DATA PREPROCESSING. Budi Susanto (versi 1.2)

Ukuran: px
Mulai penontonan dengan halaman:

Download "DATA PREPROCESSING. Budi Susanto (versi 1.2)"

Transkripsi

1 DATA PREPROCESSING Budi Susanto (versi 1.2) Kenali Data Anda Atribut Data Memahami tipe atribut Membantu membetulkan data saat integrasi data Deskripsi Statistik Data Memudahkan untuk mengisi nilai yang kosong, memperhalus noise data, mengetahui outlier selama pemrosesan data Mengukur Kesamaan dan ketidaksamaan Dapat berguna juga untuk mendeteksi outlier Untuk melakukan klasifikasi Pada umumnya untuk mengukur kedekatan. 1

2 Data Data yang ada pada umumnya: Banyak noise Ukuran yang besar Dapat merupakan campuran dari berbagai macam sumber Memahami data sangat penting untuk tahap preprosesing. Atribut Data Mencerminkan karakteristik objek data. Tipe atribut menentukan himpunan nilai yang diperbolehkan. Nominal Binary (Binomial) Ordinal Numerik n Interval-scale n Ratio-scale Diskret atau Continue 2

3 Deskripsi Statistik Mengukur lokasi pusat/tengah dari distribusi data Mean Median Mode Midrange Data Mining: Concepts and Data Techniques, Preprocessing 3th ed., - Budi p. 47 Susanto - FTI UKDW Deskripsi Statistik Mengukur penyebaran data Rentang dan Kuartil Variasi dan Standard Deviasi Data Mining: Concepts and Data Techniques, Preprocessing 3th ed., - Budi p. 48 Susanto - FTI UKDW 3

4 BoxPlot Interquartil Range (IQR) Q3 Q1 Outlier data 1.5 x IQR Mengukur Kesamaan Dalam aplikasi data mining, seperti clustering, analisis outlier, klasifikasi nearest-neighbor, membutuhkan cara untuk menilai dua objek data serupa atau tidak. Minkwoski distance n Euclidean dan Manhattan Cosine 4

5 Mengukur Kesamaan Mengapa Perlu Data Preprocessing? Data mentah yang ada sebagian besar kotor Tidak komplet n Berisi data yang hilang/kosong n Kekurangan atribut yang sesuai n Hanya berisi data aggregate Banyak noise n Berisi data yang Outlier n Berisi error Tidak konsisten n Berisi nilai yang berbeda dalam suatu kode atau nama 5

6 Mengapa Data Preprocessing Penting? Data yang tidak berkualitas, akan menghasilkan kualitas mining yang tidak baik pula. Data Preprocessing, cleaning, dan transformasi merupakan pekerjaan mayoritas dalam aplikasi data mining (90%). Ukuran Kualitas Data Accuracy Completeness Consistency Timeliness Believability Value added Interpretability Accessibility 6

7 Teknik Data Preprocessing Data Cleaning Data integration Data Reduction Data Transformation Data Cleaning Proses untuk membersihkan data dengan beberapa teknik Memperkecil noise membetulkan data yang tidak konsisten. Mengisi missing value Mengidentifikasi atau membuang outlier 7

8 Data Cleaning: Missing Values Mengabaikan record Biasanya untuk label klasifikasi yang kosong Mengisikan secara manual Menggunakan mean/median dari atribut yang mengandung missing value Mean dapat dipakai jika distribusi data normal Median digunakan jika distribusi data tidak normal (condong) Menggunakan nilai global Menggunakan nilai termungkin Menerapkan regresi Data Cleaning: Missing Values Angkatan IPK Pekerjaan Kelamin Programmer L 2005? Ibu RT P ? P Contoh untuk missing value IPK diisi dengan ratarata IPK atau diisi dengan nilai IPK yang paling mungkin untuk angkatan 2005 dan Perempuan serta menjadi ibu rumah tangga. Contoh untuk missing value Pekerjaan, dapat diisi dengan pekerjaan yang paling banyak muncul. 8

9 Data Cleaning: Noisy Data Noise data adalah suatu kesalahan acak atau variasi dalam variabel terukur. Teknik-teknik Binning n Smoothing by bin means n Smoothing by bin medians n Smoothing by bin boundaries Regression Outlier Analysis Metode Binning Metode ini akan melakukan pengelompokan terhadap kumpulan data. Metode binning merupakan salah satu pendekatan dicretization. Urutan proses: Urutkan data secara ascending Lakukan partisi ke dalam bins n Dapat dengan equal-width (jarak) atau equal-depth (frekuensi) Kemudian dapat di-smoothing: smooth by means, smooth by median, smooth by boundaries, dsb. 9

10 Partisi dalam Metode Binning Partisi Equal-Width Algoritma membagi data ke dalam k interval ukuran yang sama. Lebar interval adalah n w = (max-min)/k Batasan interval adalah n min+w, min+2w,, min+(k-1)w Partisi Equal-depth Membagi data ke dalam k kelompok dimana tiap kelompok berisi jumlah yang sama Contoh Partisi Binning Data: 0, 4, 12, 16, 16, 18, 24, 26, 28 Equal Width BIN1 = 0, 4 [-, 10] BIN2 = 12, 16, 16, 18 [10, 20] BIN3 = 24, 26, 28 [20, +] Equal Depth BIN1 = 0, 4, 12 BIN2 = 16, 16, 18 BIN3 = 24, 26, 28 10

11 Smoothing pada Partisi Binning Smoothing berdasar rata-rata Semua nilai di tiap bin diganti dengan rata-rata nilai tiap bin Smoothing berdasar batasan Setiap nilai bin diganti dengan nilai yang paling dekat dari batasan nilai Batasan nilai terbentuk dari [min, max] tiap bin Data Cleaning: Outliers salary cluster outlier age 11

12 Data Cleaning: Regresi y (salary) Y1 y = x + 1 X1 x (age) Percobaan Data Cleaning Dataset Labor-Negotiations 12

13 Workflow #1 reglin Data Integration Data dapat bersumber dari beberapa sumber Teknik Analisis korelasi Atribut redudan duplikasi 13

14 Covariance Correlation integration Data Transformation Tujuannya: diharapkan lebih efisien dalam proses data mining dan mungkin juga agar pola yang dihasilkan lebih mudah dipahami. Strategi: Smoothing Attribute (feature) construction Aggregation Normalization Discretization 14

15 Data Transformation: Aggregation dan Smoothing coba1 Data Transformation: Normalization Unit ukuran dapat mempengaruhi analisis data. Unit yang lebih kecil akan menghasilkan rentang nilai yang besar Atribut akan memiliki bobot yang lebih besar dari atribut lain Sehingga Data perlu dinormalisasi atau dibakukan. Hasil suatu normalisasi adalah [-1, 1] atau [0.0, 1.0] Diperlukan dalam klasifikasi (termasuk neural network dan nearest network) dan clustering. 15

