DATA PREPROCESSING. Budi Susanto (versi 1.2)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "DATA PREPROCESSING. Budi Susanto (versi 1.2)"

Transkripsi

1 DATA PREPROCESSING Budi Susanto (versi 1.2) Kenali Data Anda Atribut Data Memahami tipe atribut Membantu membetulkan data saat integrasi data Deskripsi Statistik Data Memudahkan untuk mengisi nilai yang kosong, memperhalus noise data, mengetahui outlier selama pemrosesan data Mengukur Kesamaan dan ketidaksamaan Dapat berguna juga untuk mendeteksi outlier Untuk melakukan klasifikasi Pada umumnya untuk mengukur kedekatan. 1

2 Data Data yang ada pada umumnya: Banyak noise Ukuran yang besar Dapat merupakan campuran dari berbagai macam sumber Memahami data sangat penting untuk tahap preprosesing. Atribut Data Mencerminkan karakteristik objek data. Tipe atribut menentukan himpunan nilai yang diperbolehkan. Nominal Binary (Binomial) Ordinal Numerik n Interval-scale n Ratio-scale Diskret atau Continue 2

3 Deskripsi Statistik Mengukur lokasi pusat/tengah dari distribusi data Mean Median Mode Midrange Data Mining: Concepts and Data Techniques, Preprocessing 3th ed., - Budi p. 47 Susanto - FTI UKDW Deskripsi Statistik Mengukur penyebaran data Rentang dan Kuartil Variasi dan Standard Deviasi Data Mining: Concepts and Data Techniques, Preprocessing 3th ed., - Budi p. 48 Susanto - FTI UKDW 3

4 BoxPlot Interquartil Range (IQR) Q3 Q1 Outlier data 1.5 x IQR Mengukur Kesamaan Dalam aplikasi data mining, seperti clustering, analisis outlier, klasifikasi nearest-neighbor, membutuhkan cara untuk menilai dua objek data serupa atau tidak. Minkwoski distance n Euclidean dan Manhattan Cosine 4

5 Mengukur Kesamaan Mengapa Perlu Data Preprocessing? Data mentah yang ada sebagian besar kotor Tidak komplet n Berisi data yang hilang/kosong n Kekurangan atribut yang sesuai n Hanya berisi data aggregate Banyak noise n Berisi data yang Outlier n Berisi error Tidak konsisten n Berisi nilai yang berbeda dalam suatu kode atau nama 5

6 Mengapa Data Preprocessing Penting? Data yang tidak berkualitas, akan menghasilkan kualitas mining yang tidak baik pula. Data Preprocessing, cleaning, dan transformasi merupakan pekerjaan mayoritas dalam aplikasi data mining (90%). Ukuran Kualitas Data Accuracy Completeness Consistency Timeliness Believability Value added Interpretability Accessibility 6

7 Teknik Data Preprocessing Data Cleaning Data integration Data Reduction Data Transformation Data Cleaning Proses untuk membersihkan data dengan beberapa teknik Memperkecil noise membetulkan data yang tidak konsisten. Mengisi missing value Mengidentifikasi atau membuang outlier 7

8 Data Cleaning: Missing Values Mengabaikan record Biasanya untuk label klasifikasi yang kosong Mengisikan secara manual Menggunakan mean/median dari atribut yang mengandung missing value Mean dapat dipakai jika distribusi data normal Median digunakan jika distribusi data tidak normal (condong) Menggunakan nilai global Menggunakan nilai termungkin Menerapkan regresi Data Cleaning: Missing Values Angkatan IPK Pekerjaan Kelamin Programmer L 2005? Ibu RT P ? P Contoh untuk missing value IPK diisi dengan ratarata IPK atau diisi dengan nilai IPK yang paling mungkin untuk angkatan 2005 dan Perempuan serta menjadi ibu rumah tangga. Contoh untuk missing value Pekerjaan, dapat diisi dengan pekerjaan yang paling banyak muncul. 8

9 Data Cleaning: Noisy Data Noise data adalah suatu kesalahan acak atau variasi dalam variabel terukur. Teknik-teknik Binning n Smoothing by bin means n Smoothing by bin medians n Smoothing by bin boundaries Regression Outlier Analysis Metode Binning Metode ini akan melakukan pengelompokan terhadap kumpulan data. Metode binning merupakan salah satu pendekatan dicretization. Urutan proses: Urutkan data secara ascending Lakukan partisi ke dalam bins n Dapat dengan equal-width (jarak) atau equal-depth (frekuensi) Kemudian dapat di-smoothing: smooth by means, smooth by median, smooth by boundaries, dsb. 9

10 Partisi dalam Metode Binning Partisi Equal-Width Algoritma membagi data ke dalam k interval ukuran yang sama. Lebar interval adalah n w = (max-min)/k Batasan interval adalah n min+w, min+2w,, min+(k-1)w Partisi Equal-depth Membagi data ke dalam k kelompok dimana tiap kelompok berisi jumlah yang sama Contoh Partisi Binning Data: 0, 4, 12, 16, 16, 18, 24, 26, 28 Equal Width BIN1 = 0, 4 [-, 10] BIN2 = 12, 16, 16, 18 [10, 20] BIN3 = 24, 26, 28 [20, +] Equal Depth BIN1 = 0, 4, 12 BIN2 = 16, 16, 18 BIN3 = 24, 26, 28 10

