PENGEMBANGAN PADUAN URANIUM BERBASIS UMo SEBAGAI KANDIDAT BAHAN BAKAR NUKLIR UNTUK REAKTOR RISET MENGGANTIKAN BAHAN BAKAR DISPERSI U3Si2-Al

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGEMBANGAN PADUAN URANIUM BERBASIS UMo SEBAGAI KANDIDAT BAHAN BAKAR NUKLIR UNTUK REAKTOR RISET MENGGANTIKAN BAHAN BAKAR DISPERSI U3Si2-Al"

Transkripsi

1 PENGEMBANGAN PADUAN URANIUM BERBASIS UMo SEBAGAI KANDIDAT BAHAN BAKAR NUKLIR UNTUK REAKTOR RISET MENGGANTIKAN BAHAN BAKAR DISPERSI U3Si2-Al Supardjo Pusat Teknologi Bahan Bakar Nuklir (PTBN) BATAN Kawasan Puspiptek Serpong Tangerang Selatan, Banten Telp./Faks.: (021) / (021) suparjo@batan.go.id ABSTRAK PENGEMBANGAN PADUAN URANIUM BERBASIS UMo SEBAGAI KANDIDAT BAHAN BAKAR NUKLIR UNTUK REAKTOR RISET MENGGANTIKAN BAHAN BAKAR DISPERSI U3Si2-Al. Paduan uranium berbasis UMo diteliti dalam rangka pengembangan bahan bakar dispersi U3Si2-Al pengayaan uranium rendah (<20%U 235 ). Bahan bakar dispersi U3Si2-Al memiliki stabilitas iradiasi yang sangat baik, tetapi olah ulang bahan bakar pasca iradiasi sulit dan densitas uranium optimum hanya sebesar 4,8gU/cm 3 (yang diharapkan >8 gu/cm 3 ). Proses fabrikasi bahan bakar dispersi tipe pelat UMo-Al dan U3Si2-Al hampir sama, yaitu dengan teknik metalurgi serbuk dan pembentukan pelat elemen bakar (PEB) dengan pengerolan panas. Ingot paduan U3Si2 hasil peleburan bersifat rapuh, sedangkan paduan berbasis UMo sangat ulet dan sulit dibuat serbuk secara mekanik/giling. Pelat elemen bakar UMo-Al densitas uranium 7gU/cm 3 hasil proses pengerolan cukup baik dan tebal kelongsong minimum 0,302 mm (spesifikasi 0,25mm), sehingga densitas uranium masih dapat ditingkatkan. Keunggulan bahan bakar dispersi UMo-Al adalah densitas uranium yang dapat dicapai pada proses fabrikasi >7gU/cm 3, olah ulang gagalan produksi maupun bahan bakar pasca iradiasi bahan bakar UMo-Al lebih mudah dibanding bahan bakar U3Si2- Al dan dalam penggunaannya sebagai bahan bakar di dalam reaktor dapat lebih lama. Kata kunci: Bahan bakar dispersi, bahan bakar UMo-Al, bahan bakar U3Si2-Al, densitas uranium ABSTRACT DEVELOPMENT OF URANIUM ALLOY BASED ON UMo AS A CANDIDATE FOR RESEARCH REACTORS NUCLEAR FUEL REPLACE OF U3Si2-Al NUCLEAR FUEL DISPERSION. The uranium alloys based on UMo studied in the framework of U3Si2-Al dispersion fuel development of uranium enrichment is low (<20% U 235 ). The U3Si2-Al dispersion fuel has a very good irradiation stability, but the reprocessing spent fuel is difficult and the optimum density of 4.8 gu/cm 3 only (which is expected> 8 gu/cm 3 ). The fabrication process of UMo-Al dispersion fuel plate and U3Si2-Al is almost the same, namely by powder metallurgy and the formation of the fuel plate with hot rolling. The U3Si2 alloy smelting results are brittle, while UMo based alloys are very ductile and difficult to produce powder by mechanically. The UMo-Al fuel plate with 7gU/cm 3 uranium density by rolling process quite good results and minimum cladding thickness of mm (specification 0.25 mm), so that the uranium density could be improved. The advantages of UMo-Al dispersion fuel of the uranium density that can be achieved in the fabrication process >7gU/cm 3, reprocessing of fuel production failure and post-irradiation of UMo-Al nuclear fuel are easier than U3Si2-Al fuel and in its use as fuel in the reactor may be longer. Keywords: dispersion fuel, UMo-Al nuclear fuel, U3Si2-Al nuclear fuel, uranium density ISSN

2 1. PENDAHULUAN Penelitian dan pengembangan bahan bakar dispersi untuk bahan bakar reaktor riset terus dilakukan oleh para peneliti di dunia dalam rangka memenuhi kesepakatan pengalihan penggunaan uranium dari pengkayaan tinggi (>90% U 235 ) ke pengkayaan rendah (<20% U 235 ) yang dicanangkan di USA tahun Pengalihan penggunaan bahan bakar dengan uranium pengayaan rendah mengakibatkan jumlah U 235 turun menjadi sekitar 1/5- nya (pada disain/ dimensi bahan bakar tetap) sehingga akan menurunkan unjuk kerja reaktor penggunanya. Untuk mempertahankan unjuk kerja reaktor minimal sama seperti penggunaan bahan bakar dengan uranium pengayaan tinggi tanpa mengubah disain dimensi bahan bakar dan teras reaktornya, maka sebagai alternatif yang paling memungkinkan dan ekonomis adalah menggunakan material bahan bakar baru yang memiliki densitas tinggi. Beberapa jenis bahan bakar yang telah digunakan dengan uranium pengayaan rendah diantaranya adalah UAlx-Al, U3O8-Al dan U3Si2-Al, namun densitas uranium yang dapat dicapai masing-masing hanya 2,3gU/cm 3, 3,2gU/cm 3 dan 4,8gU/cm 3[1]. Densitas uranium tersebut belum mampu mengkompensasi pengalihan penggunaan uranium dari pengayaan tinggi ke rendah yaitu antara 8 9 gu/cm 3 [2]. Bahan bakar U3Si2-Al densitas uranium 4,80 gu/cm 3 merupakan produk pengembangan bahan bakar dispersi dengan uranium pengkayaan rendah telah dikualifikasi oleh US Nuclear Regulatory Commission pada tahun 1988 [3]. Unjuk kerja bahan bakar U3Si2-Al cukup baik, sangat stabil selama proses iradiasi di dalam reaktor, namun untuk densitas uranium > 4,8 g/cm 3 fabrikasinya sulit [4]. Makin tinggi densitas uranium, maka jumlah bahan bakar bertambah dan matriks makin sedikit, sehingga pada proses pengerolan selalu terjadi kecenderungan pengelompokan uranium membentuk dog bone diujung pelat elemen bakar (PEB). Akibatnya, kelongsong pada daerah dog bone menjadi tipis (persyaratan minimum 0,25mm) dan tingkat homogenitas uranium di dalam meat pelat elemen bakar (PEB) menurun. Selain itu olah ulang bahan bakar U3Si2-Al gagalan produksi maupun pascairadiasi sangat sulit, sehingga menjadi masalah dalam penyimpanannya. Dalam usaha mengatasi perihal tersebut, maka penelitian material baru yang memiliki densitas tinggi, stabilitas iradiasi yang baik dan mudah dilakukan proses olah ulang, baik gagalan produk maupun bahan bakar pascairadiasi merupakan alternatif terpilih. Untuk mendukung program tersebut pengembangan bahan bakar baru diarahkan pada paduan uranium yang memiliki densitas tinggi dan mampu mempertahankan struktur kristal γ-u selama proses irradiasi. Paduan uranium yang memiliki kecenderungan membentuk fasa γ-u antara lain adalah: U-Cr, U-Mo, U-Nb, U-Re, U-Ru, U-Ti, U-V dan U-Zr. Diantara paduan tersebut yang memiliki densitas tinggi dan rentang fasa γ relatif luas adalah U-Mo sehingga paduan tersebut merupakan alternatif terpilih untuk bahan bakar di masa datang [1]. Paduan UMo memiliki struktur kristal bcc fasa γ, ulet, tampang lintang serapan netron Mo rendah, tahan terhadap korosi dan memiliki densitas ±16,4 g/cm 3 (tergantung % Mo). Densitas tersebut lebih tinggi dibanding densitas paduan U3Si2 yang hanya sebesar 12,20g/cm 3. Penggunakan UMo sebagai bahan bakar dispersi, maka densitas uranium dimungkinkan dapat ditingkatkan hingga >8 gu/cm 3. Selain itu proses olah ulang bahan bakar UMo-Al lebih mudah dibanding dengan bahan bakar U3Si2-Al [5]. Jika fasa metastable γ dapat dipertahankan selama proses produksi bahan bakar dan iradiasi serta memiliki kompatibilitas termal baik dengan matriks Al, maka paduan UMo cocok/sesuai untuk digunakan sebagai bahan bakar reaktor riset. Program penelitian bahan bakar UxSiy-Al di Pusat Teknologi Bahan Bakar Nuklir, BATAN telah dimulai sejak tahun Penelitian menggunakan fasilitas Instalasi Produksi Elemen Bakar Reaktor riset (IPEBRR) yang merupakan fasilitas produksi bahan bakar dispersi U3O8-Al/UAlx-Al pengayaan uranium ±19,75%U 235. Penelitian bahan bakar UxSiy-Al ISSN

3 khususnya U3Si2-Al berhasil dengan baik dan telah ditingkatkan ke skala produksi oleh PT.Batan Teknologi (persero). Keberhasilan produksi bahan bakar U3Si2-Al, maka sejak tahun 2001 semua bahan bakar diteras reaktor RSG-GAS digantikan bahan bakar U3Si2 Al dengan pengayaan dan densitas uranium 2,96gU/cm 3 sama seperti bahan bakar U3O8-Al. Keberhasilan penelitian bahan bakar U3Si2-Al di PTBN, mendorong penelitian bahan bakar berbasis UMo sesuai yang dikembangkan di dunia saat ini. Proses fabrikasi bahan bakar dispersi U3Si2-Al tipe pelat di PT. Batan Teknologi (persero) secara garis besar dilakukan melalui tahapan proses, pembuatan: paduan U3Si2, serbuk U3Si2, inti elemen bakar (IEB) U3Si2-Al, pelat elemen bakar (PEB) U3Si2-Al dan perakitan PEB bersama komponen struktur (pelat sisi, endfitting/ujung pasang, hundle/pemegang dan bout) menjadi elemen bakar (EB) atau elemen kendalai (EK). Secara umum proses fabrikasi bahan bakar UMo-Al sama dengan bahan bakar U3Si2-Al, namun sifat ulet ingot paduan UMo menjadi perhatian pada proses fabrikasinya. Sifat ulet paduan menyebabkan pembuatan serbuk tidak dapat dilakukan secara mekanik melainkan harus menggunakan cara lain sehingga perlu biaya yang lebih inggi. Beberapa metode proses pembuatan serbuk UMo diantaranya: mechanical crushing (milling, grinding) atau dengan menambahkan unsur pemadu untuk meningkatkan kerapuhan, cryogenic mechanical crushing, hydride-dehydride (HD) dan proses atomisasi [6]. Pemilihan masing-masing metode disesuaikan dengan tujuan penggunaan serbuk dan persyaratan/ kapasitas yang diperlukan. Fabrikasi bahan bakar dispersi berbasis UMo hampir sama dengan fabrikasi bahan bakar U3Si2-Al, sehingga dengan fasilitas yang dimiliki dan pengalaman penelitian bahan bakar U3Si2-Al, maka penelitian bahan bakar berbasis UMo di BATAN optimis dapat dilakukan. Keberhasilan penelitian bahan bakar berbasis UMo di BATAN memiliki prospek ekonomi yang sangat baik, mengingat Indonesia memiliki PT. Batan Teknologi (persero) yang merupakan satu-satunnya BUMN yang bergerak di bidang Nuklir. 2. METODOLOGI Paduan U3Si2 (92,5%U +7,5%Si) maupun U7Mo (93,0%U + 7,0%Mo) dibuat dengan teknik peleburan menggunakan tungku busur listrik bermedia gas argon (Ar). Setiap komposisi paduan dilebur selama 1 menit dengan 5 kali pengulangan [7,8]. Ingot paduan U3Si2 hasil peleburan bersifat rapuh sehingga mudah dibuat serbuk dengan milling, sedangkan ingot paduan UMo sangat ulet dan pembuatan serbuk tidak bisa dilakukan dengan milling melainkan harus dengan cara lain seperti hydride-milling-dehydride. Pembuatan serbuk bahan bakar dilakukan di dalam ruang tertutup bermedia gas inert (argon) agar tidak terkontaminasi dengan partikel dari udara dan sebaliknya, serta menghindari pekerja terkena radiasi. Media gas inert sangat diperlukan terutama pembuatan serbuk dari ingot paduan U3Si2 yang bersifat piroporik dan pembuatan serbuk UMo setelah hidriding membentuk UMoHx. Serbuk U3Si2/UMo yang telah memenuhi syarat bahan bakar dispersi dicampur dengan matriks serbuk Al dengan perbandingan berat sesuai densitas uranium yang akan dibuat. Campuran homogen serbuk U3Si2 dan Al atau U7Mo dan Al, masingmasing dipres pada tekanan tinggi membentuk inti elemen bakar (IEB) U3Si2-Al/U7Mo-Al. Inti elemen bakar dimasukkan di dalam frame (paduan Al) dan kedua sisinya ditutup dengan dua cover (paduan Al), kemudian pada keempat sisi sambungannya diikat dengan las TIG membentuk paket rol. Paket rol ditipiskan dengan pengerolan panas pada temperatur antara 425 s.d 480 o C (beberapa tahap) dan rol dingin hingga diperoleh ketebalan ±1,3 mm, kemudian dipotong hingga sesuai ukuran pelat elemen bakar (PEB) kurang lebih 700 mm x70 mm x 1,3 mm [9]. Pelat elemen bakar yang lolos uji dirakit menjadi menjadi elemen bakar dan elemen kendali U3Si2-Al/ U7Mo-Al. ISSN

