBAHASAN Pola Sebaran Nutrien dan Oksigen Terlarut (DO) di Teluk Jakarta

4. HASIL DAN PEMBAHASAN Pola Sebaran Nutrien dan Oksigen Terlarut (DO) di Teluk Jakarta 4. HASIL DAN PEMBAHASAN 4.1. Pola Sebaran Nutrien dan Oksigen Terlarut (DO) di Teluk Jakarta Hasil pengamatan lapangan nitrat, amonium, fosfat, dan DO bulan Maret 2010 masing-masing disajikan pada Gambar

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1 Arlindo (Arus Lintas Indonesia) Arlindo adalah suatu sistem di perairan Indonesia di mana terjadi lintasan arus yang membawa membawa massa air hangat dari Samudra Pasifik menuju

Lebih terperinci

Pemantauan Kondisi Ekosistem Pesisir dan Biota Laut di Pulau Ambon dalam kaitannya dengan Isu Perubahan Iklim

Pemantauan Kondisi Ekosistem Pesisir dan Biota Laut di Pulau Ambon dalam kaitannya dengan Isu Perubahan Iklim Pemantauan Kondisi Ekosistem Pesisir dan Biota Laut di Pulau Ambon dalam kaitannya dengan Isu Perubahan Iklim Hanung Agus Mulyadi Pusat Penelitian Laut Dalam-Lembaga Ilmu Pengetahuan Indonesia Jl. Y Syaranamual,

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 4 HASIL DAN PEMBAHASAN 4.1 Iluminasi cahaya Cahaya pada pengoperasian bagan berfungsi sebagai pengumpul ikan. Cahaya yang diperlukan memiliki beberapa karakteristik, yaitu iluminasi yang tinggi, arah pancaran

Lebih terperinci

5. ESTIMASI STOK SUMBERDAYA IKAN BERDASARKAN METODE HIDROAKUSTIK

5. ESTIMASI STOK SUMBERDAYA IKAN BERDASARKAN METODE HIDROAKUSTIK 5. ESTIMASI STOK SUMBERDAYA IKAN BERDASARKAN METODE HIDROAKUSTIK Pendahuluan Sumberdaya perikanan LCS merupakan kontribusi utama yang sangat penting di tingkat lokal, regional dan internasional untuk makanan

Lebih terperinci

SIKLON TROPIS YVETTE DAN DAMPAKNYA TERHADAP KONDISI CUACA DI INDONESIA (19 23 Desember 2016) Disusun oleh : Kiki, M. Res Rudy Hendriadi

SIKLON TROPIS YVETTE DAN DAMPAKNYA TERHADAP KONDISI CUACA DI INDONESIA (19 23 Desember 2016) Disusun oleh : Kiki, M. Res Rudy Hendriadi SIKLON TROPIS YVETTE DAN DAMPAKNYA TERHADAP KONDISI CUACA DI INDONESIA (19 23 ) Disusun oleh : Kiki, M. Res Rudy Hendriadi PUSAT METEOROLOGI PUBLIK BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA Januari 2017

Lebih terperinci

3. DISTRIBUSI IKAN DI LAUT CINA SELATAN

3. DISTRIBUSI IKAN DI LAUT CINA SELATAN 3. DISTRIBUSI IKAN DI LAUT CINA SELATAN Pendahuluan Keberadaan sumberdaya ikan, baik ikan pelagis maupun demersal dapat diduga dengan menggunakan metode hidroakustik (Mitson 1983). Beberapa keuntungan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Perbandingan Hasil Model dengan DISHIDROS Komponen gelombang pasang surut M2 dan K1 yang dipilih untuk dianalisis lebih lanjut, disebabkan kedua komponen ini yang paling dominan