16 Data Transformation: Metode Normalization Min-max Z-score Decimal scaling normalization 16

17 Data Transformation: Discretization Melakukan pergantian atribut numerik menjadi interval label (misalnya: 0-10,11-20, dst.) atau konseptual label (misalnya: bawah, tengah, atas) discretization discret 17

18 Data Transformation: Data Reduction Teknik Dimensionality reduction n Wavelet transform n Principal Component Analysis n Attribute Subset Selection Numerosity reduction n sampling Data compression TERIMA KASIH! Budi Susanto 18

DATA TRANSFORMATION PADA DATA MINING ABSTRAK

DATA TRANSFORMATION PADA DATA MINING ABSTRAK DT TRNSFORMTION PD DT MINING Hartarto Junaedi*), Herman Budianto**), Indra Maryati**), dan Yuliana Melani**) *) Jurusan Sistem Informasi Bisnis Sekolah Tinggi Teknik Surabaya **) Jurusan Teknik Informatika

Lebih terperinci

BELAJAR SPSS. Langkah pertama yang harus dilakukan adalah dengan cara menginstal terlebih dahulu software SPSS

BELAJAR SPSS. Langkah pertama yang harus dilakukan adalah dengan cara menginstal terlebih dahulu software SPSS BELAJAR SPSS SPSS merupakan software statistik yang paling populer, fasilitasnya sangat lengkap dibandingkan dengan software lainnya, penggunaannya pun cukup mudah. Langkah pertama yang harus dilakukan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pengenalan gender pada skripsi ini, meliputi cropping dan resizing ukuran citra, konversi citra

Lebih terperinci

Penentuan Harga Jual Properti secara Otomatis menggunakan Metode Probabilistic Neural Network

Penentuan Harga Jual Properti secara Otomatis menggunakan Metode Probabilistic Neural Network Penentuan Harga Jual Properti secara Otomatis menggunakan Metode Probabilistic Neural Network Gregorius S. Budhi 1, Justinus Andjarwirawan 2, Alvin Poernomo 3 1,2,3) Fakultas Teknologi Industri, Program

Lebih terperinci

DATA MINING DAN WAREHOUSE A N D R I

DATA MINING DAN WAREHOUSE A N D R I DATA MINING DAN WAREHOUSE A N D R I CLUSTERING Secara umum cluster didefinisikan sebagai sejumlah objek yang mirip yang dikelompokan secara bersama, Namun definisi dari cluster bisa beragam tergantung

Lebih terperinci

SPSS 10: Transformasi Data. Transformasi Data

SPSS 10: Transformasi Data. Transformasi Data SPSS 0: Transformasi Data Transformasi Data Transformasi data adalah suatu proses dalam merubah bentuk data. Misalnya merubah data numerik menjadi data kategorik atau merubah dari beberapa variabel yang

Lebih terperinci

DATA MINING UNTUK MENGANALISA PREDIKSI MAHASISWA BERPOTENSI NON-AKTIF MENGGUNAKAN METODE DECISION TREE C4.5

DATA MINING UNTUK MENGANALISA PREDIKSI MAHASISWA BERPOTENSI NON-AKTIF MENGGUNAKAN METODE DECISION TREE C4.5 DATA MINING UNTUK MENGANALISA PREDIKSI MAHASISWA BERPOTENSI NON-AKTIF MENGGUNAKAN METODE DECISION TREE C4.5 Dwi Untari A11.2010.05410 Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas

Lebih terperinci

Pengembangan Perangkat Lunak Prediktor Nilai Mahasiswa Menggunakan Metode Spectral Clustering dan Bagging Regresi Linier

Pengembangan Perangkat Lunak Prediktor Nilai Mahasiswa Menggunakan Metode Spectral Clustering dan Bagging Regresi Linier JURNAL TEKNIK ITS Vol. 1, (Sept, 01) ISSN: 301-971 A-46 Pengembangan Perangkat Lunak Prediktor Nilai Mahasiswa Menggunakan Metode Spectral Clustering dan Bagging Regresi Linier Ahmad Yusuf, Hari Ginardi

Lebih terperinci

Gejala Pusat - Statistika

Gejala Pusat - Statistika Gejala Pusat - Statistika Desma Eka Rindiani desmarindi@yahoo.co.id http://ladies-kopites.blogspot.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan disebarkan

Lebih terperinci

Data Mining untuk Estimasi Biaya Produksi pada Industri Kecil dengan Sistem Produksi Job order

Data Mining untuk Estimasi Biaya Produksi pada Industri Kecil dengan Sistem Produksi Job order Data Mining untuk Estimasi Biaya Produksi pada Industri Kecil dengan Sistem Produksi Job order Uuf Brajawidagda Jurusan Teknik Informatika Politeknik Negeri Batam Parkway, Batam Centre, Batam 29461, Indonesia

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. A. Hasil Uji Asumsi. Sebelum melakukan analisis dengan menggunakan analisis regresi,

BAB IV HASIL DAN PEMBAHASAN. A. Hasil Uji Asumsi. Sebelum melakukan analisis dengan menggunakan analisis regresi, BAB IV HASIL DAN PEMBAHASAN A. Hasil Uji Asumsi Sebelum melakukan analisis dengan menggunakan analisis regresi, terlebih dahulu perlu dilakukan uji asumsi terhadap data penelitian. Uji asumsi yang dilakukan

Lebih terperinci

DP.01.34 PEDOMAN PERHITUNGAN STATISTIK UNTUK UJI PROFISIENSI JULI 2004

DP.01.34 PEDOMAN PERHITUNGAN STATISTIK UNTUK UJI PROFISIENSI JULI 2004 DP.01.34 PEDOMAN PERHITUNGAN STATISTIK UNTUK UJI PROFISIENSI JULI 2004 Komite Akreditasi Nasional National Accreditation Body of Indonesia Gedung Manggala Wanabakti, Blok IV, Lt. 4 Jl. Jend. Gatot Subroto,

Lebih terperinci

PENGUMPULAN DATA PENGOLAHAN DATA

PENGUMPULAN DATA PENGOLAHAN DATA PENGUMPULAN DATA Sensus adalah cara pengumpulan data seluruh elemen populasi diselidiki satu per satu. Sensus merupakan cara pengumpulan data yang menyeluruh. Data yang diperoleh sebagai hasil pengolahan

Lebih terperinci

PENGENALAN POLA TANDA TANGAN DENGAN MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA)

PENGENALAN POLA TANDA TANGAN DENGAN MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) PENGENALAN POLA TANDA TANGAN DENGAN MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) Riza Firdaus Ardiansyah NIM : A11.2009.05106 Program Studi Teknik Informatika Fakultas Ilmu Komputer Universitas

Lebih terperinci

1. DATA ENTRY. Gambar 1.1 Kotak Dialog SPSS

1. DATA ENTRY. Gambar 1.1 Kotak Dialog SPSS 1. DATA ENTRY 1.1 Input data Sebelum membahas cara input data dalam SPSS, terlebih dahulu buka program SPSS anda. Saat pertama kali masuk pada program SPSS akan muncul kotak dialog SPSS for Windows (aktif)