4 3. HASIL DAN PEMBAHASAN Proses pembuatan bahan bakar nuklir berbasis paduan uranium, pada tahap awal yang perlu diperhatikan adalah proses pembuatan ingot paduan agar diperoleh paduan yang memenuhi persyaratan bahan bakar nuklir. Untuk memenuhi hal tersebut maka pada proses pembuatan paduan (misal U3Si2/U7Mo) bahan yang digunakan seperti U,Si dan Mo harus memiliki kemurnian tinggi dan proses peleburan dilakukan di dalam media gas iner (argon), sedangkan untuk mendapatkan paduan yang homogen maka proses peleburan dilakukan berulang-ulang. Contoh ingot paduan UMo hasil peleburan ditunjukkan pada Gambar 1. Gambar 1. Ingot U7Mo Hasil Peleburan Ingot paduan U3Si2 memiliki struktur tetragonal, densitas ±12,20g/cm 3 dan bersifat britle (rapuh), sedangkan paduan U7Mo memiliki struktur bcc, densitas >16 g/cm 3 (tergantung kadar Mo) dan bersifat ulet. Sifat rapuh paduan U3Si2 menguntungkan pada proses pembuatan serbuk, karena dapat dilakukan dengan cara mekanik (ballmilling/grinding-mill) secara cepat dan biaya murah, sedangkan ingot paduan UMo bersifat ulet sehingga pembuatan serbuk tidak bisa dilakukan secara konvensional melainkan harus melalui cara lain, seperti: cryogenic milling, atomisasi, hydride-dehydride sehingga biaya yang diperlukan relatif lebih tinggi dibanding secara mekanik. Paduan U3Si2 dan UMoHx sangat reaktif terhadap oksigen sehingga apabila proses pembuatan serbuk di dalam media udara maka ada potensi terjadi reaksi oksidasi yang diawali percikan api yang akhirnya terjadi reaksi lanjut. Untuk menghindari perihal tersebut, maka pembuatan serbuk harus dilakukan di dalam ruang tertutup/glove box bermedia gas iner. Sebagai contoh bentuk serbuk U3Si2 dan U7Mo ditunjukkan pada Gambar 2. Gambar 2.A. Bentuk Serbuk U3Si2 Hasil Giling B. Bentuk Serbuk Umo Hasil Hydride Dehydride ISSN

5 Serbuk U3Si2/U7Mo dapat digunakan sebagai bahan bakar nuklir apabila memenuhi persyaratan standar yang telah ditetapkan meliputi: komposisi fasa, kadar isotop U 235, kadar U dan impuritas, fraksi partikel serbuk, dan densitasnya. Data uji/analisis serbuk bahan bakar selain kesesuaiannya dengan persyaratan, juga diperlukan untuk perhitungan komposisi berat bahan bakar dan matriks Al dalam rangka pembuatan bahan bakar disperse. Bentuk dan volume IEB serta densitas uranium dalam bahan bakar merupakan parameter yang ditetapkan sebagai dasar perhitungan. Komposisi berat bahan bakar U3Si2 atau UMo dengan matriks Al dalam bahan bakar dispersi tergantung dari densitas uranium, data uji/analisis serbuk bahan bakar dan matriks Al. Dari data tersebut telah dihitung hitung densitas uranium U3Si2-Al dan U7Mo-Al seperti ditunjukkan pada Tabel 1a dan Tabel 1b. Perhitungan bahan bakar U3Si2-Al hanya untuk densitas uranium 4,8 gu/cm 3, sesuai yang telah mendapatkan lisensi, selain itu karena dari sisi fabrikasi sulit ditingkatkan ke densitas yang lebih tinggi, karena kesulitan fabrikasi, sedangkan untuk bahan bakar U7Mo-Al dapat difabrikasi hingga densitas uranium >8 gu/cm 3. Makin tinggi densitas uranium, maka jumlah U dan U 235 bertambah, sedangkan matriks Al menurun. Tabel 1a. Hasil Hitung Densitas Uranium Bahan Bakar U3Si2-Al Densitas uranium bahan bakar U3Si2-Al, 4,8 gu/cm 3 Kadar U 235, % 19,75 Berat U dalam IEB U3Si2-Al, g 92,304 Berat isotop U 235,g 18,230 Berat serbuk U3Si2,g 99,788 Volume serbuk U3Si2,cm 3 8,179 Volume pori (Asumsi pori = 8%), cm 3 0,154 Volume serbuk Al, cm 3 10,897 Berat Al, g 29,422 Berat serbuk U3Si2 dan serbuk Al, g 129,21 Tabel 1b. Komposisi Berat Serbuk U7Mo Dan Serbuk Matrik Al Setiap Densitas Uranium Bahan Bakar U7Mo-Al Densitas uranium bahan bakar U7Mo-Al, gu/cm 3 5,0 6,0 7,0 8,0 9,0 Kadar U 235, % 19,75 19,75 19,75 19,75 19,75 Berat U dalam IEB U7Mo-Al, g 96,15 115,38 134,61 153,84 173,07 Berat isotop U 235, g 18,990 22,788 26,585 30,383 34,181 Berat serbuk U7Mo, g 103, , , , ,097 Volume serbuk U7Mo, cm 3 6,329 7,595 8,860 10,126 11,392 Volume pori (Asumsi pori = 8%), cm 3 0,154 0,154 0,154 0,154 0,154 Volume serbuk Al, cm 3 12,747 11,481 10,216 8,95 7,684 Berat serbuk Al, g 34,417 30,999 27,583 24,165 20,747 Berat serbuk U7Mo dan Al, g 137, , , , ,844 Campuran homogen serbuk bahan bakar U3Si2 atau UMo dengan serbuk matriks Al dipres pada tekanan tinggi hingga membentuk lempengan IEB berukuran sekitar: (100 x 60 x 3,15) mm. Kualifikasi IEB meliputi homogenitas distribusi uranium, kadar isotop U 235 dan ketebalan. Homogenitas uranium di dalam meat bahan bakar merupakan persyaratan yang harus dipenuhi agar pada saat digunakan sebagai bahan bakar di dalam reaktor tidak terjadi hot spot yang dapat menyebabkan swelling sehingga kelongsong rusak/retak yang dapat ISSN

6 berakibat terlepasnya bahan radioktif ke pendingin reaktor. Oleh karena itu distribusi uranium di dalam IEB harus homogen sehingga selama proses pengerolan masih tetap merata di daerah zona bahan bakar (meat). Bahan bakar dispersi U3Si2-Al maupun UMo-Al tipe pelat dibuat dengan teknik pengerolan panas dan penegerolan dingin. Inti elemen bakar hasil pengepresan dimasukkan kedalam lubang frame dan kedua sisinya ditutup dengan cover yang terbuat dari pelat paduan aluminium. Pada keempat sisi sambungannnya diikat dengan las TIG pada beberapa titik membentuk paket rol. IEB, frame dan cover dan paket rol ditunjukkan pada Gambar 3. Gambar 3. IEB, Frame dan Cover Serta Paket Rol Proses pengerolan dilakukan berulang-ulang dan terjadi penipisan pelat serta aliran campuran bahan bakar dan matriks Al sesuai arah rol. Pengerolan PEB dengan densitas uranium rendah distribusi campuran bahan bakar dan matriks Al relatif merata disepanjang PEB, sedangkan semakin tinggi densitas uranium, jumlah serbuk bahan bakar naik dan jumlah matriks menurun (Tabel 1.b). Perbedaan densitas antara serbuk UMo dengan serbuk matriks Al sangat jauh sehingga ada kecenderungan terjadi aglomerasi diujung PEB. Terjadinya aglomerasi diujung PEB mengindikasikan homogenitas menurun dan meat dibagian ujung menjadi tebal sehingga kelongsong menjadi tipis. Pelat elemen bakar hasil pengerolan berdimensi sekitar: (625 x 70,15 x 1,3 ) mm seperti ditunjukkan pada Gambar 4 [9]. Gambar 4. Pelat Elemen Bakar kelongsong PEB merupakan salah satu parameter batasan kemampuan fabrikasi, mengingat terdapat batasan tebal kelongsong minimum yang diijinkan dalam bahan bakar reaktor riset tipe pelat adalah sebesar 0,25 mm. Bahan bakar U3Si2-Al densitas uranium 4,8gU/cm 3 telah mendapatkan lisensi, namun densitas ini belum mampu mengkompensasi jumlah U yang diharapkan (>8gU/cm 3 ). Apabila densitas uranium ditingkatkan, maka homogenitas kurang baik, dan terbentuk dog bone diujung PEB sehingga ISSN

