DATA PREPROCESSING. Budi Susanto (versi 1.2)

Ukuran: px
Mulai penontonan dengan halaman:

Download "DATA PREPROCESSING. Budi Susanto (versi 1.2)"

Transkripsi

1 DATA PREPROCESSING Budi Susanto (versi 1.2) Kenali Data Anda Atribut Data Memahami tipe atribut Membantu membetulkan data saat integrasi data Deskripsi Statistik Data Memudahkan untuk mengisi nilai yang kosong, memperhalus noise data, mengetahui outlier selama pemrosesan data Mengukur Kesamaan dan ketidaksamaan Dapat berguna juga untuk mendeteksi outlier Untuk melakukan klasifikasi Pada umumnya untuk mengukur kedekatan. 1

2 Data Data yang ada pada umumnya: Banyak noise Ukuran yang besar Dapat merupakan campuran dari berbagai macam sumber Memahami data sangat penting untuk tahap preprosesing. Atribut Data Mencerminkan karakteristik objek data. Tipe atribut menentukan himpunan nilai yang diperbolehkan. Nominal Binary (Binomial) Ordinal Numerik n Interval-scale n Ratio-scale Diskret atau Continue 2

3 Deskripsi Statistik Mengukur lokasi pusat/tengah dari distribusi data Mean Median Mode Midrange Data Mining: Concepts and Data Techniques, Preprocessing 3th ed., - Budi p. 47 Susanto - FTI UKDW Deskripsi Statistik Mengukur penyebaran data Rentang dan Kuartil Variasi dan Standard Deviasi Data Mining: Concepts and Data Techniques, Preprocessing 3th ed., - Budi p. 48 Susanto - FTI UKDW 3

4 BoxPlot Interquartil Range (IQR) Q3 Q1 Outlier data 1.5 x IQR Mengukur Kesamaan Dalam aplikasi data mining, seperti clustering, analisis outlier, klasifikasi nearest-neighbor, membutuhkan cara untuk menilai dua objek data serupa atau tidak. Minkwoski distance n Euclidean dan Manhattan Cosine 4

5 Mengukur Kesamaan Mengapa Perlu Data Preprocessing? Data mentah yang ada sebagian besar kotor Tidak komplet n Berisi data yang hilang/kosong n Kekurangan atribut yang sesuai n Hanya berisi data aggregate Banyak noise n Berisi data yang Outlier n Berisi error Tidak konsisten n Berisi nilai yang berbeda dalam suatu kode atau nama 5

6 Mengapa Data Preprocessing Penting? Data yang tidak berkualitas, akan menghasilkan kualitas mining yang tidak baik pula. Data Preprocessing, cleaning, dan transformasi merupakan pekerjaan mayoritas dalam aplikasi data mining (90%). Ukuran Kualitas Data Accuracy Completeness Consistency Timeliness Believability Value added Interpretability Accessibility 6

7 Teknik Data Preprocessing Data Cleaning Data integration Data Reduction Data Transformation Data Cleaning Proses untuk membersihkan data dengan beberapa teknik Memperkecil noise membetulkan data yang tidak konsisten. Mengisi missing value Mengidentifikasi atau membuang outlier 7

8 Data Cleaning: Missing Values Mengabaikan record Biasanya untuk label klasifikasi yang kosong Mengisikan secara manual Menggunakan mean/median dari atribut yang mengandung missing value Mean dapat dipakai jika distribusi data normal Median digunakan jika distribusi data tidak normal (condong) Menggunakan nilai global Menggunakan nilai termungkin Menerapkan regresi Data Cleaning: Missing Values Angkatan IPK Pekerjaan Kelamin Programmer L 2005? Ibu RT P ? P Contoh untuk missing value IPK diisi dengan ratarata IPK atau diisi dengan nilai IPK yang paling mungkin untuk angkatan 2005 dan Perempuan serta menjadi ibu rumah tangga. Contoh untuk missing value Pekerjaan, dapat diisi dengan pekerjaan yang paling banyak muncul. 8

9 Data Cleaning: Noisy Data Noise data adalah suatu kesalahan acak atau variasi dalam variabel terukur. Teknik-teknik Binning n Smoothing by bin means n Smoothing by bin medians n Smoothing by bin boundaries Regression Outlier Analysis Metode Binning Metode ini akan melakukan pengelompokan terhadap kumpulan data. Metode binning merupakan salah satu pendekatan dicretization. Urutan proses: Urutkan data secara ascending Lakukan partisi ke dalam bins n Dapat dengan equal-width (jarak) atau equal-depth (frekuensi) Kemudian dapat di-smoothing: smooth by means, smooth by median, smooth by boundaries, dsb. 9

10 Partisi dalam Metode Binning Partisi Equal-Width Algoritma membagi data ke dalam k interval ukuran yang sama. Lebar interval adalah n w = (max-min)/k Batasan interval adalah n min+w, min+2w,, min+(k-1)w Partisi Equal-depth Membagi data ke dalam k kelompok dimana tiap kelompok berisi jumlah yang sama Contoh Partisi Binning Data: 0, 4, 12, 16, 16, 18, 24, 26, 28 Equal Width BIN1 = 0, 4 [-, 10] BIN2 = 12, 16, 16, 18 [10, 20] BIN3 = 24, 26, 28 [20, +] Equal Depth BIN1 = 0, 4, 12 BIN2 = 16, 16, 18 BIN3 = 24, 26, 28 10

