MULTIDIMENSI PADA DATA WAREHOUSE DENGAN MENGGUNAKAN RUMUS KOMBINASI

Ukuran: px
Mulai penontonan dengan halaman:

Download "MULTIDIMENSI PADA DATA WAREHOUSE DENGAN MENGGUNAKAN RUMUS KOMBINASI"

Transkripsi

1 MULTIDIMENSI PADA DATA WAREHOUSE DENGAN MENGGUNAKAN RUMUS KOMBINASI Spits Warars Harco Leslie Hedric Fakultas Tekologi Iformasi, Uiversitas Budi Luhur ABSTRACT Multidimesioal i data warehouse is a compulsio ad become the most importat for iformatio delivery, without multidimesioal data warehouse is icomplete. Multidimesioal give the able to aalyze busiess measuremet i may differet ways. Multidimesioal is also syoymous with olie aalytical processig (OLAP). Keywords: multidimesioal, data warehouse, OLAP 1. PENDAHULUAN Tabel Fakta terbetuk berdasarka hypercubes merupaka kumpula lebih dari 3 dimesi yag terbetuk dari aalisa dari sebuah lapora. ika haya 2 atau 3 dimesi maka tabel fakta terbetuk berdasarka cube. Dega peritah structured query laguage (sql) sederhaa yag megakses tabel fakta dihasilka sebuah tabel database temporary yag aka berilai makaya jika ditampilka dalam betuk grafik. Betuk grafik ii adalah gambara tampila data yag secara kasat mata aka lebih mudah utuk dipahami dalam meetuka suatu keputusa maajeme dibadigka dega tampila data yag bersifat agka. Beberapa peeliti megataka bahwa gambar mempuyai bayak maka dibadig agka, selai itu aka lebih mudah melihat suatu tre peurua atau keaika melalui gambar grafik dibadigka dega data agka. Asal Sekolah eis Kelami Asal URSMA umlah Mahasiswa Gambar 1. Hypercubes Program Studi ejag Gambar 3. Tabel Fakta Data1 da table dimesi PSEN, URSMA da SEKOLAH Sebagai cotoh perhatika tabel database fakta Tabel 1. Cotoh database fakta e PS ENIS jum p w p w p w p w p p w p w 17 dega memberika peritah sql seperti E N I S Gambar 2. Cubes ejag select ag,jej,jekel, sum(jum) as jumlah from dwmhs where ag= 2000 group by ag,jej,jekel; Maka hasil dari peritah sql diatas aka meampilka lapora seperti : 2000 eis S1 D3 Pria Waita

2 ika lapora tersebut ditampilka dalam betuk grafik aka berbetuk seperti S Pria Waita Gambar 3. Betuk grafik dari lapora hasil peritah sql 2. SLICE DAN DICE Kemampua multidimesi hypercubes atau cube dalam memberika iformasi dalam pegambila keputusa dapat ditigkatka dega megguaka kosep slice da dice. Kosep slice da dice pada data warehouse ii merupaka sebuah kosep multi dimesi pada datawarehouse, dimaa hypercubes atau cube dapat dilihat dari berbagai dimesi. Selai itu kosep slice da dice berfugsi utuk megambil potoga hypercubes atau cube berdasarka ilai tertetu pada satu atau beberapa dimesiya. Kosep slice da dice ii dapat dilakuka dega memberika query atau peritah structured query laguage (sql) sederhaa. : 2000 eis S1 D3 Pria Waita ejag: Strata satu Agk P W eis: Pria eja 200 g 1 S1 D3 E N I S 3. ROLL UP DAN DRILL DOWN Selai megguaka slice da dice kemampua multidimesi hypercubes atau cube dalam memberika iformasi dalam pegambila keputusa dapat ditigkatka dega megguaka kosep roll up da drill dow. Roll up adalah proses geeralisasi satu atau beberapa dimesi dega meragkum atau merigkas ilai-ilai ukuraya. Dega kata lai geeralisasi berarti aik ke tigkat A g k a t a D3 ejag e 2 a g eis Gambar 4. Kosep Slice da Dice ejag eis atasya dalam hirarki dimesi. Sedagka proses drill dow adalah proses memilih da meampilka data ricia dalam satu atau beberapa dimesi da merupaka kebalika dari operasi roll-up. Sama seperti kosep slice da dice dapat dilakuka dega memberika query atau peritah structured query laguage (sql) sederhaa, demikia juga dega kosep roll up da drill dow dapat dilakuka dega memberika query atau peritah structured query laguage (sql) sederhaa. Ag jej jekel jum p w p w p w p w p w p w 66 Gambar 5. Kosep Roll up Kosep roll up pada gambar 5 diatas dalam meggeeralisasi data dilakuka dega peritah sql Select Ag, sum(jum) as jum from DWmhs group by ag Nim Nama ekel oi p Too p Edi saku p Feri p Boo p Diru p Guawa p Hari p Tomi p Bud i p Lukas p Gambar 6. Kosep Drill dow Ag um ag jej ps jekel jum p w p w p w p w p 15-2

