Modul ke: MATEMATIKA 1 DERIVATIF PARSIAL. Fakultas TEKNIK IMELDA ULI VISTALINA SIMANJUNTAK,S.T.,M.T. Program Studi TEKNIK ELEKTRO

Ukuran: px
Mulai penontonan dengan halaman:

Download "Modul ke: MATEMATIKA 1 DERIVATIF PARSIAL. Fakultas TEKNIK IMELDA ULI VISTALINA SIMANJUNTAK,S.T.,M.T. Program Studi TEKNIK ELEKTRO"

Transkripsi

1 Modul ke: MATEMATIKA 1 DERIVATIF PARSIAL Fakultas TEKNIK IMELDA ULI VISTALINA SIMANJUNTAK,S.T.,M.T. Program Studi TEKNIK ELEKTRO

2 Derivatif Parsial 1. Derivatif fungsi dua perubah. Derivatif parsial tingkat n 3. Diferensial Total 4. Aplikasi derivatif parsial

3 1.Derivatif Fungsi dua Perubah Derivatif Parsial. Diketahui f(,) fungsi dengan dua variabel independen dan. Karena dan independen maka : (i ) berubah-ubah sedangkan tertentu. (ii) berubah - ubah sedangkan tertentu.

4 Derivatif Fungsi dua Perubah Definisi.1 i). Derivatif parsial terhadap perubah Jika berubah-ubah dan tertentu maka merupakan fungsi, derivatif parsial f(,) terhadap sbb: f (,) f (Δ,) f (,) lim 0 Δ Δ

5 Derivatif Fungsi dua Perubah ii). Derivatif parsial terhadap perubah Jika berubah-ubah dan tertentu maka merupakan fungsi, derivatif parsial f(,) terhadap sbb : f(, ) f(, ) f(, ) lim Δ Δ 0 Δ

6

7 Menentukan nilai derivatif b. Tentukan derivatif parsial fungsi f terhadap jika f(,) f f (, Δ) f (, ) (, ) lim Δ 0 Δ lim Δ 0 ( ( Δ)) ( Δ ) lim Δ 0

8 Contoh : Jika ln ( ) tunjukkan bahwa Jawab : untuk menjawab ini perlu ditentukan terlebih dahulu Selanjutna tentukan nilai dan Menentukan nilai derivatif

9 ln ( ), derivatif parsial terhadap dan dan maka : Lanjutan Contoh.. ) ln( ) ln(

10 . Derivatif Parsial Tingkat n Jika fungsi f(,) mempunai derivatif parsial di setiap titik (,) pada suatu daerah maka f (, ) dan f (, ) merupakan fungsi dan ang mungkin juga mempunai derivatif parsial ang disebut derivatif parsial tingkat dua. Derivatif parsial tersebut dinatakan sbb:

11 Menentukan nilai derivatif parsial tingkat n Contoh-.3. Tentukan derivatif parsial tingkat dua untuk f(,) 3 Jawab : Derivatif parsial tingkat satu fungsi itu f (,) 3 4 f (,) 3 4 Jadi derivatif parsial tingkat dua f (,) 4 f (,) 4 f (,) dan f (,)

12 3.Diferensial Total Tinjau kembali fungsi f(,) ; dan perubah bebas. derivatif parsial fungsi tersebut terhadap dan f (, ) dan f (, ) dengan mengambil d Δ dan d Δ. diferensial total dari fungsi dinatakan d didefinisikan sbb : d d d

13 Diferensial Total n variabel 1. Jika f( 1,,. n ) maka f d 1 d 1 f d f n d n. Jika f( 1,,. n ) c maka df 0, catatan 1,,. n bukan merupakan variabel independent.

14 Contoh soal diferensial total Contoh 4. Tentukan diferensial total untuk r s θ 3 sθ Jawab : Karena r s θ 3sθ maka r s s θ 3 θ dan Jadi diferensial total adalah r θ s 6sθ dr r s ds r d θ θ (s θ 3 θ )ds (s 6sθ )dθ

15 Jawab: Karena ) ( e 1 maka ) ( e 1 ) ( e 1 Jadi diferensial total adalah d d d - ( ) ) ( e 1 Contoh soal diferensial total.5. Tentukan diferensial total untuk ) ( e 1

16 4. Aplikasi Derivatif Parsial Contoh.6. Diketahui R R(E,C) Jika nilai E 100 dengan pertambahan 0,05 dan nilai C 0 mengalami penurunan sebesar 0,1. Tentukan perubahan ang dialami R dan tentukan nilai R Jawab : Langkah 1. Derivatifkan R terhadap E dan C Langkah. Tulis rumus diferensial total Langkah 3. Tentukan perubahan ang dialami R subtitusikan nilai (langkah 1 ke rumus ) Langkah 4. Nilai R nilai pendekatan R perubahan R E C

17 KESIMPULAN Derivatif Parsial: Diketahui f (,) fungsi dengan dua variabel independen dan. Karena dan independen maka : (i ). berubah-ubah sedangkan tertentu. (ii). berubah - ubah sedangkan tertentu. Jika berubah-ubah dan tertentu maka merupakan fungsi dan derivatifna terhadap adalah f (, ) lim Δ 0 f ( Δ, ) f Δ (, ) disebut derivatif parsial f (,) terhadap. Jika berubah-ubah dan tertentu maka merupakan fungsi dan derivatifna terhadap adalah f (, ) lim Δ 0 f (, Δ) f Δ disebut derivatif parsial f (,) terhadap. (, )

18 KESIMPULAN Derivatif Total f(,) fungsi dengan dua perubah bebas dan, derivatif parsial fungsi tersebut f (, ) dan f (, ) dengan mengambil d Δ, d Δ dan jika berubah-ubah sedangkan tertentu maka hana merupakan fungsi, diferensial parsial, fungsi terhadap didefinisikan : d d f (, ) d jika berubah-ubah sedangkan tertentu maka hana merupakan fungsi diferensial parsial fungsi terhadap didefinisikan, d d f (, ) d maka diferensial total d didefinisikan sebagai jumlah kedua diferensial tersebut, aitu d d d

19 REFENSI Dale Varberg & Edwin J. Purcell (1999) Calculus with Analtic Geometr Sith Edition. Prentice-Hall, International, Inc. New Jerse. James Stewart (000) Kalkulus. Edisi Keempat. Erlangga. Jakarta. Lois Leithold (1987). Kalkulus & Ilmu Ukur Analitik. Edisi Pertam. PT.Bina Aksara. Jakarta.

20 Terima Kasih IMELDA ULI VISTALINA SIMANJUNTAK,S.T,M.T.

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP Mata kuliah : Kalkulus II Kode Mata Kuliah : TIS2213 SKS : 3 Waktu Pertemuan : 16 kali Pertemuan Deskripsi : Mata kuliah Kalkulus II mempelajari

Lebih terperinci

IDENTIFIKASI KESALAHAN MENYELESAIKAN KALKULUS LANJUT MAHASISWA PROGRAM STUDI PENDIDIKAN MATEMATIKA UNIVERSITAS MUHAMMADIYAH PURWOREJO

IDENTIFIKASI KESALAHAN MENYELESAIKAN KALKULUS LANJUT MAHASISWA PROGRAM STUDI PENDIDIKAN MATEMATIKA UNIVERSITAS MUHAMMADIYAH PURWOREJO IDENTIFIKASI KESALAHAN MENYELESAIKAN KALKULUS LANJUT MAHASISWA PROGRAM STUDI PENDIDIKAN MATEMATIKA UNIVERSITAS MUHAMMADIYAH PURWOREJO Erni Puji Astuti Program Studi Pendidikan Matematika Universitas Muhammadiah

Lebih terperinci

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA SATUAN ACARA PERKULIAHAN PROGRAM GANDA DEPAG S1 DUA PROGRAM STUDI PENDIDIKAN MATEMATIKA 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/SEMESTER : Kalkulus/2 3. PRASYARAT : -- 4. JENJANG / SKS

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral i Darpublic Hak cipta pada penulis, 010 SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham

Lebih terperinci

Tinjauan Tentang Fungsi Harmonik. Oleh : Atmini Dhoruri Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

Tinjauan Tentang Fungsi Harmonik. Oleh : Atmini Dhoruri Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Tinjauan Tentang Fungsi Harmonik Oleh : Atmini Dhoruri Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Tujuan penulisan ini untuk mengkaji tentang pengertian fungsi harmonik, fungsi harmonik konjugat pada

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

DIKTAT. Persamaan Diferensial

DIKTAT. Persamaan Diferensial Diktat Persamaan Diferensial; Dwi Lestari, M.S. 3 DIKTAT Persamaan Diferensial Disusun oleh: Dwi Lestari, M.S email: dwilestari@un.a.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1 Mata Kuliah Kode SKS : Kalkulus : CIV-101 : 3 SKS Pengantar Kalkulus Pertemuan - 1 Kemampuan Akhir ang Diharapkan : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu menelesaikan pertaksamaan

Lebih terperinci

SILABUS. Deskripsi Mata Kuliah : Merupakan lanjutan dari kalkulus-2 yang menitikberatkan pada pemahaman dan penguasaan konsep dan aplikasi integral

SILABUS. Deskripsi Mata Kuliah : Merupakan lanjutan dari kalkulus-2 yang menitikberatkan pada pemahaman dan penguasaan konsep dan aplikasi integral SILABUS Kode Mata Kuliah : IT043223 Nama Mata kuliah : KALKULUS 3 Jumlah SKS : 2 Semester : III Deskripsi Mata Kuliah : Merupakan lanjutan dari -2 yang menitikberatkan pada pemahaman dan penguasaan konsep

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA 1. PROGRAM STUDI : Pendidikan Matematika/Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus II/MT 307/2 3. PRASYARAT : Kalkulus I 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : Matakuliah

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode/ Nama Mata Kuliah : E124204 / KALKULUS 2 Revisi : 4 Satuan Kredit Semester : 2 SKS Tanggal Release : 16 Juli 2015 Jml Jam Kuliah Dalam Seminggu

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

ANALISA VARIABEL KOMPLEKS

ANALISA VARIABEL KOMPLEKS ANALISA VARIABEL KOMPLEKS Oleh: BUDI NURACHMAN, IR BAB I BILANGAN KOMPLEKS Dengan memiliki sistem bilangan real R saja kita tidak dapat menelesaikan persamaan +=0. Jadi disamping bilangan real kita perlu

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Mata Kuliah : Kalkulus Lanjut Kode Mata Kulih : Bobot : 3 sks Semester : 2 Tujuan Instruksi Umum Media / Alat yang digunakan Daftar Referensi : Mahasiswa dapat memahami konsep-konsep

Lebih terperinci

MODUL PETUNJUK PRAKTIKUM KALKULUS I. OLEH : Drs. J. V. A. Tambelu, M.Pd Dra. T. A. S. Rembet, M.Sc Navel O. Mangelep, S.Pd

MODUL PETUNJUK PRAKTIKUM KALKULUS I. OLEH : Drs. J. V. A. Tambelu, M.Pd Dra. T. A. S. Rembet, M.Sc Navel O. Mangelep, S.Pd MODUL PETUNJUK PRAKTIKUM KALKULUS I OLEH : Drs. J. V. A. Tambelu, M.Pd Dra. T. A. S. Rembet, M.Sc Navel O. Mangelep, S.Pd UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA DAN ILMU PENGETAHUANN ALAM JURUSAN

Lebih terperinci

KALKULUS INTEGRAL 2013

KALKULUS INTEGRAL 2013 KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : Kalkulus 1 Kode Mata : DK - 11204 Jurusan / Jenjang : D3 TEKNIK KOMPUTER Tujuan Instruksional Umum : Agar mahasiswa

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Universitas Muhammadiyah Jakarta Fakultas Ilmu Pendidikan Jl. K.H. Ahmad Dahlan Cirendeu Ciputat Form(FR) No. Dokumen : FIP-AKD Tgl. Terbit : 4 Maret 0 No. Revisi : Hal : SATUAN ACARA PERKULIAHAN Kode

Lebih terperinci

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54101 / Kalkulus I 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

Persamaan Diferensial Orde Satu

Persamaan Diferensial Orde Satu Modul Persamaan Diferensial Orde Satu P PENDAHULUAN Prof. SM. Nababan, Ph. ersamaan Diferensial (PD) adalah salah satu cabang matematika ang banak digunakan untuk menjelaskan masalah-masalah fisis. Masalahmasalah

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Mata Kuliah : Kalukulus Dasar Kode Mata Kulih : Bobot Semester Tujuan Instruksi Umum Media / Alat yang digunakan Daftar Referensi : 3 sks : 1(satu) : Mahasiswa dapat memahami konsep-konsep

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA 1. PROGRAM STUDI : Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus II/MT 307/4 3. PRASYARAT : Kalkulus I 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : Mata Kuliah Keahlian (MKK) Program

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11.54101/ Kalkulus 1 Revisi 2 Satuan Kredit Semester : 4 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam seminggu : 4

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKIPSI MATA KULIAH EL-... Matematika Lanjut: S1, 3 SKS, Semester II Mata kuliah ini merupakan kuliah lanjut. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

TURUNAN FUNGSI (DIFERENSIAL)

TURUNAN FUNGSI (DIFERENSIAL) TURUNAN FUNGSI (DIFERENSIAL) A. Pengertian Derivatif (turunan) suatu fungsi. Perhatikan grafik fungsi f( (pengertian secara geometri) ang melalui garis singgung. f( f( f(+ Q [( +, f ( + ] f( P (, f ( )

Lebih terperinci

Sudaryatno Sudirham. Integral dan Persamaan Diferensial

Sudaryatno Sudirham. Integral dan Persamaan Diferensial Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup

Lebih terperinci

Pecahan Parsial (Partial Fractions)

Pecahan Parsial (Partial Fractions) oki neswan (fmipa-itb) Pecahan Parsial (Partial Fractions) Diberikan fungsi rasional f (x) p(x) q(x) f (x) r(x) : Jika deg p deg q; maka r (x) ^p (x) q(x) ; dengan deg r < deg q: p (x) q (x) r (x) ^p (x)

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS MINGGU IX

MATEMATIKA EKONOMI DAN BISNIS MINGGU IX MATEMATIKA EKONOMI DAN BISNIS MINGGU IX KALKULUS DIFERENSIAL Prepared By : W. Rofianto ROFI 010 TINGKAT PERUBAHAN RATA-RATA Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-... Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

HUBUNGAN ANTARA TURUNAN PARSIAL DAN KEKONTINUAN FUNGSI DENGAN DUA PEUBAH IRYANTO

HUBUNGAN ANTARA TURUNAN PARSIAL DAN KEKONTINUAN FUNGSI DENGAN DUA PEUBAH IRYANTO HUBUNGAN ANTARA TURUNAN PARSIAL DAN KEKONTINUAN FUNGSI DENGAN DUA PEUBAH IRYANTO Jurusan Matematika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Sumatera Utara ABSTRAK Penelitian ini bertujuan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 9 Turunan Fungsi-Fungsi (1 (Fungsi Mononom, Fungsi Polinom 9.1. Pengertian Dasar Kita telah melihat bahwa apabila

Lebih terperinci

BAB VIII PERSAMAAN DIFERENSIAL (PD)

BAB VIII PERSAMAAN DIFERENSIAL (PD) BAB VIII PERSAMAAN DIFERENSIAL (PD) Banak masalah dalam kehidupan sehari-hari ang dapat dimodelkan dalam persamaan diferensial. Untuk menelesaikan masalah tersebut kita perlu menelesaikan pula persamaan

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-301 Matematika: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika dan

Lebih terperinci

BAB II PERSAMAAN TINGKAT SATU DERAJAT SATU

BAB II PERSAMAAN TINGKAT SATU DERAJAT SATU BAB II PERSAAA TIGKAT SATU DERAJAT SATU Standar Kompetensi Setelah mempelajari pokok bahasan ini diharapkan mahasiswa dapat memahami ara-ara menentukan selesaian umum persamaan diferensial tingkat satu

Lebih terperinci

Prosiding Matematika ISSN:

Prosiding Matematika ISSN: Prosiding Matematika ISSN: 2460-6464 Optimisasi Fungsi Nonlinier Dua Variabel Bebas dengan Satu Kendala Pertidaksamaan Menggunakan Syarat Kuhn-Tucker Optimization of Nonlinear Function of Two Independent

Lebih terperinci

Darpublic Nopember 2013

Darpublic Nopember 2013 Darpublic Nopember 1 www.darpublic.com 1. Turunan Fungsi Polinom 1.1. Pengertian Dasar Kita telah melihat bahwa apabila koordinat dua titik ang terletak pada suatu garis lurus diketahui, misalna [ 1, 1

Lebih terperinci

MENENTUKAN CIRI-CIRI SPESIFIK METODE PENYELESAIAN LIMIT FUNGSI ALJABAR PADA BENTUK TAK TENTU

MENENTUKAN CIRI-CIRI SPESIFIK METODE PENYELESAIAN LIMIT FUNGSI ALJABAR PADA BENTUK TAK TENTU MENENTUKAN CIRI-CIRI SPESIFIK METODE PENYELESAIAN LIMIT FUNGSI ALJABAR PADA BENTUK TAK TENTU Try Azisah Nurman* *) Dosen Pada Jurusan Matematika, Fakultas Sains dan Teknologi UIN Alauddin Makassar e-mail:

Lebih terperinci

HANDS-OUT PROGRAM APLIKASI KOMPUTER MATEMATIKA

HANDS-OUT PROGRAM APLIKASI KOMPUTER MATEMATIKA HANDS-OUT PROGRAM APLIKASI KOMPUTER MATEMATIKA Oleh : Dewi Rachmatin, S.Si., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 8 Identitas Mata

Lebih terperinci

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK 3 SKS TEKNIK ELEKTRO UDINUS BAB I BILANGAN KOMPLEKS Dengan memiliki sistem bilangan real R saja kita tidak dapat menelesaikan persamaan +=0. Jadi disamping bilangan real kita perlu bilangan

Lebih terperinci

Open Source. Not For Commercial Use. Vektor

Open Source. Not For Commercial Use. Vektor Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Vektor Vektor adalah sebuah besaran ang mempunai nilai dan arah. Secara geometri vektor biasana digambarkan sebagai anak panah berarah (lihat gambar di samping)

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN DENGAN HARGA MUTLAK PENDAHULUAN

PERSAMAAN DAN PERTIDAKSAMAAN DENGAN HARGA MUTLAK PENDAHULUAN Drs. Karso Modul 9 PERSAMAAN DAN PERTIDAKSAMAAN DENGAN HARGA MUTLAK PENDAHULUAN Modul ang sekarang Anda pelajri ini adalah modul ang kesembilan dari mata kuliah Matematika Sekolah Dasar Lanjut. Adapun

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Univesitas Indonusa Esa Unggul Fakultas Ilmu Kompute Teknik Infomatika Integal Gais Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus I 3. PRASYARAT : -- 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : MPK / MPB / MKK/ MKB/ MBB

Lebih terperinci

PENGENALAN KONSEP DERIVATIF, DAN PENERAPANNYA DALAM PENYELESAIAN PROBLEMATIKA FISIKA. Ashari 1 & Budiyono 2. Abstrak

PENGENALAN KONSEP DERIVATIF, DAN PENERAPANNYA DALAM PENYELESAIAN PROBLEMATIKA FISIKA. Ashari 1 & Budiyono 2. Abstrak PENGENALAN KONSEP DERIVATIF, DAN PENERAPANNYA DALAM PENYELESAIAN PROBLEMATIKA FISIKA Ashari 1 & Budiyono 2 1) Jurusan Pendidikan Fisika 2) Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

Lebih terperinci

PERANAN GEOMETRI DALAM MENGOPTIMALKAN FUNGSI 2 PEUBAH ATAU LEBIH. Drs. R.Johannes P. Mataniari; Drs. Gim Tarigan

PERANAN GEOMETRI DALAM MENGOPTIMALKAN FUNGSI 2 PEUBAH ATAU LEBIH. Drs. R.Johannes P. Mataniari; Drs. Gim Tarigan PERANAN GEOMETRI DALAM MENGOPTIMALKAN FUNGSI PEUBAH ATAU LEBIH Drs. R.Johannes P. Mataniari; Drs. Gim Tarigan Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Matematika Universitas Sumatera Utara

Lebih terperinci

Sistem Persamaan Linier FTI-UY

Sistem Persamaan Linier FTI-UY BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

SATUAN ACARA PEMBELAJARAN (SAP)

SATUAN ACARA PEMBELAJARAN (SAP) SATUAN ACARA PEMBELAJARAN (SAP) Mata Kuliah Kode Mata Kuliah SKS Durasi Pertemuan Pertemuan ke : Kalkulus : TSP-102 : 3 (tiga) : 150 menit : 1 (Satu) A. Kompetensi: a. Umum : Mahasiswa dapat menggunakan

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic Sudaratno Sudirham Studi Mandiri Diferensiasi ii Darpublic BAB Turunan Fungsi-Fungsi () (Fungsi Perkalian Fungsi, Fungsi Pangkat Dari Fungsi, Fungsi Rasional, Fungsi Implisit).1. Fungsi Yang Merupakan

Lebih terperinci

APLIKASI TRANSFORMASI LAPLACE DALAM PEMODELAN MATEMATIKA SIKLUS KARBON DI ATMOSFER DAN VEGETASI

APLIKASI TRANSFORMASI LAPLACE DALAM PEMODELAN MATEMATIKA SIKLUS KARBON DI ATMOSFER DAN VEGETASI APLIKASI TRANSFORMASI LAPLACE DALAM PEMODELAN MATEMATIKA SIKLUS KARBON DI ATMOSFER DAN VEGETASI Kholis Zumrotun Ni mah 1, Kartono 2, Solichin Zaki 3 1,2,3 Program Studi Matematika FSM Universitas Diponegoro

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

AB = AB = ( ) 2 + ( ) 2

AB = AB = ( ) 2 + ( ) 2 Nama Siswa Kelas LEMBAR AKTIVITAS SISWA HUBUNGAN ANTAR GARIS Titik Tengah Sebuah Segmen Garis : : Kompetensi Dasar (KURIKULUM 2013): 3.10 Menganalisis sifat dua garis sejajar dan saling tegak lurus dan

Lebih terperinci

11. Turunan Perkalian Fungsi, Pangkat Dari Fungsi, Fungsi Rasional, Fungsi Implisit

11. Turunan Perkalian Fungsi, Pangkat Dari Fungsi, Fungsi Rasional, Fungsi Implisit Darpublic Nopember 01.darpublic.com 11. Turunan erkalian Fungsi, angkat Dari Fungsi, Fungsi Rasional, Fungsi Implisit 11.1. Fungsi Yang Merupakan erkalian Dua Fungsi Misalkan kita memiliki dua fungsi,

Lebih terperinci

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta DESAIN OPTIMASI UNGSI TAK LINIER MENGGUNAKAN METODE PENYELIDIKAN IBONACCI Yemi Kuswardi Nurul Muhayat Abstract: optimum design is an action to design the best product based on the problem. Theoretically,

Lebih terperinci

BAB VIII. TEKNIK INTEGRASI. Andaikan anda menghadapi suatu integral tak tentu. Jika ini bentuk baku

BAB VIII. TEKNIK INTEGRASI. Andaikan anda menghadapi suatu integral tak tentu. Jika ini bentuk baku 9 BAB VIII. TEKNIK INTEGRASI 8.. Integral dengan Substitusi Andaikan anda menghadapi suatu integral tak tentu. Jika ini bentuk baku maka cukup tuliskan jawabannya. Jika tidak, cari tahu substitusi yang

Lebih terperinci

Bagian 2 Turunan Parsial

Bagian 2 Turunan Parsial Bagian Turunan Parsial Bagian Turunan Parsial mempelajari bagaimana teknik dierensiasi diterapkan untuk ungsi dengan dua variabel atau lebih. Teknik dierensiasi ini tidak hana akan diterapkan untuk ungsi-ungsi

Lebih terperinci

Penggunaan Turunan, Integral, dan Penggunaan Integral.

Penggunaan Turunan, Integral, dan Penggunaan Integral. DESKRIPSI MATA KULIAH TK-301 Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar yang diberikan pada semester I. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktivitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktivitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11.54201 / Kalkulus II 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks :

Lebih terperinci

A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua

Lebih terperinci

PENGGUNAAN INTEGRAL. 1. Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. 2. Menghitung volume benda putar.

PENGGUNAAN INTEGRAL. 1. Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. 2. Menghitung volume benda putar. PENGGUNAAN INTEGRA 1. Menghitung luas suatu daerah ang dibatasi oleh kurva dan sumbu-sumbu koordinat.. Menghitung volume benda putar. 9 uas daerah di bawah kurva Volume benda putar ang diputar mengelilingi

Lebih terperinci

I. PENDAHULUAN 1.1 Apa Termodinamika itu Termofisika adalah ilmu pengetahuan yang mencakup semua cabang ilmu pengetahuan yang mempelajari dan

I. PENDAHULUAN 1.1 Apa Termodinamika itu Termofisika adalah ilmu pengetahuan yang mencakup semua cabang ilmu pengetahuan yang mempelajari dan I. PENDHULUN. pa Termodinamika itu Termofisika adalah ilmu pengetahuan ang mencakup semua cabang ilmu pengetahuan ang mempelajari dan menjelaskan sikap at di bawah pengaruh kalor dan perubahan-perubahan

Lebih terperinci

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1. Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan

Lebih terperinci

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK Program Studi: Teknik Elektro dan Teknologi Informasi Semester: Genap 2013/2014 OLEH : Ir. Mulyana Husni Rois Ali, S.T., M.Eng.

Lebih terperinci

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap II. TINJAUAN PUSTAKA 2.1 Diferensial Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap variabel bebas x, maka dy adalah diferensial dari variabel tak bebas (terikat) y, yang

Lebih terperinci

GEOMETRI EUKLID VERSUS GEOMETRI SFERIK. Sangadji *

GEOMETRI EUKLID VERSUS GEOMETRI SFERIK. Sangadji * GEOMETRI EUKLID VERSUS GEOMETRI SFERIK Sangadji * ABSTRAK GEOMETRI EUKLID VERSUS GEOMETRI SFERIK. Pada makalah ini akan dibahas hubungan antara formula Pythagoras dan formula sinus dari segitiga pada geometri

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG1B4 KALKULUS 2 Disusun oleh: Jondri, M.Si. PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP Mata kuliah : Kalkulus 1 Kode Mata Kuliah : TIS1213 SKS : 3 Waktu Pertemuan : 16 kali Pertemuan Deskripsi : Tujuan utama dari mata kuliah ini adalah

Lebih terperinci

PERANAN LOGIKA INFORMATIKA PADA HITUNGAN PERKALIAN BERBASIS HUKUM DISTRIBUTIF. Oleh RUSDY AGUSTAF

PERANAN LOGIKA INFORMATIKA PADA HITUNGAN PERKALIAN BERBASIS HUKUM DISTRIBUTIF. Oleh RUSDY AGUSTAF Jurnal Dinamika Informatika Volume 4, Nomor 1, Pebruari 2010 : 45-52 PERANAN LOGIKA INFORMATIKA PADA HITUNGAN PERKALIAN BERBASIS HUKUM DISTRIBUTIF Oleh RUSDY AGUSTAF Dosen Tetap Fakultas Teknik, Universitas

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN (GBPP) Pokok Bahasan Sub Pokok Bahasan Metode Media/ Alat

GARIS BESAR PROGRAM PENGAJARAN (GBPP) Pokok Bahasan Sub Pokok Bahasan Metode Media/ Alat Mata Kuliah Kode/Bobot Deskripsi Singkat : Tujuan Instruksional Umum : : Kalkulus : TSP-102/3 SKS GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata kuliah ini membahas tentang konsep dasar matematika. Pembahasan

Lebih terperinci

PERKONGRUENAN POLINOMIAL MODULO m

PERKONGRUENAN POLINOMIAL MODULO m PERKONGRUENAN POLINOMIAL MODULO m Nunung Fajar Kusuma Program Studi Pendidikan Matematika Pasca Sarjana Universitas Sebelas Maret Jl. Ir. Sutami 36A Kentingan Jebres Surakarta, e-mail: nfjar@yahoo.com

Lebih terperinci

Solusi Analitis Persamaan-persamaan Diferensial Orde-1 dengan Metode Analitis Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH

Solusi Analitis Persamaan-persamaan Diferensial Orde-1 dengan Metode Analitis Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH Solusi Analitis Persamaan-persamaan Diferensial Orde- dengan Metode Analitis.. Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH a. Bentuk Umum: f ( ) g( ), f dan g fungsi sembarang. b. Metode

Lebih terperinci

0 D (Pratama Rahardja, Mandala Manurnung,2004)

0 D (Pratama Rahardja, Mandala Manurnung,2004) NAMA : TITIK ASIATUN NIM : 125100301111054 TUGAS : MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN 1. Aplikasi di Bidang Ekonomi Contoh penggunan integral dalam dunia ekonomi salah

Lebih terperinci

SIMULASI KINEMATIKA 2D DAN HUKUM KEKEKALAN ENERGI MEKANIK DENGAN SOFTWARE MODELLUS 4

SIMULASI KINEMATIKA 2D DAN HUKUM KEKEKALAN ENERGI MEKANIK DENGAN SOFTWARE MODELLUS 4 SIMULASI KINEMATIKA D DAN HUKUM KEKEKALAN ENERGI MEKANIK DENGAN SOFTWARE MODELLUS 4 Magister Pendidikan Fisika, Uniersitas Ahmad Dahlan Ygakarta Jl. Pramuka 4, Sidikan, Umbulharj, Ygakarta 556 Abstrak-Telah

Lebih terperinci

Tinjauan Mata Kuliah

Tinjauan Mata Kuliah i M Tinjauan Mata Kuliah ata kuliah Kalkulus 1 diperuntukkan bagi mahasiswa yang mempelajari matematika baik untuk mengajar bidang matematika di tingkat Sekolah Lanjutan Tingkat Pertama (SLTP), Sekolah

Lebih terperinci

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar Bab I Fungsi Dua Peubah atau Lebih Pengantar Seperti halna dengan fungsi satu peubah kita dapat mendefinisikan fungsi dua peubah atau lebih sebagai pemetaan dan sebagai pasangan berurut.fungsi dengan peubah

Lebih terperinci

GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER

GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER Lukman Hakim ) dan Ari Kusumastuti 2) ) Mahasiswa Pascasarjana Jurusan Matematika Universitas Brawijaya Malang 2) Jurusan

Lebih terperinci

GEOMETRI ANALITIK RUANG. Dr. Susanto, MPd

GEOMETRI ANALITIK RUANG. Dr. Susanto, MPd GEOMETRI ANALITIK RUANG Dr. Susanto, MPd PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN IPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER TAHUN 2012 KATA PENGANTAR Puji

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Kalkulus 2 (2 SKS) JENJANG/JURUSAN : S1-Teknik Elektro/Mesin/Industri

SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Kalkulus 2 (2 SKS) JENJANG/JURUSAN : S1-Teknik Elektro/Mesin/Industri SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : Kalkulus ( SKS) JENJANG/JURUSAN : S1-Teknik Elektro/Mesin/Industri Referensi : [1] Yusuf Yahya, D. Suryadi H.S., Agus S., Matematika Dasar untuk Perguruan Tinggi,

Lebih terperinci

SKETSA GRAFIK FUNGSI TRIGONOMETRI. Teguh Wibowo Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. Abstrak

SKETSA GRAFIK FUNGSI TRIGONOMETRI. Teguh Wibowo Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. Abstrak SKETSA GRAFIK FUNGSI TRIGONOMETRI = asin k ± b cosp Teguh Wibowo Jurusan Pendidikan Matematika FKIP Universitas Muhammadiah Purworejo Abstrak Grafik fungsi trigonometri = a sin k + b cos p dapat dilukis

Lebih terperinci

Pengaruh Penguasaan Materi Limit Fungsi Terhadap Kemampuan Siswa Dalam Menghitung Luas Daerah Pelajaran Matematika Di Man I Ciledug Kabupaten Cirebon

Pengaruh Penguasaan Materi Limit Fungsi Terhadap Kemampuan Siswa Dalam Menghitung Luas Daerah Pelajaran Matematika Di Man I Ciledug Kabupaten Cirebon Pengaruh Penguasaan Materi Limit Fungsi Terhadap Kemampuan Siswa Dalam Menghitung Luas Daerah Pelajaran Matematika Di Man I Ciledug Kabupaten Cirebon Toheri, Nursin Jurusan Pendidikan Matematika, Faklutas

Lebih terperinci

PENGURAIAN PENDAPATAN GABUNGAN DUA PRODUK DARI SUATU PERUSAHAAN

PENGURAIAN PENDAPATAN GABUNGAN DUA PRODUK DARI SUATU PERUSAHAAN PENGURAIAN PENDAPATAN GABUNGAN DUA PRODUK DARI SUATU PERUSAHAAN Thomas J. Kakia Fakultas Ilmu Komputer Universitas Gunadarma Jl. Margonda 100 Pondok Cina Depok ABSTRAK Penguraian pendapatan atau pendapatan

Lebih terperinci

Diferensial dan Integral

Diferensial dan Integral Open Course Diferensial dan Integral Oleh: Sudaratno Sudirham Pengantar Setelah kita mempelajari fungsi dan grafik, ang merupakan bagian pertama dari kalkulus, berikut ini kita akan membahas bagian kedua

Lebih terperinci

VISUALISASI PEMBELAJARAN FUNGSI, TURUNAN, DAN INTEGRAL PADA MATA PELAJARAN MATEMATIKA SMA KELAS 2 BERBASIS MACROMEDIA FLASH 8

VISUALISASI PEMBELAJARAN FUNGSI, TURUNAN, DAN INTEGRAL PADA MATA PELAJARAN MATEMATIKA SMA KELAS 2 BERBASIS MACROMEDIA FLASH 8 KomuniTi, Vol. I V No.1 Januari 2012 69 VISUALISASI PEMBELAJARAN FUNGSI, TURUNAN, DAN INTEGRAL PADA MATA PELAJARAN MATEMATIKA SMA KELAS 2 BERBASIS MACROMEDIA FLASH 8 Aris Rakhmadi, Umi Fadlilah, Yasid

Lebih terperinci

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi Kalkulus Diferensial week 09 W. Rofianto, ST, MSi Tingkat Perubahan Rata-rata Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam Konsep Diferensiasi Bentuk y/ disebut difference

Lebih terperinci

Syllabus Matematika Dasar 1 Semester Ganjil 2012/2013 FMIPA Universitas Syiah Kuala

Syllabus Matematika Dasar 1 Semester Ganjil 2012/2013 FMIPA Universitas Syiah Kuala Syllabus Matematika Dasar 1 Semester Ganjil 2012/2013 FMIPA Universitas Syiah Kuala Kode MK : MPA 021 Beban : 3 SKS Sifat : Mata Kuliah Wajib Umum Mahasiswa FMIPA Unsyiah Tujuan Mata Kuliah: Setelah mengikuti

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 4. Derivatif ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 4. Derivatif ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 4 Derivatif ALZ DANNY WOWOR Cakupan Materi A. Defenisi Derivatif B. Rumus-rumus Derivatif C. Aplikasi Derivatif

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I atas Persegi Panjang Integral dalam uang Berdimensi n: atas Persegi Panjang Statistika FMIPA Universitas Islam Indonesia 2014 atas Persegi Panjang Sifat-Sifat Perhitungan pada Masalah-masalah yang dipecahkan

Lebih terperinci

Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK. Jam pembelajaran per Pertemuan kelas 150 menit Pertemuan praktikum 0 menit Kegiatan lain

Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK. Jam pembelajaran per Pertemuan kelas 150 menit Pertemuan praktikum 0 menit Kegiatan lain Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK A. INFORMASI UMUM Mata kuliah SS1131 Kalkulus 1 Jurusan Statistika/Komputasi Statistika Tgl berlaku Oktober 2014 Satuan kredit semester 3 SKS Bidang

Lebih terperinci

FUNGSI PEMBANGKIT. Ismail Sunni

FUNGSI PEMBANGKIT. Ismail Sunni FUNGSI PEMBANGKIT Ismail Sunni 3508064 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 0, Bandung If8064@students.if.itb.ac.id ismailsunni@yahoo.co.id ABSTRAK Fungsi Pembangkit

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN : Bilangan Riil : Mahasiswa memahami tentang Bilangan Riil :1 (Satu)...kali 1 Setelah mempelajari materi ini, diharapkan mahasiswa dapat : 1. Menjelaskan Sistem bilangan riil 2. Mengerjakan persoalan taksamaan

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 1 (1) (2012) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PENYELESAIAN KASUS BEBERAPA INTEGRAL TAK WAJAR DENGAN INTEGRAN MEMUAT FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMA

Lebih terperinci

RUMUS INTEGRAL TAK TENTU MELALUI POLA INTEGRAL TUGAS AKHIR

RUMUS INTEGRAL TAK TENTU MELALUI POLA INTEGRAL TUGAS AKHIR RUMUS INTEGRAL TAK TENTU MELALUI POLA INTEGRAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh SUTIKA DEWI 0854004458 FAKULTAS SAINS DAN

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Integral Lipat-Dua dalam Koordinat Kutub Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 214 / 2 Integral Lipat-Dua dalam Koordinat Kutub Terdapat beberapa kurva tertentu pada suatu

Lebih terperinci