11 Smoothing pada Partisi Binning Smoothing berdasar rata-rata Semua nilai di tiap bin diganti dengan rata-rata nilai tiap bin Smoothing berdasar batasan Setiap nilai bin diganti dengan nilai yang paling dekat dari batasan nilai Batasan nilai terbentuk dari [min, max] tiap bin Data Cleaning: Outliers salary cluster outlier age 11

12 Data Cleaning: Regresi y (salary) Y1 y = x + 1 X1 x (age) Percobaan Data Cleaning Dataset Labor-Negotiations 12

13 Workflow #1 reglin Data Integration Data dapat bersumber dari beberapa sumber Teknik Analisis korelasi Atribut redudan duplikasi 13

14 Covariance Correlation integration Data Transformation Tujuannya: diharapkan lebih efisien dalam proses data mining dan mungkin juga agar pola yang dihasilkan lebih mudah dipahami. Strategi: Smoothing Attribute (feature) construction Aggregation Normalization Discretization 14

15 Data Transformation: Aggregation dan Smoothing coba1 Data Transformation: Normalization Unit ukuran dapat mempengaruhi analisis data. Unit yang lebih kecil akan menghasilkan rentang nilai yang besar Atribut akan memiliki bobot yang lebih besar dari atribut lain Sehingga Data perlu dinormalisasi atau dibakukan. Hasil suatu normalisasi adalah [-1, 1] atau [0.0, 1.0] Diperlukan dalam klasifikasi (termasuk neural network dan nearest network) dan clustering. 15

16 Data Transformation: Metode Normalization Min-max Z-score Decimal scaling normalization 16

17 Data Transformation: Discretization Melakukan pergantian atribut numerik menjadi interval label (misalnya: 0-10,11-20, dst.) atau konseptual label (misalnya: bawah, tengah, atas) discretization discret 17

18 Data Transformation: Data Reduction Teknik Dimensionality reduction n Wavelet transform n Principal Component Analysis n Attribute Subset Selection Numerosity reduction n sampling Data compression TERIMA KASIH! Budi Susanto 18

Data Preprocessing. oleh: Entin Martiana

Data Preprocessing. oleh: Entin Martiana Data Preprocessing oleh: Entin Martiana Data Data yang ada pada umumnya: Banyak noise Ukuran yang besar Dapat merupakan campuran dari berbagai sumber Memahami data sangat penting untuk preprocessing September

Lebih terperinci

Data Preprocessing dengan RapidMiner Budi Susanto. RapidMiner - Budi Susanto

Data Preprocessing dengan RapidMiner Budi Susanto. RapidMiner - Budi Susanto Data Preprcessing dengan RapidMiner Budi Susant RapidMiner - Budi Susant Atribut Data Kenali Data Anda Memahami tipe atribut Membantu membetulkan data saat integrasi data Deskripsi Statistik Data Memudahkan

Lebih terperinci

DATA MINING. Pertemuan 3. Nizar Rabbi Radliya 3 SKS Semester 6 S1 Sistem Informasi

DATA MINING. Pertemuan 3. Nizar Rabbi Radliya 3 SKS Semester 6 S1 Sistem Informasi DATA MINING 3 SKS Semester 6 S1 Sistem Informasi Pertemuan 3 Nizar Rabbi Radliya nizar.radliya@yahoo.com Universitas Komputer Indonesia 2015 Definisi Set Data Set Data / Data Set / Himpunan Data Kumpulan

Lebih terperinci

Materi 4 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya

Materi 4 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya Materi 4 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya nizar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Kompetensi Dasar Memahami pemrosesan awal data yang akan diproses

Lebih terperinci

Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya

Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya nizar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Kompetensi Dasar Memahami definisi set data, tipe data, kualitas

Lebih terperinci

PE DAHULUA. Latar Belakang

PE DAHULUA. Latar Belakang Latar Belakang PE DAHULUA Pemilihan Kepala Daerah dan Wakil Kepala Daerah, atau seringkali disebut Pilkada, adalah pemilihan umum untuk memilih Kepala Daerah dan Wakil Kepala Daerah secara langsung di

Lebih terperinci

ANALISIS CLUSTER PADA DOKUMEN TEKS

ANALISIS CLUSTER PADA DOKUMEN TEKS Budi Susanto ANALISIS CLUSTER PADA DOKUMEN TEKS Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 Tujuan Memahami konsep analisis clustering Memahami tipe-tipe data dalam clustering Memahami beberapa algoritma

Lebih terperinci

Data Mining Outline BAB I Pendahuluan. Proses Data Mining. Recap

Data Mining Outline BAB I Pendahuluan. Proses Data Mining. Recap Data Mining Outline BAB I Pendahuluan BAB II Data BAB III Algoritma Klasifikasi BAB IV Algoritma Klastering BAB V Algoritma Asosiasi BAB VI Algoritma Estimasi BAB VII Deteksi Anomali Ricky Maulana Fajri

Lebih terperinci

DATA TRANSFORMATION PADA DATA MINING ABSTRAK

DATA TRANSFORMATION PADA DATA MINING ABSTRAK DT TRNSFORMTION PD DT MINING Hartarto Junaedi*), Herman Budianto**), Indra Maryati**), dan Yuliana Melani**) *) Jurusan Sistem Informasi Bisnis Sekolah Tinggi Teknik Surabaya **) Jurusan Teknik Informatika

Lebih terperinci

TAKARIR. : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas

TAKARIR. : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas TAKARIR Data Mining Clustering Cluster Iteratif Random Centroid : Penggalian data : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas : Berulang : Acak : Pusat area KDD (Knowledge

Lebih terperinci

BAB 3 METODE PENELITIAN. Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder.

BAB 3 METODE PENELITIAN. Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder. BAB 3 METODE PENELITIAN 3.1 Metode Pengumpulan Data 3.1.1 Sumber Data Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder. 1. Data primer Didapatkan peneliti secara langsung

Lebih terperinci

2. Tinjauan Pustaka. Gambar 2-1 : Knowledge discovery in database

2. Tinjauan Pustaka. Gambar 2-1 : Knowledge discovery in database 2. Tinjauan Pustaka 2.1 Data Mining Data mining merupakan ilmu yang mempelajari tentang proses ekstraksi informasi yang tersembunyi dari sekumpulan data yang berukuran sangat besar dengan menggunakan algoritma

Lebih terperinci

ANALISIS CLUSTER PADA DOKUMEN TEKS

ANALISIS CLUSTER PADA DOKUMEN TEKS Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 ANALISIS CLUSTER PADA DOKUMEN TEKS Budi Susanto (versi 1.3) Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep analisis clustering Memahami

Lebih terperinci

Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya

Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya Materi 3 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya nizar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Kompetensi Dasar Memahami set data yang digunakan pada proses

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Situs jejaring sosial merupakan gaya hidup sosial baru yang muncul seiring berkembangnya internet. Gaya hidup baru tersebut memiliki ruang lingkup yang lebih luas

Lebih terperinci

Tahapan Proses KDD (Peter Cabena) Business Objective Determination (#1) Business Objective Determination (#2) Business Objective Determination (#4)

Tahapan Proses KDD (Peter Cabena) Business Objective Determination (#1) Business Objective Determination (#2) Business Objective Determination (#4) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #2 Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Tahapan Proses KDD (Peter Cabena) Penentuan Sasaran Bisnis (

Lebih terperinci

Tahapan Proses KDD (Peter Cabena)

Tahapan Proses KDD (Peter Cabena) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #2 Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Tahapan Proses KDD (Peter Cabena) Penentuan Sasaran Bisnis (Business

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Data, Informasi, Pengetahuan Data adalah bilangan, terkait dengan angka angka atau atribut atribut yang bersifat kuantitas, yang berasal dari hasil observasi, eksperimen, atau

Lebih terperinci

Konsep dan Teknik Data Mining

Konsep dan Teknik Data Mining Konsep dan Teknik Data Mining Data Preprocessing Mengapa data di di proses awal? Pembersihan data Integrasi dan transformasi data Reduksi data Diskritisasi dan pembuatan konsep hierarki Mengapa Data Diproses

Lebih terperinci

Business Objective Determination (#1)

Business Objective Determination (#1) Business Objective Determination (#1) Mendefinisikan permasalahan atau tantangan bisnis dengan jelas. Hal ini merupakan aspek yang sangat esensial dalam setiap proyek data mining. (Oleh beberapa peneliti

Lebih terperinci

HASIL DAN PEMBAHASAN. Data

HASIL DAN PEMBAHASAN. Data Transformasi data, mengubah data ke bentuk yang dapat di-mine sesuai dengan perangkat lunak yang digunakan pada penelitian. Penentuan Data Latih dan Data Uji Dalam penelitian ini data terdapat dua metode

Lebih terperinci

Tipe Clustering. Partitional Clustering. Hirerarchical Clustering

Tipe Clustering. Partitional Clustering. Hirerarchical Clustering Analisis Cluster Analisis Cluster Analisis cluster adalah pengorganisasian kumpulan pola ke dalam cluster (kelompok-kelompok) berdasar atas kesamaannya. Pola-pola dalam suatu cluster akan memiliki kesamaan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Dataset

BAB III METODOLOGI PENELITIAN. Dataset BAB III METODOLOGI PENELITIAN Metodologi penelitian diuraikan dalam skema tahap penelitian untuk memberikan petunjuk atau gambaran yang jelas, teratur, dan sistematis seperti yang ditunjukkan pada Gambar

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Instrumen Penelitian Pada penelitian ini bahan dan peralatan yang diperlukan sebagai berikut: 3.1.1 Bahan Dalam penelitian ini bahan yang dibutuhkan adalah data siswa kelas

Lebih terperinci

Data Mining Menggunakan Metode K-Means Klaster untuk Mengelompokkan Pemegang Polis Asuransi Kendaraan Bermotor di Indonesia

Data Mining Menggunakan Metode K-Means Klaster untuk Mengelompokkan Pemegang Polis Asuransi Kendaraan Bermotor di Indonesia Prosiding Statistika ISSN: 2460-6456 Data Mining Menggunakan Metode K-Means Klaster untuk Mengelompokkan Pemegang Polis Asuransi Kendaraan Bermotor di Indonesia Supiyah, 2 Aceng Komarudin Mutaqin, 3 Teti

Lebih terperinci

Pengenalan Pola. K-Means Clustering

Pengenalan Pola. K-Means Clustering Pengenalan Pola K-Means Clustering PTIIK - 2014 Course Contents 1 Definisi k-means 2 Algoritma k-means 3 Studi Kasus 4 Latihan dan Diskusi K-Means Clustering K-Means merupakan salah satu metode pengelompokan

Lebih terperinci

Memulai SPSS dan Mengelola File

Memulai SPSS dan Mengelola File MODUL 1 Memulai SPSS dan Mengelola File A. MEMULAI SPSS Untuk memulai SPSS for Windows langkah yang harus dilakukan adalah: Klik menu Start Programs SPSS for Windows SPSS for Windows. Kemudian akan ditampilkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI penelitian. Pada bab ini akan dibahas literatur dan landasan teori yang relevan dengan 2.1 Tinjauan Pustaka Kombinasi metode telah dilakukan oleh beberapa peneliti

Lebih terperinci

KLASIFIKASI PADA TEXT MINING

KLASIFIKASI PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 KLASIFIKASI PADA TEXT MINING Budi Susanto Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Studi Sebelum penelitian ini dilakukan, sudah terdapat beberapa penelitian yang menjadi dasar untuk menyelesaikan penelitian ini, penelitian tersebut diantaranya sebagai

Lebih terperinci

ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK

ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK Dody Herdiana, S.T., M. Kom. Dosen PNS DPK pada Program Studi Teknik Informatika

Lebih terperinci

BAB I PENDAHULUAN. Perguruan tinggi yang baik dipengaruhi oleh kualitas. mahasiswa di dalamnya. Mahasiswa merupakan objek

BAB I PENDAHULUAN. Perguruan tinggi yang baik dipengaruhi oleh kualitas. mahasiswa di dalamnya. Mahasiswa merupakan objek 1 BAB I PENDAHULUAN 1.1. Latar Belakang Perguruan tinggi yang baik dipengaruhi oleh kualitas mahasiswa di dalamnya. Mahasiswa merupakan objek pembelajaran bagi perguruan tinggi sehingga jika prestasi mahasiswa

Lebih terperinci

PENERAPAN METODE KLASTERING DENGAN ALGORITMA K-MEANS UNTUK PREDIKSI KELULUSAN MAHASISWA PADA PROGRAM STUDI TEKNIK INFORMATIKA STRATA SATU

PENERAPAN METODE KLASTERING DENGAN ALGORITMA K-MEANS UNTUK PREDIKSI KELULUSAN MAHASISWA PADA PROGRAM STUDI TEKNIK INFORMATIKA STRATA SATU PENERAPAN METODE KLASTERING DENGAN ALGORITMA K-MEANS UNTUK PREDIKSI KELULUSAN MAHASISWA PADA PROGRAM STUDI TEKNIK INFORMATIKA STRATA SATU Gita Premashanti Trayasiwi Program Studi Teknik Informatika S1,

Lebih terperinci

Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer

Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer Mewati Ayub Jurusan Teknik Informatika, Fakultas Teknologi Informasi Universitas Kristen Maranatha, Bandung Email : mewati.ayub@eng.maranatha.edu

Lebih terperinci

KLASIFIKASI PADA TEXT MINING

KLASIFIKASI PADA TEXT MINING Budi Susanto KLASIFIKASI PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa algoritma klasifikasi: KNN Naïve Bayes Decision

Lebih terperinci

3.6 Data Mining Klasifikasi Algoritma k-nn (k-nearest Neighbor) Similaritas atribut numerik

3.6 Data Mining Klasifikasi Algoritma k-nn (k-nearest Neighbor) Similaritas atribut numerik DAFTAR ISI PERNYATAAN... iii PRAKATA... vi DAFTAR ISI... viii DAFTAR GAMBAR... xi DAFTAR TABEL... xiv DAFTAR PERSAMAAN... xv DAFTAR ALGORITMA... xvi DAFTAR LAMPIRAN... xvii INTISARI... xviii ABSTRACT...

Lebih terperinci

Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) ISSN: Yogyakarta, Maret 2016

Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) ISSN: Yogyakarta, Maret 2016 PENERAPAN DATA MINING PEMAKAIAN AIR PELANGGAN UNTUK MENENTUKAN KLASIFIKASI POTENSI PEMAKAIAN AIR PELANGGAN BARU DI PDAM TIRTA RAHARJA MENGGUNAKAN ALGORITMA K-MEANS Gunawan Abdillah, Firman Ananda Putra,

Lebih terperinci

Klasifikasi Profil Siswa SMA/SMK yang Masuk PTN (Perguruan Tinggi Negeri) dengan k-nearest Neighbor

Klasifikasi Profil Siswa SMA/SMK yang Masuk PTN (Perguruan Tinggi Negeri) dengan k-nearest Neighbor Klasifikasi Profil Siswa SMA/SMK yang Masuk PTN (Perguruan Tinggi Negeri) dengan k-nearest Neighbor Yuandri Trisaputra, Indriyani, Shellafuri Mardika Biru, Muhammad Ervan Departemen Ilmu Komputer, FMIPA,

Lebih terperinci

BAB IV PREPROCESSING DATA MINING

BAB IV PREPROCESSING DATA MINING BAB IV PREPROCESSING DATA MINING A. Konsep Sebelum diproses data mining sering kali diperlukan preprocessing. Data preprocessing menerangkan tipe-tipe proses yang melaksanakan data mentah untuk mempersiapkan

Lebih terperinci

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Data Mining Kode/SKS: SS / (2/1/0) Dosen : SWP, KF Semester : VII

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Data Mining Kode/SKS: SS / (2/1/0) Dosen : SWP, KF Semester : VII RPS1SK08 Kurikulum 2014, Edisi : September2014 No.Revisi : 00 Hal: 1 dari 6 A. : 1. CP 3.2 : Melakukan analisis data dengan menggunakan program statistik 2. CP 10.3 : Mampu menganalisis big data dengan

Lebih terperinci

Ari Kurniawan

Ari Kurniawan KLASTERISASI KOMPETENSI GURU MENGGUNAKAN HASIL PENILAIAN PORTOFOLIO DENGAN METODE K-MEANS CLUSTERING Ari Kurniawan 2208206015 Dosen Pembimbing : Mochamad Hariadi, S.T., M.Sc., Ph.D. S2 TEKNIK ELEKTRO (TELEMATIKA)

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Pada bab ini akan dijelaskan tahap-tahap yang dilakukan dalam melakukan penelitian. Tahapan penelitian berguna agar pelaksanaan penelitian dapat berjalan dengan baik dan sistematis

Lebih terperinci

MODUL V REGRESI, KORELASI, ANALISIS VARIAN, VALIDITAS DAN RELIABILITAS

MODUL V REGRESI, KORELASI, ANALISIS VARIAN, VALIDITAS DAN RELIABILITAS REGRESI, KORELASI, ANALISIS VARIAN, VALIDITAS DAN RELIABILITAS A. TUJUAN PRAKTIKUM Dengan adanya Praktikum Statistika Industri Modul V tentang Regresi, Korelasi, Analisis Varian, Validitas dan Reliabilitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Penambangan Data (Data Mining) Pengertian data mining, berdasarkan beberapa orang: 1. Data mining (penambangan data) adalah suatu proses untuk menemukan suatu pengetahuan atau

Lebih terperinci

STATISTIKA DESKRIPTIF

STATISTIKA DESKRIPTIF STATISTIKA DESKRIPTIF 1 Statistika deskriptif berkaitan dengan penerapan metode statistika untuk mengumpulkan, mengolah, menyajikan dan menganalisis data kuantitatif secara deskriptif. Statistika inferensia

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Data Mining Faktor penentu bagi usaha atau bisnis apapun pada masa sekarang ini adalah kemampuan untuk menggunakan informasi seefektif mungkin. Penggunaan data secara tepat karena

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 1:,, Statistika FMIPA Universitas Islam Indonesia Data Populasi dan Sampel Menurut Websters New World Dictionary, data berarti sesuatu yang diketahui atau dianggap. Dengan demikian, data dapat memberikan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan sistematika tahapan yang dilaksanakan selama pembuatan penelitian tugas akhir. Secara garis besar metodologi penelitian tugas akhir ini dapat

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 2: Penyajian Data dan Statistika FMIPA Universitas Islam Indonesia 1 2 Biasa Distribusi Frekuensi 3 Stem-and-Leaf Plot Histogram Scatter Plot Boxplot Penyajian Data Data diuraikan dalam bentuk kalimat.

Lebih terperinci

STATISTIK DESKRIPTIF. Abdul Rohman, S.E

STATISTIK DESKRIPTIF. Abdul Rohman, S.E LOGO STATISTIK DESKRIPTIF Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data menyajikan data menganalisis data dengan metode tertentu menginterpretasikan hasil analisis KEGUNAAN? Melalui

Lebih terperinci

BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah

BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Indeks Prestasi Kumulatif dan Lama Studi Mahasiswa yang telah menyelesaikan keseluruhan beban program studi yang telah ditetapkan dapat dipertimbangkan

Lebih terperinci

`tz áàxü `tçt}xåxç hç äa `â{tååtw çt{ lézçt~tüàt

`tz áàxü `tçt}xåxç hç äa `â{tååtw çt{ lézçt~tüàt Wihandaru Sotya Pamungkas Bagan Analisis Data 1 Skala Pengukuran Nominal Ordinal Interval Rasio Skala Angka hanya menunjukkan identifikasi Angka menunjukkan posisi relatif objek. Angka menunjukkan perbedaan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan rangkaian dari langkah-langkah yang diterapkan dalam penelitian, secara umum dan khusus langkah-langkah tersebut tertera pada Gambar flowchart

Lebih terperinci

MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING

MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING Marlindawati1), Andri2) 1), 2) Sistem Informasi UNIVERSITAS BINA DARMA Palembang Jl, Jend. A.Yani

Lebih terperinci

STK 211 Metode statistika. Materi 2 Statistika Deskriptif

STK 211 Metode statistika. Materi 2 Statistika Deskriptif STK 211 Metode statistika Materi 2 Statistika Deskriptif 1 Statistika Deskriptif Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Penyajian data dapat dilakukan

Lebih terperinci

SPSS FOR WINDOWS BASIC. By : Syafrizal

SPSS FOR WINDOWS BASIC. By : Syafrizal SPSS FOR WINDOWS BASIC By : Syafrizal SPSS merupakan software statistik yang paling populer, fasilitasnya sangat lengkap dibandingkan dengan software lainnya, penggunaannya pun cukup mudah Langkah pertama

Lebih terperinci

Mengolah dan Menganalisis Data

Mengolah dan Menganalisis Data Mengolah dan Menganalisis Data Dr. Eko Pujiyanto, S.Si., M.T. Materi Data Mengolah dan analisis data Memilih alat analisis yang tepat Data Data 1 Jamak dari DATUM artinya informasi yang diperoleh dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Empiris BAB II TINJAUAN PUSTAKA Pada penelitian ini, peneliti menggunakan beberapa penelitian yang pernah dilakukan sebelumnya sebagai tinjauan studi. Berikut ialah tinjauan empiris yang digunakan:

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pendahuluan Didalam bab ini menceritakan semua teori-teori yang digunakan didalam proses algoritma decision tree, algoritma Random tree dan Random Florest serta teoriteori dan

Lebih terperinci

Materi UAS: 1. Indeks 2. Trend Linear dan Non Linear 3. Regresi dan korelasi sederhana

Materi UAS: 1. Indeks 2. Trend Linear dan Non Linear 3. Regresi dan korelasi sederhana STATISTIK I Buku Acuan: 1. Pokok-pokok materi Statistik I oleh Ir.M.Iqbql Hasan,M.M, edisi 2 cetakan 6 th 2010 2. Dasar-dasar statistika untuk Ekonomi oleh Drs. Danang Sunyoto,S.H., S.E.,M.M.,cetakan I

Lebih terperinci

Pengantar Pengolahan Data Statistik Menggunakan SPSS 22. Isram Rasal ST, MMSI, MSc

Pengantar Pengolahan Data Statistik Menggunakan SPSS 22. Isram Rasal ST, MMSI, MSc Pengantar Pengolahan Data Statistik Menggunakan SPSS 22 Isram Rasal ST, MMSI, MSc Statistika Statistika Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi,

Lebih terperinci

Student Clustering Based on Academic Using K-Means Algoritms

Student Clustering Based on Academic Using K-Means Algoritms Student Clustering Based on Academic Using K-Means Algoritms Hironimus Leong, Shinta Estri Wahyuningrum Faculty of Computer Science, Faculty of Computer Science Unika Soegijapranata marlon.leong@gmail.com

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDHULUN Listrik merupakan sumber daya yang sangat dibutuhkan saat ini. Penggunaan listrik setiap tahun, bahkan setiap bulan terus meningkat. Hal ini dibuktikan dengan selalu bertambahnya

Lebih terperinci

Skala pengukuran dan Ukuran Pemusatan. Ukuran Pemusatan

Skala pengukuran dan Ukuran Pemusatan. Ukuran Pemusatan Skala Pengukuran Nominal (dapat dikelompokkan, tidak punya urutan) Ordinal (dapat dikelompokkan, dapat diurutkan, jarak antar nilai tidak tetap sehingga tidak dapat dijumlahkan) Interval (dapat dikelompokkan,

Lebih terperinci

Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil

Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil Ronny Susetyoko, Elly Purwantini Politeknik Elektronika Negeri Surabaya

Lebih terperinci

3.1 Metode Pengumpulan Data

3.1 Metode Pengumpulan Data BAB 3 METODE PENELITIAN 3.1 Metode Pengumpulan Data Sebuah penelitian memerlukan pengumpulan data dan metode pengumpulan data karena sangat berpengaruh terhadap akurasi dan kualitas data yang digunakan

Lebih terperinci

BAB III ANALISIS DAN PENYELESAIAN MASALAH

BAB III ANALISIS DAN PENYELESAIAN MASALAH BAB III ANALISIS DAN PENYELESAIAN MASALAH 3.1 Deskripsi Sistem Gambar III-1 Deskripsi Umum Sistem Pada gambar III-1 dapat dilihat deskripsi sistem sederhana yang mendeteksi intrusi pada jaringan menggunakan

Lebih terperinci

K-Means Analysis Klasterisasi Kasus HIV/AIDS di Indonesia

K-Means Analysis Klasterisasi Kasus HIV/AIDS di Indonesia K-Means Analysis Klasterisasi Kasus HIV/AIDS di Indonesia Okta Riveranda 1), Warnia Nengsih, S.Kom., M.Kom. 2) 1) Program Studi Sistem Informasi, Politeknik Caltex Riau, Pekanbaru 28265, email: okta12si@mahasiswa.pcr.ac.id

Lebih terperinci

BAB III ANALISIS PENYELESAIAN MASALAH

BAB III ANALISIS PENYELESAIAN MASALAH BAB III ANALISIS PENYELESAIAN MASALAH Pada bab ini akan dipaparkan analisis yang dilakukan dalam pengerjaan Tugas Akhir ini. Analisis diawali dengan analisis terhadap konsep Bayesian network yang diperlukan

Lebih terperinci

Tentang MA5283 Statistika BAB 1 STATISTIKA DESKRIPTIF MA5283 STATISTIKA. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Orang Cerdas Belajar Statistika

Tentang MA5283 Statistika BAB 1 STATISTIKA DESKRIPTIF MA5283 STATISTIKA. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Orang Cerdas Belajar Statistika Orang Cerdas Belajar Statistika Bentuk perkuliahan Jadwal Kuliah Buku teks Penilaian Matriks kegiatan perkuliahan Jadwal Kuliah 1 Tatap muka di kelas 2 Praktikum di Lab. Statistika dan Komputasi Bentuk

Lebih terperinci

K-PROTOTYPE UNTUK PENGELOMPOKAN DATA CAMPURAN

K-PROTOTYPE UNTUK PENGELOMPOKAN DATA CAMPURAN 1 K-PROTOTYPE UNTUK PENGELOMPOKAN DATA CAMPURAN Rani Nooraeni*, Dr. Jadi Supriadi, DEA, Zulhanif, S.Si,M.Sc Jurusan statistika terapan, Fakultas MIPA UNPAD rnooraeni@gmail.com* Abstrak.Membagi suatu data

Lebih terperinci

BUKU RANCANGAN PENGAJARAN

BUKU RANCANGAN PENGAJARAN BUKU RANCANGAN PENGAJARAN Mata Kuliah STATISTIK SOSIAL Disusun oleh: SYAHRUL, S.T., M.Eng Program Studi Ilmu Administrasi Fakultas Ilmu Sosial dan Ilmu Politik Universitas 17 Agustus 1945 Samarinda 2015

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Seiring dengan perkembangan zaman, perusahaanperusahaan dan sekolah ataupun universitas yang ada di Indonesia juga mengalami perkembangan. Hal ini dialami oleh perusahaan

Lebih terperinci

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA.

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA. STATISTIKA INDUSTRI I Agustina Eunike, ST., MT., MBA. PERTEMUAN-1 DATA Data Hasil pengamatan pada suatu populasi Untuk mendapatkan informasi yang akurat Pengumpulan data Pengolahan data Penyajian data

Lebih terperinci

LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA. Modul II CLUSTERING

LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA. Modul II CLUSTERING LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA Modul II CLUSTERING TUJUA PRAKTIKUM 1. Mahasiswa mempunyai pengetahuan dan kemampuan dasar dalam

Lebih terperinci

PENERAPAN DATA MINING UNTUK MENENTUKAN STRATEGI PENJUALAN PADA TOKO BUKU GRAMEDIA MENGGUNAKAN METODE CLUSTERING

PENERAPAN DATA MINING UNTUK MENENTUKAN STRATEGI PENJUALAN PADA TOKO BUKU GRAMEDIA MENGGUNAKAN METODE CLUSTERING PENERAPAN DATA MINING UNTUK MENENTUKAN STRATEGI PENJUALAN PADA TOKO BUKU GRAMEDIA MENGGUNAKAN METODE CLUSTERING Tri Utami Putri 1, M.Izman H,S.T.,M.M.,PhD 2, Susan Dian PS M.Kom 3 Mahasiswa Universitas

Lebih terperinci

MA2081 Statistika Dasar

MA2081 Statistika Dasar Catatan Kuliah MA2081 Statistika Dasar Orang Cerdas Belajar Statistika Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MAK6281 Topik

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

DATA MINING CLUSTERING DENGAN ALGORITMA FUZZY C-MEANS UNTUK PENGELOMPOKAN JADWAL KEBERANGKATAN DI TRAVEL PT. XYZ TASIKMALAYA

DATA MINING CLUSTERING DENGAN ALGORITMA FUZZY C-MEANS UNTUK PENGELOMPOKAN JADWAL KEBERANGKATAN DI TRAVEL PT. XYZ TASIKMALAYA DATA MINING CLUSTERING DENGAN ALGORITMA FUZZY C-MEANS UNTUK PENGELOMPOKAN JADWAL KEBERANGKATAN DI TRAVEL PT. XYZ TASIKMALAYA Aseptian Nugraha, Acep Irham Gufroni, Rohmat Gunawan Teknik Informatika Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Tinjauan Pustaka Pada penelitian yang dilakukan oleh (Chen, Sain, & Guo, 2012) berfokus untuk mengetahui pola penjualan, pelanggan mana yang paling berharga, pelanggan mana yang

Lebih terperinci

4.1. Pengumpulan data Gambar 4.1. Contoh Peng b untuk Mean imputation

4.1. Pengumpulan data Gambar 4.1. Contoh Peng b untuk Mean imputation 4.1. Pengumpulan data Data trafik jaringan yang diunduh dari http://www.cacti.mipa.uns.ac.id:90 dapat diklasifikasikan berdasar download rata-rata, download maksimum, download minimum, upload rata-rata,

Lebih terperinci

Akurasi Data Mining Untuk Menghasilkan Pola Kelulusan Mahasiswa

Akurasi Data Mining Untuk Menghasilkan Pola Kelulusan Mahasiswa Akurasi Data Mining Untuk Menghasilkan Pola Kelulusan Mahasiswa dengan Metode NAÏVE BAYES M. Ridwan Effendi Fakultas Komputer Jurusan Sistem Informasi Universitas Mohammad Husni Thamrin Jakarta Email :

Lebih terperinci

BAB 1 KONSEP DATA MINING 2 Gambar 1.1 Perkembangan Database Permasalahannya kemudian adalah apa yang harus dilakukan dengan data-data itu. Sudah diket

BAB 1 KONSEP DATA MINING 2 Gambar 1.1 Perkembangan Database Permasalahannya kemudian adalah apa yang harus dilakukan dengan data-data itu. Sudah diket Bab1 Konsep Data Mining POKOK BAHASAN: Konsep dasar dan pengertian Data Mining Tahapan dalam Data Mining Model Data Mining Fungsi Data Mining TUJUAN BELAJAR: Setelah mempelajari materi dalam bab ini, mahasiswa

Lebih terperinci

PENGUKURAN DATA. 1. Terminology Populasi & Sampel. Peubah/Variabel. Peubah/Variabel

PENGUKURAN DATA. 1. Terminology Populasi & Sampel. Peubah/Variabel. Peubah/Variabel PENGUKURAN DATA 1. Terminology Populasi & Sampel Populasi: himpunan komplit dari individual, obyek atau nilai dari suatu pengamatan Seringkali terlalu besar untuk dikaji secara keseluruhan Mungkin nyata

Lebih terperinci

Data Mining II Estimasi

Data Mining II Estimasi Data Mining II Estimasi Matakuliah Data warehouse Universitas Darma Persada Oleh: Adam AB Data Mining-2012-a@b 1 Tahapan proses datamining Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model/

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 1.1. Rancangan Penelitian Rancangan penelitian adalah rencana dan struktur penyelidikan yang disusun sedemikian rupa sehingga penelitian akan memperoleh jawaban untuk pertanyaan-pertanyaan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 3 HASIL DAN PEMBAHASAN Analisis Dekriptif Analisis deskripsi merupakan teknik eksplorasi data untuk melihat pola data secara umum. Dari data TIMSS 7 rata-rata capaian matematika siswa Indonesia sebesar

Lebih terperinci

PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS

PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS Narwati Dosen Fakultas Teknologi Informasi Abtrack Makalah ini membahas pengelompokan mahasiswa berdasarkan data akademik menggunakan teknik clustering

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Data Mining Dengan perkembangan pesat teknologi informasi termasuk diantaranya teknologi pengelolaan data, penyimpanan data, pengambilan data disertai kebutuhan pengambilan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah Dunia semakin berkembang dengan pesat. Perkembangan itu terjadi di berbagai bidang, baik di bidang perindustrian, perbankan maupun di bidang kesehatan.

Lebih terperinci

BAB 2. Landasan Teori

BAB 2. Landasan Teori BAB 2 Landasan Teori 2.1 Pengertian Data Mining Menurut Han dan Kamber (2011:6) menjelaskan bahwa Data Mining merupakan pemilihan atau menggali pengetahuan dari jumlah data yang banyak. Berbeda dengan

Lebih terperinci

STK511 Analisis Statistika. Bagus Sartono

STK511 Analisis Statistika. Bagus Sartono STK511 Analisis Statistika Bagus Sartono Pokok Bahasan Pengenalan analisis dan deskripsi data Sebaran peluang peubah acak. Sebaran penarikan contoh Pendugaan parameter Pengujian hipotesis (t-test, one-way

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

I. PENGENALAN SOFTWARE (SPSS) UNTUK ANALISIS DATA 13 Desember 2005

I. PENGENALAN SOFTWARE (SPSS) UNTUK ANALISIS DATA 13 Desember 2005 1 I. PENGENALAN SOFTWARE (SPSS) UNTUK ANALISIS DATA 13 Desember 2005 Membuat Database Untuk membuat database di SPSS, langkah pertama yang harus dilakukan adalah membuat variabel di layar tampilan variable

Lebih terperinci

PERBANDINGAN METODE CLUSTERING MENGGUNAKAN METODE SINGLE LINKAGE DAN K - MEANS PADA PENGELOMPOKAN DOKUMEN

PERBANDINGAN METODE CLUSTERING MENGGUNAKAN METODE SINGLE LINKAGE DAN K - MEANS PADA PENGELOMPOKAN DOKUMEN PERBANDINGAN METODE CLUSTERING MENGGUNAKAN METODE SINGLE LINKAGE DAN K - MEANS PADA PENGELOMPOKAN DOKUMEN Rendy Handoyo 1, R. Rumani M 2, Surya Michrandi Nasution 3 1,2,3 Gedung N-203, Program Studi Sistem

Lebih terperinci

DASAR PEMILIHAN UJI STATISTIK

DASAR PEMILIHAN UJI STATISTIK 01/27/10 1 DASAR PEMILIHAN UJI STATISTIK Saptawati Bardosono PENDAHULUAN Pada setiap penelitian biasanya data dikumpulkan untuk sejumlah besar variabel, sehingga dapat menyulitkan pemilihan uji statistik

Lebih terperinci

DETEKSI OUTLIER BERBASIS KLASTER PADA DATA SET DENGAN ATRIBUT CAMPURAN NUMERIK DAN KATEGORIKAL TESIS DWI MARYONO

DETEKSI OUTLIER BERBASIS KLASTER PADA DATA SET DENGAN ATRIBUT CAMPURAN NUMERIK DAN KATEGORIKAL TESIS DWI MARYONO DETEKSI OUTLIER BERBASIS KLASTER PADA DATA SET DENGAN ATRIBUT CAMPURAN NUMERIK DAN KATEGORIKAL TESIS DWI MARYONO 5107201006 LATAR BELAKANG MASALAH Deteksi Outlier Data Set Numerik : distance-based, density-based,

Lebih terperinci

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi Statistik dan Statistika Statistik : nilai-nilai ukuran data yang mudah dimengerti. Contoh : statistik liga sepak bola Indonesia Statistika : ilmu

Lebih terperinci

JURNAL TEKNIK, (2014) APLIKASI DATA MINING UNTUK MEMPREDIKSI PERFORMANSI MAHASISWA DENGAN METODE KLASIFIKASI DECISION TREE

JURNAL TEKNIK, (2014) APLIKASI DATA MINING UNTUK MEMPREDIKSI PERFORMANSI MAHASISWA DENGAN METODE KLASIFIKASI DECISION TREE JURNA TEKNIK, (2014) 1-6 1 AIKASI DATA MINING UNTUK MEMREDIKSI ERFORMANSI MAHASISWA DENGAN METODE KASIFIKASI DECISION TREE Irfan Fahmi, Budi Santosa Jurusan Teknik Industri, Fakultas Teknologi Industri,

Lebih terperinci

Pertemuan 8, 9, 10. Teknik-teknik Data Mining

Pertemuan 8, 9, 10. Teknik-teknik Data Mining Pertemuan 8, 9, 10 Teknik-teknik Data Mining Outline Teknik-teknik data mining terdiri dari : Analisis cluster Induksi (pohon keputusan dan aturan induksi) Jaringan syaraf buatan (Neural Network) Online

Lebih terperinci