3 Kosep drill dow pada gambar 6 diatas dalam merici data dilakuka dega peritah sql Select a.im,a.ama from mastmhs a, DWmhs b where left(a.im,2)=right(b.ag,2) ad substr(a.im,3,2)=b.ps ad substr(a.im,5,1)b.jej ad a.jekel=b.jekel Maajeme pegambil keputusa aka sagat terbatu dalam megambil keputusa dega melihat hypercubes atau cube secara geeralisasi dega kosep roll up da secara terici dega kosep drill dow. Geeralisasi data dega kosep roll up membatu maajeme pegambil keputusa dega data-data yag bersifat ragkuma atau rigkasa. Ricia data dega kosep drill dow membatu maajeme pegambil keputusa dega data-data yag bersifat terici. 4. PERTANYAAN-PERTANYAAN Berdasarka uraia-uraia diatas terlihat bahwa kosep multidimesi dega meerapka kosep slice da dice, roll up da drill dow aka meigkatka kemampua hypercubes atau cube dalam memberika iformasi pegambila keputusa bagi maajeme pegambil keputusa. Meigkatya kemampua hypercubes atau cube dalam memberika iformasi pegambila keputusa, meimbulka pertayaa-pertayaa yag aka dibahas lebih lajut pada pembahasa berikutya. Adapu pertayaa-pertayaa tersebut adalah: 1. Berapa dimesi miimal da dimesi maksimal yag dapat dibetuk dari sebuah hypercubes atau cube? 2. Berapa kombiasi lapora atau grafik yag dapat dibetuk dari sebuah hypercubes atau cube? 3. Berapa kombiasi lapora atau grafik yag dapat dibetuk pada setiap dimesi dari sebuah hypercubes atau cube? 5. PEMBAHASAN AWAL Lapora yag ditampilka dalam betuk sebuah grafik merupaka perpotoga atara sumbu horisotal da sumbu vertikal. Sumbu horisotal pada sebuah grafik haya meggambarka ilai sebuah kolom, sedagka sumbu vertikal meggambarka ilai sebuah kolom atau perpadua lebih dari satu kolom. Kolom bisa juga diartika sebagai dimesi pada hypercubes atau cube. Maksimal kolom yag dapat dipakai sebagai sumbu horisotal adalah jumlah kolom tabel fakta (atau jumlah dimesi pada hypercubes atau cube) selai kolom jumlah. Kolom jumlah tidak dapat dijadika sebagai sumbu vertikal maupu sumbu horisotal dikareaka kolom jumlah adalah ilai yag aka ditampilka pada perpotoga sumbu vertikal da sumbu horisotal pada tampila grafik. Kolom jumlah ii aka memperlihatka ilai tre keaika atau peurua pada sebuah tampila grafik. Sumbu vertikal Kolom jumlah Sumbu horisotal Gambar 7. Grafik Sumbu vertikal adalah dimesi yag dapat dibetuk dari sebuah kolom/dimesi atau perpadua ilai kolom/dimesi. Sehigga kita dapati maksimal ilai dimesi suatu tabel fakta adalah jumlah kolom tabel fakta tersebut selai kolom jumlah. Sehigga apabila sebuah tabel mempuyai 2 kolom selai kolom jumlah maka aka mempuyai maksimal 2 dimesi, jika mempuyai 3 kolom selai kolom jumlah maka aka mempuyai maksimal 3 dimesi da seterusya. Hal ii juga dapat terlihat pada hypercubes atau cube dimaa jumlah dimesi pada hypercubes atau cube adalah sama dega jumlah kolom pada tabel fakta selai kolom jumlah. Perhatika gambar dibawah ii dimaa jumlah dimesi pada hypercubes yaitu 6 sama dega jumlah field pada tabel fakta data1 selai field jum yaitu 6. Gambar 8. Hypercubes da tabel fakta Data1 Dega demikia pertayaa berapa dimesi miimal da dimesi maksimal yag dapat dibetuk dari sebuah hypercubes atau cube telah terjawab. Dimaa jumlah dimesi miimal adalah 1 da jumlah dimesi maksimal adalah sebayak dimesi yag dimiliki oleh hypercubes atau cube. 6. RUMUS KOMBINASI Utuk medapatka kombiasi lapora/tabel yag dapat dibetuk dari masig-masig dimesi pada hypercubes tapa memperhatika uruta susuaya serta utuk mejawab pertayaa berapa kombiasi lapora atau grafik yag dapat dibetuk -3