11 Smoothing pada Partisi Binning Smoothing berdasar rata-rata Semua nilai di tiap bin diganti dengan rata-rata nilai tiap bin Smoothing berdasar batasan Setiap nilai bin diganti dengan nilai yang paling dekat dari batasan nilai Batasan nilai terbentuk dari [min, max] tiap bin Data Cleaning: Outliers salary cluster outlier age 11

12 Data Cleaning: Regresi y (salary) Y1 y = x + 1 X1 x (age) Percobaan Data Cleaning Dataset Labor-Negotiations 12

13 Workflow #1 reglin Data Integration Data dapat bersumber dari beberapa sumber Teknik Analisis korelasi Atribut redudan duplikasi 13

14 Covariance Correlation integration Data Transformation Tujuannya: diharapkan lebih efisien dalam proses data mining dan mungkin juga agar pola yang dihasilkan lebih mudah dipahami. Strategi: Smoothing Attribute (feature) construction Aggregation Normalization Discretization 14

15 Data Transformation: Aggregation dan Smoothing coba1 Data Transformation: Normalization Unit ukuran dapat mempengaruhi analisis data. Unit yang lebih kecil akan menghasilkan rentang nilai yang besar Atribut akan memiliki bobot yang lebih besar dari atribut lain Sehingga Data perlu dinormalisasi atau dibakukan. Hasil suatu normalisasi adalah [-1, 1] atau [0.0, 1.0] Diperlukan dalam klasifikasi (termasuk neural network dan nearest network) dan clustering. 15

16 Data Transformation: Metode Normalization Min-max Z-score Decimal scaling normalization 16

17 Data Transformation: Discretization Melakukan pergantian atribut numerik menjadi interval label (misalnya: 0-10,11-20, dst.) atau konseptual label (misalnya: bawah, tengah, atas) discretization discret 17

18 Data Transformation: Data Reduction Teknik Dimensionality reduction n Wavelet transform n Principal Component Analysis n Attribute Subset Selection Numerosity reduction n sampling Data compression TERIMA KASIH! Budi Susanto 18

Data Preprocessing. oleh: Entin Martiana

Data Preprocessing. oleh: Entin Martiana Data Preprocessing oleh: Entin Martiana Data Data yang ada pada umumnya: Banyak noise Ukuran yang besar Dapat merupakan campuran dari berbagai sumber Memahami data sangat penting untuk preprocessing September

Lebih terperinci

Data Preprocessing dengan RapidMiner Budi Susanto. RapidMiner - Budi Susanto

Data Preprocessing dengan RapidMiner Budi Susanto. RapidMiner - Budi Susanto Data Preprcessing dengan RapidMiner Budi Susant RapidMiner - Budi Susant Atribut Data Kenali Data Anda Memahami tipe atribut Membantu membetulkan data saat integrasi data Deskripsi Statistik Data Memudahkan

Lebih terperinci

Task III : Data Transformation (Transformasi Data) Beberapa Pendekatan Transformasi Data. Smoothing. Normalization (#2) Normalization (#1)

Task III : Data Transformation (Transformasi Data) Beberapa Pendekatan Transformasi Data. Smoothing. Normalization (#2) Normalization (#1) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #4: Data Preprocessing (Bagian 2) Task III : Data Transformation (Transformasi Data) Mengubah / mentransformasikan data ke dalam

Lebih terperinci

DATA MINING. Pertemuan 4. Nizar Rabbi Radliya 3 SKS Semester 6 S1 Sistem Informasi

DATA MINING. Pertemuan 4. Nizar Rabbi Radliya 3 SKS Semester 6 S1 Sistem Informasi DATA MINING 3 SKS Semester 6 S1 Sistem Informasi Pertemuan 4 Nizar Rabbi Radliya nizar.radliya@yahoo.com Universitas Komputer Indonesia 2015 Pre-Processing Agregasi (aggregation) Penarikan contoh (sampling)

Lebih terperinci

DATA MINING. Pertemuan 3. Nizar Rabbi Radliya 3 SKS Semester 6 S1 Sistem Informasi

DATA MINING. Pertemuan 3. Nizar Rabbi Radliya 3 SKS Semester 6 S1 Sistem Informasi DATA MINING 3 SKS Semester 6 S1 Sistem Informasi Pertemuan 3 Nizar Rabbi Radliya nizar.radliya@yahoo.com Universitas Komputer Indonesia 2015 Definisi Set Data Set Data / Data Set / Himpunan Data Kumpulan

Lebih terperinci

Materi 4 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya

Materi 4 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya Materi 4 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya nizar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Kompetensi Dasar Memahami pemrosesan awal data yang akan diproses

Lebih terperinci

Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya

Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya nizar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Kompetensi Dasar Memahami definisi set data, tipe data, kualitas

Lebih terperinci

PE DAHULUA. Latar Belakang

PE DAHULUA. Latar Belakang Latar Belakang PE DAHULUA Pemilihan Kepala Daerah dan Wakil Kepala Daerah, atau seringkali disebut Pilkada, adalah pemilihan umum untuk memilih Kepala Daerah dan Wakil Kepala Daerah secara langsung di

Lebih terperinci

ANALISIS CLUSTER PADA DOKUMEN TEKS

ANALISIS CLUSTER PADA DOKUMEN TEKS Budi Susanto ANALISIS CLUSTER PADA DOKUMEN TEKS Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 Tujuan Memahami konsep analisis clustering Memahami tipe-tipe data dalam clustering Memahami beberapa algoritma

Lebih terperinci

Data Mining Outline BAB I Pendahuluan. Proses Data Mining. Recap

Data Mining Outline BAB I Pendahuluan. Proses Data Mining. Recap Data Mining Outline BAB I Pendahuluan BAB II Data BAB III Algoritma Klasifikasi BAB IV Algoritma Klastering BAB V Algoritma Asosiasi BAB VI Algoritma Estimasi BAB VII Deteksi Anomali Ricky Maulana Fajri

Lebih terperinci

DATA TRANSFORMATION PADA DATA MINING ABSTRAK

DATA TRANSFORMATION PADA DATA MINING ABSTRAK DT TRNSFORMTION PD DT MINING Hartarto Junaedi*), Herman Budianto**), Indra Maryati**), dan Yuliana Melani**) *) Jurusan Sistem Informasi Bisnis Sekolah Tinggi Teknik Surabaya **) Jurusan Teknik Informatika

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN Pada proses penelitian ini dilakukan beberapa tahapan mulai dari tahap awal yaitu tahap inisiasi, pengembangan model, dan tahap terakhir pengembangan prototipe. Dalam tahapan inisiasi

Lebih terperinci

TAKARIR. : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas

TAKARIR. : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas TAKARIR Data Mining Clustering Cluster Iteratif Random Centroid : Penggalian data : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas : Berulang : Acak : Pusat area KDD (Knowledge

Lebih terperinci

BAB 3 METODE PENELITIAN. Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder.

BAB 3 METODE PENELITIAN. Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder. BAB 3 METODE PENELITIAN 3.1 Metode Pengumpulan Data 3.1.1 Sumber Data Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder. 1. Data primer Didapatkan peneliti secara langsung

Lebih terperinci

2. Tinjauan Pustaka. Gambar 2-1 : Knowledge discovery in database

2. Tinjauan Pustaka. Gambar 2-1 : Knowledge discovery in database 2. Tinjauan Pustaka 2.1 Data Mining Data mining merupakan ilmu yang mempelajari tentang proses ekstraksi informasi yang tersembunyi dari sekumpulan data yang berukuran sangat besar dengan menggunakan algoritma

Lebih terperinci

ANALISIS CLUSTER PADA DOKUMEN TEKS

ANALISIS CLUSTER PADA DOKUMEN TEKS Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 ANALISIS CLUSTER PADA DOKUMEN TEKS Budi Susanto (versi 1.3) Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep analisis clustering Memahami

Lebih terperinci

Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya

Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya nizar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Kompetensi Dasar Memahami set data yang digunakan pada proses

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Situs jejaring sosial merupakan gaya hidup sosial baru yang muncul seiring berkembangnya internet. Gaya hidup baru tersebut memiliki ruang lingkup yang lebih luas

Lebih terperinci

Tahapan Proses KDD (Peter Cabena) Business Objective Determination (#1) Business Objective Determination (#2) Business Objective Determination (#4)

Tahapan Proses KDD (Peter Cabena) Business Objective Determination (#1) Business Objective Determination (#2) Business Objective Determination (#4) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #2 Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Tahapan Proses KDD (Peter Cabena) Penentuan Sasaran Bisnis (

Lebih terperinci

MODUL 2 DATA DAN EKSPLORASI DATA

MODUL 2 DATA DAN EKSPLORASI DATA MODUL 2 DATA DAN EKSPLORASI DATA 2.1. Tujuan Mahasiswa dapat memahami dan menjelaskan tentang jenis data dan cara mengeksplorasi data 2.2. Teori Singkat Data dan Eksplorasi Data 2.2.1 Data Objek dan Tipe

Lebih terperinci

Tahapan Proses KDD (Peter Cabena)

Tahapan Proses KDD (Peter Cabena) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #2 Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Tahapan Proses KDD (Peter Cabena) Penentuan Sasaran Bisnis (Business

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Sekarang pada kenyataannya, banyak sekali sebuah data yang berukuran besar tidak akurat, tidak komplit dan tidak

BAB 1 PENDAHULUAN 1.1 Latar Belakang Sekarang pada kenyataannya, banyak sekali sebuah data yang berukuran besar tidak akurat, tidak komplit dan tidak BAB 1 PENDAHULUAN 1.1 Latar Belakang Sekarang pada kenyataannya, banyak sekali sebuah data yang berukuran besar tidak akurat, tidak komplit dan tidak konsisten. Sebuah data yang tidak berkualitas akan

Lebih terperinci

2. Data & Proses Datamining

2. Data & Proses Datamining 2. Data & Proses Datamining Data 1. Input (Dataset) 2. Pengolahan Data Awal 3. Metode Learning Tahapan Utama Proses Data Mining Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model/ Knowledge)

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Data, Informasi, Pengetahuan Data adalah bilangan, terkait dengan angka angka atau atribut atribut yang bersifat kuantitas, yang berasal dari hasil observasi, eksperimen, atau

Lebih terperinci

PERTEMUAN 14 DATA WAREHOUSE

PERTEMUAN 14 DATA WAREHOUSE PERTEMUAN 14 DATA WAREHOUSE Data Warehouse Definisi : Data Warehouse adalah Pusat repositori informasi yang mampu memberikan database berorientasi subyek untuk informasi yang bersifat historis yang mendukung

Lebih terperinci

Konsep dan Teknik Data Mining

Konsep dan Teknik Data Mining Konsep dan Teknik Data Mining Data Preprocessing Mengapa data di di proses awal? Pembersihan data Integrasi dan transformasi data Reduksi data Diskritisasi dan pembuatan konsep hierarki Mengapa Data Diproses

Lebih terperinci

PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan

PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan BAB 1 PERSYARATAN PRODUK Bab ini membahas mengenai hal umum dari produk yang dibuat, meliputi tujuan, ruang lingkup proyek, perspektif produk, fungsi produk dan hal umum yang lainnya. 1.1 Pendahuluan Hal

Lebih terperinci

HASIL DAN PEMBAHASAN. Data

HASIL DAN PEMBAHASAN. Data Transformasi data, mengubah data ke bentuk yang dapat di-mine sesuai dengan perangkat lunak yang digunakan pada penelitian. Penentuan Data Latih dan Data Uji Dalam penelitian ini data terdapat dua metode

Lebih terperinci

Business Objective Determination (#1)

Business Objective Determination (#1) Business Objective Determination (#1) Mendefinisikan permasalahan atau tantangan bisnis dengan jelas. Hal ini merupakan aspek yang sangat esensial dalam setiap proyek data mining. (Oleh beberapa peneliti

Lebih terperinci

Tipe Clustering. Partitional Clustering. Hirerarchical Clustering

Tipe Clustering. Partitional Clustering. Hirerarchical Clustering Analisis Cluster Analisis Cluster Analisis cluster adalah pengorganisasian kumpulan pola ke dalam cluster (kelompok-kelompok) berdasar atas kesamaannya. Pola-pola dalam suatu cluster akan memiliki kesamaan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Dataset

BAB III METODOLOGI PENELITIAN. Dataset BAB III METODOLOGI PENELITIAN Metodologi penelitian diuraikan dalam skema tahap penelitian untuk memberikan petunjuk atau gambaran yang jelas, teratur, dan sistematis seperti yang ditunjukkan pada Gambar

Lebih terperinci

penyebarannya. Diharapkan dari penelitian ini dapat terbentuk sebuah basis pengetahuan spasial yang bermanfaat. PENDAHULUAN

penyebarannya. Diharapkan dari penelitian ini dapat terbentuk sebuah basis pengetahuan spasial yang bermanfaat. PENDAHULUAN 1 PENDAHULUAN Latar Belakang Kemiskinan merupakan suatu hal yang memiliki batasan yang luas, tetapi bagaimanapun juga batasan mengenai kemiskinan harus tetap diukur untuk kebijakan pemerintah. Menurut

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Instrumen Penelitian Pada penelitian ini bahan dan peralatan yang diperlukan sebagai berikut: 3.1.1 Bahan Dalam penelitian ini bahan yang dibutuhkan adalah data siswa kelas

Lebih terperinci

Abidah Elcholiqi, Beta Noranita, Indra Waspada

Abidah Elcholiqi, Beta Noranita, Indra Waspada Abidah Elcholiqi, Beta Noranita, Indra Waspada PENENTUAN BESAR PINJAMAN DI KOPERASI SIMPAN PINJAM DENGAN ALGORITMA K-NEAREST NEIGHBOR (Studi Kasus di Koperasi Simpan Pinjam BMT Bina Insani Pringapus) Abidah

Lebih terperinci

Pengenalan Pola. K-Means Clustering

Pengenalan Pola. K-Means Clustering Pengenalan Pola K-Means Clustering PTIIK - 2014 Course Contents 1 Definisi k-means 2 Algoritma k-means 3 Studi Kasus 4 Latihan dan Diskusi K-Means Clustering K-Means merupakan salah satu metode pengelompokan

Lebih terperinci

Data Mining Menggunakan Metode K-Means Klaster untuk Mengelompokkan Pemegang Polis Asuransi Kendaraan Bermotor di Indonesia

Data Mining Menggunakan Metode K-Means Klaster untuk Mengelompokkan Pemegang Polis Asuransi Kendaraan Bermotor di Indonesia Prosiding Statistika ISSN: 2460-6456 Data Mining Menggunakan Metode K-Means Klaster untuk Mengelompokkan Pemegang Polis Asuransi Kendaraan Bermotor di Indonesia Supiyah, 2 Aceng Komarudin Mutaqin, 3 Teti

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Dasar Penelitian Penelitian ini dilakukan berdasarkan rumusan masalah yang telah dijabarkan pada bab sebelumnya yaitu untuk mengklasifikasikan kelayakan kredit calon debitur

Lebih terperinci

KLASIFIKASI DATA MENGGUNAKAN JST BACKPROPAGATION MOMENTUM DENGAN ADAPTIVE LEARNING RATE

KLASIFIKASI DATA MENGGUNAKAN JST BACKPROPAGATION MOMENTUM DENGAN ADAPTIVE LEARNING RATE KLASIFIKASI DATA MENGGUNAKAN JST BACKPROPAGATION MOMENTUM DENGAN ADAPTIVE LEARNING RATE KLASIFIKASI DATA MENGGUNAKAN JST BACKPROPAGATION MOMENTUM DENGAN ADAPTIVE LEARNING RATE Warih Maharani Fakultas

Lebih terperinci

Memulai SPSS dan Mengelola File

Memulai SPSS dan Mengelola File MODUL 1 Memulai SPSS dan Mengelola File A. MEMULAI SPSS Untuk memulai SPSS for Windows langkah yang harus dilakukan adalah: Klik menu Start Programs SPSS for Windows SPSS for Windows. Kemudian akan ditampilkan

Lebih terperinci

Universitas Sebelas Maret Bidikmisi Applicant s Classification using C4.5 Algorithm

Universitas Sebelas Maret Bidikmisi Applicant s Classification using C4.5 Algorithm Universitas Sebelas Maret Bidikmisi Applicant s Classification using C4.5 Algorithm Muh. Safri Juliardi Program Studi Informatika Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Surakarta juliardi@student.uns.ac.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI penelitian. Pada bab ini akan dibahas literatur dan landasan teori yang relevan dengan 2.1 Tinjauan Pustaka Kombinasi metode telah dilakukan oleh beberapa peneliti

Lebih terperinci

Materi 1 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya

Materi 1 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya Materi 1 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya nizar.radliya@yahoo.com Nama Mahasiswa NIM Kelas 1. Memahami cakupan materi dan sistem perkuliahan Data Mining.

Lebih terperinci

BAB 3 METODE PENELITIAN. Bahan dan peralatan yang dibutuhkan dalam penelitian ini antara lain :

BAB 3 METODE PENELITIAN. Bahan dan peralatan yang dibutuhkan dalam penelitian ini antara lain : BAB 3 METODE PENELITIAN 3.1 Instrumen Penelitian Bahan dan peralatan yang dibutuhkan dalam penelitian ini antara lain : 3.1.1 Bahan Bahan yang digunakan dalam penelitian ini yaitu data siswa kelas SMA

Lebih terperinci

STK 211 Metode statistika. Agus Mohamad Soleh

STK 211 Metode statistika. Agus Mohamad Soleh STK 211 Metode statistika Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan dan diringkas? --> PEUBAH Univariate vs Bivariate vs Multivariate

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA Klasifikasi Data Mahasiswa Menggunakan Metode K-Means Untuk Menunjang Pemilihan Strategi Pemasaran

BAB 2 TINJAUAN PUSTAKA Klasifikasi Data Mahasiswa Menggunakan Metode K-Means Untuk Menunjang Pemilihan Strategi Pemasaran BAB 2 TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Beberapa penelitian terdahulu telah banyak yang menerapkan data mining, yang bertujuan dalam menyelesaikan beberapa permasalahan seputar dunia pendidikan. Khususnya

Lebih terperinci

KLASIFIKASI PADA TEXT MINING

KLASIFIKASI PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 KLASIFIKASI PADA TEXT MINING Budi Susanto Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa

Lebih terperinci

Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: X

Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: X Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 1, Januari 2018, hlm. 184-189 http://j-ptiik.ub.ac.id Klasifikasi Standar Produk Baja PT. Krakatau Steel (Persero)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Studi Sebelum penelitian ini dilakukan, sudah terdapat beberapa penelitian yang menjadi dasar untuk menyelesaikan penelitian ini, penelitian tersebut diantaranya sebagai

Lebih terperinci

ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK

ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK Dody Herdiana, S.T., M. Kom. Dosen PNS DPK pada Program Studi Teknik Informatika

Lebih terperinci

BAB I PENDAHULUAN. Perguruan tinggi yang baik dipengaruhi oleh kualitas. mahasiswa di dalamnya. Mahasiswa merupakan objek

BAB I PENDAHULUAN. Perguruan tinggi yang baik dipengaruhi oleh kualitas. mahasiswa di dalamnya. Mahasiswa merupakan objek 1 BAB I PENDAHULUAN 1.1. Latar Belakang Perguruan tinggi yang baik dipengaruhi oleh kualitas mahasiswa di dalamnya. Mahasiswa merupakan objek pembelajaran bagi perguruan tinggi sehingga jika prestasi mahasiswa

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini membahas tentang landasan teori yang medukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Data Mining Data mining adalah kegiatan menemukan

Lebih terperinci

PENERAPAN METODE KLASTERING DENGAN ALGORITMA K-MEANS UNTUK PREDIKSI KELULUSAN MAHASISWA PADA PROGRAM STUDI TEKNIK INFORMATIKA STRATA SATU

PENERAPAN METODE KLASTERING DENGAN ALGORITMA K-MEANS UNTUK PREDIKSI KELULUSAN MAHASISWA PADA PROGRAM STUDI TEKNIK INFORMATIKA STRATA SATU PENERAPAN METODE KLASTERING DENGAN ALGORITMA K-MEANS UNTUK PREDIKSI KELULUSAN MAHASISWA PADA PROGRAM STUDI TEKNIK INFORMATIKA STRATA SATU Gita Premashanti Trayasiwi Program Studi Teknik Informatika S1,

Lebih terperinci

Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer

Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer Mewati Ayub Jurusan Teknik Informatika, Fakultas Teknologi Informasi Universitas Kristen Maranatha, Bandung Email : mewati.ayub@eng.maranatha.edu

Lebih terperinci

KLASIFIKASI PADA TEXT MINING

KLASIFIKASI PADA TEXT MINING Budi Susanto KLASIFIKASI PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa algoritma klasifikasi: KNN Naïve Bayes Decision

Lebih terperinci

3.6 Data Mining Klasifikasi Algoritma k-nn (k-nearest Neighbor) Similaritas atribut numerik

3.6 Data Mining Klasifikasi Algoritma k-nn (k-nearest Neighbor) Similaritas atribut numerik DAFTAR ISI PERNYATAAN... iii PRAKATA... vi DAFTAR ISI... viii DAFTAR GAMBAR... xi DAFTAR TABEL... xiv DAFTAR PERSAMAAN... xv DAFTAR ALGORITMA... xvi DAFTAR LAMPIRAN... xvii INTISARI... xviii ABSTRACT...

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN :

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN : Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 PENERAPAN DATA MINING UNTUK MEMBENTUK KELOMPOK BELAJAR MENGGUNAKAN METODE CLUSTERING DI SMPN 19 BANDUNG Andre Catur Prasetyo Teknik Informatika Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI Tinjauan Pustaka Penelitian terkait metode clustering atau algoritma k-means pernah di

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI Tinjauan Pustaka Penelitian terkait metode clustering atau algoritma k-means pernah di BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Penelitian terkait metode clustering atau algoritma k-means pernah di lakukan oleh Muhammad Toha dkk (2013), Sylvia Pretty Tulus (2014), Johan

Lebih terperinci

PENGKLASIFIKASIAN MINAT BELAJAR MAHASISWA DENGAN MODEL DATA MINING MENGGUNANAKAN METODE CLUSTERING

PENGKLASIFIKASIAN MINAT BELAJAR MAHASISWA DENGAN MODEL DATA MINING MENGGUNANAKAN METODE CLUSTERING PENGKLASIFIKASIAN MINAT BELAJAR MAHASISWA DENGAN MODEL DATA MINING MENGGUNANAKAN METODE CLUSTERING Marlindawati 1) Andri 2) 1) Manajemen Informatika Universitas Bina Darma Jl. Ahmad Yani No. 3, Palembang

Lebih terperinci

Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) ISSN: Yogyakarta, Maret 2016

Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) ISSN: Yogyakarta, Maret 2016 PENERAPAN DATA MINING PEMAKAIAN AIR PELANGGAN UNTUK MENENTUKAN KLASIFIKASI POTENSI PEMAKAIAN AIR PELANGGAN BARU DI PDAM TIRTA RAHARJA MENGGUNAKAN ALGORITMA K-MEANS Gunawan Abdillah, Firman Ananda Putra,

Lebih terperinci

Klasifikasi Profil Siswa SMA/SMK yang Masuk PTN (Perguruan Tinggi Negeri) dengan k-nearest Neighbor

Klasifikasi Profil Siswa SMA/SMK yang Masuk PTN (Perguruan Tinggi Negeri) dengan k-nearest Neighbor Klasifikasi Profil Siswa SMA/SMK yang Masuk PTN (Perguruan Tinggi Negeri) dengan k-nearest Neighbor Yuandri Trisaputra, Indriyani, Shellafuri Mardika Biru, Muhammad Ervan Departemen Ilmu Komputer, FMIPA,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Data Mining Faktor penentu bagi usaha atau bisnis apapun pada masa sekarang ini adalah kemampuan untuk menggunakan informasi seefektif mungkin. Penggunaan data secara tepat karena

Lebih terperinci

SISTEM KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN)

SISTEM KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN) SISTEM KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN) Fitri Yunita Fakultas Teknik dan Ilmu Komputer, Universitas Islam Indragiri Email:Fitriyun@gmail.com Abstrak Diabetes

Lebih terperinci

PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER

PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER I. PENDAHULUAN Mahasiswa merupakan salah satu aspek penting dalam evaluasi keberhasilan penyelenggaraan

Lebih terperinci

BAB IV PREPROCESSING DATA MINING

BAB IV PREPROCESSING DATA MINING BAB IV PREPROCESSING DATA MINING A. Konsep Sebelum diproses data mining sering kali diperlukan preprocessing. Data preprocessing menerangkan tipe-tipe proses yang melaksanakan data mentah untuk mempersiapkan

Lebih terperinci

Statistika Deskriptif

Statistika Deskriptif Statistika Deskriptif Materi 2 - STK511 AnalisisStatistika September 26, 2017 Sep, 2017 1 Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan

Lebih terperinci

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Data Mining Kode/SKS: SS / (2/1/0) Dosen : SWP, KF Semester : VII

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Data Mining Kode/SKS: SS / (2/1/0) Dosen : SWP, KF Semester : VII RPS1SK08 Kurikulum 2014, Edisi : September2014 No.Revisi : 00 Hal: 1 dari 6 A. : 1. CP 3.2 : Melakukan analisis data dengan menggunakan program statistik 2. CP 10.3 : Mampu menganalisis big data dengan

Lebih terperinci

Penghitungan k-nn pada Adaptive Synthetic-Nominal (ADASYN-N) dan Adaptive Synthetic-kNN (ADASYN-kNN) untuk Data Nominal- Multi Kategori

Penghitungan k-nn pada Adaptive Synthetic-Nominal (ADASYN-N) dan Adaptive Synthetic-kNN (ADASYN-kNN) untuk Data Nominal- Multi Kategori Penghitungan k-nn pada Adaptive Synthetic-Nominal (ADASYN-N) dan Adaptive Synthetic-kNN (ADASYN-kNN) untuk Data Nominal- Multi Kategori Abstrak 1 Sri Rahayu, 2 Teguh Bharata Adji & 3 Noor Akhmad Setiawan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Penelitian Penelitian mengenai peningkatan kecepatan prediksi produksi susu sapi ini menggunakan metode eksperimen dengan metode sebagai berikut: a. Pengumpulan data

Lebih terperinci

MODUL V REGRESI, KORELASI, ANALISIS VARIAN, VALIDITAS DAN RELIABILITAS

MODUL V REGRESI, KORELASI, ANALISIS VARIAN, VALIDITAS DAN RELIABILITAS REGRESI, KORELASI, ANALISIS VARIAN, VALIDITAS DAN RELIABILITAS A. TUJUAN PRAKTIKUM Dengan adanya Praktikum Statistika Industri Modul V tentang Regresi, Korelasi, Analisis Varian, Validitas dan Reliabilitas

Lebih terperinci

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP Hak cipta dan penggunaan kembali: Lisensi ini mengizinkan setiap orang untuk menggubah, memperbaiki, dan membuat ciptaan turunan bukan untuk kepentingan komersial, selama anda mencantumkan nama penulis

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Pada bab ini akan dijelaskan tahap-tahap yang dilakukan dalam melakukan penelitian. Tahapan penelitian berguna agar pelaksanaan penelitian dapat berjalan dengan baik dan sistematis

Lebih terperinci

REVIEW BIOSTATISTIK DESKRIPTIF

REVIEW BIOSTATISTIK DESKRIPTIF REVIEW BIOSTATISTIK DESKRIPTIF POKOK BAHASAN 1. Konsep statistik deskriptif 2. Data dan variabel 3. Nilai Tengah (Ukuran Pusat), posisi dan variasi) pada data tunggal dan kelompok 4. Penyajian data 5.

Lebih terperinci

Ari Kurniawan

Ari Kurniawan KLASTERISASI KOMPETENSI GURU MENGGUNAKAN HASIL PENILAIAN PORTOFOLIO DENGAN METODE K-MEANS CLUSTERING Ari Kurniawan 2208206015 Dosen Pembimbing : Mochamad Hariadi, S.T., M.Sc., Ph.D. S2 TEKNIK ELEKTRO (TELEMATIKA)

Lebih terperinci

STATISTIKA DESKRIPTIF

STATISTIKA DESKRIPTIF STATISTIKA DESKRIPTIF 1 Statistika deskriptif berkaitan dengan penerapan metode statistika untuk mengumpulkan, mengolah, menyajikan dan menganalisis data kuantitatif secara deskriptif. Statistika inferensia

Lebih terperinci

UKDW BAB I PENDAHULUAN Latar Belakang

UKDW BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Konsumsi, Finansial, semakin menjadi hal yang tidak dapat dipisahkan seiring terus berkembangnya suatu negara. Transaksi, jual, beli, sudah menjadi kata yang sangat

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN 1.1. Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Analisis cluster merupakan salah satu alat yang penting dalam pengolahan data statistik untuk melakukan analisis data. Analisis cluster merupakan seperangkat metodologi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Penambangan Data (Data Mining) Pengertian data mining, berdasarkan beberapa orang: 1. Data mining (penambangan data) adalah suatu proses untuk menemukan suatu pengetahuan atau

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 1:,, Statistika FMIPA Universitas Islam Indonesia Data Populasi dan Sampel Menurut Websters New World Dictionary, data berarti sesuatu yang diketahui atau dianggap. Dengan demikian, data dapat memberikan

Lebih terperinci

STATISTIK DESKRIPTIF. Abdul Rohman, S.E

STATISTIK DESKRIPTIF. Abdul Rohman, S.E LOGO STATISTIK DESKRIPTIF Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data menyajikan data menganalisis data dengan metode tertentu menginterpretasikan hasil analisis KEGUNAAN? Melalui

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Untuk melakukan sebuah penelitian, diperlukan adanya tahapan-tahapan yang tersusun dengan baik dan sistematis agar pelaksanaan penelitian tepat mencapai tujuan yang diharapkan.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan sistematika tahapan yang dilaksanakan selama pembuatan penelitian tugas akhir. Secara garis besar metodologi penelitian tugas akhir ini dapat

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 2: Penyajian Data dan Statistika FMIPA Universitas Islam Indonesia 1 2 Biasa Distribusi Frekuensi 3 Stem-and-Leaf Plot Histogram Scatter Plot Boxplot Penyajian Data Data diuraikan dalam bentuk kalimat.

Lebih terperinci

MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING

MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING Marlindawati1), Andri2) 1), 2) Sistem Informasi UNIVERSITAS BINA DARMA Palembang Jl, Jend. A.Yani

Lebih terperinci

`tz áàxü `tçt}xåxç hç äa `â{tååtw çt{ lézçt~tüàt

`tz áàxü `tçt}xåxç hç äa `â{tååtw çt{ lézçt~tüàt Wihandaru Sotya Pamungkas Bagan Analisis Data 1 Skala Pengukuran Nominal Ordinal Interval Rasio Skala Angka hanya menunjukkan identifikasi Angka menunjukkan posisi relatif objek. Angka menunjukkan perbedaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah

BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Indeks Prestasi Kumulatif dan Lama Studi Mahasiswa yang telah menyelesaikan keseluruhan beban program studi yang telah ditetapkan dapat dipertimbangkan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan rangkaian dari langkah-langkah yang diterapkan dalam penelitian, secara umum dan khusus langkah-langkah tersebut tertera pada Gambar flowchart

Lebih terperinci

BAB IV PEMBAHASAN. A. Hasil Model Radial Basis Function Neural Network (RBFNN) Langkah-langkah untuk menentukan model terbaik Radial Basis Function

BAB IV PEMBAHASAN. A. Hasil Model Radial Basis Function Neural Network (RBFNN) Langkah-langkah untuk menentukan model terbaik Radial Basis Function BAB IV PEMBAHASAN A. Hasil Model Radial Basis Function Neural Network (RBFNN) Langkah-langkah untuk menentukan model terbaik Radial Basis Function Neural Network (RBFNN) untuk diagnosis penyakit jantung

Lebih terperinci

STK 211 Metode statistika. Materi 2 Statistika Deskriptif

STK 211 Metode statistika. Materi 2 Statistika Deskriptif STK 211 Metode statistika Materi 2 Statistika Deskriptif 1 Statistika Deskriptif Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Penyajian data dapat dilakukan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Data Mining Data mining adalah bagian dari knowledge discovery di database yang menganalisa database berukuran besar untuk menemukan pola yang berguna pada data (Silberschatz,

Lebih terperinci

SPSS FOR WINDOWS BASIC. By : Syafrizal

SPSS FOR WINDOWS BASIC. By : Syafrizal SPSS FOR WINDOWS BASIC By : Syafrizal SPSS merupakan software statistik yang paling populer, fasilitasnya sangat lengkap dibandingkan dengan software lainnya, penggunaannya pun cukup mudah Langkah pertama

Lebih terperinci

Mengolah dan Menganalisis Data

Mengolah dan Menganalisis Data Mengolah dan Menganalisis Data Dr. Eko Pujiyanto, S.Si., M.T. Materi Data Mengolah dan analisis data Memilih alat analisis yang tepat Data Data 1 Jamak dari DATUM artinya informasi yang diperoleh dari

Lebih terperinci

Hierarchical Market Basket Analysis berbasis Algoritma Apriori

Hierarchical Market Basket Analysis berbasis Algoritma Apriori JUISI, Vol. 01, No. 01, Februari 2015 21 Hierarchical Market Basket Analysis berbasis Algoritma Apriori David Boy Tonara 1 Abstrak Market Basket Analysis adalah salah satu metode pada data mining yang

Lebih terperinci

4 HASIL DA PEMBAHASA

4 HASIL DA PEMBAHASA 4 HASIL DA PEMBAHASA 4.1 Pengumpulan Data Pada proses pengumpulan data, diperoleh data awal berjumlah 5883 mahasiswa non aktif Program Studi Matematika FMIPA-UT dengan 33 atribut kategori dan numerik.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Empiris BAB II TINJAUAN PUSTAKA Pada penelitian ini, peneliti menggunakan beberapa penelitian yang pernah dilakukan sebelumnya sebagai tinjauan studi. Berikut ialah tinjauan empiris yang digunakan:

Lebih terperinci

Pengantar Pengolahan Data Statistik Menggunakan SPSS 22. Isram Rasal ST, MMSI, MSc

Pengantar Pengolahan Data Statistik Menggunakan SPSS 22. Isram Rasal ST, MMSI, MSc Pengantar Pengolahan Data Statistik Menggunakan SPSS 22 Isram Rasal ST, MMSI, MSc Statistika Statistika Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi,

Lebih terperinci

Materi UAS: 1. Indeks 2. Trend Linear dan Non Linear 3. Regresi dan korelasi sederhana

Materi UAS: 1. Indeks 2. Trend Linear dan Non Linear 3. Regresi dan korelasi sederhana STATISTIK I Buku Acuan: 1. Pokok-pokok materi Statistik I oleh Ir.M.Iqbql Hasan,M.M, edisi 2 cetakan 6 th 2010 2. Dasar-dasar statistika untuk Ekonomi oleh Drs. Danang Sunyoto,S.H., S.E.,M.M.,cetakan I

Lebih terperinci

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI DETEKSI OUTLIER PADA DATA CAMPURAN NUMERIK DAN KATEGORIKAL MENGGUNAKAN ALGORITMA ENHANCED CLASS OUTLIER DISTANCE BASED (ECODB) (Studi Kasus : Data Kredit BPR XYZ) TUGAS AKHIR Diajukan Untuk Memenuhi Salah

Lebih terperinci

Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil

Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil Ronny Susetyoko, Elly Purwantini Politeknik Elektronika Negeri Surabaya

Lebih terperinci

TIPE DATA DAN EKSPLORASI DATA MENGGUNAKAN WEKA DAN R

TIPE DATA DAN EKSPLORASI DATA MENGGUNAKAN WEKA DAN R Modul Praktikum Data Mining 2016 PERTEMUAN 3 TIPE DATA DAN EKSPLORASI DATA MENGGUNAKAN WEKA DAN R TUJUAN PRAKTIKUM Mahasiswa akan dapat memahami Tipe data, Eksplorasi Data, Statistika ringkasan, Visualisasi

Lebih terperinci

Student Clustering Based on Academic Using K-Means Algoritms

Student Clustering Based on Academic Using K-Means Algoritms Student Clustering Based on Academic Using K-Means Algoritms Hironimus Leong, Shinta Estri Wahyuningrum Faculty of Computer Science, Faculty of Computer Science Unika Soegijapranata marlon.leong@gmail.com

Lebih terperinci