Lebih terperinci

5 PEMBAHASAN 5.1 Sebaran SPL Secara Temporal dan Spasial

5 PEMBAHASAN 5.1 Sebaran SPL Secara Temporal dan Spasial 5 PEMBAHASAN 5.1 Sebaran SPL Secara Temporal dan Spasial Hasil pengamatan terhadap citra SPL diperoleh bahwa secara umum SPL yang terendah terjadi pada bulan September 2007 dan tertinggi pada bulan Mei

Lebih terperinci

Tahun Pasifik Barat Hindia Selatan Teluk Benggala Total

Tahun Pasifik Barat Hindia Selatan Teluk Benggala Total 8 Frekuensi siklon 160 140 120 100 80 60 40 20 0 2006 2007 2008 2009 2010 2011 Tahun Pasifik Barat Hindia Selatan Teluk Benggala Total Gambar 6 Frekuensi siklon tropis di perairan sekitar Indonesia (Pasifik

Lebih terperinci

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan.

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan. METODE PENELITIAN Waktu dan Lokasi Penelitian Pengambilan data lapang dilakukan pada tanggal 16-18 Mei 2008 di perairan gugusan pulau Pari, Kepulauan Seribu, Jakarta (Gambar 11). Lokasi ditentukan berdasarkan

Lebih terperinci

PEMAlUIAN DUAL FREKUENSI DALAM PENDUGAAN DISTRIBUSI IKAN DENGAN MENGGUNAKAN METODE HIDROAKUSTIK (FURUNO FQ 80) DI PERAIRAN LAUT CINA SELATAN.

PEMAlUIAN DUAL FREKUENSI DALAM PENDUGAAN DISTRIBUSI IKAN DENGAN MENGGUNAKAN METODE HIDROAKUSTIK (FURUNO FQ 80) DI PERAIRAN LAUT CINA SELATAN. as-' PEMAlUIAN DUAL FREKUENSI DALAM PENDUGAAN DISTRIBUSI IKAN DENGAN MENGGUNAKAN METODE HIDROAKUSTIK (FURUNO FQ 80) DI PERAIRAN LAUT CINA SELATAN Oleh : Natalia Trita Agnilta C64102012 PROGRAM STUD1 ILMU

Lebih terperinci

6 HUBUNGAN SUHU PERMUKAAN LAUT DAN KLOROFIL DENGAN PRODUKSI IKAN PELAGIS KECIL DI PERAIRAN PANTAI BARAT SULAWESI SELATAN

6 HUBUNGAN SUHU PERMUKAAN LAUT DAN KLOROFIL DENGAN PRODUKSI IKAN PELAGIS KECIL DI PERAIRAN PANTAI BARAT SULAWESI SELATAN 6 HUUNGN SUHU PERMUKN LUT DN KLOROFIL DENGN PRODUKSI IKN PELGIS KEIL DI PERIRN PNTI RT SULWESI SELTN 6.1 Pendahuluan lasan utama sebagian spesies ikan berada di suatu perairan disebabkan 3 hal pokok, yaitu:

Lebih terperinci

Tengah dan Selatan. Rata-rata SPL selama penelitian di Zona Utara yang pengaruh massa air laut Flores kecil diperoleh 30,61 0 C, Zona Tengah yang

Tengah dan Selatan. Rata-rata SPL selama penelitian di Zona Utara yang pengaruh massa air laut Flores kecil diperoleh 30,61 0 C, Zona Tengah yang 8 PEMBAHASAN UMUM Berdasarkan letaknya yang pada bagian selatan berbatasan dengan laut Flores, karakteristik perairan Teluk Bone sangat dipengaruhi oleh laut ini. Arus permukaan di Teluk Bone sangat dipengaruhi

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN.1 Data Siklon Tropis Data kejadian siklon tropis pada penelitian ini termasuk depresi tropis, badai tropis dan siklon tropis. Data yang digunakan dalam penelitian ini yaitu data

Lebih terperinci

Analisis Sebaran Schooling Ikan Demersal Di Perairan Tarakan Kalimantan Utara Menggunakan Metode Hidroakustik. Oleh

Analisis Sebaran Schooling Ikan Demersal Di Perairan Tarakan Kalimantan Utara Menggunakan Metode Hidroakustik. Oleh Analisis Sebaran Schooling Ikan Demersal Di Perairan Tarakan Kalimantan Utara Menggunakan Metode Hidroakustik Oleh Susilawati 1 ) Aras Mulyadi 2 ) Mubarak 2 ) ABSTRAK Penelitian ini bertujuan untuk mengetahui

Lebih terperinci

2. TINJAUAN PUSTAKA. Suhu menyatakan banyaknya bahang (heat) yang terkandung dalam suatu

2. TINJAUAN PUSTAKA. Suhu menyatakan banyaknya bahang (heat) yang terkandung dalam suatu 2. TINJAUAN PUSTAKA 2.1. Suhu Permukaan Laut (SPL) Suhu menyatakan banyaknya bahang (heat) yang terkandung dalam suatu benda. Secara alamiah sumber utama bahang dalam air laut adalah matahari. Daerah yang

Lebih terperinci

TINJAUAN PUSTAKA. Keadaan Umum Perairan Pantai Timur Sumatera Utara. Utara terdiri dari 7 Kabupaten/Kota, yaitu : Kabupaten Langkat, Kota Medan,

TINJAUAN PUSTAKA. Keadaan Umum Perairan Pantai Timur Sumatera Utara. Utara terdiri dari 7 Kabupaten/Kota, yaitu : Kabupaten Langkat, Kota Medan, 6 TINJAUAN PUSTAKA Keadaan Umum Perairan Pantai Timur Sumatera Utara Pantai Timur Sumatera Utara memiliki garis pantai sepanjang 545 km. Potensi lestari beberapa jenis ikan di Perairan Pantai Timur terdiri

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 17 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Kondisi umum perairan selat sunda Selat Sunda merupakan selat yang membujur dari arah Timur Laut menuju Barat Daya di ujung Barat Pulau Jawa atau Ujung Selatan

Lebih terperinci

PRAKIRAAN TINGGI GELOMBANG

PRAKIRAAN TINGGI GELOMBANG Jakarta, 31 Januari 2014 SABTU, 1 FEBRUARI 2014 PRAKIRAAN TINGGI GELOMBANG WARNING : 1. POTENSI HUJAN LEBAT DISERTAI PETIR BERPELUANG TERJADI DI : GELOMBANG DAPAT TERJADI 2,0 M S/D 3,0 M DI : PERAIRAN

Lebih terperinci

Estimasi Arus Laut Permukaan Yang Dibangkitkan Oleh Angin Di Perairan Indonesia Yollanda Pratama Octavia a, Muh. Ishak Jumarang a *, Apriansyah b

Estimasi Arus Laut Permukaan Yang Dibangkitkan Oleh Angin Di Perairan Indonesia Yollanda Pratama Octavia a, Muh. Ishak Jumarang a *, Apriansyah b Estimasi Arus Laut Permukaan Yang Dibangkitkan Oleh Angin Di Perairan Indonesia Yollanda Pratama Octavia a, Muh. Ishak Jumarang a *, Apriansyah b a Jurusan Fisika FMIPA Universitas Tanjungpura, b Jurusan

Lebih terperinci

Keberadaan sumber daya ikan sangat tergantung pada faktor-faktor. yang sangat berfluktuasi dari tahun ke tahun. Kemungkinan ini disebabkan karena

Keberadaan sumber daya ikan sangat tergantung pada faktor-faktor. yang sangat berfluktuasi dari tahun ke tahun. Kemungkinan ini disebabkan karena 1.1. Latar Belakang Keberadaan sumber daya ikan sangat tergantung pada faktor-faktor lingkungan, sehingga kelimpahannya sangat berfluktuasi di suatu perairan. MacLennan dan Simmonds (1992), menyatakan

Lebih terperinci