4 dari sebuah tabel fakta maka ada baikya kita megguaka rumus kombiasi pada ilmu statistik. Teori kombiasi megataka Kombiasi dari sejumlah objek yag berbeda yag diambil sejumlah r pada satu saat adalah pemiliha r objek itu tapa memperhatika uruta susuaya. (og ek Siag, 2002). umlah kombiasi dari objek sejumlah yag diambil r pada satu saat mempuyai rumus sebagai berikut: Cr atau C(,r) atau C,r atau dimaa: C r =! r! (-r)! dimaa:! = (-1)(-2) 1 maka: 0! = 1 1! = 1 2! = 2*1 = 2 3! = 3*2*1 = 6 6! = 6*5*4*3*2*1 = 720 Dega megguaka rumus kombiasi diatas maka dikembagka sebuah rumus yag dapat memperlihatka jumlah lapora atau grafik yag dapat dibetuk berdasar jumlah dimesi pada hypercubes utuk memeuhi kosep multi dimesi pada datawarehouse yaitu: * -1 C r-1 dimaa: adalah jumlah dimesi hypercubes r adalah ilai dimesi yag aka dibetuk Dega dikembagkaya rumus ii maka kita aka megetahui: 1. Keseluruha kombiasi lapora atau grafik yag dapat dibetuk 2. Kombiasi lapora atau grafik pada setiap dimesi Timbul pertayaa lajuta: keapa pembahasa dalam ragka medapatka dimesi pada sebuah hypercubes atau cube dikembagka dari rumus teori kombiasi statistik da keapa tidak megguaka rumus teori laiya? Utuk mejawab pertayaa tersebut ada baikya kita bahas beberapa alasa yag medasari pemiliha rumus teori kombiasi tersebut. Utuk pembuata lapora dimesi 2 keatas kolom pertama bersifat tetap sedagka kolom berikutya selai kolom jumlah dapat ditukar posisiya. Kolom pertama tidak dapat dipertukarka dikareaka kolom pertama ii mejadi ilai pada garis horisotal pada grafik, sedagka kolom jumlah adalah ilai yag aka ditampilka pada perpotoga baris da kolom pada tampila grafik. Sebagai cotoh perhatika pejelasa perbadiga tampila lapora dapat dilihat di tabel 2. r Tabel 2. Cotoh pejelasa perbadiga tampila lapora ejag eis umlah P W P W P W P W P W P W 17 umlah 328 Lapora di atas jika ditampilka dalam betuk grafik aka mempuyai tampila grafik seperti P W P W Gambar 9. Tampila grafik hasil lapora Tampila lapora/tabel diatas dapat mempuyai tampila lapora yag ditukar posisi kolomya selai kolom pertama da kolom jumlah, yaitu kolom eis dipidah ke posisi kolom ejag sebalikya kolom ejag dipidah ke posisi kolom eis. Sehigga tampila lapora diatas aka berubah mejadi lapora seperti Tabel 3. Cotoh pejelasa perbadiga tampila lapora eis ejag umlah 2000 P W P W P W P W P W P W 3 17 umlah

5 Lapora diatas jika ditampilka dalam betuk grafik aka mempuyai tampila grafik seperti P W P w Gambar 10. Betuk grafik hasil lapora tabel 3 Terlihat bahwa tampila kedua lapora/tabel diatas tidak berbeda dalam hal ilai pada kolom jumlah, yag berbeda hayalah adaya peukara kolom jeis da jejag. Demikia juga dega tampila kedua grafik diatas terlihat bahwa betuk grafik sama, mempuyai garis horizotal yag berisi agkata yag tetap sama. Yag berbeda hayalah tampila pada legeda grafik yaitu utuk legeda garis wara biru pada grafik pertama adalah 5 p, sedag pada grafik kedua adalah p 5. Dari pejelasa perbadiga betuk kedua lapora tersebut jelas bahwa kombiasi dimesi yag aka dicari adalah kombiasi sejumlah objek yag berbeda yag diambil dari sejumlah r tapa memperhatika uruta susuaya. Hal ii sejala dega isi da pejelasa rumus teori kombiasi, sehigga pembahasa utuk medapatka dimesi pada sebuah hypercubes atau cube diguaka rumus teori kombiasi statistik. 7. KOMBINASI RUMUS 3 DIMENSI Utuk mecoba pembuktia pegembaga rumus kombiasi diatas maka dipadag perlu utuk meguji coba pegembaga rumus kombiasi tersebut dega megambil sampel dari sebuah hypercubes atau cube 3 dimesi. Utuk memudahka pejelasa maka setiap dimesi aka diwakilka dega huruf alphabet sehigga hypercubes atau cube 3 dimesi tersebut mempuyai tampila lapora sebagai berikut: A B C umlah ii aka dicari kombiasi lapora/tabel atau grafik yag dapat dibetuk pada setiap dimesiya. Dimesi 1, berarti r=1 maka = * -1 C r-1 = 3 * 3-1 C 1-1 = 3 * 2 C 0 = 3 * (! ) r! (-r)! 0! (2-0)! 0! (2!) = 3 * ( 1*2 ) 1 (1*2) = 3 * 1 = 3 Dimesi 3, berarti r=3 maka = * -1 C r-1 = 3 * 3-1 C 3-1 = 3 * 2 C 2 = 3 * (! ) r! (-r)! 2! (2-2)! 2! (0!) = 3 * ( 1*2 ) 1*2 (1) = 3 * 1 = 3 Dimesi 2, berarti r=2 maka = * -1 C r-1 = 3 * 3-1 C 2-1 = 3 * 2 C 1 = 3 * (! ) r! (-r)! 1! (2-1)! 1! (1!) = 3 * ( 1*2 ) 1 (1 ) = 3 * 2 = 6 Hasil dari rumus kombiasi ii pada hypercubes 3 dimesi ii dapat terlihat pada tabel Tabel 4. Hasil rumus kombiasi hypercubes 3 dimesi Sumbu Dimesi horizotal A A AB A BC atau A CB AC B B BA B AC atau A CA BC C C CA C AB atau A BA CB Kombiasi Total: 12 kombiasi Pada tabel diatas pada dimesi 3 kombiasi lapora/tabel/grafik mempuyai 2 piliha misalya utuk sumbu horisotal A dapat mempuyai tampila lapora sebagai berikut: A B C umlah Dega megguaka rumus kombiasi: *-1 C r-1 dimaa adalah jumlah dimesi hypercubes da r adalah ilai dimesi yag aka dibetuk. Karea jumlah dimesi hypercubes cotoh adalah 3 maka =3. Sesuai dega kosep multidimesi data warehouse maka berdasarka hypercubes 3 dimesi Sesuai dega pejelasa sebelumya bahwa utuk pembuata lapora dimesi 2 keatas kolom pertama bersifat tetap sedagka kolom berikutya selai kolom jumlah dapat ditukar posisiya,, da kolom pertama ii mejadi sumbu horizotal pada -5

6 tampila grafik. Sehigga lapora diatas dapat dirubah mejadi seperti lapora dibawah ii da mempuyai maka yag sama. A C B umlah Terlihat dari pembuktia dega rumus kombiasi * -1 C r-1 diatas: pada saat dimesi 1 yaitu r=1 meghasilka 3 kombiasi lapora/tabel/grafik pada saat dimesi 2 yaitu r=2 meghasilka 6 kombiasi lapora/tabel/grafik pada saat dimesi 3 yaitu r=3 meghasilka 3 kombiasi lapora/tabel/grafik Sehigga total tampila lapora/tabel/grafik yag dapat dibetuk adalah 12 kombiasi Perpotoga atar 2 dimesi dibawah ii aka memperlihatka adaya 6 perpotoga kolom yaitu AB, AC, BA, BC,CA da CB. A B C A AB AC B BA BC C CA CB Hal ii sesuai dega hasil pembuktia dega rumus pada saat dimesi 2 aka meghasilka 6 kombiasi lapora/tabel/grafik. Perpotoga atar 3 dimesi dibawah ii aka memperlihatka adaya 6 perpotoga kolom yaitu A BC, A CB, B AC, B CA, C AB da C BA. A B C B C A C A B A A BC A CB B B AC B CA C C AB C BA Sesuai dega pejelasa sebelumya bahwa utuk pembuata lapora dimesi 2 keatas kolom pertama bersifat tetap sedagka kolom berikutya selai kolom jumlah dapat ditukar posisiya,, da kolom pertama ii mejadi sumbu horizotal pada tampila grafik. Oleh karea itu 6 perpotoga kolom diatas karea mempuyai betuk tampila lapora yag sama da mempuyai betuk tampila grafik yag sama dapat dipertukarka kolom berikutya selai kolom pertama da kolom jumlah. adi oleh karea 6 perpotoga kolom diatas mempuyai kolom pertama yag sama da kolom berikutya yag sama yag salig dipertukarka posisiya yaitu: A BC atau A CB B AC atau B CA C AB atau C BA Sehigga sebearya haya ada 3 perpotoga kolom da hal ii sesuai dega hasil pembuktia dega rumus pada saat dimesi 3 aka meghasilka 3 kombiasi lapora/tabel/grafik. Terlihat juga dega pembuktia rumus kombiasi pada hypercubes 3 dimesi ii kombiasi awal da akhir mempuyai ilai yag sama dega jumlah dimesi yaitu KESIMPULAN Akhirya kita aka megambil kesimpula bahwa: 1. Nilai kombiasi awal da akhir mempuyai ilai yag sama dega jumlah dimesi selai kolom jumlah pada tabel fakta atau hypercubes 2. Rumus kombiasi ii dapat mempermudah da mejadi acua dalam membuat sebuah aplikasi OLAP (Olie Aalytical Processig) yag megakses data warehouse da dapat meampilka kemampua mutidimesi dari sebuah hypercubes atau cube secara lebih maksimal. 3. secara kosep peritah sql yag diguaka utuk megakses hypercubes data warehouse mempuyai kesamaa sebagai berikut: select field1..field, sum(jum) as jumlah from amatabel group by field1..field; Dimaa uruta select sama dega group by field1 field field1 field harus DAFTAR PUSTAKA Elmasri ad Navathe, Fudametals of Database Systems, Addiso Wesley, og ek Siag, Matematika Diskrit da aplikasiya pada ilmu komputer, Adi, Paulraj Poiah, Data Warehousig Fudametals, oh wiley&sos, Ic, Vivek R. Gupta 1997, A Itroductio to Data Warehousig, diambil taggal: 9 Maret 2006 dari: -6

