METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN"

Transkripsi

1 Praktikum m.k Model dan Simulasi Ekosistem Hari / Tanggal : Nilai METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN Nama : NIM : Oleh PROGRAM STUDI ILMU KELAUTAN FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SRIWIJAYA 01

2 Praktikum-1 METODE BEDA HINGGA DAN PENGANTAR PEMROGRAMAN Tujuan Instruksional Khusus: Setelah mengikuti praktikum ini, mahasiswa dapat memahamai dan mendiskritisasi persamaan dengan menggunakan konsep metode beda hingga dalam pemodelan. Sub Pokok Bahasan Pengenalan metode beda hingga Pengantar Pemrograman Diskritisasi persamaan dengan menggunakan konsep metode beda hingga. Tujuan Praktikum: Mahasiswa dapat memahami konsep metode beda hingga dan pemrograman Mahasiswa dapat mendiskritisasi suatu persamaan dengan menggunakan konsep metode beda hingga. PENDAHULUAN 1.1 METODE BEDA HINGGA (FINITE DIFFERENCE) Metode ini digunakan untuk memecahkan persamaan dierensial parsial secara numerik, dengan menggunakan deret Taylor yang diputus pada orde tertentu sesuai kebutuhan yang ada. Sebagai contoh uraian deret Taylor adalah: ( x x) ( x x) x ( x) 1! x ( x) 1! x! x! x 3! x 3! 3 3 '''( x)... '''( x)... (1.1)

3 pendekatan dari x dapat ditulis sebagai: a. Beda maju (orward dierence) ( x x) ( x) '( x) (1.) x b. Beda mundur (backward dierence) ( x) ( x x) '( x) (1.3) x c. Selisih pusat (Centre dierence) ( x x) ( x x) '( x) (1.4) x Bila dierensialnya sampai orde, maka uraian x deret Taylor sampai orde kemudian dijumlahkan: x x ( x x) ( x) 1!! x x ( x x) ( x) 1!! ( x x) ( x x) ( x) x ( x x) ( x) ( x x) x (1.5) 1. DISKRITISASI Pemodelan numerik membutuhkan grid yang menggambarkan daerah yang ditinjau. Bila kita akan menghitung (x) dan (x), maka digunakan grid dan notasi berikut:

4 j dy dx i ''( x, y) i1 i1, j i x x i1 i, j i1, j 1.3 KESALAHAN MEMUTUS Dalam metode beda hingga ini, pendekatan untuk turunan pertama dan kedua berdasarkan deret Taylor yang diputus sesuai dengan keperluan. Pemutusan ini merupakan salah satu sumber kesalahan dalam pendekatan numerik. Sebagai contoh, tinjau turunan pertama dengan menggunakan metode beda pusat: ( x x) ( x x) x misal (x) = A sin kx ; k = /L dimana: A=amplitudo; k = bilangan gelombang; L = panjang gelombang. Secara analitik dapat diturunkan (x) = A k cos kx. Namun dengan pendekatan beda pusat diperoleh: sin k( x x) sin k( x x) A x = A (cos kx. sin kx)/x sin kx = A k cos kx kx

5 Jadi terlihat adanya aktor sin kx yang menyimpang dari kx solusi analitik. Pendekatan akan baik bila aktor sin kx kx mendekati nilai 1 atau kx mendekati 0, karena lim0 kx sin kx kx 1. Artinya semakin kecil x yang digunakan, maka pendekatan numerik akan lebih baik. 1.4 PENGANTAR PEMROGRAMAN Salah satu tahapan penting dalam pemrograman adalah pembuatan bagan dan struktur penyelesaian permasalahan. Dalam tahapan ini dibuat bagan penyelesaian secara global, mendeskripsikan tugas serta sub-tugas dari masing-masing bagian dalam bagan tersebut. Setelah dilakukan, maka dipilih metode penyelesaian dari tiap tugas. Uraian metode penyelesaian masalah yang lengkap tersebut disebut algoritma. Algoritma inilah yang kemudian diterjemahkan dalam bahasa pemrograman tertentu. Ada dua cara penulisan algoritma: 1. Menggunakan bagan-bagan/simbol-simbol tertentu, biasa disebut diagram alir (lowchart).. Menggunakan kata-kata/kalimat, mirip dengan bahasa pemrograman tertentu (mis: Fortran). Diagram alir terdiri dari dua jenis: 1. Diagram alir sistem. Diagram alir program. Simbol-simbol dasar yang umum dipakai dalam pembuatan diagram alir program diantaranya:

6 Terminal awal/akhir Proses/pengolahan ` Proses terdeinisi/prosedur/ungsi Penghubung Pilihan untuk memenuhi kondisi ya/tidak Operasi masukan/keluaran akhir untuk pencacah. Memberi harga awal, penambahan/pengurangan, harga Penunjuk arah aliran proses Tugas: Jika diketahui Persamaan adveksi 1 dimensi: F t F u x, diskritisasi persamaan tersebut dengan beda maju (orward dierence) untuk turunan waktu dan ruang. beda mundur (backward dierence) untuk turunan waktu dan ruang. selisih pusat (Centre dierence) untuk turunan waktu dan ruang. beda maju (orward dierence) untuk turunan waktu, beda mundur (backward dierence) untuk turunan ruang

7 beda maju (orward dierence) untuk turunan ruang, beda mundur (backward dierence) untuk turunan waktu beda maju (orward dierence) untuk turunan waktu, beda pusat (Centre dierence) untuk turunan ruang beda maju (orward dierence) untuk turunan ruang, beda pusat (Centre dierence) untuk turunan waktu beda mundur (backward dierence) untuk turunan waktu, beda pusat (Centre dierence) untuk turunan ruang beda mundur (backward dierence) untuk turunan ruang, beda pusat (Centre dierence) untuk turunan waktu. DAFTAR PUSTAKA Homann, K. A Computational Fluid Dynamics or Engineers. The University o Texas at Austin, Texas. Kowalik, Z. and Murty, T. S Numerical Modeling o Ocean Dynamics. World Scientiic Publishing Co. Pte. Ltd. London

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 11-12: Finite Dierence Method for PDE Wave Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Gelombang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP 10.09.04 PAF220 Revisi ke - Tanggal 13 September 2013 Dikaji Ulang Oleh Ketua Program Studi Fisika Dikendalikan Oleh GPM

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL TUGAS AKHIR Diajukan untuk melengkapi persyaratan dalam menyelesaikan tahap sarjana pada

Lebih terperinci

METODA NUMERIK (3 SKS)

METODA NUMERIK (3 SKS) METODA NUMERIK (3 SKS) Dosen Dr. Julan HERNADI Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Masa Perkuliahan Semester Ganjil 2013/2014 Deskripsi dan Tujuan Perkuliahan Mata kuliah ini berisi

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika

Lebih terperinci

Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method

Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 T - 4 Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method Yulian Fauzi 1, Jose Rizal 1, Fachri Faisal 1, Pepi

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH

PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH TUGAS AKHIR PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH 1204100019 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding

Lebih terperinci

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika

Lebih terperinci

BAB III METODE BINOMIAL

BAB III METODE BINOMIAL BAB III METODE BINOMIAL Metode Binomial ialah metode sederhana yang banyak digunakan untuk menghitung harga saham. Metode ini berdasarkan pada percabangan pohon yang menerapkan aturan binomial pada tiap-tiap

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 10: Finite Dierence Method for PDE Heat Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Persamaan

Lebih terperinci

SEMINAR TUGAS AKHIR. Penerapan Metode Ensemble Kalman Filter untuk Estimasi Kecepatan dan Ketinggian Gelombang Non Linear pada Pantai

SEMINAR TUGAS AKHIR. Penerapan Metode Ensemble Kalman Filter untuk Estimasi Kecepatan dan Ketinggian Gelombang Non Linear pada Pantai SEMINAR TUGAS AKHIR Penerapan Metode Ensemble Kalman Filter untuk Estimasi Kecepatan dan Ketinggian Gelombang Non Linear pada Pantai Oleh: Fadila Rahmana 1208 100 044 Abstrak Gelombang laut telah menjadi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

Setiap mahasiswa yang pernah mengambil kuliah kalkulus tentu masih ingat dengan turunan fungsi yang didefenisikan sebagai

Setiap mahasiswa yang pernah mengambil kuliah kalkulus tentu masih ingat dengan turunan fungsi yang didefenisikan sebagai Bab 7 Turunan Numerik Lebi banyak lagi yang terdapat di langit dan di bumi, Horatio, daripada yang kau mimpikan di dalam ilosoimu. (Hamlet) Setiap maasiswa yang perna mengambil kulia kalkulus tentu masi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA.1 Model Aliran Dua-Fase Nonekulibrium pada Media Berpori Penelitian ini merupakan kajian ulang terhadap penelitian yang telah dilakukan oleh Juanes (008), dalam tulisannya yang berjudul

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

MATA KULIAH ANALISIS NUMERIK

MATA KULIAH ANALISIS NUMERIK BAHAN AJAR MATA KULIAH ANALISIS NUMERIK Oleh: M. Muhaemin Muhammad Saukat JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN 2009 Bahan Ajar Analisis

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

Differensiasi Numerik

Differensiasi Numerik Dierensiasi Numerik Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik DIFFERENSIASI NUMERIK Mengapa perlu Metode Numerik? Dierensiasi dg MetNum Metode Selisi Maju Metode Selisi Tengaan

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010 Metode Program Studi Pendidikan Matematika UNTIRTA 10 Maret 2010 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret 2010 1 / 16 Ekspansi Taylor Misalkan f 2 C [a, b] dan x 0 2 [a, b], maka untuk

Lebih terperinci

Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin

Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin Metode Numerik & Lab Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat Metode Numerik & Lab - Intro 3 Tujuan Pembelajaran Mahasiswa memiliki

Lebih terperinci

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat c. Turunan pertama dari fungsi f di titik c ditulis f '( c ) didefinisikan sebagai: ( ) ( ) f x f '( c) = lim f c x c x c bila limitnya ada.

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK APPLICATION OF CELLULAR AUTOMATA METHOD TO DETERMINATION OF STEADY STATE TEMPERATURE DISTRIBUTION Apriansyah 1* 1*

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI III.1. Citra Digital Citra merupakan gambar yang merepresentasikan sesuatu. Citra dapat berupa gambar dari sebuah atau kumpulan obyek. Citra digital merupakan citra yang dapat diolah

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0

Lebih terperinci

PEMODELAN ARUS LALU LINTAS ROUNDABOUT

PEMODELAN ARUS LALU LINTAS ROUNDABOUT Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 43 52 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN ARUS LALU LINTAS ROUNDABOUT NANDA ARDIELNA, MAHDHIVAN SYAFWAN Program Studi Matematika, Fakultas

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH

ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH Oleh: 1 Arif Fatahillah, 2 M. Gangga D. F. F. P 1,2 Program Studi Pendidikan Matematika FKIP Universitas Jember e-mail: arif.fkip@unej.ac.id

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D UNTUK TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DUFORT FRANKEL

PENYELESAIAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D UNTUK TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DUFORT FRANKEL 1 PENYELESAIAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D UNTUK TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DUFORT FRANKEL NUMERICAL SOLUTION OF 2-D ADVECTION DIFFUSION EQUATION FOR POLLUTANT TRANSFER

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI

Lebih terperinci

BAB I ARTI PENTING ANALISIS NUMERIK

BAB I ARTI PENTING ANALISIS NUMERIK BAB I ARTI PENTING ANALISIS NUMERIK Pendahuluan Di dalam proses penyelesaian masalah yang berhubungan dengan bidang sains, teknik, ekonomi dan bidang lainnya, sebuah gejala fisis pertama-tama harus digambarkan

Lebih terperinci

MODEL POLA LAJU ALIRAN FLUIDA DENGAN LUAS PENAMPANG YANG BERBEDA MENGGUNAKAN METODE BEDA HINGGA

MODEL POLA LAJU ALIRAN FLUIDA DENGAN LUAS PENAMPANG YANG BERBEDA MENGGUNAKAN METODE BEDA HINGGA MODEL POLA LAJU ALIRAN FLUIDA DENGAN LUAS PENAMPANG YANG BERBEDA MENGGUNAKAN METODE BEDA HINGGA Vira Marselly, Defrianto, Rahmi Dewi Mahasiswa Program S1 Fisika Fakultas Matematika Dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

BAB I PENDAHULUAN. ada dua pendekatan yang dapat digunakan, pendekatan yang pertama adalah

BAB I PENDAHULUAN. ada dua pendekatan yang dapat digunakan, pendekatan yang pertama adalah BAB I PENDAHULUAN I.1. Latar Belakang Seiring dengan perkembangan teknologi informasi yang sangat pesat, saat ini dapat ditemui berbagai macam media dan sarana untuk menyampaikan pengetahuan dan informasi.

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

Lebih terperinci

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI JURNAL MATEMATIKA DAN KOMPUTER EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Kushartantya dan Awalina Kurniastuti Jurusan Matematika

Lebih terperinci

Pengantar Persamaan Differensial (1)

Pengantar Persamaan Differensial (1) Program Studi Modul Mata Kuliah Kode MK Disusun Oleh Sistem Komputer 01 Persamaan Differensial MKK103 Albaar Rubhasy, S.Si, MTI Pengantar Persamaan Differensial (1) Materi Pembahasan: Deskripsi Perkuliahan

Lebih terperinci

ISBN. PT SINAR BARU ALGENSINDO

ISBN. PT SINAR BARU ALGENSINDO Drs. HERI SUTARNO, M. T. DEWI RACHMATIN, S. Si., M. Si. METODE NUMERIK DENGAN PENDEKATAN ALGORITMIK ISBN. PT SINAR BARU ALGENSINDO PRAKATA Segala puji dan syukur penulis panjatkan kepada Alloh SWT yang

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Suhu merupakan salah satu dimensi pengukuran. Nilai dari suhu dapat diukur pada suatu lingkungan dan suhu mengalami kenaikan dan penurunan karena adanya perambatan

Lebih terperinci

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS Aziskhan, Mardhika W.A, Syamsudhuha Jurusan MatematikaFMIPA Universitas Riau Abstract. The aim of this paper is to solve a heat equation

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

Estimasi Solusi Model Pertumbuhan Logistik dengan Metode Ensemble Kalman Filter

Estimasi Solusi Model Pertumbuhan Logistik dengan Metode Ensemble Kalman Filter Jurnal ILMU DASAR, Vol.14, No,2, Juli 2013 : 85-90 85 Estimasi Solusi Model Pertumbuhan Logistik dengan Metode Ensemble Kalman Filter Solution Estimation of Logistic Growth Model with Ensemble Kalman Filter

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis

Lebih terperinci

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS PRESENTASI TUGAS AKHIR KI091391 SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS (Kata kunci:persamaan burgers,

Lebih terperinci

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan ilmu matematika yang dapat digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya dalam ilmu kesehatan yaitu

Lebih terperinci

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA BAB III PEMODELAN DENGAN METODE VOLUME HINGGA 3.1 Teori Dasar Metode Volume Hingga Computational fluid dynamic atau CFD merupakan ilmu yang mempelajari tentang analisa aliran fluida, perpindaan panas dan

Lebih terperinci

Mutawafaq Haerunnazillah 15B08011

Mutawafaq Haerunnazillah 15B08011 GELOMBANG STASIONER Gelombang stasioner merupakan perpaduan dua gelombang yang mempunyai frekuensi, cepat rambat, dan amplitudo yang sama besar namun merambat dalam arah yang berlawanan. Singkatnya, gelombang

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

APLIKASI METODE BEDA HINGGA PADA PERSAMAAN SCHRöDINGER MENGGUNAKAN MATLAB ABSTRAK

APLIKASI METODE BEDA HINGGA PADA PERSAMAAN SCHRöDINGER MENGGUNAKAN MATLAB ABSTRAK APLIKASI METODE BEDA HINGGA PADA PERSAMAAN SCHRöDINGER MENGGUNAKAN MATLAB Odaligo Ziduhu Lombu 1, Tua Raja Simbolon 2, Tenang Ginting 3 1 Mahasiswa FISIKA FMIPA USU 2,3 Dosen Pembimbing FISIKA FMIPA USU

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada metode numerik, dikenal suatu metode untuk menaksir atau mencari solusi pendekatan nilai eksak dari suatu ordinat y n+1 dengan diketahui nilai dari y n,

Lebih terperinci

Perbandingan Model Black Scholes dan Brennan Schwartz untuk Menentukan Harga American Option

Perbandingan Model Black Scholes dan Brennan Schwartz untuk Menentukan Harga American Option J. Math. and Its Appl. ISSN: 829-605X Vol. 4, No., May 2007, 47 58 Perbandingan Model Black Scholes dan Brennan Schwartz untuk Menentukan Harga American Option Endah Rokhmati MP, Lukman Hanafi, Supriati

Lebih terperinci

SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI

SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI Oleh Titis Miranti NIM 101810101012 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2014 HALAMAN

Lebih terperinci

SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT

SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT Jundana Akhyar 1 dan Muslim Muin 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi

Lebih terperinci

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin Metode Numerik Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat 2 Metode Numerik & Teknik Komputasi - Intro 3 Tujuan Pembelajaran Mahasiswa

Lebih terperinci

BAB 1 PENDAHULUAN. menimbulkan permasalahan baru seputar arus kepadatan jalan. Sebagai

BAB 1 PENDAHULUAN. menimbulkan permasalahan baru seputar arus kepadatan jalan. Sebagai BAB 1 PENDAHULUAN 1.1 Latar Belakang Transportasi merupakan sarana penting sebagai salah satu faktor pendukung berkembangnya suatu kota. Oleh karena itu kebutuhan akan jalur transportasi semakin bertambah.

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95)

Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95) Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95) A. Kendala Dalam Sistem Komputasi Numerik Dalam komputasi numerik, yaitu

Lebih terperinci

Pemodelan Lintasan Benda Titik Pada Wall of Death (Tong Setan)

Pemodelan Lintasan Benda Titik Pada Wall of Death (Tong Setan) Pemodelan Lintasan Benda Titik Pada Wall of Death (Tong Setan) Wenny Wahyuni1,a), ustan1,b), Erika L. Y. Nasution,c), Miftahul Husnah,d) dan Sparisoma Viridi3,e) 1 Laboratorium Fisika Bumi, Kelompok Keilmuan

Lebih terperinci

Hampiran turunan menggunakan metoda numerik

Hampiran turunan menggunakan metoda numerik Hampiran turunan menggunakan metoda numerik Kie Van Ivanky Saputra March 31, 2009 K V I Saputra (Analisis Numerik) Turunan Numerik March 31, 2009 1 / 9 Tujuan 1 mengerti apa itu dari turunan numerik, 2

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Air merupakan kebutuhan penting bagi pertumbuhan tanaman. Namun, pada saat musim kemarau tiba atau di daerah dengan intensitas hujan rendah, ketersediaan air

Lebih terperinci

PENENTUAN HARGA OPSI DENGAN MODEL BLACK-SCHOLES MENGGUNAKAN METODE BEDA HINGGA CENTER TIME CENTER SPACE (CTCS)

PENENTUAN HARGA OPSI DENGAN MODEL BLACK-SCHOLES MENGGUNAKAN METODE BEDA HINGGA CENTER TIME CENTER SPACE (CTCS) Eksakta Vol. 18 No. 2, Oktober 2017 http://eksakta.ppj.unp.ac.id E-ISSN : 2549-7464 P-ISSN : 1411-3724 PENENTUAN HARGA OPSI DENGAN MODEL BLACK-SCHOLES MENGGUNAKAN METODE BEDA HINGGA CENTER TIME CENTER

Lebih terperinci

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan 4 3.2 Peralatan..(9) dimana,, dan.(10) substitusi persamaan (10) ke persamaan (9) maka diperoleh persamaan gelombang soliton DNA model PBD...(11) agar persamaan (11) dapat dipecahkan sehingga harus diterapkan

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : JOKO SUPRIYANTO NIM. I

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : JOKO SUPRIYANTO NIM. I SIMULASI NUMERIK PERPINDAHAN PANAS 2 DIMENSI PADA PROSES PENDINGINAN TEMBAGA MURNI DENGAN VARIASI CETAKAN PASIR DAN MULLITE MENGGUNAKAN PENDEKATAN BEDA HINGGA SKRIPSI Diajukan sebagai salah satu syarat

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci