II. Potensial listrik

Ukuran: px
Mulai penontonan dengan halaman:

Download "II. Potensial listrik"

Transkripsi

1 II. Potensil listik Penjelsn/deskipsi gejl listik: * gy * potensil * medn * enegi Enegi Potensil Listik enegi yng dipelukn untuk memindhkn seuh mutn ( melwn gy listik) q E enegi potensil pestun mutn potensil listik U / q Yng is diuku ed potensil / V V = V - V = - W / q Jdi untuk memudhkn efeensi hus d zeo eltif isny gound Dlm nyk hl, 0 dipilih di titik Stun-stun: 7

2 Enegi potensil listik Potensil listik Medn listik : joule : volt = joule / Coulom : N/C tu Volt/mete 1 elekton volt (ev) enegi yng diutuhkn untuk menggekkn elekton mellui ed potensil 1 volt. 1 e e(1 V) = (1,6x10-19 C) (1 joule/c) 1 e 1,6x10-19 joule Contoh sol Elekton pd tung gm TV dipecept dengn ed potensil (V = 5000 volt). Mutn elekton e = - 1,6x10-19 C, mss elekton m = 9,1x10-31 kg. ) Hitung peuhn enegi potensil! ) Hitung keceptn e- segi kit peceptn ini! Jw: ) Peuhn enegi potensil ΔU = q V = (- 1,6x10-19 )(5000) = - 8x10-16 J enegi menjdi endh ) Enegi yng hilng menjdi enegi kinetik Gunkn hukum kekekln enegi ΔE k + ΔE p = 0 ΔE k = - ΔE p ½ m v - 0 = - q V 8

3 v qv = = m 4, x10 7 m/det (efek eltivistik diikn) Huungn Potensil Listik dn Medn Listik Efek mutn dpt dijelskn medn listik potensil listik d huungn nt medn dn potensil listik Contoh pd ksus plt sejj: + d E Δ V Ditinju di potensil: Kej W = - q V Pd st yng sm (di konsep gy): W = F s = F d = q E d Jdi 9

4 V = - E d Atu sec umum: V = E Selikny: E = - dv Leih lengkp: V V E E x y dn E V x = ; y = ; z = z Ksus-Ksus Pehitungn Potensil Listik 1. Mutn titik Q E = 4πε o V - V = - E 30

5 Supy pehitungn leih mudh, pehtikn jejk eikut: Q V - V = - = - = Ed d 4πε o 1 Q Q 4πε o Klu dipilih V = 0 pd = 4πε o ; mutn + = V, mutn - = - V. Dipol >> L θ 1 P cosθ 4πεo dengn P = Q L - Q L + Q 31

6 3. Mutn Kontinu dq 1 4πε o dq Contoh-contoh: 3.1. Cincin emutn Q dengn ji-ji. kn dici potensil listik pd titik P yng teletk pd sumu cincin pd jk x di pust. Q dq = x + P x 1 4πε o dq = 1 1 Q 4πε o x + 3

7 3.. Seup 3.1 untuk ckm tipis dq Q x + P dq x Tinju elemen mutn eentuk cincin dengn ji-ji. dq = lus elemen mu tn d Q = π Q lus ckm π dq = Qd Sehingg potensil di titik P d π Q d Q = x + x + 4 1/ ( ) πε ( ) πε o 0 o 1/ = = 0 Q x x πε o 1 [( + ) / ] 33

8 3.3 Bol Kondukto Bemutn Q pd pemukn (di dlm kosong), ji-ji Tentukn potensil listik pd jk di pust ol il () < () = (c) > Jw: () Medn listik di lu ol dpt dihitung di hukum Guss, didpt: E = 4πε o kn digunkn untuk menghitung potensil Q Bed potensil: V - V = - Ed = - d 4πε o 1 Q Q = 4πε o Klu dipilih V = 0 pd = () pd = 4πε o 34

9 4πε o (ts kedn () untuk =) (c) Pd < E = 0 (telh diuktikn dengn hukum Guss) Sehingg: Seteusny E = konstn 4πε o Visulisi Gfik: (gm fisik) (kuv potensil) V 4πε o Bekdown Voltge 35

10 Pd peltn yng menggunkn tegngn/voltse tinggi, d kemungkinn tejdi ekdown voltge yng dpt eup pecikn/lonctn ung pi. ud: N, O Mengp? Ken elekton es yng ed di ud (is jdi di sin kosmis) di wh penguh medn tinggi, elekton kn egek cept mengionissi N tu O ud menjdi kondukto ekdown voltge Hl ini isny tejdi pd medn listik 3x10 6 V/m Bekdown voltge leih mudh tejdi pd kondukto lncip Mengp? Amil model sedehn kondukto eentuk ol: Potensil listik : 4πε o Medn listik : E = 4πε o Jdi E Sehingg pd medn yng sm, il kecil mk pd tegngn tidk egitu es Bekdown voltge 36

11 Penentun Medn Listik (E) di Potensil (V) Di V = E Mk: E = - dv Atu leih lengkp: V V E E x y dn E V x = ; y = ; z = z Contoh: Hitung medn listik di cincin il potensil (sudh dihitung): 1 1 Q 4πε o x + E Jw: E x V = = x E y = E z = 0 1 πε Qx ( x + ) / 4 3 o 37

12 Enegi Elektosttis Du mutn: Q 1 Q 1 1 4πε o 1 Enegi eletosttik U = q V Q U = 4πε o Tig mutn 1 1 Q QQ U = 1 1 QQ πε + o 1 13 Q Q 3 3 Q 3 38

POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd

POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd POTNSIL LISTRIK Oleh : S Nuohmn,M.Pd Ke Menu Utm Liht Tmpiln eikut: POTNSIL LISTRIK il seuh ptikel emutn egek dlm seuh medn listik, mk medn itu kn mengehkn seuh gy yng dpt melkukn kej pd ptikel teseut.

Lebih terperinci

Energi Potensial Listrik

Energi Potensial Listrik Potensil Listik Suy Dm, M.Sc Deptemen Fisik Univesits Indonesi Potensil Listik Enegi Potensil Listik Jik seuh mutn dipindhkn di sutu titik wl ke titik khi, mk peuhn enegi potensil elektosttikny dlh: dimn,

Lebih terperinci

Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip

Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip Gs Gy Lstk Konsep fluks Teoem Guss Teoem Guss Penggunn Teoem Guss Medn oleh mutn ttk Medn oleh kwt pnjng tk behngg Medn lstk oleh plt lus tk behngg Medn lstk oleh bol solto dn kondukto Medn lstk oleh slnde

Lebih terperinci

Gaya dan Medan Magnet

Gaya dan Medan Magnet Gy dn Medn Mgnet Kutub ut mgnetik Kutub ut gegfi Medn mgnet Sumbu tsi Sumbu mgnetik Sebgimn hlny dengn knsep medn listik, knsep medn mgnet jug dipelukn untuk menjelskn gy nt du bend yng tidk sling besentuhn.

Lebih terperinci

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1. 1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng

Lebih terperinci

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 )

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 ) BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS KERAPATAN FLUKS LISTRIK Fluk litik bemul di mutn poitif dn bekhi di mutn negtif ( tu bekhi di tk tehingg klu tidk d mutn negtif (b + - + -~ Gi fluk ( (b

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e.

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e. . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 e. Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = (

Lebih terperinci

BAB IV METODE ANALISIS RANGKAIAN

BAB IV METODE ANALISIS RANGKAIAN BAB IV METODE ANALISIS RANGKAIAN. Anlisis Arus Cng Anlisis rus cng memnftkn hukum Kirchoff I (KCL) dn hukum Kirchoff I (KVL). Contoh - Tentukn esr rus dlm loop terseut dn gimn rh rusny? Ohm 0V 0V Ohm 0V

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v

adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v Gek Melingk Betun (GMB) dlh jik sebuh bend begek ebentuk sutu lingkn dengn keceptn konstn. 1 = = Peceptn dlh bes peubhn keceptn selng wktu t, h keceptn jug enyebbkn peceptn. 1 = peubhn keceptn t = peubhn

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

Persamaan Garis Singgung Lingkaran Melalui Titik di Luar Lingkaran

Persamaan Garis Singgung Lingkaran Melalui Titik di Luar Lingkaran Mtei Pesn Gis Singgung Lingkn Mellui Titik di Lu Lingkn Oleh: Anng Wibowo, S.Pd Apil MtikZone s Seies Eil : tikzone@gil.co Blog : www.tikzone.wodpess.co HP : 8 87 87 Hk Cipt Dilindungi Undng-undng. Dilng

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

BAB II ELEMEN-ELEMEN RANGKAIAN

BAB II ELEMEN-ELEMEN RANGKAIAN BAB II ELEMEN-ELEMEN RANGKAIAN 2. Elemen-Elemen Rngkin Elemen-elemen rngkin d yng diseut segi elemen ktif (sumer tegngn dn sumer rus) yitu : elemen yng siftny mmpu menylurkn energy ke rngkin. Selin itu

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks).

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks). Prol dlh tempt kedudukn titik-titik ng jrkn ke stu titik tertentu sm dengn jrkn ke seuh gris tertentu (direktriks). Persmn Prol 1. Persmn Prol dengn Punck O(,) Perhtikn gmr erikut ini! PARABOLA g A P(,

Lebih terperinci

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative)

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative) Integrl AntiTurunn (Antiderivtive) AntiTurunn dri seuh fungsi f dl seuh fungsi F sedemikin hingg Dierikn Pd Peltihn Guru-Guru Aceh Jy 5 Septemer 0 Oleh: Ridh Ferdhin, M.Sc F f E. AntiTurunn dri f ( ) 6

Lebih terperinci

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI TRIGONOMETRI I. KOMPETENSI YANG DICAPAI Mhsisw dpt : 1. Membuktikn identits trigonometri.. Menghitung hubungn ntr sudut dn sisi segitig dengn Rumus Sinus. 3. Menghitung hubungn ntr sudut dn sisi segitig

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015 -. UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 015 SILAHKAN KLIK KUNJUNGI: WWW.E-SBMPTN.COM Ltihn Sol Fisik 1. Thun hy dlh stun dri... (A) jrk (D) momentum (B) keeptn (E) energi (C) wktu. Stu wtt hour sm dengn...

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

OSN 2015 Matematika SMA/MA

OSN 2015 Matematika SMA/MA Sol 5. Mislkn,, c, d dlh ilngn sli sehingg c d dn d c. Buktikn hw () (cd) mx{,}. Jw: Klim hw c. Jik = 1 mk jels memenuhi pernytn. Mislkn p prim dn = p t s dengn p s. Untuk menunjukkn hw c cukup kit tunjukkn

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k

Lebih terperinci

Hukum Gerak Newton FIS 1 A. PENDAHULUAN B. HUKUM NEWTON I C. HUKUM NEWTON II KINEMATIKA GERAK (I) materi78.co.nr

Hukum Gerak Newton FIS 1 A. PENDAHULUAN B. HUKUM NEWTON I C. HUKUM NEWTON II KINEMATIKA GERAK (I) materi78.co.nr tei78.co.n Huku Gek ewton A. PEDAHULUA Huku gek ewton enjelskn hubungn gy dn gek yng dikibtkn oleh gy tesebut. Huku gek ewton tedii di huku kelebn, huku ewton II dn huku ksieksi. B. HUKUM EO I Huku ewton

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : thereiveni.wordpre.om NM : KELS : BB TRIGONOMETRI thereiveni.wordpre.om Pengukurn Sudut d du tun pengukurn udut yitu : derjt dn rdin Stun derjt Definii : = putrn 36 Ingt : putrn = 36 Jdi : putrn = 8 putrn

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

TEORI DEFINITE INTEGRAL

TEORI DEFINITE INTEGRAL definite integrl & lus yog.prihstomo TEORI DEFINITE INTEGRAL Definisi : Jik y = f(x) dlh fungsi kontinu dn terdefinisi dlm intervl tertutup [,] sehingg lim n n i= f ( xi). Δxi d (mempunyi nili), mk definite

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh :

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh : RUNG VEKTOR UMUM Dosen Pengmpu : Drmdi S.Si M.Pd Disusun oleh : 1. gung Dwi Chyono (84.56) 2. rdie Kusum (84.73) 3. Heri Chyono (84.145) 4. Lingg Nio Prdn (84.18) 5. Yudh Sofyn Mhmudi (84.293) PROGRM STUDI

Lebih terperinci

V B Gambar 3.1 Balok Statis Tertentu

V B Gambar 3.1 Balok Statis Tertentu hn jr Sttik ulyti, ST, T erteun, I, II III Struktur lk III endhulun lk (e) dlh sutu nggt struktur yng ditujukn untuk eikul en trnsversl sj, sutu lk kn ternlis dengn secr lengkp pil digr gy geser dn digr

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

Muatan Pada Konstruksi

Muatan Pada Konstruksi Mutn Pd Konstruksi Konstruksi sutu ngunn sellu diciptkn untuk dn hrus dpt menhn ergi mcm mutn. Mutn yng dimksud dlh mutn yng terseut dlm Perturn Mutn Indonesi 197 NI 18. ergi mcm mutn tergntung pd perencnn,

Lebih terperinci

BAB VI. PENERAPAN INTEGRAL. kurva di bidang-xy dan andaikan f kontinu dan tak negatif pada selang [a, b]. Luas

BAB VI. PENERAPAN INTEGRAL. kurva di bidang-xy dan andaikan f kontinu dan tak negatif pada selang [a, b]. Luas 1 BAB VI. PENERAPAN INTEGRAL 6.1. Lus Derh Bidng Dtr Derh di ts sumu-. Andikn y = f() menentukn persmn seuh kurv di idng-y dn ndikn f kontinu dn tk negtif pd selng [, ]. Lus derh R yng ditsi oleh y = f(),

Lebih terperinci

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT Kometensi (Bgin PERSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Menentukn Jenis Akr-Akr Persmn Kudrt Menggunkn Diskriminn (D Bentuk Umum: D = - 4c + x + c ; 0 Pengertin: x = α dlh kr-kr ersmn + x + c α

Lebih terperinci

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

BAB V ENERGI DAN POTENSIAL

BAB V ENERGI DAN POTENSIAL ENERGI DN POTENSIL 4. Eegi g dipeluk meggek mut titik dlm med listik. Itesits med listik didefiisik sebgi g g betumpu pd mut uji stu pd titik g igi kit dptk hg med vekt. Jik mut uji tesebut digekk melw

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

adalah biaya marginal dari C terhadap Q x adalah biaya marginal dari C terhadap Q y Umumnya biaya marginal adalah positif C

adalah biaya marginal dari C terhadap Q x adalah biaya marginal dari C terhadap Q y Umumnya biaya marginal adalah positif C A. endhulun. Seperti telh dikethui hw diferensil memhs tentng tingkt peruhn sehuungn dengn peruhn kecil dlm vrile es fungsi ersngkutn. Dengn diferensil dpt dikethui kedudukn-kedudukn khusus dri fungsi

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom TRANSFORMASI GEOMETRI BAB Sutu trnsformsi idng dlh sutu pemetn dri idng Krtesius ke idng ng lin tu T : R R (,) ( ', ') Jenis-jenis trnsformsi ntr lin : Trnsformsi Isometri itu trnsformsi ng tidk menguh

Lebih terperinci

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin MODUL KULIAH STRUKTUR BETON BERTULANG I Minggu ke : 9 Tulngn Rngkp Oleh Resmi Bestri Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dn PERENCANAAN UNIVERSITAS MERCU BUANA 2010 DAFTAR ISI DAFTAR ISI i IX

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis urikulum 2013 kimi e l s XI HIDROLISIS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi, jenis, dn meknisme hidrolisis. 2. Memhmi sift-sift dn ph lrutn

Lebih terperinci

Percobaan RANGKAIAN RESISTOR, HUKUM OHM DAN PEMBAGI TEGANGAN. (Oleh : Sumarna, Lab-Elins, Jurdik Fisika FMIPA UNY)

Percobaan RANGKAIAN RESISTOR, HUKUM OHM DAN PEMBAGI TEGANGAN. (Oleh : Sumarna, Lab-Elins, Jurdik Fisika FMIPA UNY) Percon ANGKAIAN ESISTO, HUKUM OHM DAN PEMBAGI TEGANGAN (Oleh : Sumrn, L-Elins, Jurdik Fisik FMIPA UNY) E-mil : sumrn@un.c.id) 1. Tujun 1). Mempeljri cr-cr merngki resistor. 2). Mempeljri wtk rngkin resistor.

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

ω = kecepatan sudut poros engkol

ω = kecepatan sudut poros engkol Kerj Untuk Mengtsi Gesekn 1. Pomp Tnp Bejn Udr Telh dijelskn pd bgin muk bhw pd wl dn khir lngkh hisp mupun lngkh tekn, tidk terjdi kerugin hed kibt gesekn. Kerugin hed mksimum hny terjdi pd pertenghn

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels Mtemtik Persipn UAS 0 Doc. Nme: ARMAT0UAS Version : 06-09 hlmn 0. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 8, Jik rt-rt nili mtemtik untuk sisw priny dlh 6, sedngkn untuk sisw wnit

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

Integral Numerik. Sunkar E. Gautama, 2013

Integral Numerik. Sunkar E. Gautama, 2013 Integrl Numerik Sunkr E. Gutm, 2013 http://prdoks77.logspot.com Integrl numerik ilh metode untuk menghitung nili integrsi sutu fungsi dlm sutu selng tnp mempedulikn fungsi hsil integrlny dengn menggunkn

Lebih terperinci

Medan Magnet. Tahun 1820 Oersted menemukan bahwa arus listrik yang mengalir pada sebuah penghantar dapat menghasilkan

Medan Magnet. Tahun 1820 Oersted menemukan bahwa arus listrik yang mengalir pada sebuah penghantar dapat menghasilkan MEDAN MAGNET Gejl kemgnetn mirip dengn p yng terjdi pd gejl kelistrikn Mislny : Sutu besi tu bj yng dpt ditrik oleh mgnet btngn Terjdiny pol gris-gris serbuk besi jik didektkn pd mgnet btngn nterksi yng

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

DETERMINAN. Matematika Industri I. TIP FTP UB Mas ud Effendi. Matematika Industri I

DETERMINAN. Matematika Industri I. TIP FTP UB Mas ud Effendi. Matematika Industri I DETERMINAN Mtemtik Industri I TIP FTP UB Ms ud Effendi Mtemtik Industri I Pokok Bhsn Determinn Determinn orde-ketig Persmn simultn dengn tig ilngn tidk dikethui Konsistensi sutu set persmn Sift-sift determinn

Lebih terperinci

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya Kurikulum 2013 kimi K e l s XI LARUTAN PENYANGGA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi pengertin lrutn penyngg dn penggunnny dlm kehidupn sehri-hri.

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

HUBUNGAN MOMEN DENGAN ROTASI BALOK JEPIT JEPIT

HUBUNGAN MOMEN DENGAN ROTASI BALOK JEPIT JEPIT //4 TKS 48 Anlisis Struktur I T. XIV : HUBUNGAN OEN DENGAN ROTASI Dr.Eng. Achfs Zcoe, ST., T. Jurusn Teknik Sipil Fkults Teknik Universits Brwijy BAOK JT JT H = = Sift tumpun jepit : Tidk mengijinkn terjdiny

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Routh

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Routh Intitut Teknologi Sepuluh Nopemer Sury Anli Ketiln Routh Pengntr Mteri Contoh Sol Ringkn Ltihn Aemen Pengntr Mteri Contoh Sol Konep Stil Proedur Ketiln Routh Ringkn Ltihn Aemen Pengntr Pengntr Mteri Contoh

Lebih terperinci

Relasi Ekuivalensi dan Automata Minimal

Relasi Ekuivalensi dan Automata Minimal Relsi Ekuivlensi dn Automt Miniml Teori Bhs dn Automt Semester Gnjil 01 Jum t, 1.11.01 Dosen pengsuh: Kurni Sputr ST, M.Sc Emil: kurni.sputr@gmil.com Jurusn Informtik Fkults Mtemtik dn Ilmu Pengethun Alm

Lebih terperinci

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

LISTRIK STATIS (3) Potensial Listrik BAB 1 Fisika Dasar II 44

LISTRIK STATIS (3) Potensial Listrik BAB 1 Fisika Dasar II 44 LISTRIK STTIS (3) Potensial Listik BB 1 Fisika Dasa II 44 1. PENDHULUN ds G 3.1 Muatan positif egeak sejauh ds ke aah negatif kaena adanya enegi potensial listik Dalam pemahasan tedahulu kita telah menganalisis

Lebih terperinci

Soal Latihan dan Pembahasan Persamaan Lingkaran

Soal Latihan dan Pembahasan Persamaan Lingkaran Sol Ltihn dn Pebhsn Pesn Lingkn Di susun Oleh : Yuun Sonti http://bibingnbelj.net/ Di dukung oleh : Potl eduksi Gtis Indonesi Open Knowledge nd Eduction http://oke.o.id Tutoil ini dipebolehkn untuk di

Lebih terperinci

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...

Lebih terperinci

TRANSFORMASI GEOMETRI

TRANSFORMASI GEOMETRI TRANSFORMASI GEOMETRI Trnsformsi digunn untu untu memindhn sutu titi tu ngun pd sutu idng. Trnsformsi geometri dlh gin dri geometri ng memhs tentng peruhn (let,entu, penjin ng didsrn dengn gmr dn mtris.

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

MATEMATIKA KELAS X SEMESTER II

MATEMATIKA KELAS X SEMESTER II MODUL MATEMATIKA KELAS X SEMESTER II MAYA KURNIAWATI SMA NEGERI SUMER TRIGONOMETRI Stnd Kompetensi : Menggunkn pendingn fungsi, pesmn, dn identits tigonometi dlm pemechn mslh. Kompetensi Ds : Melkukn mnipulsi

Lebih terperinci