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik Aalisis Sektor Kuci Dimaa : KLBj aij = Keterkaita lagsug ke belakag sektor j = Usur matriks koefisie tekik (b). Keterkaita Ke Depa (Forward Ligkage) Forward ligkage meujukka peraa suatu sektor tertetu

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya

Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Iformasi UNIKOM 2016 Nizar Rabbi Radliya izar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Kompetesi Dasar Memahami tekik data miig klasifikasi da mampu meerapka

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

METODE PENELITIAN. Subyek dalam penelitian ini adalah siswa kelas XI IPA 1 SMA Wijaya Bandar

METODE PENELITIAN. Subyek dalam penelitian ini adalah siswa kelas XI IPA 1 SMA Wijaya Bandar III. METODE PENELITIAN A. Settig Peelitia Subyek dalam peelitia ii adalah siswa kelas XI IPA 1 SMA Wijaya Badar Lampug, semester gajil Tahu Pelajara 2009-2010, yag berjumlah 19 orag terdiri dari 10 siswa

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: aridarmawa_fia@ub.ac.id A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder 3. Ragkaia Logika Kombiasioal da Sequesial Ragkaia Logika secara garis besar dibagi mejadi dua, yaitu ragkaia logika Kombiasioal da ragkaia logika Sequesial. Ragkaia logika Kombiasioal adalah ragkaia yag

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

BAB II KEADAAN FERMI DIRAC

BAB II KEADAAN FERMI DIRAC BAB II KEADAAN FERMI DIRAC A. Keadaa Makro da Mikro Masalah utama yag dihadapi dalam mekaika statistic adalah meetuka sebara yag mugki dari partikel-partikel kedalam tigkattigkat eergi da keadaa-keadaa

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

PEMILIHAN UJI NONPARAMETRIK TERBAIK UNTUK DUA SAMPEL BEBAS MELALUI METODE SIMULASI

PEMILIHAN UJI NONPARAMETRIK TERBAIK UNTUK DUA SAMPEL BEBAS MELALUI METODE SIMULASI PEMILIHAN UJI NONPARAMETRIK TERBAIK UNTUK DUA SAMPEL BEBAS MELALUI METODE SIMULASI Sugiyato 1, Etik Zukhroah 2 1,2 Jurusa Matematika FMIPA-UNS, e-mail : 1 Sugiy@yahoo.co.id, 2 etikzukhroah@yahoo.co.id

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jeis peelitia Peelitia ii merupaka jeis peelitia eksperime. Karea adaya pemberia perlakua pada sampel (siswa yag memiliki self efficacy redah da sagat redah) yaitu berupa layaa

Lebih terperinci

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia ii dilaksaaka di Kota Bogor Pemiliha lokasi peelitia berdasarka tujua peelitia (purposive) dega pertimbaga bahwa Kota Bogor memiliki jumlah peduduk yag

Lebih terperinci

HASIL DAN PEMBAHASAN Formulasi Perencanaan

HASIL DAN PEMBAHASAN Formulasi Perencanaan HASIL DAN PEMBAHASAN Formulasi Berdasarka hasil observasi da wawacara yag telah dilakuka, kebutuha iformasi terhadap kaleder akademik mejadi salah satu bagia yag petig pada Sistem Iformasi Maajeme Akademik,

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan BAB LANDASAN TEORI. Pegertia Regresi Statistika merupaka salah satu cabag peegtahua yag palig bayak medapatka perhatia da dipelajari oleh ilmua dari hamper semua bidag ilmu peegtahua, terutama para peeliti

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

BAB 3 DATA DAN METODOLOGI PENELITIAN

BAB 3 DATA DAN METODOLOGI PENELITIAN BAB 3 DATA DAN METODOLOGI PENELITIAN Pada Bab ii aka memberika iformasi hal yag berkaita dega lagkah-lagkah sistematis yag aka diguaka dalam mejawab pertayaa peelitia.utuk itu diperluka beberapa hal sebagai

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Maajeme risiko merupaka salah satu eleme petig dalam mejalaka bisis perusahaa karea semaki berkembagya duia perusahaa serta meigkatya kompleksitas aktivitas perusahaa

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan penelitian tindakan kelas yang dilaksanakan pada siswa

III. METODE PENELITIAN. Penelitian ini merupakan penelitian tindakan kelas yang dilaksanakan pada siswa III. METODE PENELITIAN A. Settig Peelitia Peelitia ii merupaka peelitia tidaka kelas yag dilaksaaka pada siswa kelas VIIIB SMP Muhammadiyah 1 Sidomulyo Kabupate Lampug Selata semester geap tahu pelajara

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE Biostatistics UJI CHI-SQUARE I N T A N Y U S U F H A B I B I E, S. G Z - Ilmu statistik tidak haya membatu kita utuk medeskripsika data secara rigkas, tapi juga dapat diguaka utuk meguji hipotesa. - Hipotesa

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP

STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP. (Tessa Vaia Soetato, et al.) STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Disai Peelitia Tujua Jeis Peelitia Uit Aalisis Time Horiso T-1 Assosiatif survey Orgaisasi Logitudial T-2 Assosiatif survey Orgaisasi Logitudial T-3 Assosiatif survey Orgaisasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA Fitriai Agustia, Math, UPI 1 Fiacial Derivative Opsi Mafaat Opsi Opsi Eropa Peetua Harga Opsi Kekovergea Model Biomial Fitriai Agustia, Math,

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2013 sampai Januari 2014

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2013 sampai Januari 2014 BAB III METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia ii dilaksaaka pada bula Juli 2013 sampai Jauari 201 berlokasi di Kabupate Gorotalo. B. Jeis Peelitia Peilitia tetag evaluasi program pegembaga

Lebih terperinci

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PEMBELIAN SEPEDA MOTOR DENGAN METODE WEIGHTED PRODUCT

SISTEM PENDUKUNG KEPUTUSAN PEMBELIAN SEPEDA MOTOR DENGAN METODE WEIGHTED PRODUCT Jural Iformatika Mulawarma Vol. 10 No. 2 September 2015 20 SISTEM PENDUKUNG KEPUTUSAN PEMBELIAN SEPEDA MOTOR DENGAN METODE WEIGHTED PRODUCT Necy Nurjaah 1), Zaial Arifi 2), Dya Marisa Khairia 3) 1,2,3)

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

BAB II TEORI MOTOR LANGKAH

BAB II TEORI MOTOR LANGKAH BAB II TEORI MOTOR LANGKAH II. Dasar-Dasar Motor Lagkah Motor lagkah adalah peralata elektromagetik yag megubah pulsa digital mejadi perputara mekais. Rotor pada motor lagkah berputar dega perubaha yag

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 37 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii termasuk peelitia pegembaga, yaitu pegembaga buku teks matematika. Model pegembaga yag diguaka adalah model 4-D (four D models) dari Thigaraja

Lebih terperinci

Penyelesaian Asymmetric Travelling Salesman Problem dengan Algoritma Hungarian dan Algoritma Cheapest Insertion Heuristic.

Penyelesaian Asymmetric Travelling Salesman Problem dengan Algoritma Hungarian dan Algoritma Cheapest Insertion Heuristic. Peyelesaia Asymmetric Travellig Salesma Problem dega Algoritma Hugaria da Algoritma Cheapest Isertio Heuristic Caturiyati Staf Pegaar Jurusa Pedidika Matematika FMIPA UNY E-mail: wcaturiyati@yahoo.com

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

DISTRIBUSI KHUSUS YANG DIKENAL

DISTRIBUSI KHUSUS YANG DIKENAL 0 DISTRIBUSI KHUSUS YANG DIKENAL Kita sudah membahas fugsi peluag atau fugsi desitas, baik defiisiya maupu sifatya. Fugsi peluag atau fugsi desitas ii merupaka ciri dari sebuah distribusi, artiya fugsi

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Langkah Langkah Dalam Pengolahan Data

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Langkah Langkah Dalam Pengolahan Data BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1 Metode Pegolaha Data Lagkah Lagkah Dalam Pegolaha Data Dalam melakuka pegolaha data yag diperoleh, maka diguaka alat batu statistik yag terdapat pada Statistical

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

BAB III METODE PENELITIAN. Jenis penelitian ini adalah penelitian pengembangan (research and

BAB III METODE PENELITIAN. Jenis penelitian ini adalah penelitian pengembangan (research and BAB III METODE PENELITIAN A. Jeis Peelitia Jeis peelitia ii adalah peelitia pegembaga (research ad developmet), yaitu suatu proses peelitia utuk megembagka suatu produk. Produk yag dikembagka dalam peelitia

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D?

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Atura Pecacaha A. Atura Perkalia Jika terdapat k usur yag tersedia, dega: = bayak cara utuk meyusu usur pertama 2 = bayak cara utuk meyusu usur kedua setelah usur pertama tersusu 3 = bayak cara utuk meyusu

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat 38 3.1 Lokasi da Waktu Peelitia 3.1.1 Lokasi Peelitia BAB III METODE PENELITIAN Lokasi peelitia ii dilakuka di Puskesmas Limba B terutama masyarakat yag berada di keluraha limba B Kecamata Kota Selata

Lebih terperinci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci Kompleksitas dari Algoritma-Algoritma utuk Meghitug Bilaga Fiboacci Gregorius Roy Kaluge NIM : 358 Program Studi Tekik Iformatika, Istitut Tekologi Badug Jala Gaesha, Badug e-mail: if8@studets.if.itb.ac.id,

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data 4.3 Metode Pengumpulan Data dan Pengambilan Responden

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data 4.3 Metode Pengumpulan Data dan Pengambilan Responden IV METODE PENELITIAN 4.1 Lokasi da Waktu Peelitia Peelitia sikap da kepuasa kosume ii dilaksaaka di Wilayah Pucak tepatya di agrowisata Guug Mas. Pemiliha tempat dilakuka secara segaja (purposive), dega

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

BAB I PENDAHULUAN. X Y X Y X Y sampel

BAB I PENDAHULUAN. X Y X Y X Y sampel BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Aalisis regresi merupaka metode aalisis data yag meggambarka hubuga atara variabel respo dega satu atau beberapa variabel prediktor. Aalisis regresi tersebut

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD)

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD) Prosidig Statistika ISSN: 2460-6456 Pegedalia Proses Megguaka Diagram Kedali Media Absolute Deviatio () 1 Haida Lestari, 2 Suliadi, 3 Lisur Wachidah 1,2,3 Prodi Statistika, Fakultas Matematika da Ilmu

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

LOGO MATEMATIKA BISNIS (Deret)

LOGO MATEMATIKA BISNIS (Deret) LOGO MATEMATIKA BISNIS (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com 1 MATEMATIKA BISNIS Matematika Bisis memberika pemahama ilmu megeai kosep matematika dalam bidag bisis. Sehigga suatu

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci