DATA PREPROCESSING. Budi Susanto (versi 1.2)

Ukuran: px
Mulai penontonan dengan halaman:

Download "DATA PREPROCESSING. Budi Susanto (versi 1.2)"

Transkripsi

1 DATA PREPROCESSING Budi Susanto (versi 1.2) Kenali Data Anda Atribut Data Memahami tipe atribut Membantu membetulkan data saat integrasi data Deskripsi Statistik Data Memudahkan untuk mengisi nilai yang kosong, memperhalus noise data, mengetahui outlier selama pemrosesan data Mengukur Kesamaan dan ketidaksamaan Dapat berguna juga untuk mendeteksi outlier Untuk melakukan klasifikasi Pada umumnya untuk mengukur kedekatan. 1

2 Data Data yang ada pada umumnya: Banyak noise Ukuran yang besar Dapat merupakan campuran dari berbagai macam sumber Memahami data sangat penting untuk tahap preprosesing. Atribut Data Mencerminkan karakteristik objek data. Tipe atribut menentukan himpunan nilai yang diperbolehkan. Nominal Binary (Binomial) Ordinal Numerik n Interval-scale n Ratio-scale Diskret atau Continue 2

3 Deskripsi Statistik Mengukur lokasi pusat/tengah dari distribusi data Mean Median Mode Midrange Data Mining: Concepts and Data Techniques, Preprocessing 3th ed., - Budi p. 47 Susanto - FTI UKDW Deskripsi Statistik Mengukur penyebaran data Rentang dan Kuartil Variasi dan Standard Deviasi Data Mining: Concepts and Data Techniques, Preprocessing 3th ed., - Budi p. 48 Susanto - FTI UKDW 3

4 BoxPlot Interquartil Range (IQR) Q3 Q1 Outlier data 1.5 x IQR Mengukur Kesamaan Dalam aplikasi data mining, seperti clustering, analisis outlier, klasifikasi nearest-neighbor, membutuhkan cara untuk menilai dua objek data serupa atau tidak. Minkwoski distance n Euclidean dan Manhattan Cosine 4

5 Mengukur Kesamaan Mengapa Perlu Data Preprocessing? Data mentah yang ada sebagian besar kotor Tidak komplet n Berisi data yang hilang/kosong n Kekurangan atribut yang sesuai n Hanya berisi data aggregate Banyak noise n Berisi data yang Outlier n Berisi error Tidak konsisten n Berisi nilai yang berbeda dalam suatu kode atau nama 5

6 Mengapa Data Preprocessing Penting? Data yang tidak berkualitas, akan menghasilkan kualitas mining yang tidak baik pula. Data Preprocessing, cleaning, dan transformasi merupakan pekerjaan mayoritas dalam aplikasi data mining (90%). Ukuran Kualitas Data Accuracy Completeness Consistency Timeliness Believability Value added Interpretability Accessibility 6

7 Teknik Data Preprocessing Data Cleaning Data integration Data Reduction Data Transformation Data Cleaning Proses untuk membersihkan data dengan beberapa teknik Memperkecil noise membetulkan data yang tidak konsisten. Mengisi missing value Mengidentifikasi atau membuang outlier 7

8 Data Cleaning: Missing Values Mengabaikan record Biasanya untuk label klasifikasi yang kosong Mengisikan secara manual Menggunakan mean/median dari atribut yang mengandung missing value Mean dapat dipakai jika distribusi data normal Median digunakan jika distribusi data tidak normal (condong) Menggunakan nilai global Menggunakan nilai termungkin Menerapkan regresi Data Cleaning: Missing Values Angkatan IPK Pekerjaan Kelamin Programmer L 2005? Ibu RT P ? P Contoh untuk missing value IPK diisi dengan ratarata IPK atau diisi dengan nilai IPK yang paling mungkin untuk angkatan 2005 dan Perempuan serta menjadi ibu rumah tangga. Contoh untuk missing value Pekerjaan, dapat diisi dengan pekerjaan yang paling banyak muncul. 8

9 Data Cleaning: Noisy Data Noise data adalah suatu kesalahan acak atau variasi dalam variabel terukur. Teknik-teknik Binning n Smoothing by bin means n Smoothing by bin medians n Smoothing by bin boundaries Regression Outlier Analysis Metode Binning Metode ini akan melakukan pengelompokan terhadap kumpulan data. Metode binning merupakan salah satu pendekatan dicretization. Urutan proses: Urutkan data secara ascending Lakukan partisi ke dalam bins n Dapat dengan equal-width (jarak) atau equal-depth (frekuensi) Kemudian dapat di-smoothing: smooth by means, smooth by median, smooth by boundaries, dsb. 9

10 Partisi dalam Metode Binning Partisi Equal-Width Algoritma membagi data ke dalam k interval ukuran yang sama. Lebar interval adalah n w = (max-min)/k Batasan interval adalah n min+w, min+2w,, min+(k-1)w Partisi Equal-depth Membagi data ke dalam k kelompok dimana tiap kelompok berisi jumlah yang sama Contoh Partisi Binning Data: 0, 4, 12, 16, 16, 18, 24, 26, 28 Equal Width BIN1 = 0, 4 [-, 10] BIN2 = 12, 16, 16, 18 [10, 20] BIN3 = 24, 26, 28 [20, +] Equal Depth BIN1 = 0, 4, 12 BIN2 = 16, 16, 18 BIN3 = 24, 26, 28 10

11 Smoothing pada Partisi Binning Smoothing berdasar rata-rata Semua nilai di tiap bin diganti dengan rata-rata nilai tiap bin Smoothing berdasar batasan Setiap nilai bin diganti dengan nilai yang paling dekat dari batasan nilai Batasan nilai terbentuk dari [min, max] tiap bin Data Cleaning: Outliers salary cluster outlier age 11

12 Data Cleaning: Regresi y (salary) Y1 y = x + 1 X1 x (age) Percobaan Data Cleaning Dataset Labor-Negotiations 12

13 Workflow #1 reglin Data Integration Data dapat bersumber dari beberapa sumber Teknik Analisis korelasi Atribut redudan duplikasi 13

14 Covariance Correlation integration Data Transformation Tujuannya: diharapkan lebih efisien dalam proses data mining dan mungkin juga agar pola yang dihasilkan lebih mudah dipahami. Strategi: Smoothing Attribute (feature) construction Aggregation Normalization Discretization 14

15 Data Transformation: Aggregation dan Smoothing coba1 Data Transformation: Normalization Unit ukuran dapat mempengaruhi analisis data. Unit yang lebih kecil akan menghasilkan rentang nilai yang besar Atribut akan memiliki bobot yang lebih besar dari atribut lain Sehingga Data perlu dinormalisasi atau dibakukan. Hasil suatu normalisasi adalah [-1, 1] atau [0.0, 1.0] Diperlukan dalam klasifikasi (termasuk neural network dan nearest network) dan clustering. 15

16 Data Transformation: Metode Normalization Min-max Z-score Decimal scaling normalization 16

17 Data Transformation: Discretization Melakukan pergantian atribut numerik menjadi interval label (misalnya: 0-10,11-20, dst.) atau konseptual label (misalnya: bawah, tengah, atas) discretization discret 17

18 Data Transformation: Data Reduction Teknik Dimensionality reduction n Wavelet transform n Principal Component Analysis n Attribute Subset Selection Numerosity reduction n sampling Data compression TERIMA KASIH! Budi Susanto 18

Data Preprocessing. oleh: Entin Martiana

Data Preprocessing. oleh: Entin Martiana Data Preprocessing oleh: Entin Martiana Data Data yang ada pada umumnya: Banyak noise Ukuran yang besar Dapat merupakan campuran dari berbagai sumber Memahami data sangat penting untuk preprocessing September

Lebih terperinci

DATA TRANSFORMATION PADA DATA MINING ABSTRAK

DATA TRANSFORMATION PADA DATA MINING ABSTRAK DT TRNSFORMTION PD DT MINING Hartarto Junaedi*), Herman Budianto**), Indra Maryati**), dan Yuliana Melani**) *) Jurusan Sistem Informasi Bisnis Sekolah Tinggi Teknik Surabaya **) Jurusan Teknik Informatika

Lebih terperinci

TAKARIR. : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas

TAKARIR. : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas TAKARIR Data Mining Clustering Cluster Iteratif Random Centroid : Penggalian data : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas : Berulang : Acak : Pusat area KDD (Knowledge

Lebih terperinci

ANALISIS CLUSTER PADA DOKUMEN TEKS

ANALISIS CLUSTER PADA DOKUMEN TEKS Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 ANALISIS CLUSTER PADA DOKUMEN TEKS Budi Susanto (versi 1.3) Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep analisis clustering Memahami

Lebih terperinci

Tahapan Proses KDD (Peter Cabena)

Tahapan Proses KDD (Peter Cabena) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #2 Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Tahapan Proses KDD (Peter Cabena) Penentuan Sasaran Bisnis (Business

Lebih terperinci

Tipe Clustering. Partitional Clustering. Hirerarchical Clustering

Tipe Clustering. Partitional Clustering. Hirerarchical Clustering Analisis Cluster Analisis Cluster Analisis cluster adalah pengorganisasian kumpulan pola ke dalam cluster (kelompok-kelompok) berdasar atas kesamaannya. Pola-pola dalam suatu cluster akan memiliki kesamaan

Lebih terperinci

KLASIFIKASI PADA TEXT MINING

KLASIFIKASI PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 KLASIFIKASI PADA TEXT MINING Budi Susanto Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI penelitian. Pada bab ini akan dibahas literatur dan landasan teori yang relevan dengan 2.1 Tinjauan Pustaka Kombinasi metode telah dilakukan oleh beberapa peneliti

Lebih terperinci

KLASIFIKASI PADA TEXT MINING

KLASIFIKASI PADA TEXT MINING Budi Susanto KLASIFIKASI PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa algoritma klasifikasi: KNN Naïve Bayes Decision

Lebih terperinci

Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer

Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer Mewati Ayub Jurusan Teknik Informatika, Fakultas Teknologi Informasi Universitas Kristen Maranatha, Bandung Email : mewati.ayub@eng.maranatha.edu

Lebih terperinci

Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) ISSN: Yogyakarta, Maret 2016

Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) ISSN: Yogyakarta, Maret 2016 PENERAPAN DATA MINING PEMAKAIAN AIR PELANGGAN UNTUK MENENTUKAN KLASIFIKASI POTENSI PEMAKAIAN AIR PELANGGAN BARU DI PDAM TIRTA RAHARJA MENGGUNAKAN ALGORITMA K-MEANS Gunawan Abdillah, Firman Ananda Putra,

Lebih terperinci

Data Mining Menggunakan Metode K-Means Klaster untuk Mengelompokkan Pemegang Polis Asuransi Kendaraan Bermotor di Indonesia

Data Mining Menggunakan Metode K-Means Klaster untuk Mengelompokkan Pemegang Polis Asuransi Kendaraan Bermotor di Indonesia Prosiding Statistika ISSN: 2460-6456 Data Mining Menggunakan Metode K-Means Klaster untuk Mengelompokkan Pemegang Polis Asuransi Kendaraan Bermotor di Indonesia Supiyah, 2 Aceng Komarudin Mutaqin, 3 Teti

Lebih terperinci

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Data Mining Kode/SKS: SS / (2/1/0) Dosen : SWP, KF Semester : VII

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Data Mining Kode/SKS: SS / (2/1/0) Dosen : SWP, KF Semester : VII RPS1SK08 Kurikulum 2014, Edisi : September2014 No.Revisi : 00 Hal: 1 dari 6 A. : 1. CP 3.2 : Melakukan analisis data dengan menggunakan program statistik 2. CP 10.3 : Mampu menganalisis big data dengan

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 2: Penyajian Data dan Statistika FMIPA Universitas Islam Indonesia 1 2 Biasa Distribusi Frekuensi 3 Stem-and-Leaf Plot Histogram Scatter Plot Boxplot Penyajian Data Data diuraikan dalam bentuk kalimat.

Lebih terperinci

3.6 Data Mining Klasifikasi Algoritma k-nn (k-nearest Neighbor) Similaritas atribut numerik

3.6 Data Mining Klasifikasi Algoritma k-nn (k-nearest Neighbor) Similaritas atribut numerik DAFTAR ISI PERNYATAAN... iii PRAKATA... vi DAFTAR ISI... viii DAFTAR GAMBAR... xi DAFTAR TABEL... xiv DAFTAR PERSAMAAN... xv DAFTAR ALGORITMA... xvi DAFTAR LAMPIRAN... xvii INTISARI... xviii ABSTRACT...

Lebih terperinci

BAB IV PREPROCESSING DATA MINING

BAB IV PREPROCESSING DATA MINING BAB IV PREPROCESSING DATA MINING A. Konsep Sebelum diproses data mining sering kali diperlukan preprocessing. Data preprocessing menerangkan tipe-tipe proses yang melaksanakan data mentah untuk mempersiapkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah

BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Indeks Prestasi Kumulatif dan Lama Studi Mahasiswa yang telah menyelesaikan keseluruhan beban program studi yang telah ditetapkan dapat dipertimbangkan

Lebih terperinci

Ari Kurniawan

Ari Kurniawan KLASTERISASI KOMPETENSI GURU MENGGUNAKAN HASIL PENILAIAN PORTOFOLIO DENGAN METODE K-MEANS CLUSTERING Ari Kurniawan 2208206015 Dosen Pembimbing : Mochamad Hariadi, S.T., M.Sc., Ph.D. S2 TEKNIK ELEKTRO (TELEMATIKA)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Studi Sebelum penelitian ini dilakukan, sudah terdapat beberapa penelitian yang menjadi dasar untuk menyelesaikan penelitian ini, penelitian tersebut diantaranya sebagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Empiris BAB II TINJAUAN PUSTAKA Pada penelitian ini, peneliti menggunakan beberapa penelitian yang pernah dilakukan sebelumnya sebagai tinjauan studi. Berikut ialah tinjauan empiris yang digunakan:

Lebih terperinci

MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING

MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING Marlindawati1), Andri2) 1), 2) Sistem Informasi UNIVERSITAS BINA DARMA Palembang Jl, Jend. A.Yani

Lebih terperinci

K-PROTOTYPE UNTUK PENGELOMPOKAN DATA CAMPURAN

K-PROTOTYPE UNTUK PENGELOMPOKAN DATA CAMPURAN 1 K-PROTOTYPE UNTUK PENGELOMPOKAN DATA CAMPURAN Rani Nooraeni*, Dr. Jadi Supriadi, DEA, Zulhanif, S.Si,M.Sc Jurusan statistika terapan, Fakultas MIPA UNPAD rnooraeni@gmail.com* Abstrak.Membagi suatu data

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDHULUN Listrik merupakan sumber daya yang sangat dibutuhkan saat ini. Penggunaan listrik setiap tahun, bahkan setiap bulan terus meningkat. Hal ini dibuktikan dengan selalu bertambahnya

Lebih terperinci

Pertemuan 8, 9, 10. Teknik-teknik Data Mining

Pertemuan 8, 9, 10. Teknik-teknik Data Mining Pertemuan 8, 9, 10 Teknik-teknik Data Mining Outline Teknik-teknik data mining terdiri dari : Analisis cluster Induksi (pohon keputusan dan aturan induksi) Jaringan syaraf buatan (Neural Network) Online

Lebih terperinci

PENGUKURAN DATA. 1. Terminology Populasi & Sampel. Peubah/Variabel. Peubah/Variabel

PENGUKURAN DATA. 1. Terminology Populasi & Sampel. Peubah/Variabel. Peubah/Variabel PENGUKURAN DATA 1. Terminology Populasi & Sampel Populasi: himpunan komplit dari individual, obyek atau nilai dari suatu pengamatan Seringkali terlalu besar untuk dikaji secara keseluruhan Mungkin nyata

Lebih terperinci

SPSS FOR WINDOWS BASIC. By : Syafrizal

SPSS FOR WINDOWS BASIC. By : Syafrizal SPSS FOR WINDOWS BASIC By : Syafrizal SPSS merupakan software statistik yang paling populer, fasilitasnya sangat lengkap dibandingkan dengan software lainnya, penggunaannya pun cukup mudah Langkah pertama

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah Dunia semakin berkembang dengan pesat. Perkembangan itu terjadi di berbagai bidang, baik di bidang perindustrian, perbankan maupun di bidang kesehatan.

Lebih terperinci

LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA. Modul II CLUSTERING

LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA. Modul II CLUSTERING LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA Modul II CLUSTERING TUJUA PRAKTIKUM 1. Mahasiswa mempunyai pengetahuan dan kemampuan dasar dalam

Lebih terperinci

I. PENGENALAN SOFTWARE (SPSS) UNTUK ANALISIS DATA 13 Desember 2005

I. PENGENALAN SOFTWARE (SPSS) UNTUK ANALISIS DATA 13 Desember 2005 1 I. PENGENALAN SOFTWARE (SPSS) UNTUK ANALISIS DATA 13 Desember 2005 Membuat Database Untuk membuat database di SPSS, langkah pertama yang harus dilakukan adalah membuat variabel di layar tampilan variable

Lebih terperinci

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA.

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA. STATISTIKA INDUSTRI I Agustina Eunike, ST., MT., MBA. PERTEMUAN-1 DATA Data Hasil pengamatan pada suatu populasi Untuk mendapatkan informasi yang akurat Pengumpulan data Pengolahan data Penyajian data

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 1:,, Statistika FMIPA Universitas Islam Indonesia Data Populasi dan Sampel Menurut Websters New World Dictionary, data berarti sesuatu yang diketahui atau dianggap. Dengan demikian, data dapat memberikan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Seiring dengan perkembangan zaman, perusahaanperusahaan dan sekolah ataupun universitas yang ada di Indonesia juga mengalami perkembangan. Hal ini dialami oleh perusahaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Tinjauan Pustaka Pada penelitian yang dilakukan oleh (Chen, Sain, & Guo, 2012) berfokus untuk mengetahui pola penjualan, pelanggan mana yang paling berharga, pelanggan mana yang

Lebih terperinci

BAB 1 KONSEP DATA MINING 2 Gambar 1.1 Perkembangan Database Permasalahannya kemudian adalah apa yang harus dilakukan dengan data-data itu. Sudah diket

BAB 1 KONSEP DATA MINING 2 Gambar 1.1 Perkembangan Database Permasalahannya kemudian adalah apa yang harus dilakukan dengan data-data itu. Sudah diket Bab1 Konsep Data Mining POKOK BAHASAN: Konsep dasar dan pengertian Data Mining Tahapan dalam Data Mining Model Data Mining Fungsi Data Mining TUJUAN BELAJAR: Setelah mempelajari materi dalam bab ini, mahasiswa

Lebih terperinci

DETEKSI OUTLIER BERBASIS KLASTER PADA DATA SET DENGAN ATRIBUT CAMPURAN NUMERIK DAN KATEGORIKAL TESIS DWI MARYONO

DETEKSI OUTLIER BERBASIS KLASTER PADA DATA SET DENGAN ATRIBUT CAMPURAN NUMERIK DAN KATEGORIKAL TESIS DWI MARYONO DETEKSI OUTLIER BERBASIS KLASTER PADA DATA SET DENGAN ATRIBUT CAMPURAN NUMERIK DAN KATEGORIKAL TESIS DWI MARYONO 5107201006 LATAR BELAKANG MASALAH Deteksi Outlier Data Set Numerik : distance-based, density-based,

Lebih terperinci

DASAR PEMILIHAN UJI STATISTIK

DASAR PEMILIHAN UJI STATISTIK 01/27/10 1 DASAR PEMILIHAN UJI STATISTIK Saptawati Bardosono PENDAHULUAN Pada setiap penelitian biasanya data dikumpulkan untuk sejumlah besar variabel, sehingga dapat menyulitkan pemilihan uji statistik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Umum 2.1.1 Pengertian Data dan informasi Data merupakan aliran fakta yang mewakili kejadian yang terjadi dalam organisasi atau dalam lingkungan fisik sebelum mereka diatur

Lebih terperinci

ANALISIS CLUSTERING MENGGUNAKAN METODE K-MEANS DALAM PENGELOMPOKKAN PENJUALAN PRODUK PADA SWALAYAN FADHILA

ANALISIS CLUSTERING MENGGUNAKAN METODE K-MEANS DALAM PENGELOMPOKKAN PENJUALAN PRODUK PADA SWALAYAN FADHILA 110 ANALISIS CLUSTERING MENGGUNAKAN METODE K-MEANS DALAM PENGELOMPOKKAN PENJUALAN PRODUK PADA SWALAYAN FADHILA Benri Melpa Metisen, Herlina Latipa Sari Program Studi Teknik Informatika Fakultas Ilmu Komputer

Lebih terperinci

PENERAPAN DATA MINING UNTUK MENENTUKAN STRATEGI PENJUALAN PADA TOKO BUKU GRAMEDIA MENGGUNAKAN METODE CLUSTERING

PENERAPAN DATA MINING UNTUK MENENTUKAN STRATEGI PENJUALAN PADA TOKO BUKU GRAMEDIA MENGGUNAKAN METODE CLUSTERING PENERAPAN DATA MINING UNTUK MENENTUKAN STRATEGI PENJUALAN PADA TOKO BUKU GRAMEDIA MENGGUNAKAN METODE CLUSTERING Tri Utami Putri 1, M.Izman H,S.T.,M.M.,PhD 2, Susan Dian PS M.Kom 3 Mahasiswa Universitas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Konsumsi susu sapi segar di Indonesia sejak beberapa tahun terakhir mengalami peningkatan, hingga tahun 2011 tercatat 11 liter per tahun per kapita. Namun peningkatan

Lebih terperinci

PENERAPAN NAIVE BAYES PADA INTRUSION DETECTION SYSTEM DENGAN DISKRITISASI VARIABEL

PENERAPAN NAIVE BAYES PADA INTRUSION DETECTION SYSTEM DENGAN DISKRITISASI VARIABEL JUTI - Volume 13, Nomor 2, Juli 2015: 182 189 PENERAPAN NAIVE BAYES PADA INTRUSION DETECTION SYSTEM DENGAN DISKRITISASI VARIABEL I Nyoman Trisna Wirawan 1), Ivan Eksistyanto 2) 1, 2) Institut Teknologi

Lebih terperinci

PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS

PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS Narwati Dosen Fakultas Teknologi Informasi Abtrack Makalah ini membahas pengelompokan mahasiswa berdasarkan data akademik menggunakan teknik clustering

Lebih terperinci

Data Mining II Estimasi

Data Mining II Estimasi Data Mining II Estimasi Matakuliah Data warehouse Universitas Darma Persada Oleh: Adam AB Data Mining-2012-a@b 1 Tahapan proses datamining Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model/

Lebih terperinci

Mengolah dan Menganalisis Data

Mengolah dan Menganalisis Data Mengolah dan Menganalisis Data Dr. Eko Pujiyanto, S.Si., M.T. Materi Data Mengolah dan analisis data Memilih alat analisis yang tepat Data Data 1 Jamak dari DATUM artinya informasi yang diperoleh dari

Lebih terperinci

Manajemen dan Analisa Data 1

Manajemen dan Analisa Data 1 Add your company slogan Manajemen dan Analisa Data 1 MENGAPA MANAJEMEN DATA PENTING? PENGANTAR MANAJEMEN DATA LOGO 1 2 PROSES RISET ERROR/Kesalahan dalam Penelitian 1. Sampling error : kesalahan yang terjadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Batik Besurek 2.1.1 Sejarah Batik Besurek Bengkulu Kain Batik Besurek merupakan salah satu bentuk batik hasil kerajinan tradisional daerah Bengkulu yang telah diwariskan dari

Lebih terperinci

PERBANDINGAN METODE CLUSTERING MENGGUNAKAN METODE SINGLE LINKAGE DAN K - MEANS PADA PENGELOMPOKAN DOKUMEN

PERBANDINGAN METODE CLUSTERING MENGGUNAKAN METODE SINGLE LINKAGE DAN K - MEANS PADA PENGELOMPOKAN DOKUMEN PERBANDINGAN METODE CLUSTERING MENGGUNAKAN METODE SINGLE LINKAGE DAN K - MEANS PADA PENGELOMPOKAN DOKUMEN Rendy Handoyo 1, R. Rumani M 2, Surya Michrandi Nasution 3 1,2,3 Gedung N-203, Program Studi Sistem

Lebih terperinci

ARSITEKTUR & MODEL DATA MINING

ARSITEKTUR & MODEL DATA MINING PERTEMUAN 3 ARSITEKTUR & MODEL DATA MINING 28 September 2005 Arsitektur dan Model Data Mining 1 Arsitektur : Sistm Data Mining Graphical User Interface (GUI) Pattern evaluation Data Mining Engine Database

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. menggunakan teknik statistik, matematika, kecerdasan buatan, tiruan dan machinelearning

BAB 2 TINJAUAN PUSTAKA. menggunakan teknik statistik, matematika, kecerdasan buatan, tiruan dan machinelearning BAB 2 TINJAUAN PUSTAKA 2.1. Data Mining Data mining adalah kombinasi secara logis antara pengetahuan data, dan analisa statistik yang dikembangkan dalam pengetahuan bisnis atau suatu proses yang menggunakan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Seiring berkembangnya teknologi informasi, kebutuhan akan informasi yang digunakan untuk mendukung business intelligent suatu perusahaan juga meningkat. Informasi penting

Lebih terperinci

Oleh: Astrid Darmawan Pembimbing: Selvia Lorena Br. Ginting, M.T Wendi Zarman, M.Si

Oleh: Astrid Darmawan Pembimbing: Selvia Lorena Br. Ginting, M.T Wendi Zarman, M.Si PEMBUATAN APLIKASI DATA MINING UNTUK MEMPREDIKSI MASA STUDI MAHASISWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORHOOD (Studi Kasus Data Akademik Jurusan Teknik Komputer-S1 Universitas Komputer Indonesia)

Lebih terperinci

CLUSTER DATABASE. Clustering

CLUSTER DATABASE. Clustering CLUSTER DATABASE Clustering Clustering adalah proses mengelompokkan atau penggolongan objek berdasarkan informasi yang diperoleh dari data yang menjelaskan hubungan antar objek dengan prinsip untuk memaksimalkan

Lebih terperinci

PENGKLASIFIKASIAN DATA SEKOLAH PENGGUNA INTERNET PENDIDIKAN MENGGUNAKAN TEKNIK CLUSTERING DENGAN ALGORITMA K-MEANS STUDI KASUS PT TELKOM SURABAYA

PENGKLASIFIKASIAN DATA SEKOLAH PENGGUNA INTERNET PENDIDIKAN MENGGUNAKAN TEKNIK CLUSTERING DENGAN ALGORITMA K-MEANS STUDI KASUS PT TELKOM SURABAYA Artikel Skripsi PENGKLASIFIKASIAN DATA SEKOLAH PENGGUNA INTERNET PENDIDIKAN MENGGUNAKAN TEKNIK CLUSTERING DENGAN ALGORITMA K-MEANS STUDI KASUS PT TELKOM SURABAYA SKRIPSI Diajukan Untuk Memenuhi Sebagian

Lebih terperinci

Penentuan Harga Jual Properti secara Otomatis menggunakan Metode Probabilistic Neural Network

Penentuan Harga Jual Properti secara Otomatis menggunakan Metode Probabilistic Neural Network Penentuan Harga Jual Properti secara Otomatis menggunakan Metode Probabilistic Neural Network Gregorius S. Budhi 1, Justinus Andjarwirawan 2, Alvin Poernomo 3 1,2,3) Fakultas Teknologi Industri, Program

Lebih terperinci

BELAJAR SPSS. Langkah pertama yang harus dilakukan adalah dengan cara menginstal terlebih dahulu software SPSS

BELAJAR SPSS. Langkah pertama yang harus dilakukan adalah dengan cara menginstal terlebih dahulu software SPSS BELAJAR SPSS SPSS merupakan software statistik yang paling populer, fasilitasnya sangat lengkap dibandingkan dengan software lainnya, penggunaannya pun cukup mudah. Langkah pertama yang harus dilakukan

Lebih terperinci

Klasifikasi. Diadaptasi dari slide Jiawei Han

Klasifikasi. Diadaptasi dari slide Jiawei Han Klasifikasi Diadaptasi dari slide Jiawei Han http://www.cs.uiuc.edu/~hanj/bk2/ yudi@upi.edu / Okt 2012 Pengantar Classification Memprediksi kelas suatu item Membuat model berdasarkan data pelatihan dan

Lebih terperinci

Identifikasi Tanda Tangan Dengan Ciri Fraktal dan Perhitungan Jarak Euclidean pada Fakultas Teknologi Informasi Universitas Budi Luhur

Identifikasi Tanda Tangan Dengan Ciri Fraktal dan Perhitungan Jarak Euclidean pada Fakultas Teknologi Informasi Universitas Budi Luhur Identifikasi Tanda Tangan Dengan Ciri Fraktal dan Perhitungan Jarak Euclidean pada Fakultas Teknologi Informasi Universitas Budi Luhur Cahya Hijriansyah 1, Achmad Solichin 2 1,2 Program Studi Teknik Informatika

Lebih terperinci

METODE CLUSTERING DENGAN ALGORITMA FUZZY C-MEANS UNTUK REKOMENDASI PEMILIHAN BIDANG KEAHLIAN PADA PROGRAM STUDI TEKNIK INFORMATIKA

METODE CLUSTERING DENGAN ALGORITMA FUZZY C-MEANS UNTUK REKOMENDASI PEMILIHAN BIDANG KEAHLIAN PADA PROGRAM STUDI TEKNIK INFORMATIKA 1 METODE CLUSTERING DENGAN ALGORITMA FUZZY C-MEANS UNTUK REKOMENDASI PEMILIHAN BIDANG KEAHLIAN PADA PROGRAM STUDI TEKNIK INFORMATIKA Muhammad Faisal Mirza A11.2009.04930 Program Studi Teknik Informatika

Lebih terperinci

CLUSTERING DATA NON-NUMERIK DENGAN PENDEKATAN ALGORITMA K-MEANS DAN HAMMING DISTANCE STUDI KASUS BIRO JODOH

CLUSTERING DATA NON-NUMERIK DENGAN PENDEKATAN ALGORITMA K-MEANS DAN HAMMING DISTANCE STUDI KASUS BIRO JODOH CLUSTERING DATA NON-NUMERIK DENGAN PENDEKATAN ALGORITMA K-MEANS DAN HAMMING DISTANCE STUDI KASUS BIRO JODOH Darlis Heru Murti, Nanik Suciati, Daru Jani Nanjaya Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Knowledge Discovery in Database (KDD) dan Data Mining Banyak orang menggunakan istilah data mining dan knowledge discovery in databases (KDD) secara bergantian untuk menjelaskan

Lebih terperinci

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi Statistik dan Statistika Statistik : nilai-nilai ukuran data yang mudah dimengerti. Contoh : statistik liga sepak bola Indonesia Statistika : ilmu

Lebih terperinci

PENGUNAAN STEM AND LEAF DAN BOXPLOT UNTUK ANALISIS DATA. Moh Yamin Darsyah ABSTRAK

PENGUNAAN STEM AND LEAF DAN BOXPLOT UNTUK ANALISIS DATA. Moh Yamin Darsyah ABSTRAK PENGUNAAN STEM AND LEAF DAN BOXPLOT UNTUK ANALISIS DATA Moh Yamin Darsyah Program Studi Statistika Universitas Muhammadiyah Semarang yamindarsyah@gmail.com ABSTRAK Banyak sekali data dalam kehidupan yang

Lebih terperinci

TINJAUAN PUSTAKA. Definisi Data Mining

TINJAUAN PUSTAKA. Definisi Data Mining TINJAUAN PUSTAKA Definisi Data Mining Sistem Manajemen Basis Data tingkat lanjut dan teknologi data warehousing mampu untuk mengumpulkan banjir data dan untuk mentransformasikannya ke dalam basis data

Lebih terperinci

Penggunaan Pohon Keputusan untuk Data Mining

Penggunaan Pohon Keputusan untuk Data Mining Penggunaan Pohon Keputusan untuk Data Mining Indah Kuntum Khairina NIM 13505088 Program Studi Teknik Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha

Lebih terperinci

PENGELOMPOKAN KOLEKSI BUKU PERPUSTAKAAN BERDASARKAN LAMA PEMINJAMAN BUKU MENGGUNAKAN K-MEANS

PENGELOMPOKAN KOLEKSI BUKU PERPUSTAKAAN BERDASARKAN LAMA PEMINJAMAN BUKU MENGGUNAKAN K-MEANS PENGELOMPOKAN KOLEKSI BUKU PERPUSTAKAAN BERDASARKAN LAMA PEMINJAMAN BUKU MENGGUNAKAN K-MEANS SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom.) Pada Program

Lebih terperinci

BAB IV GAMBARAN UMUM METODOLOGI DATA MINING

BAB IV GAMBARAN UMUM METODOLOGI DATA MINING BAB IV GAMBARAN UMUM METODOLOGI DATA MINING A. Metodologi Data Mining Metodologi Data Mining Komponen data mining pada proses KDD seringkali merupakan aplikasi iteratif yang berulang dari metodologi data

Lebih terperinci

PENERAPAN DATA MINING PADA PENJUALAN HARDISK UNTUK OPTIMALISASI DISTRIBUSI MENGGUNAKAN METODE CLUSTERING

PENERAPAN DATA MINING PADA PENJUALAN HARDISK UNTUK OPTIMALISASI DISTRIBUSI MENGGUNAKAN METODE CLUSTERING PENERAPAN DATA MINING PADA PENJUALAN HARDISK UNTUK OPTIMALISASI DISTRIBUSI MENGGUNAKAN METODE CLUSTERING SKRIPSI Diajukan Untuk Penulisan Skripsi Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana

Lebih terperinci

SPSS 10: Transformasi Data. Transformasi Data

SPSS 10: Transformasi Data. Transformasi Data SPSS 0: Transformasi Data Transformasi Data Transformasi data adalah suatu proses dalam merubah bentuk data. Misalnya merubah data numerik menjadi data kategorik atau merubah dari beberapa variabel yang

Lebih terperinci

ALAT UJI STATISTIK. Endang Sri Utami, S.E., M.Si., Ak., CA

ALAT UJI STATISTIK. Endang Sri Utami, S.E., M.Si., Ak., CA ALAT UJI STATISTIK Endang Sri Utami, S.E., M.Si., Ak., CA Penggunaan Statistik Statistik merupakan sekumpulan metode yang digunakan untuk menarik kesimpulan masuk akal dari suatu data. Statistik yang digunakan

Lebih terperinci

STATISTIK DESKRIPTIF

STATISTIK DESKRIPTIF BAB 5 STATISTIK DESKRIPTIF Salah satu statistik yang secara sadar maupun tidak, sering digunakan dalam berbagai bidang adalah statistik deskriptif. Pada bagian ini akan dipelajari beberapa contoh kasus

Lebih terperinci

PENENTUAN NILAI PANGKAT PADA ALGORITMA FUZZY C- MEANS

PENENTUAN NILAI PANGKAT PADA ALGORITMA FUZZY C- MEANS PENENTUAN NILAI PANGKAT PADA ALGORITMA FUZZY C- MEANS WULAN ANGGRAENI wulangussetiyo@gmail.com Program Studi Pendidikan Matematika Universitas Indraprasta PGRI Abstract. The purpose of this study was to

Lebih terperinci

Probability and Random Process

Probability and Random Process Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 1. Review Teori Statistika Prima Kristalina Maret 2016 2 Outline Pengertian Statistika Populasi,

Lebih terperinci

DATA MINING UNTUK MENGANALISA PREDIKSI MAHASISWA BERPOTENSI NON-AKTIF MENGGUNAKAN METODE DECISION TREE C4.5

DATA MINING UNTUK MENGANALISA PREDIKSI MAHASISWA BERPOTENSI NON-AKTIF MENGGUNAKAN METODE DECISION TREE C4.5 DATA MINING UNTUK MENGANALISA PREDIKSI MAHASISWA BERPOTENSI NON-AKTIF MENGGUNAKAN METODE DECISION TREE C4.5 Dwi Untari A11.2010.05410 Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas

Lebih terperinci

CLUSTERING GENDER BERDASARKAN NILAI MAKSIMUM MINIMUN AMPLITUDO SUARA BERBASIS FUZZY C-MEANS (FCM)

CLUSTERING GENDER BERDASARKAN NILAI MAKSIMUM MINIMUN AMPLITUDO SUARA BERBASIS FUZZY C-MEANS (FCM) CLUSTERING GENDER BERDASARKAN NILAI MAKSIMUM MINIMUN AMPLITUDO SUARA BERBASIS FUZZY C-MEANS (FCM) Idni Irsalina 1*, Endang Supriyati 2, Tutik Khotimah 3 Program Studi Teknik Informatika, Fakultas Teknik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Konsep Pemasaran Dalam merancang dan mengembangkan produk, baik yang berupa jasa maupun barang, tidak terlepas dari konsep pemasaran yang bertujuan memenuhi

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... Error! Bookmark not defined. DAFTAR ISI... i. DAFTAR TABEL... vi. DAFTAR GAMBAR... vii

DAFTAR ISI. KATA PENGANTAR... Error! Bookmark not defined. DAFTAR ISI... i. DAFTAR TABEL... vi. DAFTAR GAMBAR... vii DAFTAR ISI KATA PENGANTAR... Error! Bookmark not defined. DAFTAR ISI... i DAFTAR TABEL... vi DAFTAR GAMBAR... vii BAB I PENDAHULUAN... Error! Bookmark not defined. 1.1 Latar Belakang... Error! Bookmark

Lebih terperinci

Konsep Data Mining DATA MINING & KNOWLEDGE DISCOVERY IN DATABASES. Bertalya Universitas Gunadarma 2009

Konsep Data Mining DATA MINING & KNOWLEDGE DISCOVERY IN DATABASES. Bertalya Universitas Gunadarma 2009 Konsep Data Mining DATA MINING & KNOWLEDGE DISCOVERY IN DATABASES Bertalya Universitas Gunadarma 2009 Data Mining (DM) DM merupakan suatu proses penjelajahan otomatis untuk mendapatkan informasi berguna

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Decision Tree Definisi Decision tree adalah sebuah diagram alir yang berbentuk seperti struktur pohon yang mana setiap internal node menyatakan pengujian terhadap suatu atribut,

Lebih terperinci

Budi Susanto Versi /08/2012. Teknik Informatika UKDW Yogyakarta

Budi Susanto Versi /08/2012. Teknik Informatika UKDW Yogyakarta Budi Susanto Versi 1.0 29/08/2012 1 Memahami pengertian dari text mining dan web mining Memahami latar belakang perlunya pengolahan dokumen teks dan web Memahami arsitektur dasar aplikasi text dan web

Lebih terperinci

Sekip Utara Yogyakarta * 1 2

Sekip Utara Yogyakarta   * 1 2 IJCCS, Vol.9, No.1, January 2015, pp. 1~12 ISSN: 1978-1520 1 Klasifikasi Data NAP (Nota Analisis Pembiayaan) untuk Prediksi Tingkat Keamanan Pemberian Kredit (Studi Kasus : Bank Syariah Mandiri Cabang

Lebih terperinci

Pengembangan Perangkat Lunak Prediktor Nilai Mahasiswa Menggunakan Metode Spectral Clustering dan Bagging Regresi Linier

Pengembangan Perangkat Lunak Prediktor Nilai Mahasiswa Menggunakan Metode Spectral Clustering dan Bagging Regresi Linier JURNAL TEKNIK ITS Vol. 1, (Sept, 01) ISSN: 301-971 A-46 Pengembangan Perangkat Lunak Prediktor Nilai Mahasiswa Menggunakan Metode Spectral Clustering dan Bagging Regresi Linier Ahmad Yusuf, Hari Ginardi

Lebih terperinci

APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL

APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL Murien Nugraheni Prodi Teknik Informatika Fak FTI UAD Jl. Prof. Dr. Soepomo, Janturan, Yogyakarta 55164,

Lebih terperinci

PENERAPAN ALGORITMA C5.0 DALAM PENGKLASIFIKASIAN DATA MAHASISWA UNIVERSITAS NEGERI GORONTALO

PENERAPAN ALGORITMA C5.0 DALAM PENGKLASIFIKASIAN DATA MAHASISWA UNIVERSITAS NEGERI GORONTALO PENERAPAN ALGORITMA C5.0 DALAM PENGKLASIFIKASIAN DATA MAHASISWA UNIVERSITAS NEGERI GORONTALO Wandira Irene, Mukhlisulfatih Latief, Lillyan Hadjaratie Program Studi S1 Sistem Informasi / Teknik Informatika

Lebih terperinci

DATA MINING DAN WAREHOUSE A N D R I

DATA MINING DAN WAREHOUSE A N D R I DATA MINING DAN WAREHOUSE A N D R I CLUSTERING Secara umum cluster didefinisikan sebagai sejumlah objek yang mirip yang dikelompokan secara bersama, Namun definisi dari cluster bisa beragam tergantung

Lebih terperinci

ABSTRAKSI 2 DECISION TREE 1 PENDAHULUAN

ABSTRAKSI 2 DECISION TREE 1 PENDAHULUAN IMPLEMENTASI METODE POHON KEPUTUSAN UNTUK KLASIFIKASI DATA DENGAN NILAI FITUR YANG TIDAK PASTI Ratih Ariadni 1, Isye Arieshanti 2 Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh

Lebih terperinci

ANALISIS INFORMATION GAIN ATTRIBUTE EVALUATION UNTUK KLASIFIKASI SERANGAN INTRUSI

ANALISIS INFORMATION GAIN ATTRIBUTE EVALUATION UNTUK KLASIFIKASI SERANGAN INTRUSI ANALISIS INFORMATION GAIN ATTRIBUTE EVALUATION UNTUK KLASIFIKASI SERANGAN INTRUSI Aulia Essra (1), Rahmadani (2), Safriadi (3) Magister Teknik Informatika, Universitas Sumatera Utara Jl. Universitas No.24A

Lebih terperinci

PROPOSAL PENELITIAN. PENERAPAN DATA MINING UNTUK MENINGKATKAN PENJUALAN PADA PT. XL AXIATA, Tbk PALEMBANG

PROPOSAL PENELITIAN. PENERAPAN DATA MINING UNTUK MENINGKATKAN PENJUALAN PADA PT. XL AXIATA, Tbk PALEMBANG PROPOSAL PENELITIAN PENERAPAN DATA MINING UNTUK MENINGKATKAN PENJUALAN PADA PT. XL AXIATA, Tbk PALEMBANG I. PENDAHULUAN 1.1. Latar Belakang Kemajuan perkembangan teknologi informasi pada era globalisasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 State of the Art Penelitian mengenai segmentasi pasar pada sebuah perusahaan telah banyak digunakan dengan tujuan untuk mengetahui strategi pasar yang baik dan dapat menguntungkan

Lebih terperinci

PERBANDINGAN KINERJA BEBERAPA METODE KLASIFIKASI HASIL REDUKSI DATA BERDIMENSI TINGGI

PERBANDINGAN KINERJA BEBERAPA METODE KLASIFIKASI HASIL REDUKSI DATA BERDIMENSI TINGGI ISSN 1858-4667 JURNAL LINK Vol 16/No. 1/Februari 212 PERBANDINGAN KINERJA BEBERAPA METODE KLASIFIKASI HASIL REDUKSI DATA BERDIMENSI TINGGI Ronny Susetyoko 1, Elly Purwantini 2 1,2 Departemen Teknik Elektro,

Lebih terperinci

Prosiding SNATIF Ke-1 Tahun 2014 ISBN:

Prosiding SNATIF Ke-1 Tahun 2014 ISBN: SISTEM PENDUKUNG KEPUTUSAN UNTUK MEMPREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN METODE NAÏVE BAYES Diana Laily Fithri, Eko Darmanto Program Studi Sistem Informasi, Fakultas Teknik, Universitas Muria Kudus

Lebih terperinci

BAB 2 LANDASAN TEORI. yang menyewa) yang memberikan lessee hak untuk. persyaratan-persyaratan di mana pemilik properti, yaitu lessor (yang

BAB 2 LANDASAN TEORI. yang menyewa) yang memberikan lessee hak untuk. persyaratan-persyaratan di mana pemilik properti, yaitu lessor (yang BAB 2 LANDASAN TEORI 2.1. Sewa Guna Usaha (Leasing) 2.1.1. Pengertian Leasing Menurut Kieso (2003, p1086), sewa guna usaha (lease) adalah suatu perjanjian bersifat kontraktual antara lessor (pihak yang

Lebih terperinci

PENERAPAN K-MEANS CLUSTER UNTUK PENGARUH KECERDASAN EMOSI DAN STRES TERHADAP PRESTASI BELAJAR MAHASISWA

PENERAPAN K-MEANS CLUSTER UNTUK PENGARUH KECERDASAN EMOSI DAN STRES TERHADAP PRESTASI BELAJAR MAHASISWA PENERAPAN K-MEANS CLUSTER UNTUK PENGARUH KECERDASAN EMOSI DAN STRES TERHADAP PRESTASI BELAJAR MAHASISWA Finki Dona Marleny 1), Husnul Ma ad Junaidi 2), Mambang 3) 1), 2) STMIK INDONESIA Banjarmasin 3)

Lebih terperinci

METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER

METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 163-168. METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER

Lebih terperinci

Gejala Pusat - Statistika

Gejala Pusat - Statistika Gejala Pusat - Statistika Desma Eka Rindiani desmarindi@yahoo.co.id http://ladies-kopites.blogspot.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan disebarkan

Lebih terperinci

BAB 1 PENDAHULUAN. Bab 1 Pendahuluan

BAB 1 PENDAHULUAN. Bab 1 Pendahuluan BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi terutama pada dunia digital pada saat ini memungkinkan informasi dalam berbagai bentuk dan media dapat tersebar dengan cepat tanpa batas ruang

Lebih terperinci

APLIKASI K-MEANS UNTUK PENGELOMPOKKAN MAHASISWA BERDASARKAN NILAI BODY MASS INDEX (BMI) & UKURAN KERANGKA

APLIKASI K-MEANS UNTUK PENGELOMPOKKAN MAHASISWA BERDASARKAN NILAI BODY MASS INDEX (BMI) & UKURAN KERANGKA APLIKASI K-MEANS UNTUK PENGELOMPOKKAN MAHASISWA BERDASARKAN NILAI BODY MASS INDEX (BMI) & UKURAN KERANGKA Tedy Rismawan 1 dan Sri Kusumadewi 2 1 Laboratorium Komputasi dan Sistem Cerdas, Jurusan Teknik

Lebih terperinci

Satatistik dan Probabilitas. Ir. I Nyoman Setiawan, MT. NIP HP

Satatistik dan Probabilitas. Ir. I Nyoman Setiawan, MT. NIP HP Satatistik dan Probabilitas Ir. I Nyoman Setiawan, MT. NIP. 19631229 199103 01 001 HP. 081338721408 setiawan@ee.unud.ac.id man_awan@yahoo.com Statistik Dan Probabilitas Pendahuluan Statistika adalah pengetahuan

Lebih terperinci

MODUL 6 ANALISIS CLUSTER

MODUL 6 ANALISIS CLUSTER MODUL 6 ANALISIS CLUSTER Tujuan Praktikum Pada modul 6 ini, tujuan yang hendak dicapai dalam pelaksanaan praktikum antara lain : Mahasiswa mampu mengenali karakteristik analisis cluster. Mahasiswa memahami

Lebih terperinci

BAB IV ANALISIS HASIL PENELITIAN: ANALISIS KOMPARASIONAL AKHLAK TERHADAP GURU ANTARA. SISWA SANTRI DAN SISWA NON SANTRI DI MTs.

BAB IV ANALISIS HASIL PENELITIAN: ANALISIS KOMPARASIONAL AKHLAK TERHADAP GURU ANTARA. SISWA SANTRI DAN SISWA NON SANTRI DI MTs. BAB IV ANALISIS HASIL PENELITIAN: ANALISIS KOMPARASIONAL AKHLAK TERHADAP GURU ANTARA SISWA SANTRI DAN SISWA NON SANTRI DI MTs. RIBATUL MUTA ALLIMIN PEKALONGAN A. Analisis Data Akhlak Siswa Santri terhadap

Lebih terperinci