Lebih terperinci

KLASIFIKASI TULISAN TANGAN BERUPA ANGKA MENGGUNAKAN RANDOM FOREST DAN HISTOGRAM OF ORIENTED GRADIENT

KLASIFIKASI TULISAN TANGAN BERUPA ANGKA MENGGUNAKAN RANDOM FOREST DAN HISTOGRAM OF ORIENTED GRADIENT KLASIFIKASI TULISAN TANGAN BERUPA ANGKA MENGGUNAKAN RANDOM FOREST DAN HISTOGRAM OF ORIENTED GRADIENT Anugerah Ganda Putra 1, Tjokorda Agung Budi Wirayuda ST. MT. 2 Fakultas Informatika Universitas Telkom

Lebih terperinci

Raharjo Raharjo@gmail.com http://raharjo.ppknunj.org

Raharjo Raharjo@gmail.com http://raharjo.ppknunj.org Uji Validitas dan Reliabilitas Raharjo Raharjo@gmail.com http://raharjo.ppknunj.org Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas

Lebih terperinci

Pengukuran Variabel (definisi operasional ) dan Skala Pengukuran

Pengukuran Variabel (definisi operasional ) dan Skala Pengukuran Pengukuran Variabel (definisi operasional ) dan Skala Pengukuran Definisi Pengukuran Adalah pengukuran nilai properti dari suatu obyek. Obyek merupakan suatu entitas yang akan diteliti, dapat berupa perusahaan,

Lebih terperinci

E-book Statistika Gratis... Statistical Data Analyst. Penyajian Data Statistik

E-book Statistika Gratis... Statistical Data Analyst. Penyajian Data Statistik Penyajian Data Statistik Pada penulisan kedua tentang Statistika Elementer ini, penulis akan memberikan bahasan mengenai Penyajian Data Statistik kepada para pembaca untuk mengetahui bentuk penyajian data

Lebih terperinci

Sumber: Husein Umar (2004), Metode Riset Ilmu Administrasi, Pt Gramedia Pustaka Utama, Jakarta. Ali Rokhman

Sumber: Husein Umar (2004), Metode Riset Ilmu Administrasi, Pt Gramedia Pustaka Utama, Jakarta. Ali Rokhman Sumber: Husein Umar (2004), Metode Riset Ilmu Administrasi, Pt Gramedia Pustaka Utama, Jakarta Ali Rokhman Konsep analisa data Prinsip umum analisa data Langkah umum analisa data Pedoman pemakaian metode

Lebih terperinci

MENGUBAH DATA ORDINAL KE DATA INTERVAL DENGAN METODE SUKSESIF INTERVAL (MSI) Oleh: Jonathan Sarwono

MENGUBAH DATA ORDINAL KE DATA INTERVAL DENGAN METODE SUKSESIF INTERVAL (MSI) Oleh: Jonathan Sarwono MENGUBAH DATA ORDINAL KE DATA INTERVAL DENGAN METODE SUKSESIF INTERVAL (MSI) Oleh: Jonathan Sarwono Cara Penghitungan MSI Apa yang dimaksud dengan metode suksesif interval (Method of Successive Interval

Lebih terperinci

pengumpulan data penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2012

pengumpulan data penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2012 pengumpulan data penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2012 Variabel: suatu objek yang dapat memiliki lebih dari satu nilai. Contoh variabel: Jenis kelamin: ada dua

Lebih terperinci

BAB I ANALISIS DATA 1.1. DATA, SKALA, DAN VARIABEL

BAB I ANALISIS DATA 1.1. DATA, SKALA, DAN VARIABEL BAB I ANALISIS DATA 1.1. DATA, SKALA, DAN VARIABEL A. Data Pengertian data menurut Webster New World Dictionary, Data adalah things known or assumed, yang berarti bahwa data itu sesuatu yang diketahui

Lebih terperinci

APLIKASI DATA MINING UNTUK MENAMPILKAN TINGKAT KELULUSAN MAHASISWA DENGAN ALGORITMA APRIORI

APLIKASI DATA MINING UNTUK MENAMPILKAN TINGKAT KELULUSAN MAHASISWA DENGAN ALGORITMA APRIORI PLIKSI DT MINING UNTUK MENMPILKN TINGKT KELULUSN MHSISW DENGN LGORITM PRIORI Benni R Siburian (0911536) Mahasiswa Jurusan Teknik Informatika STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Simpang

Lebih terperinci

Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com. Abstrak/Ringkasan. Pendahuluan. Lisensi Dokumen:

Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com. Abstrak/Ringkasan. Pendahuluan. Lisensi Dokumen: UKURAN NILAI PUSAT DAN UKURAN DISPERSI Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Pengertian Pengukuran Untuk mendapatkan produk yang berkualitas tidak hanya memerlukan rancangan produk yang bagus sesuai dengan fungsi namun juga memerlukan rancangan proses pembuatan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Uji Instrumen Data Validitas menunjukkan sejauh mana alat pengukur yang dipergunakan untuk mengukur apa yang diukur. Adapun caranya adalah dengan mengkorelasikan antara

Lebih terperinci

Regresi Logistik Nominal dengan Fungsi Hubung CLOGLOG

Regresi Logistik Nominal dengan Fungsi Hubung CLOGLOG Regresi Logistik Nominal dengan Fungsi Hubung CLOGLOG Julio Adisantoso, G16109011/STK 11 Mei 2010 Ringkasan Regresi logistik merupakan suatu pendekatan pemodelan yang dapat digunakan untuk mendeskripsikan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. 3.1 Definisi Operasional dan Pengukuran Variabel

BAB III METODOLOGI PENELITIAN. 3.1 Definisi Operasional dan Pengukuran Variabel BAB III METODOLOGI PENELITIAN 3.1 Definisi Operasional dan Pengukuran Variabel 3.1.1 Definisi Konseptual Kepemimpinan merupakan salah satu faktor penting dalam menentukan keberhasilan kinerja organisasi

Lebih terperinci

BAB 3 PERANCANGAN. Input Data, Pre-processing, Feature Extraction, Training, dan Verification. Pada tahap

BAB 3 PERANCANGAN. Input Data, Pre-processing, Feature Extraction, Training, dan Verification. Pada tahap BAB 3 PERANCANGAN 3.1 Desain Verifikasi Tanda Tangan Desain verifikasi tanda tangan secara umum terdiri dari lima tahap utama, yaitu Input Data, Pre-processing, Feature Extraction, Training, dan Verification.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. A. Definisi konseptual, Operasional dan Pengukuran Variabel

BAB III METODOLOGI PENELITIAN. A. Definisi konseptual, Operasional dan Pengukuran Variabel BAB III METODOLOGI PENELITIAN A. Definisi konseptual, Operasional dan Pengukuran Variabel 1. Definisi Konseptual Menurut teori teori yang di uraikan tersebut diatas dapat disimpulkan bahwa yang dimaksud

Lebih terperinci

ANALISIS CLUSTER DALAM PENILAIAN HARGA TANAH

ANALISIS CLUSTER DALAM PENILAIAN HARGA TANAH ANALISIS CLUSTER DALAM PENILAIAN HARGA TANAH Studi Kasus Pengadaan Tanah Jalan Lintas Utara Kabupaten Bekasi Tahap II Andu Nusantara 3108 207 006 Dalam pengadaan tanah untuk pembangunan jalan, obyek (persil

Lebih terperinci

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA AMIYELLA ENDISTA SKG.MKM Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Perhitungan Nilai Gejala Pusat Mean Median Modus Range

Lebih terperinci

Teknik Analisis Kuantitatif 1

Teknik Analisis Kuantitatif 1 Teknik Analisis Kuantitatif 1 TEKNIK ANALISIS KUANTITATIF Oleh: Ali Muhson A. Pendahuluan Analisis data merupakan salah satu proses penelitian yang dilakukan setelah semua data yang diperlukan guna memecahkan

Lebih terperinci

GET FILE='D:\albert\data47 OK.sav'. DESCRIPTIVES VARIABLES=TOperAC seperac /STATISTICS=MEAN STDDEV MIN MAX. Descriptive Statistics

GET FILE='D:\albert\data47 OK.sav'. DESCRIPTIVES VARIABLES=TOperAC seperac /STATISTICS=MEAN STDDEV MIN MAX. Descriptive Statistics GET FILE='D:\albert\data47 OK.sav'. DESCRIPTIVES VARIABLES=TOperAC seperac /STATISTICS=MEAN STDDEV MIN MAX. Descriptive Statistics N Minimum Maximum Mean Std. Deviation TOperAC 47 988.47 2376.52 1802.6366

Lebih terperinci

METODE PENELITIAN. bulan, sejak bulan Oktober 2007 sampai dengan bulan April 2008. Tabel 1 Jadwal Penelitian Tahapan

METODE PENELITIAN. bulan, sejak bulan Oktober 2007 sampai dengan bulan April 2008. Tabel 1 Jadwal Penelitian Tahapan 14 BAB III METODE PENELITIAN A. Tempat dan Waktu Penelitian 1. Tempat Penelitian Tempat pelaksanaan penelitian ini adalah di SMK Negeri 1 Ngawen Kabupaten Gunungkidul.. Waktu Penelitian Aktivitas penelitian

Lebih terperinci

UKURAN-UKURAN NILAI PUSAT

UKURAN-UKURAN NILAI PUSAT UKURAN-UKURAN NILAI PUSAT Nilai tunggal yang dinilai dapat mewakili keseluruhan nilai dalam data dianggap sebagai rata-rata (averages). Nilai rata-rata dihitung bedasarkan keseluruhan nilai yang terdapat

Lebih terperinci

BAB I PENDAHULUAN. tangan dijadikan alat untuk menganalisis kepribadian pemiliknya. Sebuah

BAB I PENDAHULUAN. tangan dijadikan alat untuk menganalisis kepribadian pemiliknya. Sebuah BAB I PENDAHULUAN 1.1 Latar Belakang Tulisan tangan merupakan salah satu hal unik yang dapat dihasilkan oleh manusia selain tanda tangan. Seperti halnya tanda tangan, tulisan tangan juga dapat digunakan

Lebih terperinci

ANALISIS PEUBAH GANDA ANALISIS GEROMBOL HAZMIRA YOZZA JURUSAN MATEMATIKA UNAND LOGO

ANALISIS PEUBAH GANDA ANALISIS GEROMBOL HAZMIRA YOZZA JURUSAN MATEMATIKA UNAND LOGO ANALISIS PEUBAH GANDA ANALISIS GEROMBOL HAZMIRA YOZZA JURUSAN MATEMATIKA UNAND Kompetensi menghitung jarak antar individu Membentuk gerombol dengan menggunakan metode gerombol berhierarkhi Membentuk gerombol

Lebih terperinci

Pengantar Mata Kuliah Pengolahan Citra

Pengantar Mata Kuliah Pengolahan Citra Achmad Basuki Nana R Fadilah Fahrul Politeknik Elektronika Negeri Surabaya Pengantar Mata Kuliah Pengolahan Citra Content: 1. Tujuan mata kuliah Pengolahan Citra 2. Apa saja yang bisa dikerjakan dengan

Lebih terperinci

STATISTIK NON PARAMTERIK

STATISTIK NON PARAMTERIK STATISTIK NON PARAMTERIK PROSEDUR PENGOLAHAN DATA : PARAMETER : Berdasarkan parameter yang ada statistik dibagi menjadi Statistik PARAMETRIK : berhubungan dengan inferensi statistik yang membahas parameterparameter

Lebih terperinci

PENDETEKSI DAN VERIFIKASI TANDA TANGAN MENGGUNAKAN METODE IMAGE DOMAIN SPASIAL. Abstrak

PENDETEKSI DAN VERIFIKASI TANDA TANGAN MENGGUNAKAN METODE IMAGE DOMAIN SPASIAL. Abstrak PENDETEKSI DAN VERIFIKASI TANDA TANGAN MENGGUNAKAN METODE IMAGE DOMAIN SPASIAL Annisa Hayatunnufus [1], Andrizal,MT [2], Dodon Yendri,M.Kom [3] Jurusan Sistem Komputer Fakultas Teknologi Informasi Universitas

Lebih terperinci

KUESIONER PENELITIAN. Petunjuk pengisian kuesioner

KUESIONER PENELITIAN. Petunjuk pengisian kuesioner KUESIONER PENELITIAN NO Petunjuk pengisian kuesioner 1. Bacalah pertanyaan dengan baik dan teliti. 2. Pilih salah satu jawaban yang menurut Bapak/Ibu/Saudara anggap paling tepat dengan cara memberi tanda

Lebih terperinci

Angket Uji Coba Instrumen Data Hasil Uji Coba instrumen

Angket Uji Coba Instrumen Data Hasil Uji Coba instrumen Angket Uji Coba Instrumen Data Hasil Uji Coba instrumen A. Angket Uji Coba Instrumen Penelitian PENGARUH KONSEP DIRI, PRAKTEK INDUSTRI DAN INFORMASI DUNIA KERJA TERHADAP KESIAPAN KERJA SISWA KELAS XII

Lebih terperinci

Lampiran 1. Langkah perhitungan Uji Validitas di SPSS.

Lampiran 1. Langkah perhitungan Uji Validitas di SPSS. 121 Lampiran 1. Langkah perhitungan Uji Validitas di SPSS. 1. Pilih program SPSS for Windows pada komputer anda. Setelah itu, pilih Cancel. 2. Pada variable view, ketik: Nomor1 (Nomor2, Nomor3,, Nomor20)

Lebih terperinci

ANALISIS KELOMPOK DENGAN MENGGUNAKAN METODE HIERARKI UNTUK PENGELOMPOKAN KABUPATEN/KOTA DI JAWA TIMUR BERDASAR INDIKATOR KESEHATAN

ANALISIS KELOMPOK DENGAN MENGGUNAKAN METODE HIERARKI UNTUK PENGELOMPOKAN KABUPATEN/KOTA DI JAWA TIMUR BERDASAR INDIKATOR KESEHATAN 1 ANALISIS KELOMPOK DENGAN MENGGUNAKAN METODE HIERARKI UNTUK PENGELOMPOKAN KABUPATEN/KOTA DI JAWA TIMUR BERDASAR INDIKATOR KESEHATAN, dan, Universitas Negeri Malang Email: lina_ninos26@yahoo.com ABSTRAK:

Lebih terperinci

CONTOH DATA YANG DIANALISIS DENGAN ANAVA SATU JALUR CONTOH DATA YANG DIANALISIS DENGAN ANAVA DUA JALUR

CONTOH DATA YANG DIANALISIS DENGAN ANAVA SATU JALUR CONTOH DATA YANG DIANALISIS DENGAN ANAVA DUA JALUR CONTOH DATA YANG DIANALISIS DENGAN ANAVA SATU JALUR Data Sampel I Data Sampel II Data Sampel III 5 4 7 9 8 5 9 4 6 CONTOH DATA YANG DIANALISIS DENGAN ANAVA DUA JALUR Kategori Data Sampel I Data Sampel

Lebih terperinci

DISTRIBUSI BINOMIAL berhasil gagal berhasil gagal berhasil gagal ya tidak success failed sukses atau berhasil gagal. sukses atau berhasil.

DISTRIBUSI BINOMIAL berhasil gagal berhasil gagal berhasil gagal ya tidak success failed sukses atau berhasil gagal. sukses atau berhasil. DISTRIBUSI BINOMIAL Pendahuluan Distribusi binomial merupakan suatu proses distribusi probabilitas yang dapat digunakan apabila suatu proses sampling dapat diasumsikan sesuai dengan proses Bernoulli. Proses

Lebih terperinci

NILAI WAKTU PERJALANAN BUS PENGGUNA JALAN TOL DALAM KOTA DI SEMARANG. Karnawan Joko Setyono Jurusan Teknik Sipil Politeknik Negeri Semarang

NILAI WAKTU PERJALANAN BUS PENGGUNA JALAN TOL DALAM KOTA DI SEMARANG. Karnawan Joko Setyono Jurusan Teknik Sipil Politeknik Negeri Semarang NILAI WAKTU PERJALANAN BUS PENGGUNA JALAN TOL DALAM KOTA DI SEMARANG Karnawan Joko Setyono Jurusan Teknik Sipil Politeknik Negeri Semarang Abstract The determination of VOC(vehicle Operating Cost), using

Lebih terperinci

PENENTUAN UKURAN SAMPEL MEMAKAI RUMUS SLOVIN DAN TABEL KREJCIE-MORGAN: TELAAH KONSEP DAN APLIKASINYA. Oleh: Nugraha Setiawan

PENENTUAN UKURAN SAMPEL MEMAKAI RUMUS SLOVIN DAN TABEL KREJCIE-MORGAN: TELAAH KONSEP DAN APLIKASINYA. Oleh: Nugraha Setiawan PENENTUAN UKURAN SAMPEL MEMAKAI RUMUS SLOVIN DAN TABEL KREJCIE-MORGAN: TELAAH KONSEP DAN APLIKASINYA Oleh: Nugraha Setiawan FAKULTAS PETERNAKAN UNIVERSITAS PADJADJARAN November 007 Penentuan Ukuran Sampel

Lebih terperinci

PENGARUH JAM PELAJARAN KOSONG TERHADAP KENAKALAN PESERTA DIDIK DI SMAN 1 REJOTANGAN TAHUN 2013 Oleh : Supriadi Guru SMAN 1 Rejotangan

PENGARUH JAM PELAJARAN KOSONG TERHADAP KENAKALAN PESERTA DIDIK DI SMAN 1 REJOTANGAN TAHUN 2013 Oleh : Supriadi Guru SMAN 1 Rejotangan PENGARUH JAM PELAJARAN KOSONG TERHADAP KENAKALAN PESERTA DIDIK DI SMAN 1 REJOTANGAN TAHUN 2013 Oleh : Supriadi Guru SMAN 1 Rejotangan ABSTRAK. Penelitian ini bertujuan untuk menjelaskan besarnya pengaruh

Lebih terperinci

DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR UCAPAN TERIMA KASIH

DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR i UCAPAN TERIMA KASIH ii DAFTAR ISI iv DAFTAR TABEL vii DAFTAR GAMBAR ix BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. statistik, secara singkat akan diuraikan asal mula perangkat-perangkat tersebut.

BAB II TINJAUAN PUSTAKA. statistik, secara singkat akan diuraikan asal mula perangkat-perangkat tersebut. 8 BAB II TINJAUAN PUSTAKA 2.1. Konsep Dasar Pengendalian Mutu Sebelum meninjau beberapa perangkat dasar pengendalian mutu secara statistik, secara singkat akan diuraikan asal mula perangkat-perangkat tersebut.

Lebih terperinci

TEORI SEDERHANA PROSEDUR PEMILIHAN UJI HIPOTES IS RUSWANA ANWAR

TEORI SEDERHANA PROSEDUR PEMILIHAN UJI HIPOTES IS RUSWANA ANWAR TEORI SEDERHANA PROSEDUR PEMILIHAN UJI HIPOTES IS RUSWANA ANWAR SUBBAGIAN FERTILITAS DAN ENDOKRINOLOGI REPRODUKSI BAGIAN OBSTETRI DAN GINEKOLOGI FAKULTAS KEDOKTERAN UNPAD BANDUNG 2005 1 TEORI SEDERHANA

Lebih terperinci

KONSEP DASAR SAMPLING

KONSEP DASAR SAMPLING TEKNIK SAMPLING KONSEP DASAR SAMPLING LOGO HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND TEKNIK SAMPLING Metode pengambilan sebagian anggota populasi sedemikian rupa sehingga contoh yang

Lebih terperinci

SEBARAN PENARIKAN CONTOH

SEBARAN PENARIKAN CONTOH STATISTIK (MAM 4137) SEBARAN PENARIKAN CONTOH Ledhyane Ika Harlyan 2 Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean Parameter

Lebih terperinci

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN PERHITUNGAN JARAK ANTAR TITIK PADA TANDA TANGAN

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN PERHITUNGAN JARAK ANTAR TITIK PADA TANDA TANGAN IDENTIFIKASI TANDA TANGAN MENGGUNAKAN PERHITUNGAN JARAK ANTAR TITIK PADA TANDA TANGAN Ratnadewi 1, Ardhi Prasetya 2 Jurusan Teknik Elektro, Fakultas Teknik Universitas Kristen Maranatha Jalan Prof. Drg.

Lebih terperinci

APLIKASI REGRESI SEDERHANA DENGAN SPSS. HENDRY admin teorionline.net Phone : 021-834 14694 / email : klik.statistik@gmail.com

APLIKASI REGRESI SEDERHANA DENGAN SPSS. HENDRY admin teorionline.net Phone : 021-834 14694 / email : klik.statistik@gmail.com APLIKASI REGRESI SEDERHANA DENGAN SPSS HENDRY admin teorionline.net Phone : 02-834 4694 / email : klik.statistik@gmail.com Tentang Regresi Sederhana Analisis regresi merupakan salah satu teknik analisis

Lebih terperinci

1. Menjelaskan maksud, tujuan, dan cara dilakukannya teknik relaksasi Pernapasan

1. Menjelaskan maksud, tujuan, dan cara dilakukannya teknik relaksasi Pernapasan Lampiran 1 PROSEDUR PELAKSANAAN DENGAN STANDAR OPERASIONAL PROSEDUR (SOP) TEKNIK RELAKSASI NAPAS DALAM 1. Menjelaskan maksud, tujuan, dan cara dilakukannya teknik relaksasi Pernapasan 2. Mengkaji intensitas

Lebih terperinci

UJI ASUMSI KLASIK DENGAN SPSS 16.0. Disusun oleh: Andryan Setyadharma

UJI ASUMSI KLASIK DENGAN SPSS 16.0. Disusun oleh: Andryan Setyadharma UJI ASUMSI KLASIK DENGAN SPSS 16.0 Disusun oleh: Andryan Setyadharma FAKULTAS EKONOMI UNIVERSITAS NEGERI SEMARANG 2010 1. MENGAPA UJI ASUMSI KLASIK PENTING? Model regresi linier berganda (multiple regression)

Lebih terperinci

Lampiran 1. Hasil Uji Validitas Logis

Lampiran 1. Hasil Uji Validitas Logis LAMPIRAN 74 Lampiran 1. Hasil Uji Validitas Logis 75 76 77 Lampiran 2. Uji Coba Kuesioner Penelitian Skripsi UJI COBA KUESIONER PENELITIAN SKRIPSI Identitas Responden Nama Kelas :.. (Boleh Tidak Diisi)

Lebih terperinci

ANOVA SATU ARAH Nucke Widowati Kusumo Projo, S.Si, M.Sc

ANOVA SATU ARAH Nucke Widowati Kusumo Projo, S.Si, M.Sc ANOVA SATU ARAH Nucke Widowati Kusumo Proo, S.Si, M.Sc It s about: Ui rata-rata untuk lebih dari dua populasi Ui perbandingan ganda (ui Duncan & Tukey) Output SPSS PENDAHULUAN Ui hipotesis yang sudah kita

Lebih terperinci

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS Dasar Statistik untuk Pemodelan dan Simulasi oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS . Probabilitas Probabilitas=Peluang, bisa diartikan

Lebih terperinci

KONTRAK PERKULIAHAN TEMU KEMBALI INFORMASI KOM431

KONTRAK PERKULIAHAN TEMU KEMBALI INFORMASI KOM431 KONTRAK PERKULIAHAN TEMU KEMBALI INFORMASI KOM431 KOORDINATOR MATA AJARAN TEMU KEMBALI INFORMASI DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR TAHUN 2011/2012 KONTRAK PERKULIAHAN Nama Matakuliah :

Lebih terperinci

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment)

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Metoda Kuadrat Terkecil adalah salah satu metoda yang paling populer dalam menyelesaikan masalah hitung perataan. Aplikasi pertama perataan kuadrat

Lebih terperinci

PERBANDINGAN ANALISIS VARIANSI DENGAN ANALISIS KOVARIANSI DALAM RANCANGAN PETAK-PETAK TERBAGI PADA RANCANGAN ACAK KELOMPOK DENGAN DATA HILANG

PERBANDINGAN ANALISIS VARIANSI DENGAN ANALISIS KOVARIANSI DALAM RANCANGAN PETAK-PETAK TERBAGI PADA RANCANGAN ACAK KELOMPOK DENGAN DATA HILANG PERBANDINGAN ANALISIS VARIANSI DENGAN ANALISIS KOVARIANSI DALAM RANCANGAN PETAKPETAK TERBAGI PADA RANCANGAN ACAK KELOMPOK DENGAN DATA HILANG Sri Wahyuningsih R 1, Anisa 2, Raupong ABSTRAK Analisis variansi

Lebih terperinci

8. LAYOUT. Fixed zoom out / in, Zoom whole pages, 100%

8. LAYOUT. Fixed zoom out / in, Zoom whole pages, 100% L a y o u t 44 8. LAYOUT Pada tahap pelaporan (reporting), hasil analisis perlu dicetak. Output yang diharapkan pengguna adalah layout peta yang menarik dan jelas, dan komunikatif/ mudah dimengerti. Tahapan

Lebih terperinci

XII. SPSS RANCANGAN ACAK LENGKAP POLA BERJENJANG

XII. SPSS RANCANGAN ACAK LENGKAP POLA BERJENJANG XII. SPSS RANCANGAN ACAK LENGKAP POLA BERJENJANG Rancangan Acak Lengkap Pola Berjenjang adalah rancangan percobaan dengan materi homogen atau tidak ada peubah pengganggu, rancangan ini sebenarnya merupakan

Lebih terperinci

PENGENDALIAN VARIABEL PENGGANGGU / CONFOUNDING DENGAN ANALISIS KOVARIANS Oleh : Atik Mawarni

PENGENDALIAN VARIABEL PENGGANGGU / CONFOUNDING DENGAN ANALISIS KOVARIANS Oleh : Atik Mawarni PENGENDALIAN VARIABEL PENGGANGGU / CONFOUNDING DENGAN ANALISIS KOVARIANS Oleh : Atik Mawarni Pendahuluan Dalam seluruh langkah penelitian, seorang peneliti perlu menjaga sebaik-baiknya agar hubungan yang

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Untuk menguji apakah alat ukur (instrument) yang digunakan memenuhi

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Untuk menguji apakah alat ukur (instrument) yang digunakan memenuhi BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil uji itas dan Reliabilitas Untuk menguji apakah alat ukur (instrument) yang digunakan memenuhi syarat-syarat alat ukur yang baik, sehingga mengahasilkan

Lebih terperinci

POPULASI, SAMPLING DAN BESAR SAMPEL

POPULASI, SAMPLING DAN BESAR SAMPEL POPULASI, SAMPLING DAN BESAR SAMPEL Didik Budijanto Pusdatin Kemkes RI Alur Berpikir dalam Metodologi Research: Masalah Identifikasi Mslh [ Batasan ] Rumusan Masalah - Tujuan Penelitian/ Manfaat Tinjauan

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jenis Penelitian Jenis penelitian ini adalah penelitian Quasi Eksperimental, yang bertujuan untuk meneliti pengaruh dari suatu perlakuan tertentu terhadap gejala suatu kelompok

Lebih terperinci

HUBUNGAN TINGKAT PENGETAHUAN RESIKO PEMBERIAN KEMOTERAPI DENGAN PENGGUNAAN ALAT PELINDUNG DIRI DI RUANG ANAK RUMAH SAKIT KANKER DHARMAIS

HUBUNGAN TINGKAT PENGETAHUAN RESIKO PEMBERIAN KEMOTERAPI DENGAN PENGGUNAAN ALAT PELINDUNG DIRI DI RUANG ANAK RUMAH SAKIT KANKER DHARMAIS HUBUGA TIGKAT PEGETAHUA RESIKO PEMBERIA KEMOTERAPI DEGA PEGGUAA ALAT PELIDUG DIRI DI RUAG AAK RUMAH SAKIT KAKER DHARMAIS YTH. BAPAK IBU RESPODE Dalam rangka meningkatkan mutu pelayanan rumah sakit, maka

Lebih terperinci

MODUL MATA KULIAH APLIKASI KOMPUTER. Oleh: Ali Muhson, M.Pd.

MODUL MATA KULIAH APLIKASI KOMPUTER. Oleh: Ali Muhson, M.Pd. MODUL MATA KULIAH APLIKASI KOMPUTER Oleh: Ali Muhson, M.Pd. PROGRAM STUDI PENDIDIKAN EKONOMI KOPERASI FAKULTAS ILMU SOSIAL UNIVERSITAS NEGERI YOGYAKARTA 2005 ii KATA PENGANTAR Puji syukur alhamdulillah

Lebih terperinci

Batra Yudha Pratama m111511006@students.jtk.polban.ac.id

Batra Yudha Pratama m111511006@students.jtk.polban.ac.id Operasi Morfologi Pada Citra Biner Batra Yudha Pratama m111511006@students.jtk.polban.ac.id Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas

Lebih terperinci

REGRESI LINIER OLEH: JONATHAN SARWONO

REGRESI LINIER OLEH: JONATHAN SARWONO REGRESI LINIER OLEH: JONATHAN SARWONO 1.1 Pengertian Apa yang dimaksud dengan regresi linier? Istilah regresi pertama kali dalam konsep statistik digunakan oleh Sir Francis Galton dimana yang bersangkutan

Lebih terperinci

Design and Analysis Algorithm. Ahmad Afif Supianto, S.Si., M.Kom. Pertemuan 07

Design and Analysis Algorithm. Ahmad Afif Supianto, S.Si., M.Kom. Pertemuan 07 Design and Analysis Algorithm Ahmad Afif Supianto, S.Si., M.Kom Pertemuan 07 Contents 31 2 3 4 35 Divide and Conguer MinMax Problem Closest Pair Sorting Problem Perpangkatan 2 Algoritma divide and conquer

Lebih terperinci

APLIKASI KAMERA PENDETEKSI MOBIL Menggunakan Pendekatan Pengolahan Citra

APLIKASI KAMERA PENDETEKSI MOBIL Menggunakan Pendekatan Pengolahan Citra ISSN 2089-83 APLIKASI KAMERA PENDETEKSI MOBIL Menggunakan Pendekatan Pengolahan Citra Duman Care Khrisne Dosen Sistem Komputer STMIK STIKOM Indonesia Denpasar-Bali, Indonesia duman_lx14[at]ahoo.com I Made

Lebih terperinci

BAB V HASIL PENELITIAN

BAB V HASIL PENELITIAN 1 BAB V HASIL PENELITIAN 5.1 Statistik Deskriptif Penelitian ini menggunakan perusahaan yang terdaftar di Bursa Efek Indonesia, baik perusahaan dibidang keuangan maupun bidang non-keuangan sebagai sampel

Lebih terperinci

PENGARUH LINGKUNGAN KERJA, GAJI, DAN PROMOSI TERHADAP KINERJA PEGAWAI BADAN KEPEGAWAIAN DAERAH PATI TESIS

PENGARUH LINGKUNGAN KERJA, GAJI, DAN PROMOSI TERHADAP KINERJA PEGAWAI BADAN KEPEGAWAIAN DAERAH PATI TESIS PENGARUH LINGKUNGAN KERJA, GAJI, DAN PROMOSI TERHADAP KINERJA PEGAWAI BADAN KEPEGAWAIAN DAERAH PATI TESIS Oleh: Mimpi Arde Aria NIM : 2008-01-020 PROGAM STUDI MAGISTER MANAJEMEN FAKULTAS EKONOMI UNIVERSITAS

Lebih terperinci

STATISTIKA DASAR. Oleh : Y. BAGUS WISMANTO

STATISTIKA DASAR. Oleh : Y. BAGUS WISMANTO STATISTIKA DASAR Oleh : Y. BAGUS WISMANTO FAKULTAS PSIKOLOGI UNIVERSITAS KATOLIK SOEGIJAPRANATA SEMARANG 007 DAFTAR ISI Halaman I. PENDAHULUAN A. Apa Statistika Itu? B. Pentingnya Penguasaan terhadap Statistika

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis

Lebih terperinci

APLIKASI STATISTIKA DAN HITUNG PELUANG

APLIKASI STATISTIKA DAN HITUNG PELUANG Kata Pengantar i i i Aplikasi Statistika dan Hitung Peluang Kata Pengantar iii APLIKASI STATISTIKA DAN HITUNG PELUANG Oleh : Richard Lungan Edisi Pertama Cetakan Pertama, 2006 Hak Cipta Ó 2006 pada penulis,

Lebih terperinci

Mengapa melakukan pengacakan (Randomization)? John Floretta J-PAL South Asia

Mengapa melakukan pengacakan (Randomization)? John Floretta J-PAL South Asia Mengapa melakukan pengacakan (Randomization)? John Floretta J-PAL South Asia Ikhtisar Pelatihan 1. Apa yang dimaksud dengan evaluasi? Mengapa Mengevaluasi? 2. Mengapa melakukan pengacakan? 3. Cara pengacakan

Lebih terperinci

IDENTIFIKASI DAN VERIFIKASI TANDA TANGAN STATIK MENGGUNAKAN BACKPROPAGATION DAN ALIHRAGAM WAVELET

IDENTIFIKASI DAN VERIFIKASI TANDA TANGAN STATIK MENGGUNAKAN BACKPROPAGATION DAN ALIHRAGAM WAVELET TESIS IDENTIFIKASI DAN VERIFIKASI TANDA TANGAN STATIK MENGGUNAKAN BACKPROPAGATION DAN ALIHRAGAM WAVELET ROSALIA ARUM KUMALASANTI No. Mhs. : 135302014/PS/MTF PROGRAM STUDI MAGISTER TEKNIK INFORMATIKA PROGRAM

Lebih terperinci

Aplikasi System Dynamic pada Model Perhitungan Indikator Millennium Development Goals (MDGs)

Aplikasi System Dynamic pada Model Perhitungan Indikator Millennium Development Goals (MDGs) 45 Aplikasi System Dynamic pada Model Perhitungan Indikator Millennium Development Goals (MDGs) A Mufti Kepala Bagian Data & Informasi Kantor Utusan Khusus Presiden Republik Indonesia untuk Millennium

Lebih terperinci

ABSTRAK. Pengujian hipotesis tentang perbedaan dua parameter rata-rata, dilakukan

ABSTRAK. Pengujian hipotesis tentang perbedaan dua parameter rata-rata, dilakukan PENGUJIAN PERBEDAAN DUA RATA-RATA Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas untuk tujuan bukan komersial (nonprofit), dengan

Lebih terperinci

LAMPIRAN Statistics Umur

LAMPIRAN Statistics Umur LAMPIRAN Statistics Umur Pendidikan Pekerjaan Kolesterol Kalsium Natrium IMT N Valid 212 212 212 212 212 212 212 Missing 0 0 0 0 0 0 0 Mean 49.06 3.71 4.61 128.70 290.70 294.91 26.660 Std. Deviation 2.939

Lebih terperinci

DISTRIBUSI FREKUENSI (DF)

DISTRIBUSI FREKUENSI (DF) DISTRIBUSI FREKUENSI (DF) Definisi : Adalah salah satu bentuk tabel yang merupakan suatu penyusunan data ke dalam kelas-kelas tertentu dimana individu hanya termasuk ke dalam kelas tertentu. Adalah penggolongan

Lebih terperinci

POPULASI DAN SAMPEL. Gambar 1 POPULASI dan SAMPEL

POPULASI DAN SAMPEL. Gambar 1 POPULASI dan SAMPEL Pengertian Populasi dan Sampel POPULASI DAN SAMPEL Kata populasi (population/universe) dalam statistika merujuk pada sekumpulan individu dengan karakteristik khas yang menjadi perhatian dalam suatu penelitian

Lebih terperinci

Mochammad Ikhwanuddin Alumni Fakultas Ekonomi Universitas Negeri Malang. Email: realman@asia.com

Mochammad Ikhwanuddin Alumni Fakultas Ekonomi Universitas Negeri Malang. Email: realman@asia.com Pengaruh Persepsi Atribut Produk terhadap Keputusan Pembelian Rokok Merek Gudang Garam Surya Professional Mild (Studi pada Mahasiswa Jurusan Manajemen Angkatan 2011/2011 Fakultas Ekonomi Universitas Negeri

Lebih terperinci

PENERAPAN METODE ALORITMA FUZZY MAMDANI PADA APLIKASI SPK PENENTUAN JUMLAH PRODUKSI BARANG CV.KURNIA ALAM DI JEPARA

PENERAPAN METODE ALORITMA FUZZY MAMDANI PADA APLIKASI SPK PENENTUAN JUMLAH PRODUKSI BARANG CV.KURNIA ALAM DI JEPARA PENERAPAN METODE ALORITMA FUZZY MAMDANI PADA APLIKASI SPK PENENTUAN JUMLAH PRODUKSI BARANG CV.KURNIA ALAM DI JEPARA Andreas Widiyantoro-NIM : A11.2009.04835 Program Studi Teknik Informatika Fakultas Ilmu

Lebih terperinci

BAB V HASIL PENELITIAN. A. Gambaran Umum Klinik Herbal Insani Depok. Bulan Maret 2007. Di atas tanah seluas 280 m 2 dengan luas bangunan

BAB V HASIL PENELITIAN. A. Gambaran Umum Klinik Herbal Insani Depok. Bulan Maret 2007. Di atas tanah seluas 280 m 2 dengan luas bangunan BAB V HASIL PENELITIAN Hasil penelitian ini terlebih dahulu akan membahas gambaran umum wilayah penelitian, proses penelitian dan hasil penelitian yang mencakup analisa deskriptif (univariat) serta analisa

Lebih terperinci

VERIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA COLOUR CODE DAN EKSPRESI BOOLEAN XOR

VERIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA COLOUR CODE DAN EKSPRESI BOOLEAN XOR ISSN 1858-4667 JURNAL LINK VOL 18/No. 1/Maret 2013 VERIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA COLOUR CODE DAN EKSPRESI BOOLEAN XOR Maria Dominica Eliyana 1, Endra Rahmawati 2 1 Jurusan Teknik Informatika

Lebih terperinci

PENDUGAAN ANGKA PUTUS SEKOLAH DI KABUPATEN SEMARANG DENGAN METODE PREDIKSI TAK BIAS LINIER TERBAIK EMPIRIK PADA MODEL PENDUGAAN AREA KECIL SKRIPSI

PENDUGAAN ANGKA PUTUS SEKOLAH DI KABUPATEN SEMARANG DENGAN METODE PREDIKSI TAK BIAS LINIER TERBAIK EMPIRIK PADA MODEL PENDUGAAN AREA KECIL SKRIPSI PENDUGAAN ANGKA PUTUS SEKOLAH DI KABUPATEN SEMARANG DENGAN METODE PREDIKSI TAK BIAS LINIER TERBAIK EMPIRIK PADA MODEL PENDUGAAN AREA KECIL SKRIPSI Disusun Oleh: NANDANG FAHMI JALALUDIN MALIK NIM. J2E 009

Lebih terperinci

KONSEP FREKUENSI SINYAL WAKTU KUNTINYU & WAKTU DISKRIT

KONSEP FREKUENSI SINYAL WAKTU KUNTINYU & WAKTU DISKRIT KONSEP FREKUENSI SINYAL WAKTU KUNTINYU & WAKTU DISKRIT Sinyal Sinusoidal Waktu Kontinyu T=/F A A cos X Acos Ft a 0 t t Sinyal dasar Eksponensial dng α imajiner X Ae a j t Ω = πf adalah frekuensi dalam

Lebih terperinci

SEMANTIK Syntax mendefinisikan suatu bentuk program yang benar dari suatu bahasa.

SEMANTIK Syntax mendefinisikan suatu bentuk program yang benar dari suatu bahasa. SEMANTIK Syntax mendefinisikan suatu bentuk program yang benar dari suatu bahasa. Semantik mendefinisikan arti dari program yang benar secara syntax dari bahasa tersebut. Semantik suatu bahasa membutuhkan

Lebih terperinci

LAMPIRAN 1 UJI COBA INSTRUMEN PENELITIAN

LAMPIRAN 1 UJI COBA INSTRUMEN PENELITIAN 83 LAMPIRAN 1 UJI COBA INSTRUMEN PENELITIAN 83 84 Nama : Kelas/No. Absen : Petunjuk Pengisian Angket: Berilah tanda check ( ) pada kolom S (Selalu), SR (Sering), J (Jarang), TP (Tidak Pernah) sesuai dengan

Lebih terperinci