7 kelongsong menjadi tipis. Hal demikian memungkinkan tebal kelongsong < 0,25 mm sehingga kegagalan produksi meningkat dan tidak ekonomis dari sisi fabrikasinya. Sebagai contoh bentuk irisan PEB ditunjukkan pada Gambar 5, dan hasil pengukuran tebal kelongsong PEB U3Si2-Al densitas uranium 4,8gU/cm 3 dan U7Mo-Al densitas uranium 7,0 gu/cm 3 ditunjukkan pada Tabel 2. Jenis Bahan Bakar Densitas gu/cm 3 Gambar 5. Penampang Lintang Irisan PEB Tabel 2. Kelongsong PEB U3Si2-Al danumo-al Sisi jauh (SJ),mm Tengah (TG),mm Sisi dekat (SD),mm min. rerata min. rerata min. rerata U3Si2-Al 4,8 0,272 0,415 0,372 0,428 0,359 0,427 U7Mo-Al 7,0 0,302 0,407 0,354 0,439 0,304 0,425 Dari Tabel 2 terlihat bahwa bahan bakar U3Si2-Al densitas uranium 4,8gU/cm 3, memiliki tebal kelongsong minimum 0,272mm, sedangakan bahan bakar U7Mo-Al tebal kelongsong minimumnya 0,302 mm. Hal ini menunjukkan bahwa dengan berpatokan pada tebal kelongsong minimum 0,25 mm, maka bahan bakar U7Mo-Al berpeluang untuk ditingkatkan densitas uraniumnya dibandingkan bahan bakar U3Si2-Al. Elemen bakar yang diproduksi PT. Batan Teknologi (persero) terdiri dari 21 PEB, masing-masing berisi bahan bakar U3Si2-Al pengayaan uranium 19,75 % dan densitas uranium 2,96 gu/cm 3. Dimensi elemen bakar berukuran panjang total ± 868,5 mm dan ukuran bentuk kotak sekitar (80,6 x 75,85 x 723,5) mm seperti ditunjukkan pada Gambar 6 [9]. Bahan bakar atau dalam bahan bakar dispersi biasa disebut elemen bakar merupakan komponen utama beroperasinya reaktor nuklir. Pada saat reaktor nuklir beroperasi, akan terjadi reaksi fisi dan setiap isotop U 235 akan menghasilkan energi dan 2 3 neutron cepat. Apabila reaktor nuklir beroperasi pada daya tetap, maka jumlah produk fisi dan neutron cepat yang dihasilkan dapat diketahui. Oleh karena itu apabila geometri reaktor tidak berubah, maka fluk neutron cepatnya tetap sama. Untuk bahan bakar dispersi U3Si2-Al atau UMo-Al dengan uranium pengayaan tinggi (>90%U 235 ) maupun bahan bakar uranium pengayaan rendah (<20%U 235 ) jika daya dan geometri reaktor tetap (jumlah elemen), maka fluk neutron cepat tetap sama. Konversi bahan bakar dari penggunaan uranium pengayaan tinggi ke pengayaan uranium rendah pada geometri dan daya yang sama, maka fluk neutron termal akan menurun antara 5 25 % dengan variasi posisi iradiasi. Penggantian bahan bakar dispersi U3Si2-Al dengan UMo-Al akan menyebabkan densitas U 238 naik dan tangkapan neutron cepat naik pula serta tangkapan Mo sejumlah neutron dan kontribusi fluks neutron termal menurun [10]. ISSN

8 Gambar 6. Elemen Bakar U3Si2-Al Kenaikan jumlah U 235, akan meningkatkan reaktivitas, tetapi tidak proporsional karena juga diikuti kenaikan jumlah U 238. Penambahan panjang siklus bahan bakar di dalam reaktor berhubungan dengan densitas uraniumnya. Sebagai contoh, jika mengubah penggunaan bahan bakar dengan densitas uranium dari 4,8 menjadi 7,5 gu/cm 3, maka panjang siklus naik menjadi 56%. Konsekuensi pengalihan penggunaan bahan bakar dari pengayaan uranium tinggi ke pengayaan rendah dengan bahan bakar U3Si2-Al densitas uranium 4,8 gu/cm 3 terjadi penurunan waktu siklus bahan bakar dari 100 hari menjadi 53 hari, sedangkan dengan menggunakan bahan bakar densitas uranium 5,2 dan 5,5gU/cm 3, siklus bahan bakar masing-masing naik menjadi 57 dan 60 hari. Dapat dilihat bahwa = 53 x 5,2/4,8 = 57 hari dan 53 x 5,5/4,8 = 60,7 hari dan dengan cara yang sama dapat dihitung untuk bahan bakar UMo dengan densitas uranim 6 gu/cm 3 = 66,25 hari, 7 gu/cm 3 = 77,29 hari, 8 gu/cm 3 = 88,33 hari, dan 9 gu/cm 3 = 53 x 8,0/4,8 =99,37 hari. Dari data hitung terlihat bahwa kenaikan densitas uranium akan menaikkan siklus bahan bakar di dalam reaktor. Perubahan penggunaan bahan bakar dari U3Si2-Al (4,8gU/cm 3 ) menjadi UMo-Al dengan densitas uranium yang lebih tinggi akan menaikkan siklus bahan bakar di dalam reaktor. Kenaikan siklus bahan bakar dapat diperkirakan terjadi penghematan konsumsi bahan bakar antara 30 50%. Biaya uranium untuk menghasilkan unjuk kerja yang sama, maka jumlah uranium yang dibutuhkan kurang lebih sama. Meskipun demikian, terjadi penurunan biaya produksi antara 15-25% (dengan asumsi biaya fabrikasi antara U3Si2 dan UMo sama). Hal ini dapat berpengaruh apabila biaya fabrikasi UMo lebih besar daripada U3Si2, karena kesulitan pembuatan serbuk, sedangkan keuntungan penggunaan bahan bakar UMo adalah olah ulang gagalan produk dan bahan bakar pascairadiasi mudah dilakukan. Olah ulang dapat dilakukan dengan proses pelarutan, limbahnya lebih sedikit dan menentukan penyimpanan larutan, sehingga penggunaan bahan bakar UMo-Al biaya olah ulang bahan bakar pascairadiasi dan penyimpanan dapat dihemat antara 30 50% [10]. 4. KESIMPULAN Berkaitan dengan pengembangan bahan bakar U3Si2-Al menjadi UMo-Al, maka apabila ditinjau dari alur proses fabrikasi dari kedua bahan bakar tersebut hampir sama, sedangkan perbedaannya terletak pada proses pembuatan serbuk. Ingot paduan U3Si2 bersifat rapuh sehingga mudah dibuat serbuk secara mekanik (ball mill/grinding mill), sedangkan paduan UMo sangat ulet sehingga pembuatan serbuk harus dilakukan dengan cara lain seperti atomisasi, hydride dehydrid dll. kelongsong PEB merupakan salah satu persyaratan bahan bakar tipe pelat yang harus dipenuhi yaitu dengan ketebalan minimum 0,25 mm. Dari hasil percoban yang dilakukan, tebal kelongsong minimum PEB U3Si2-Al dengan densitas uranium 4,8gU/cm 3 sebesar 0,272 mm, sedangkan untuk PEB UMo- Al densitas uranium 7gU/cm 3 sebesar 0,302 mm. Data tersebut menunjukkan bahwa densitas uranium bahan bakar UMo-Al masih dapat ditingkatkan > 7gU/cm 3. Menggunakan bahan ISSN

9 bakar UMo-Al dengan densitas uranium >7gU/cm 3, siklus/waktu tinggal bahan bakar di dalam reaktor dapat lebih lama. Bila dibandingkan kedua jenis bahan bakar tersebut, maka biaya fabrikasi bahan bakar UMo-Al kemungkinan lebih rendah, olah ulang gagalan fabrikasi/bahan bakar pascairadiasi lebih mudah dan siklus bahan bakar di dalam reaktor dapat lebih panjang dibanding menggunakan bahan bakar U3Si2-Al. DAFTAR PUSTAKA [1]. KIM, K. H., et.al, Development of High Loading Alloy Fuel by Centrifugal Atomization, RERTR, Korea [2]. CORNEN, M., et.al., About the Effects of Si and/or Ti Additions On the UMo/Al Interactions, RRFM, Hamburg, Germany, [3]. U.S. Nuclear Regulatory Commission: Safety Evaluation Report Related to the Evaluation Of Low Enriched Uranium Silicide Aluminium Dispersion Fuels for Use in Non Power Reactors, U.S.Nuclear Regulatory Commission Report NUREG-1313 (July 1988). [4]. MARIN, J., et.al, The Chilean LEU Fuel Fabrication Program, Status Report, RERTR, Chicago, Illinois on October 5-10, [5]. HAMY, J. M., et.al,status as of March 2002 of The UMo Development Program, 6 th International Topical meeting on Research Reactor Fuel Management, Belgium, March 17 to 20,2002. [6]. SOLONIN, M. I., et.al, Development of the Method of High Density Fuel Comminution by Hydride-Dehydride Processing, International RERTR Meeting Program, Las Vegas, Nevada, October 1-6, 2000 [7]. SUPARDJO, MASRUKAN, Pembuatan dan Karakterisasi Paduan UMo Sebagai Kandidat Bahan Bakar Nuklir Tipe Dispersi, Jurnal Teknologi Bahan Bakar Nuklir, Vol.4 No.2 Juni [8]. SUPARDJO, Karakterisasi Paduan UxSiy pada Daerah Komposisi Antara 6,62 s/d. 7,63%Si, Thesis Magister, ITB, 1993 [9]. PT. BATAN TEKNOLOGI (Persero), Proses Produksi Elemen Bakar U3Si2-Al. [10]. Guidez, J., What is the Interest for Research Reactor to Use the New MTR Fuel UMo?, 4 th International Topical Meeting on research Reactor Fuel Management, Ens RRFM, France, March 19 to 21, 2000 DISKUSI 1. Pertanyaan dari Sriyana (PPEN): a. Waktu konstruksi PLTN dan penurunan Biaya dengan asumsi semua parameter dalam kondisi ideal sebagai contoh desain tidak berubah, SDM, sarana dan prasarana siap, material datang sesuai kualitas dan tepat waktu dll. Bagaimana untuk Indonesia? b. Waktu konstruksi pada tabel kurun waktu th dan 1996-sekarang datanya sulit untuk disimpulkan. Jawaban: a. Bagaimana asumsi ideal dapat dipenuhi oleh owner di Indonesia perlu menjadi perhatian tersendiri, karena belum berpengalaman dalam membangun PLTN. Pada beberapa perhitungan ekonomi dibuat sensitivitas 7 s/d 9 tahun waktu konstruksi. b. Terima kasih. Ini hanya ingin menggambarkan bagaimana teknologi konstruksi diterapkan. Sebaiknya kami akan tambahkan jenis teknologi PLTN dan teknologi konstruksi. ISSN

PEMBUATAN PELAT ELEMEN BAKAR MINI U-7Mo/Al

PEMBUATAN PELAT ELEMEN BAKAR MINI U-7Mo/Al ABSTRAK PEMBUATAN PELAT ELEMEN BAKAR MINI U-7Mo/Al Susworo, Suhardyo, Setia Permana Pusat Teknologi Bahan Bakar Nuklir PEMBUATAN PELAT ELEMEN BAKAR MINI U-7Mo/Al. Pembuatan pelat elemen bakar/peb mini

Lebih terperinci

STUDI TENTANG KEKERASANCLADDING PEB U3Sh-AL TMU RENDAH - TINGGI PRA IRADIASI

STUDI TENTANG KEKERASANCLADDING PEB U3Sh-AL TMU RENDAH - TINGGI PRA IRADIASI Hasil-hasil Penelitian EBN Tahun 2009 ISSN 0854-5561 STUDI TENTANG KEKERASANCLADDING PEB U3Sh-AL TMU RENDAH - TINGGI PRA IRADIASI Martoyo, Nusin Samosir, Suparjo, dan U. Sudjadi ABSTRAK STUDI TENTANG KEKERASANCLADDING

Lebih terperinci

PENGARUH FABRIKASI PELAT ELEMEN BAKAR U-7Mo/Al DENGAN VARIASI DENSITAS URANIUM TERHADAP PEMBENTUKAN PORI DI DALAM MEAT DAN TEBAL KELONGSONG

PENGARUH FABRIKASI PELAT ELEMEN BAKAR U-7Mo/Al DENGAN VARIASI DENSITAS URANIUM TERHADAP PEMBENTUKAN PORI DI DALAM MEAT DAN TEBAL KELONGSONG PENGARUH FABRIKASI PELAT ELEMEN BAKAR U-7Mo/Al DENGAN VARIASI DENSITAS URANIUM TERHADAP PEMBENTUKAN PORI DI DALAM MEAT DAN TEBAL KELONGSONG Pusat Teknologi Bahan Bakar Nuklir, BATAN, Kawasan Puspiptek-Serpong,

Lebih terperinci

KARAKTERISASI PADUAN U-7%Mo DAN U-7%Mo-x%Si (x = 1, 2, dan 3%) HASIL PROSES PELEBURAN DALAM TUNGKU BUSUR LISTRIK

KARAKTERISASI PADUAN U-7%Mo DAN U-7%Mo-x%Si (x = 1, 2, dan 3%) HASIL PROSES PELEBURAN DALAM TUNGKU BUSUR LISTRIK KARAKTERISASI PADUAN U-7%Mo DAN U-7%Mo-x%Si (x = 1, 2, dan 3%) HASIL PROSES PELEBURAN DALAM TUNGKU BUSUR LISTRIK ABSTRAK Supardjo, H. Suwarno dan A. Kadarjono Pusat Teknologi Bahan Bakar Nuklir - BATAN

Lebih terperinci

STUDI PROSES PEMBUATAN SERBUK UMo SEBAGAI BAHAN BAKAR DISPERSI UMo-Al UNTUK REAKTOR RISET

STUDI PROSES PEMBUATAN SERBUK UMo SEBAGAI BAHAN BAKAR DISPERSI UMo-Al UNTUK REAKTOR RISET Supardjo ISSN 0216-3128 217 STUDI PROSES PEMBUATAN SERBUK UMo SEBAGAI BAHAN BAKAR DISPERSI UMo-Al UNTUK REAKTOR RISET Supardjo Pusat Teknologi Bahan Bakar Nuklir - BATAN ABSTRAK STUDI PROSES PEMBUATAN

Lebih terperinci

PEMBUATAN SAMPEL INTI ELEMEN BAKAR U 3 Si 2 -Al

PEMBUATAN SAMPEL INTI ELEMEN BAKAR U 3 Si 2 -Al No.05 / Tahun III April 2010 ISSN 1979-2409 PEMBUATAN SAMPEL INTI ELEMEN BAKAR U 3 Si 2 -Al Guswardani, Susworo Pusat Teknologi Bahan Bakar Nuklir - BATAN ABSTRAK PEMBUATAN SAMPEL INTI ELEMEN BAKAR U 3

Lebih terperinci

KARAKTERISASI INGOT PADUAN U-7Mo-Zr HASIL PROSES PELEBURAN MENGGUNAKAN TUNGKU BUSUR LISTRIK

KARAKTERISASI INGOT PADUAN U-7Mo-Zr HASIL PROSES PELEBURAN MENGGUNAKAN TUNGKU BUSUR LISTRIK No. 12/ Tahun VI. Oktober 2013 ISSN 1979-2409 KARAKTERISASI INGOT PADUAN U-7Mo-Zr HASIL PROSES PELEBURAN MENGGUNAKAN TUNGKU BUSUR LISTRIK Slamet P dan Yatno D.A.S. Pusat Teknologi Bahan Bakar Nuklir -

Lebih terperinci

ANALISIS STRUKTUR DAN KOMPOSISI FASE PADUAN U-7%Mo-x%Zr (x = 1, 2, 3% berat) HASIL PROSES PELEBURAN

ANALISIS STRUKTUR DAN KOMPOSISI FASE PADUAN U-7%Mo-x%Zr (x = 1, 2, 3% berat) HASIL PROSES PELEBURAN ANALISIS STRUKTUR DAN KOMPOSISI FASE PADUAN U-7%Mo-x%Zr (x = 1, 2, 3% berat) HASIL PROSES PELEBURAN Supardjo*, Boybul*, Agoeng Kadarjono*, Wisnu A.A.** * Pusat Teknologi Bahan Bakar Nuklir BATAN **Pusat

Lebih terperinci

PENGARUH DENSITAS URANIUM DALAM PELAT ELEMEN BAKAR U-7Mo/Al-Si MENGGUNAKAN KELONGSONG AlMgSi1 TERHADAP HASIL PROSES PENGEROLAN

PENGARUH DENSITAS URANIUM DALAM PELAT ELEMEN BAKAR U-7Mo/Al-Si MENGGUNAKAN KELONGSONG AlMgSi1 TERHADAP HASIL PROSES PENGEROLAN PENGARUH DENSITAS URANIUM DALAM PELAT ELEMEN BAKAR U-7Mo/Al-Si MENGGUNAKAN KELONGSONG AlMgSi1 TERHADAP HASIL PROSES PENGEROLAN Agoeng Kadarjono, Supardjo, Boybul, Maman Kartaman A Pusat Teknologi Bahan

Lebih terperinci

PEMBENTUKAN SINGLE PHASE PADUAN U7Mo.xTi DENGAN TEKNIK PELEBURAN MENGGUNAKAN TUNGKU BUSUR LISTRIK

PEMBENTUKAN SINGLE PHASE PADUAN U7Mo.xTi DENGAN TEKNIK PELEBURAN MENGGUNAKAN TUNGKU BUSUR LISTRIK ISSN 0852-4777 Pembentukan Single Phase Paduan U7Mo.xTi dengan Teknik Peleburan menggunakan Tungku Busur (Supardjo, Agoeng K, dan Wisnu Ari Adi) PEMBENTUKAN SINGLE PHASE PADUAN U7Mo.xTi DENGAN TEKNIK PELEBURAN

Lebih terperinci

PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE DEHYDRIDE GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al

PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE DEHYDRIDE GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al ISSN 0852-4777 PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE DEHYDRIDE GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al Supardjo, Agoeng Kadarjono, Boybul Pusat Teknologi Bahan Bakar

Lebih terperinci

PEMBUATAN DAN KARAKTERISASI PADUAN UMo SEBAGAI KANDIDAT BAHAN BAKAR NUKLIR TIPE DISPERSI

PEMBUATAN DAN KARAKTERISASI PADUAN UMo SEBAGAI KANDIDAT BAHAN BAKAR NUKLIR TIPE DISPERSI J. Tek. Bhn. Nukl. Vol.4 No.2 Juni 2008: 48-104 ISSN 1907-2635 82/Akred LIPI/P2MBI/5/2007 PEMBUATAN DAN KARAKTERISASI PADUAN UMo SEBAGAI KANDIDAT BAHAN BAKAR NUKLIR TIPE DISPERSI Supardjo dan Masrukan

Lebih terperinci

Supardjo (1) dan Boybul (1) 1. Pusat Teknologi Bahan Bakar Nuklir - BATAN Kawasan Puspiptek, Serpong, Tangerang

Supardjo (1) dan Boybul (1) 1. Pusat Teknologi Bahan Bakar Nuklir - BATAN Kawasan Puspiptek, Serpong, Tangerang Urania Vol. 14 No. 3, Juli 2008 : 106-160 ISSN 0852-4777 PENGARUH PERBEDAAN SERBUK U 3 O 8 DAN U 3 Si 2 TERHADAP PEMBENTUKAN POROSITAS, HOMOGENITAS URANIUM DAN KETEBALAN KELONGSONG PRODUK PELAT ELEMEN

Lebih terperinci

PEMBUATAN INTI ELEMEN BAKAR DAN PELAT ELEMEN BAKAR U-7MO/AL-SI DENGAN TINGKAT MUAT 3,6 G U/CM 3

PEMBUATAN INTI ELEMEN BAKAR DAN PELAT ELEMEN BAKAR U-7MO/AL-SI DENGAN TINGKAT MUAT 3,6 G U/CM 3 PEMBUATAN INTI ELEMEN BAKAR DAN PELAT ELEMEN BAKAR U-7MO/AL-SI DENGAN TINGKAT MUAT 3,6 G U/CM 3 Boybul, Susworo, dan Supardjo Pusat Teknologi Bahan Bakar Nuklir Badan Tenaga Nuklir Nasional Kawasan PUSPIPTEK

Lebih terperinci

PEMBUATAN INGOT PADUAN U-7Mo-xZr DENGAN MENGGUNAKAN TEKNIK PELEBURAN DAN KARAKTERISASINYA

PEMBUATAN INGOT PADUAN U-7Mo-xZr DENGAN MENGGUNAKAN TEKNIK PELEBURAN DAN KARAKTERISASINYA PEMBUATAN INGOT PADUAN U-7Mo-xZr DENGAN MENGGUNAKAN TEKNIK PELEBURAN DAN KARAKTERISASINYA Supardjo (1), Agoeng K (1), Boybul (1) 1. Pusat Teknologi Bahan Bakar Nuklir (PTBN)-BATAN Kawasan Puspiptek Serpong,

Lebih terperinci

ANALISIS SIFAT TERMAL LOGAM URANIUM, PADUAN UMo DAN UMoSi MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER

ANALISIS SIFAT TERMAL LOGAM URANIUM, PADUAN UMo DAN UMoSi MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER ANALISIS SIFAT TERMAL LOGAM URANIUM, PADUAN UMo DAN UMoSi MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER YANLINASTUTI, SUTRI INDARYATI, RAHMIATI Pusat Teknologi Bahan Bakar Nuklir-BATAN Serpong Abstrak ANALISIS

Lebih terperinci

ANALISIS SIFAT TERMAL LOGAM URANIUM, PADUAN UMo DAN UMoSi MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER

ANALISIS SIFAT TERMAL LOGAM URANIUM, PADUAN UMo DAN UMoSi MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER ANALISIS SIFAT TERMAL LOGAM URANIUM, PADUAN UMo DAN UMoSi MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER YANLINASTUTI, SUTRI INDARYATI, RAHMIATI Pusat Teknologi Bahan Bakar Nuklir-BATAN Serpong Abstrak ANALISIS

Lebih terperinci

PENGARUH DENSITAS URANIUM TERHADAP UMUR DAN BURN UP BAHAN BAKAR NUKLIR DI DALAM REAKTOR RSG-GAS DITINJAU DARI ASPEK NEUTRONIK

PENGARUH DENSITAS URANIUM TERHADAP UMUR DAN BURN UP BAHAN BAKAR NUKLIR DI DALAM REAKTOR RSG-GAS DITINJAU DARI ASPEK NEUTRONIK p ISSN 0852 4777; e ISSN 2528 0473 PENGARUH DENSITAS URANIUM TERHADAP UMUR DAN BURN UP BAHAN BAKAR NUKLIR DI DALAM REAKTOR RSG-GAS DITINJAU DARI ASPEK NEUTRONIK Saga Octadamailah, Supardjo Pusat Teknologi

Lebih terperinci

PENGARUH UNSUR Ti PADA PADUAN U-7Mo-xTi TERHADAP STRUKTUR MIKRO DAN KEKERASAN INGOT SERTA MORFOLOGI SERBUK HASIL HIDRIDING - DEHIDRIDING

PENGARUH UNSUR Ti PADA PADUAN U-7Mo-xTi TERHADAP STRUKTUR MIKRO DAN KEKERASAN INGOT SERTA MORFOLOGI SERBUK HASIL HIDRIDING - DEHIDRIDING ISSN 0852-4777 Pengaruh Unsur Ti Pada Paduan U-7Mo-xTi Terhadap Struktur Mikro dan Kekerasan Ingot Serta Morfologi Serbuk Hasi Hidriding - Dehidriding (Maman Kartaman A, Supardjo, Boybul, Agoeng Kadarjono)

Lebih terperinci

PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2. Kadarusmanto, Purwadi, Endang Susilowati

PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2. Kadarusmanto, Purwadi, Endang Susilowati PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2 Kadarusmanto, Purwadi, Endang Susilowati ABSTRAK PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2. Elemen bakar merupakan salah

Lebih terperinci

STUDI SIFAT BAHAN BAKAR URANIUM SILISIDA AKIBAT IRADIASI

STUDI SIFAT BAHAN BAKAR URANIUM SILISIDA AKIBAT IRADIASI ID0100126 Pmsiding Pesentasi llmiah Daur Bahan Bakar Nuklir II STUDI SIFAT BAHAN BAKAR URANIUM SILISIDA AKIBAT IRADIASI ABSTRAK Supardjo Pusat Elemen Bakar Nuklir STUDI SIFAT BAHAN BAKAR URANIUM SILISIDA

Lebih terperinci

KARAKTERISASI PADUAN AlFeNiMg HASIL PELEBURAN DENGAN ARC FURNACE TERHADAP KEKERASAN

KARAKTERISASI PADUAN AlFeNiMg HASIL PELEBURAN DENGAN ARC FURNACE TERHADAP KEKERASAN No.06 / Tahun III Oktober 2010 ISSN 1979-2409 KARAKTERISASI PADUAN AlFeNiMg HASIL PELEBURAN DENGAN ARC FURNACE TERHADAP KEKERASAN Martoyo, Ahmad Paid, M.Suryadiman Pusat Teknologi Bahan Bakar Nuklir -

Lebih terperinci

ANALISIS KOMPOSISI BAHAN DAN SIFAT TERMAL PADUAN AlMgSi-1 TANPA BORON HASIL SINTESIS UNTUK KELONGSONG ELEMEN BAKAR REAKTOR RISET

ANALISIS KOMPOSISI BAHAN DAN SIFAT TERMAL PADUAN AlMgSi-1 TANPA BORON HASIL SINTESIS UNTUK KELONGSONG ELEMEN BAKAR REAKTOR RISET ANALISIS KOMPOSISI BAHAN DAN SIFAT TERMAL PADUAN AlMgSi-1 TANPA BORON HASIL SINTESIS UNTUK KELONGSONG ELEMEN BAKAR REAKTOR RISET Masrukan, Aslina Br.Ginting Pusbangtek Bahan Bakar Nuklir dan Daur Ulang

Lebih terperinci

PEMBUATAN PELAT ELEMEN BAKAR (PEB) U-10Zr/Al UNTUK BAHAN BAKAR REAKTOR RISET

PEMBUATAN PELAT ELEMEN BAKAR (PEB) U-10Zr/Al UNTUK BAHAN BAKAR REAKTOR RISET PEMBUATAN PELAT ELEMEN BAKAR (PEB) U-10Zr/Al UNTUK BAHAN BAKAR REAKTOR RISET Masrukan, Setia Permana, Yanlianastuti Pusat Teknologi Bahan Bakar Nuklir -BATAN Kawasan Pspiptek Serpong Tangerang Selatan

Lebih terperinci

PENENTUAN RASIO O/U SERBUK SIMULASI BAHAN BAKAR DUPIC SECARA GRAVIMETRI

PENENTUAN RASIO O/U SERBUK SIMULASI BAHAN BAKAR DUPIC SECARA GRAVIMETRI No. 12/ Tahun VI. Oktober 2013 ISSN 1979-2409 PENENTUAN RASIO O/U SERBUK SIMULASI BAHAN BAKAR DUPIC SECARA GRAVIMETRI Lilis Windaryati, Ngatijo dan Agus Sartono Pusat Teknologi Bahan Bakar Nuklir BATAN

Lebih terperinci

PENENTUAN SIFAT THERMAL PADUAN U-Zr MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER

PENENTUAN SIFAT THERMAL PADUAN U-Zr MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER No. 02/ Tahun I. Oktober 2008 ISSN 19792409 PENENTUAN SIFAT THERMAL PADUAN UZr MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER Yanlinastuti, Sutri Indaryati Pusat Teknologi Bahan Bakar Nuklir BATAN ABSTRAK PENENTUAN

Lebih terperinci

ANALSIS TERMAL PADUAN AlMgSi UNTUK KELONGSONG BAHAN BAKAR U 3 Si 2 -Al DENSITAS TINGGI

ANALSIS TERMAL PADUAN AlMgSi UNTUK KELONGSONG BAHAN BAKAR U 3 Si 2 -Al DENSITAS TINGGI ANALSIS TERMAL PADUAN AlMgSi UNTUK KELONGSONG BAHAN BAKAR U 3 Si 2 -Al DENSITAS TINGGI Aslina Br.Ginting Pusat Teknologi Bahan Bakar Nuklir BATAN Kawasan Puspiptek, Serpong Tangerang ABSTRAK ANALISIS TERMAL

Lebih terperinci

PENGARUH KANDUNGAN MOLIBDENUM TERHADAP PERUBAHAN FASA DAN KAPASITAS PANAS INGOT PADUAN UMo

PENGARUH KANDUNGAN MOLIBDENUM TERHADAP PERUBAHAN FASA DAN KAPASITAS PANAS INGOT PADUAN UMo PENGARUH KANDUNGAN MOLIBDENUM TERHADAP PERUBAHAN FASA DAN KAPASITAS PANAS INGOT PADUAN UMo Aslina Br.Ginting (1), Supardjo (1), Agoeng Kadarjono (1), Dian Anggraini (1) 1.Pusat Teknologi Bahan Bakar Nuklir

Lebih terperinci

KAJIAN SINTESA PADUAN U-Mo DENCAN tara PELEBURAN

KAJIAN SINTESA PADUAN U-Mo DENCAN tara PELEBURAN HasH-hasil Penelitian EBN Tahun 2005 KAJIAN SINTESA PADUAN U-Mo DENCAN tara PELEBURAN Budi Briyatmoko ABSTRAK KAJIAN SINTESA PADUAN U-Mo DENGAN CARA PELEBURAN. Telah dipelajari sintesa paduan U-Mo dengan

Lebih terperinci

ANALISIS SIFAT TERMAL PADUAN AlFeNi SEBAGAI KELONGSONG BAHAN BAKAR REAKTOR RISET

ANALISIS SIFAT TERMAL PADUAN AlFeNi SEBAGAI KELONGSONG BAHAN BAKAR REAKTOR RISET ISSN 907 635 ANALISIS SIFAT TERMAL PADUAN AlFeNi SEBAGAI KELONGSONG BAHAN BAKAR REAKTOR RISET Aslina Br.Ginting, M.Husna Al Hasa, Masrukan Pusat Teknologi Bahan Bakar Nuklir BATAN Kawasan PUSPIPTEK, Tangerang

Lebih terperinci

KOMPARASI ANALISIS REAKSI TERMOKIMIA MATRIK Al DENGAN BAHAN BAKAR UMo/Al DAN U 3 Si 2 /Al MENGGUNAKAN DIFFERENTIAL THERMAL ANALYSIS

KOMPARASI ANALISIS REAKSI TERMOKIMIA MATRIK Al DENGAN BAHAN BAKAR UMo/Al DAN U 3 Si 2 /Al MENGGUNAKAN DIFFERENTIAL THERMAL ANALYSIS KOMPARASI ANALISIS REAKSI TERMOKIMIA MATRIK Al DENGAN BAHAN BAKAR UMo/Al DAN U 3 Si 2 /Al MENGGUNAKAN DIFFERENTIAL THERMAL ANALYSIS Aslina Br.Ginting (1), Supardjo (1) 1. Pusat Teknologi Bahan Bakar Nuklir

Lebih terperinci

IDENTIFIKASI SENYAWA YANG TERBENTUK AKIBAT REAKSI TERMOKIMIA PADA INGOT BAHAN BAKAR

IDENTIFIKASI SENYAWA YANG TERBENTUK AKIBAT REAKSI TERMOKIMIA PADA INGOT BAHAN BAKAR IDENTIFIKASI SENYAWA YANG TERBENTUK AKIBAT REAKSI TERMOKIMIA PADA INGOT BAHAN BAKAR U 3 O 8 -Al, U 3 Si 2 -Al DAN UMo-Al MENGGUNAKAN X-RAY DIFFRACTOMETER Aslina Br. Ginting Pusat Teknologi Bahan Bakar

Lebih terperinci

PABRIKASI FOIL URANIUM DENGAN TEKNIK PEROLAN

PABRIKASI FOIL URANIUM DENGAN TEKNIK PEROLAN PABRIKASI FOIL URANIUM DENGAN TEKNIK PEROLAN Susworo, Guswardani, Dadang, Purwanta Pusat Teknologi Bahan Bakar Nuklir - BATAN Kawasan Puspiptek, Serpong, Tangerang ABSTRAK PABRIKASI FOIL URANIUM DENGAN

Lebih terperinci

PENGARUH UNSUR Nb PADA BAHAN BAKAR PADUAN UZrNb TERHADAP DENSITAS, KEKERASAN DAN MIKROSTRUKTUR

PENGARUH UNSUR Nb PADA BAHAN BAKAR PADUAN UZrNb TERHADAP DENSITAS, KEKERASAN DAN MIKROSTRUKTUR PENGARUH UNSUR Nb PADA BAHAN BAKAR PADUAN UZrNb TERHADAP DENSITAS, KEKERASAN DAN MIKROSTRUKTUR Masrukan (1), Tri Yulianto (1) dan Sungkono (1) 1. Pusat Teknologi Bahan Bakar Nuklir (PTBN)-BATAN Kawasan

Lebih terperinci

KARAKTERISASI SIFAT TERMAL DAN MIKROS- TRUKTUR PELAT ELEMEN BAKAR (PEB) U 3 SI 2 -AL DENSITAS 4,8 GU/CM 3 DENGAN PADUAN ALMGSI SEBAGAI KELONGSONG

KARAKTERISASI SIFAT TERMAL DAN MIKROS- TRUKTUR PELAT ELEMEN BAKAR (PEB) U 3 SI 2 -AL DENSITAS 4,8 GU/CM 3 DENGAN PADUAN ALMGSI SEBAGAI KELONGSONG Aslina Br. G., dkk. ISSN 0216-3128 157 KARAKTERISASI SIFAT TERMAL DAN MIKROS- TRUKTUR PELAT ELEMEN BAKAR (PEB) U 3 SI 2 -AL DENSITAS 4,8 GU/CM 3 DENGAN PADUAN ALMGSI SEBAGAI KELONGSONG Aslina Br. Ginting,

Lebih terperinci

PEMBUATAN FOIL TARGET DENGAN TINGKAT PENGKAYAAN URANIUM RENDAH

PEMBUATAN FOIL TARGET DENGAN TINGKAT PENGKAYAAN URANIUM RENDAH ISSN 1979-2409 Pembuatan Foil Target Dengan Tingkat Pengkayaan Uranium Rendah (Purwanta, Suhardyo, Susworo, Guswardani) PEMBUATAN FOIL TARGET DENGAN TINGKAT PENGKAYAAN URANIUM RENDAH Purwanta, Suhardyo,

Lebih terperinci

PENGARUH PROSES QUENCHING TERHADAP LAJU KOROSI BAHAN BAKAR PADUAN UZr

PENGARUH PROSES QUENCHING TERHADAP LAJU KOROSI BAHAN BAKAR PADUAN UZr PENGARUH PROSES QUENCHING TERHADAP LAJU KOROSI BAHAN BAKAR PADUAN UZr ABSTRAK Masrukan, Agoeng Kadarjono Pusat Teknologi Bahan Bakar Nuklir BATAN Kawasan PUSPIPTEK Serpong, Tangerang Selatan 15314, Banten

Lebih terperinci

EVALUASI PERILAKU SWELLING IRADIASI BAHAN BAKAR RSG GAS

EVALUASI PERILAKU SWELLING IRADIASI BAHAN BAKAR RSG GAS ISSN 1907 265 EVALUASI PERILAKU SWELLING IRADIASI BAHAN BAKAR RSG GAS Bambang Herutomo, Tri Yulianto Pusat Teknologi Bahan Bakar Nuklir BATAN, Serpong ABSTRAK EVALUASI PERILAKU SWELLING IRADIASI BAHAN

Lebih terperinci

PENGUKURAN SIFAT TERMAL ALLOY ALUMINIUM FERO NIKEL MENGGUNAKAN ALAT DIFFERENTIAL THERMAL ANALYZER

PENGUKURAN SIFAT TERMAL ALLOY ALUMINIUM FERO NIKEL MENGGUNAKAN ALAT DIFFERENTIAL THERMAL ANALYZER ISSN 979-409 PENGUKURAN SIFAT TERMAL ALLOY ALUMINIUM FERO NIKEL MENGGUNAKAN ALAT DIFFERENTIAL THERMAL ANALYZER Yanlinastuti, Sutri Indaryati Pusat Teknologi Bahan Bakar Nuklir - BATAN ABSTRAK PENGUKURAN

Lebih terperinci

PENGENALAN DAUR BAHAN BAKAR NUKLIR

PENGENALAN DAUR BAHAN BAKAR NUKLIR PENGENALAN DAUR BAHAN BAKAR NUKLIR RINGKASAN Daur bahan bakar nuklir merupakan rangkaian proses yang terdiri dari penambangan bijih uranium, pemurnian, konversi, pengayaan uranium dan konversi ulang menjadi

Lebih terperinci

PENGARUH POROSITAS MEAT BAHAN BAKAR TER- HADAP KAPASITAS PANAS PELAT ELEMEN BAKAR U 3 Si 2 -Al

PENGARUH POROSITAS MEAT BAHAN BAKAR TER- HADAP KAPASITAS PANAS PELAT ELEMEN BAKAR U 3 Si 2 -Al Aslina Br. Ginting, dkk. ISSN 0216-3128 127 PENGARUH POROSITAS MEAT BAHAN BAKAR TER- HADAP KAPASITAS PANAS PELAT ELEMEN BAKAR U 3 Si 2 -Al Aslina Br.Ginting, Supardjo, Sutri Indaryati Pusat Teknologi Bahan

Lebih terperinci

KARAKTERISASI SIFAT MEKANIK DAN MIKRO- STRUKTUR U-Mo SEBAGAI KANDIDAT BAHAN BAKAR REAKTOR RISET

KARAKTERISASI SIFAT MEKANIK DAN MIKRO- STRUKTUR U-Mo SEBAGAI KANDIDAT BAHAN BAKAR REAKTOR RISET 180 ISSN 0216-3128 M. Husna Al Hasa, dkk. KARAKTERISASI SIFAT MEKANIK DAN MIKRO- STRUKTUR U-Mo SEBAGAI KANDIDAT BAHAN BAKAR REAKTOR RISET M. Husna Al Hasa, Asmedi Suripto, Fathurrachman, Martoyo, Achmad

Lebih terperinci

PERHITUNGAN BURN UP BAHAN BAKAR REAKTOR RSG-GAS MENGGUNAKAN PAKET PROGRAM BATAN-FUEL. Mochamad Imron, Ariyawan Sunardi

PERHITUNGAN BURN UP BAHAN BAKAR REAKTOR RSG-GAS MENGGUNAKAN PAKET PROGRAM BATAN-FUEL. Mochamad Imron, Ariyawan Sunardi Prosiding Seminar Nasional Teknologi dan Aplikasi Reaktor Nuklir PRSG Tahun 2012 ISBN 978-979-17109-7-8 PERHITUNGAN BURN UP BAHAN BAKAR REAKTOR RSG-GAS MENGGUNAKAN PAKET PROGRAM BATAN-FUEL Mochamad Imron,

Lebih terperinci

REAKSI TERMOKIMIA PADUAN AlFeNi DENGAN BAHAN BAKAR U 3 Si 2

REAKSI TERMOKIMIA PADUAN AlFeNi DENGAN BAHAN BAKAR U 3 Si 2 ISSN 1907 2635 Reaksi Termokimia Paduan AlFeNi dengan Bahan Bakar U 3Si 2 (Aslina Br.Ginting, M. Husna Al Hasa) REAKSI TERMOKIMIA PADUAN AlFeNi DENGAN BAHAN BAKAR U 3 Si 2 Aslina Br. Ginting dan M. Husna

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN Geometri Aqueous Homogeneous Reactor (AHR) Geometri AHR dibuat dengan menggunakan software Visual Editor (vised).

BAB IV HASIL DAN PEMBAHASAN Geometri Aqueous Homogeneous Reactor (AHR) Geometri AHR dibuat dengan menggunakan software Visual Editor (vised). BAB IV HASIL DAN PEMBAHASAN Penelitian ini telah dilakukan dengan membuat simulasi AHR menggunakan software MCNPX. Analisis hasil dilakukan berdasarkan perhitungan terhadap nilai kritikalitas (k eff )

Lebih terperinci

KEUNGGULAN SIFAT METALURGI DAN LAJU KOROSI PADUAN AlMgSi UNTUK KELONGSONG BAHAN BAKAR U 3 Si 2 -Al DENSITAS 4,8 gu/cm 3

KEUNGGULAN SIFAT METALURGI DAN LAJU KOROSI PADUAN AlMgSi UNTUK KELONGSONG BAHAN BAKAR U 3 Si 2 -Al DENSITAS 4,8 gu/cm 3 (Aslina Br. Ginting, Nusin Samosir, Sugondo) KEUNGGULAN SIFAT METALURGI DAN LAJU KOROSI PADUAN AlMgSi UNTUK KELONGSONG BAHAN BAKAR U 3 Si 2 -Al DENSITAS 4,8 gu/cm 3 Aslina Br.Ginting, Nusin Samosir, Sugondo

Lebih terperinci

PENGARUH KADAR Ni TERHADAP SIFAT KEKERASAN, LAJU KOROSI DAN STABILITAS PANAS BAHAN STRUKTUR BERBASIS ALUMINIUM

PENGARUH KADAR Ni TERHADAP SIFAT KEKERASAN, LAJU KOROSI DAN STABILITAS PANAS BAHAN STRUKTUR BERBASIS ALUMINIUM Urania PENGARUH KADAR Ni TERHADAP SIFAT KEKERASAN, LAJU KOROSI DAN STABILITAS PANAS BAHAN STRUKTUR BERBASIS ALUMINIUM M. Husna Al Hasa Pusat Teknologi Bahan Bakar Nuklir- BATAN Kawasan Puspiptek, Serpong,

Lebih terperinci

PENGARUH UNSUR Zr PADA PADUAN U-Zr DAN INTERAKSINYA DENGAN LOGAM Al TERHADAP PEMBENTUKAN FASA

PENGARUH UNSUR Zr PADA PADUAN U-Zr DAN INTERAKSINYA DENGAN LOGAM Al TERHADAP PEMBENTUKAN FASA Urania Vol. 14 No. 4, Oktober 2008 : 161-233 ISSN 0852-4777 PENGARUH UNSUR Zr PADA PADUAN U-Zr DAN INTERAKSINYA DENGAN LOGAM Al TERHADAP PEMBENTUKAN FASA Masrukan (1) dan Aslina Br Ginting (1) 1. Pusat

Lebih terperinci

ABSTRAK PENDAHULUAN. ISSN HasH-hasH Penelitian EBN Tahun 2010

ABSTRAK PENDAHULUAN. ISSN HasH-hasH Penelitian EBN Tahun 2010 ISSN 0854-5561 HasH-hasH Penelitian EBN Tahun 2010 UJI PASCA IRADIASI BAHAN BAKAR DAN BAHAN STRUKTUR PEMERIKSAAN METALOGRAFI BAHAN BAKAR URANIUM SILISIDA TINGKAT MUAT URANIUM (TMU) 4,8 GRAMjCM3 PRA IRADIASI

Lebih terperinci

PEMBUATAN KOMPONEN INNER TUBE LEU FOIL TARGET UNTUK KAPASITAS 1,5g U-235

PEMBUATAN KOMPONEN INNER TUBE LEU FOIL TARGET UNTUK KAPASITAS 1,5g U-235 PEMBUATAN KOMPONEN INNER TUBE LEU FOIL TARGET UNTUK KAPASITAS 1,5g U-235 Suhardyo, Purwanta Pusat Teknologi Bahan Bahan Nuklir ABSTRAK PEMBUATAN KOMPONEN INNER TUBE LEU FOIL TARGET 1,5g U-235. Telah dilakukan

Lebih terperinci

ANALISIS PENINGKATAN FRAKSI BAKAR BUANG UNTUK EFISIENSI PENGGUNAAN BAHAN BAKAR U 3 Si 2 -Al 2,96 gu/cc DI TERAS RSG-GAS

ANALISIS PENINGKATAN FRAKSI BAKAR BUANG UNTUK EFISIENSI PENGGUNAAN BAHAN BAKAR U 3 Si 2 -Al 2,96 gu/cc DI TERAS RSG-GAS 176 ISSN 0216-3128 Lily Suparlina ANALISIS PENINGKATAN FRAKSI BAKAR BUANG UNTUK EFISIENSI PENGGUNAAN BAHAN BAKAR U 3 Si 2 -Al 2,96 gu/cc DI TERAS RSG-GAS Lily suparlina Pusat Teknologi Reaktor dan Keselamatan

Lebih terperinci

KARAKTERISTIK SIFAT MEKANIK DAN MIKROSTRUKTUR PADUAN UZrNb PASCA PERLAKUAN PANAS

KARAKTERISTIK SIFAT MEKANIK DAN MIKROSTRUKTUR PADUAN UZrNb PASCA PERLAKUAN PANAS KARAKTERISTIK SIFAT MEKANIK DAN MIKROSTRUKTUR PADUAN UZrNb PASCA PERLAKUAN PANAS Masrukan (1), Tri Yulianto (1), dan Erilia Y (1) 1. Pusat Teknologi Bahan Bakar Nuklir (PTBN)-BATAN Kawasan Puspiptek, Serpong

Lebih terperinci

1 BAB I PENDAHULUAN. Salah satu industri yang cukup berkembang di Indonesia saat ini adalah

1 BAB I PENDAHULUAN. Salah satu industri yang cukup berkembang di Indonesia saat ini adalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu industri yang cukup berkembang di Indonesia saat ini adalah industri baja. Peningkatan jumlah industri di bidang ini berkaitan dengan tingginya kebutuhan

Lebih terperinci

ANALISIS KADAR URANIUM DAN IMPURITAS DALAM PADUAN U-7MO-XTI DAN U-7MO-XZR

ANALISIS KADAR URANIUM DAN IMPURITAS DALAM PADUAN U-7MO-XTI DAN U-7MO-XZR ANALISIS KADAR URANIUM DAN IMPURITAS DALAM PADUAN U-7MO-XTI DAN U-7MO-XZR Boybul 1, Supardjo 2 Pusat Teknologi Bahan Bakar Nuklir-BATAN Kawasan Puspiptek GD 20, Serpong -Kota Tangerang Selatan, Banten

Lebih terperinci

REAKTOR PEMBIAK CEPAT

REAKTOR PEMBIAK CEPAT REAKTOR PEMBIAK CEPAT RINGKASAN Elemen bakar yang telah digunakan pada reaktor termal masih dapat digunakan lagi di reaktor pembiak cepat, dan oleh karenanya reaktor ini dikembangkan untuk menaikkan rasio

Lebih terperinci

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi BAB III KARAKTERISTIK DESAIN HTTR BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi 3.1 Konfigurasi Teras Reaktor Spesifikasi utama dari HTTR diberikan pada tabel 3.1 di bawah ini. Reaktor terdiri

Lebih terperinci

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR)

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) Bab 2 Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) 2.1 Pembangkit Listrik Tenaga Nuklir Prinsip kerja dari pembangkit listrik tenaga nuklir secara umum tidak berbeda dengan pembangkit listrik

Lebih terperinci

1 BAB I BAB I PENDAHULUAN

1 BAB I BAB I PENDAHULUAN 1 BAB I BAB I PENDAHULUAN 1.1 Latar Belakang Zirkonium dioksida (ZrO 2 ) atau yang disebut dengan zirkonia adalah bahan keramik maju yang penting karena memiliki kekuatannya yang tinggi dan titik lebur

Lebih terperinci

PENGEMBANGAN TEKNOLOGI PRODUKSI BAHAN BAKAR REAKTOR DAYA

PENGEMBANGAN TEKNOLOGI PRODUKSI BAHAN BAKAR REAKTOR DAYA Hasil-hasil Penelitian EBN Tahun 2009 ISSN 0854-5561 PENGEMBANGAN TEKNOLOGI PRODUKSI BAHAN BAKAR REAKTOR DAYA Tri Yulianto ABSTRAK PENGEMBANGAN TEKNOLOGI PRODUKSI BAHAN BAKAR REAKTOR DAYA. Kegiatan pengembangan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Nuklir (PLTN) didesain berdasarkan 3 (tiga) prinsip yaitu mampu dipadamkan dengan aman (safe shutdown), didinginkan serta mengungkung produk

Lebih terperinci

KARAKTERISASI INGOT PADUAN U-7Mo-xTi HASIL PROSES PELEBURAN MENGGUNAKAN TUNGKU BUSUR LISTRIK

KARAKTERISASI INGOT PADUAN U-7Mo-xTi HASIL PROSES PELEBURAN MENGGUNAKAN TUNGKU BUSUR LISTRIK Karakterisasi Ingot Paduan U-7Mo-xTi Hasil Proses Peleburan Menggunakan Tungku Busur Listrik Supardjo, Agoeng K, Boybul, Maman K. A. KARAKTERISASI INGOT PADUAN U-7Mo-xTi HASIL PROSES PELEBURAN MENGGUNAKAN

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang

BAB I PENDAHULUAN. I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Memperoleh energi yang terjangkau untuk rumah tangga dan industri adalah aktivitas utama pada masa ini dimana fisi nuklir memainkan peran yang sangat penting. Para

Lebih terperinci

KOMPARASI ANALISIS KOMPOSISI PADUAN AlMgSI1 DENGAN MENGGUNAKAN TEKNIK X RAY FLUOROCENCY (XRF) DAN EMISSION SPECTROSCOPY (

KOMPARASI ANALISIS KOMPOSISI PADUAN AlMgSI1 DENGAN MENGGUNAKAN TEKNIK X RAY FLUOROCENCY (XRF) DAN EMISSION SPECTROSCOPY ( 120 ISSN 0216-3128 Masrukan, dkk. KOMPARASI ANALISIS KOMPOSISI PADUAN AlMgSI1 DENGAN MENGGUNAKAN TEKNIK X RAY FLUOROCENCY (XRF) DAN EMISSION SPECTROSCOPY ( Masrukan, Rosika, Dian Anggraini dan Joko Kisworo

Lebih terperinci

DESAIN KONSEPTUAL TERAS REAKTOR RISET INOVATIF BERBAHAN BAKAR URANIUM-MOLIBDENUM DARI ASPEK NEUTRONIK

DESAIN KONSEPTUAL TERAS REAKTOR RISET INOVATIF BERBAHAN BAKAR URANIUM-MOLIBDENUM DARI ASPEK NEUTRONIK J. Tek. Reaktor. Nukl. Vol. 14 No.3 Oktober 2012, Hal. 178-191 ISSN 1411 240X DESAIN KONSEPTUAL TERAS REAKTOR RISET INOVATIF BERBAHAN BAKAR URANIUM-MOLIBDENUM DARI ASPEK NEUTRONIK Tukiran S, Surian Pinem,

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei-Agustus 2012 di Instalasi Elemen

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei-Agustus 2012 di Instalasi Elemen III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Mei-Agustus 2012 di Instalasi Elemen Bakar Eksperimental (IEBE), Pusat Teknologi Bahan Bakar Nuklir (PTBN)-

Lebih terperinci

Teknologi Pembuatan Bahan Bakar Pelet Reaktor Daya Berbasis Thorium Oksida EXECUTIVE SUMMARY

Teknologi Pembuatan Bahan Bakar Pelet Reaktor Daya Berbasis Thorium Oksida EXECUTIVE SUMMARY Teknologi Pembuatan Bahan Bakar Reaktor Daya Berbasis Thorium Oksida EXECUTIVE SUMMARY Dalam rangka untuk mengatasi adanya kekurangan energi yang terjadi di dalam negri saat ini, maka banyak penelitian

Lebih terperinci

PENGARUH DAYA TERHADAP UNJUK KERJA PIN BAHAN BAKAR NUKLIR TIPE PWR PADA KONDISI STEADY STATE

PENGARUH DAYA TERHADAP UNJUK KERJA PIN BAHAN BAKAR NUKLIR TIPE PWR PADA KONDISI STEADY STATE PENGARUH DAYA TERHADAP UNJUK KERJA PIN BAHAN BAKAR NUKLIR TIPE PWR PADA KONDISI STEADY STATE EDY SULISTYONO PUSAT TEKNOLOGI BAHAN BAKAR NUKLIR ( PTBN ), BATAN e-mail: edysulis@batan.go.id ABSTRAK PENGARUH

Lebih terperinci

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007)

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007) BAB II DASAR TEORI 2.1 TINJAUAN PUSTAKA Proses pengelasan semakin berkembang seiring pertumbuhan industri, khususnya di bidang konstruksi. Banyak metode pengelasan yang dikembangkan untuk mengatasi permasalahan

Lebih terperinci

PENGARUH DEFORMASI DINGIN TERHADAP KARAKTER PADUAN Zr-0,3%Mo-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS

PENGARUH DEFORMASI DINGIN TERHADAP KARAKTER PADUAN Zr-0,3%Mo-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS J. Tek. Bhn. Nukl. Vol. 7 No. 1 Januari 2011: 1-73 ISSN 1907 2635 PENGARUH DEFORMASI DINGIN TERHADAP KARAKTER PADUAN Zr-0,3%Mo-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS Sungkono *, Kartika Sari **, Nani Yuliani

Lebih terperinci

KARAKTERISASI SIFAT MEKANIK DAN MIKROSTRUKTUR PADUAN INTERMETALIK AlFeNi SEBAGAI BAHAN KELONGSONG BAHAN BAKAR

KARAKTERISASI SIFAT MEKANIK DAN MIKROSTRUKTUR PADUAN INTERMETALIK AlFeNi SEBAGAI BAHAN KELONGSONG BAHAN BAKAR KARAKTERISASI SIFAT MEKANIK DAN MIKROSTRUKTUR PADUAN INTERMETALIK AlFeNi SEBAGAI BAHAN KELONGSONG BAHAN BAKAR M.Husna Al Hasa Pusat Teknologi Bahan Bakar Nuklir BATAN Kawasan PUSPIPTEK, Tangerang 15314

Lebih terperinci

ANALISIS POLA MANAJEMEN BAHAN BAKAR TERAS REAKTOR RISET TIPE MTR

ANALISIS POLA MANAJEMEN BAHAN BAKAR TERAS REAKTOR RISET TIPE MTR ANALISIS POLA MANAJEMEN BAHAN BAKAR TERAS REAKTOR RISET TIPE MTR Lily Suparlina, Tukiran Surbakti Pusat Teknologi Keselamatan Reaktor Nuklir, PTKRN-BATAN Kawasan PUSPIPTEK Gd. No. 80 Serpong Tangerang

Lebih terperinci

Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO 2, N 2 )

Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO 2, N 2 ) Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO 2, N 2 ) Riska*, Dian Fitriyani, Feriska Handayani Irka Jurusan Fisika Universitas Andalas *riska_fya@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN. Latar Belakang

BAB I PENDAHULUAN. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Laju konsumsi energi dunia terus mengalami kenaikan. Laju konsumsi energi primer (pemanfaatan sumber daya energi) total dunia pada tahun 2004 kurang lebih 15 TW sebesar

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Konsumsi energi listrik dunia dari tahun ke tahun terus meningkat. Dalam hal ini industri memegang peranan penting dalam kenaikan konsumsi listrik dunia. Di Indonesia,

Lebih terperinci

Uji tidak merusak bahan bakar U 3 Si 2 -Al tingkat muat uranium 4,8 g/cm 3 pasca irradiasi fraksi bakar 20% dan 40%

Uji tidak merusak bahan bakar U 3 Si 2 -Al tingkat muat uranium 4,8 g/cm 3 pasca irradiasi fraksi bakar 20% dan 40% Jurnal Teknologi Bahan Nuklir 10(2)(2014)53-63 Uji tidak merusak bahan bakar U 3 Si 2 -Al tingkat muat uranium 4,8 g/cm 3 pasca irradiasi fraksi bakar 20% dan 40% Yusuf Nampira* dan Sri Ismarwanti Kawasan

Lebih terperinci

BAB I PENDAHULUAN. Salah satu pemanfaatan tenaga nuklir dalam bidang energi adalah

BAB I PENDAHULUAN. Salah satu pemanfaatan tenaga nuklir dalam bidang energi adalah BAB I PENDAHULUAN 1.1 Latar belakang Salah satu pemanfaatan tenaga nuklir dalam bidang energi adalah Pembangkit Listrik Tenaga Nuklir (PLTN). Seiring dengan pemanfaatan PLTN terdapat kecenderungan penumpukan

Lebih terperinci

KAJIAN DESAIN KONFIGURASI TERAS REAKTOR RISET UNTUK PERSIAPAN RANCANGAN REAKTOR RISET BARU DI INDONESIA

KAJIAN DESAIN KONFIGURASI TERAS REAKTOR RISET UNTUK PERSIAPAN RANCANGAN REAKTOR RISET BARU DI INDONESIA Lily Suparlina ISSN 0216-3128 193 KAJIAN DESAIN KONFIGURASI TERAS REAKTOR RISET UNTUK PERSIAPAN RANCANGAN REAKTOR RISET BARU DI INDONESIA Lily Suparlina Pusat Teknologi Reaktor dan Keselamatan Nuklir-BATAN

Lebih terperinci

ANALISIS SERBUK UMO UNTUK PEMBUATAN PELAT ELEMEN BAKAR DENGAN TINGKAT MUAT TINGGI

ANALISIS SERBUK UMO UNTUK PEMBUATAN PELAT ELEMEN BAKAR DENGAN TINGKAT MUAT TINGGI SEMINAR NASIONAL ANALISIS SERBUK UMO UNTUK PEMBUATAN PELAT ELEMEN BAKAR DENGAN TINGKAT MUAT TINGGI Sutri Indaryati, Yanlinastuti, Iis Haryati, Rahmiati Pusat Teknologi Bahan Bakar Nuklir (PTBN) - BATAN

Lebih terperinci

I. PENDAHULUAN. Telah dilakukan beberapa riset reaktor nuklir diantaranya di Serpong

I. PENDAHULUAN. Telah dilakukan beberapa riset reaktor nuklir diantaranya di Serpong I. PENDAHULUAN 1.1 Latar Belakang Kebutuhan listrik di Indonesia semakin meningkat, sedangkan bahan bakar fosil akan segera habis. Oleh karena itu dibutuhkan pembangkit listrik yang dapat digunakan sebagai

Lebih terperinci

EVALUASI PELAKSANAAN PEMINDAHAN SPENT FUEL DARI INSTALASI RADIOMETALURGI KE KH-IPSB3 TAHUN 2010

EVALUASI PELAKSANAAN PEMINDAHAN SPENT FUEL DARI INSTALASI RADIOMETALURGI KE KH-IPSB3 TAHUN 2010 EVALUASI PELAKSANAAN PEMINDAHAN SPENT FUEL DARI INSTALASI RADIOMETALURGI KE KH-IPSB3 TAHUN 2010 Antonio Gogo Pusat Teknologi Bahan Bakar Nuklir BATAN Kawasan PUSPIPTEK, Serpong, Tangerang ABSTRAK EVALUASI

Lebih terperinci

STUDI PENGEMBANGAN DESAIN TERAS REAKTOR NUKLIR RISET 2 MWTH DENGAN ELEMEN BAKAR PLAT DI INDONESIA

STUDI PENGEMBANGAN DESAIN TERAS REAKTOR NUKLIR RISET 2 MWTH DENGAN ELEMEN BAKAR PLAT DI INDONESIA STUDI PENGEMBANGAN DESAIN TERAS REAKTOR NUKLIR RISET 2 MWTH DENGAN ELEMEN BAKAR PLAT DI INDONESIA Anwar Ilmar Ramadhan 1*, Aryadi Suwono 1, Nathanael P. Tandian 1, Efrizon Umar 2 1 Kelompok Keahlian Konversi

Lebih terperinci

KARAKTERISASI SIFAT TERMAL PADUAN AlFe(2,5%)Ni(1,5%) DAN AlFe(2,5%)Ni(1,5%)Mg(1%) UNTUK KELONGSONG BAHAN BAKAR REAKTOR RISET

KARAKTERISASI SIFAT TERMAL PADUAN AlFe(2,5%)Ni(1,5%) DAN AlFe(2,5%)Ni(1,5%)Mg(1%) UNTUK KELONGSONG BAHAN BAKAR REAKTOR RISET Karakterisasi Sifat Termal Paduan AlFe(2,5%)Ni(1,5%) dan AlFe(2,5%)Ni(1,5%)Mg(1%) untuk Kelongsong Bahan Bakar Reaktor Riset. (Aslina Br. Ginting, Boybul, Arif Nugroho) KARAKTERISASI SIFAT TERMAL PADUAN

Lebih terperinci

Analisis Neutronik Teras RSG-Gas Berbahan Bakar Silisida

Analisis Neutronik Teras RSG-Gas Berbahan Bakar Silisida Kontribusi Fisika Indonesia Vol. No., Juli 00 Analisis Neutronik Teras G-Gas Berbahan Bakar Silisida Tukiran S dan Tagor MS BPTR-PTRR Badan Tenaga Atom Nasional (BATAN) Serpong, Tangerang e-mail : tukiran@batan.go.id

Lebih terperinci

PENENTUAN LAJU KOROSI PADA SUHU 150 ac UNTUK BAHAN STRUKTUR AIMg2 PASCA PERLAKUAN PANAS

PENENTUAN LAJU KOROSI PADA SUHU 150 ac UNTUK BAHAN STRUKTUR AIMg2 PASCA PERLAKUAN PANAS Hasil Hasil Penelitian EBN Tahun 2005 ISSN 0854-5561 PENENTUAN LAJU KOROSI PADA SUHU 150 ac UNTUK BAHAN STRUKTUR AIMg2 PASCA PERLAKUAN PANAS Maman Kartaman A, Sigit dan Dedi Hariadi ABSTRAK PENENTUAN LAJU

Lebih terperinci

IDENTIFIKASI FASA PELET BAHAN BAKAR U-ZrH x HASIL PROSES SINTER DENGAN ATMOSFER NITROGEN

IDENTIFIKASI FASA PELET BAHAN BAKAR U-ZrH x HASIL PROSES SINTER DENGAN ATMOSFER NITROGEN p ISSN 0852 4777; e ISSN 2528 0473 IDENTIFIKASI FASA PELET BAHAN BAKAR U-H x HASIL PROSES SINTER DENGAN ATMOSFER NITROGEN Masrukan 1, Jan Setiawan 1, Dwi Biyantoro 2 1 Pusat Teknologi Bahan Bakar Nuklir-BATAN

Lebih terperinci

FORMASI FASA DAN MIKROSTRUKTUR BAHAN STRUK- TUR PADUAN ALUMINIUM FERO-NIKEL HASIL PROSES SINTESIS

FORMASI FASA DAN MIKROSTRUKTUR BAHAN STRUK- TUR PADUAN ALUMINIUM FERO-NIKEL HASIL PROSES SINTESIS M. Husna Al Hasa ISSN 0216-3128 37 FORMASI FASA DAN MIKROSTRUKTUR BAHAN STRUK- TUR PADUAN ALUMINIUM FERO-NIKEL HASIL PROSES SINTESIS M. Husna Al Hasa Pusat Teknologi Bahan Bakar Nuklir ABSTRAK FORMASI

Lebih terperinci

ANALISIS TERMOHIDROLIKA ELEMEN BAKAR UJI U-7Mo/Al DAN U-6Zr/Al DI RSG-GAS MENGGUNAKAN COOLOD-N2, NATCON DAN CFD-3D

ANALISIS TERMOHIDROLIKA ELEMEN BAKAR UJI U-7Mo/Al DAN U-6Zr/Al DI RSG-GAS MENGGUNAKAN COOLOD-N2, NATCON DAN CFD-3D Analisis Termohidrolika Elemen akar Uji U-Mo/Al dan U-Zr/Al di RSG-GAS Menggunakan COOLOD-N, NATCON dan CFD-D (Endiah Puji Hastuti, Muhammad Subekti) ANALISIS TERMOHIDROLIKA ELEMEN AKAR UJI U-Mo/Al DAN

Lebih terperinci

I. PENDAHULUAN. kelongsong bahan bakar, seperti sedikit mengabsorpsi neutron, kekerasan

I. PENDAHULUAN. kelongsong bahan bakar, seperti sedikit mengabsorpsi neutron, kekerasan I. PENDAHULUAN A. Latar Belakang Zircaloy atau paduan logam zirkonium merupakan material yang banyak digunakan dalam komponen struktur pendukung instalasi nuklir, terutama pada bagian struktur kelongsong

Lebih terperinci

REAKTOR AIR BERAT KANADA (CANDU)

REAKTOR AIR BERAT KANADA (CANDU) REAKTOR AIR BERAT KANADA (CANDU) RINGKASAN Setelah perang dunia kedua berakhir, Kanada mulai mengembangkan PLTN tipe reaktor air berat (air berat: D 2 O, D: deuterium) berbahan bakar uranium alam. Reaktor

Lebih terperinci

PENGARUH KANDUNGAN Nb DAN WAKTU PEMANASAN TERHADAP SIFAT MEKANIK DAN MIKROSTRUKTUR DALAM PEMBUATAN BAHAN BAKAR PADUAN U-Zr-Nb

PENGARUH KANDUNGAN Nb DAN WAKTU PEMANASAN TERHADAP SIFAT MEKANIK DAN MIKROSTRUKTUR DALAM PEMBUATAN BAHAN BAKAR PADUAN U-Zr-Nb PENGARUH KANDUNGAN Nb DAN WAKTU PEMANASAN TERHADAP SIFAT MEKANIK DAN MIKROSTRUKTUR DALAM PEMBUATAN BAHAN BAKAR PADUAN U-Zr-Nb Masrukan Pusat Teknologi Bahan Bakar Nuklir (PTBN)-BATAN Kawasan Puspiptek,

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. LATAR BELAKANG

BAB 1 PENDAHULUAN 1.1. LATAR BELAKANG BAB 1 PENDAHULUAN 1.1. LATAR BELAKANG Paduan Fe-Al merupakan material yang sangat baik untuk digunakan dalam berbagai aplikasi terutama untuk perlindungan korosi pada temperatur tinggi [1]. Paduan ini

Lebih terperinci

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer. 10 dengan menggunakan kamera yang dihubungkan dengan komputer. HASIL DAN PEMBAHASAN Hasil sintesis paduan CoCrMo Pada proses preparasi telah dihasilkan empat sampel serbuk paduan CoCrMo dengan komposisi

Lebih terperinci

PERUBAHAN KEKERASAN DAN STRUKTUR MIKRO AKIBAT PROSES ROL DAN LAS PADA PADUAN ZR-NB-MO-GE UNTUK MATERIAL KELONGSONG PLTN

PERUBAHAN KEKERASAN DAN STRUKTUR MIKRO AKIBAT PROSES ROL DAN LAS PADA PADUAN ZR-NB-MO-GE UNTUK MATERIAL KELONGSONG PLTN 70 ISSN 0216-3128 B. Bandriyana, dkk. PERUBAHAN KEKERASAN DAN STRUKTUR MIKRO AKIBAT PROSES ROL DAN LAS PADA PADUAN ZR-NB-MO-GE UNTUK MATERIAL KELONGSONG PLTN B.Bandriyana, Agus Hadi Ismoyo dan Parikin

Lebih terperinci

RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI

RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI No. 08/ Tahun IV. Oktober 2011 ISSN 1979-2409 RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI Yatno Dwi Agus Susanto, Ahmad Paid Pusat Teknologi Bahan Bakar Nuklir BATAN ABSTRAK RANCANG BANGUN AUTOCLAVE

Lebih terperinci

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

Lebih terperinci

I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi.

I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi. 1 I. PENDAHULUAN A. Latar Belakang Masalah energi merupakan salah satu hal yang sedang hangat dibicarakan saat ini. Di Indonesia, ketergantungan kepada energi fosil masih cukup tinggi hampir 50 persen

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada masa mendatang penggunaan bahan bakar berbasis minyak bumi harus dikurangi karena semakin menipisnya cadangan minyak bumi dan dampak

Lebih terperinci

STRUKTUR MIKRO DAN KARAKTERISTIK MEKANIK PEB U3Si2- Al TMU 2,96 g/cm 3 PASCA PERLAKUAN PANAS SUHU 500 o C

STRUKTUR MIKRO DAN KARAKTERISTIK MEKANIK PEB U3Si2- Al TMU 2,96 g/cm 3 PASCA PERLAKUAN PANAS SUHU 500 o C STRUKTUR MIKRO DAN KARAKTERISTIK MEKANIK PEB U3Si2- Al TMU 2,96 g/cm 3 PASCA PERLAKUAN PANAS SUHU 500 o C Maman Kartaman A, Yusuf Nampira, Junaedi, Sri Ismarwanti Pusat Teknologi Bahan Bakar Nuklir, BATAN,

Lebih terperinci

PENGARUH KANDUNGAN Fe DAN Mo TERHADAP KETAHANAN KOROSI INGOT PADUAN ZIRLO-Mo DALAM MEDIA UAP AIR JENUH

PENGARUH KANDUNGAN Fe DAN Mo TERHADAP KETAHANAN KOROSI INGOT PADUAN ZIRLO-Mo DALAM MEDIA UAP AIR JENUH ISSN 0852-4777 Pengaruh Kandungan Fe dan Mo Terhadap Ketahanan Korosi Ingot Paduan Zirlo-Mo Dalam Media Uap Air Jenuh (Sungkono, Futichah) PENGARUH KANDUNGAN Fe DAN Mo TERHADAP KETAHANAN KOROSI INGOT PADUAN

Lebih terperinci

KARAKTERISTIKA TERAS RSG-GAS DENGAN BAKAR BAKAR SILISIDA. Purwadi Pusat Reaktor Serba Guna - BATAN

KARAKTERISTIKA TERAS RSG-GAS DENGAN BAKAR BAKAR SILISIDA. Purwadi Pusat Reaktor Serba Guna - BATAN KARAKTERISTIKA TERAS RSG-GAS DENGAN BAKAR BAKAR SILISIDA Purwadi Pusat Reaktor Serba Guna - BATAN ABSTRAK KARAKTERISTIKA TERAS RSG-GAS DENGAN BAHAN BAKAR SILISIDA. RSG-GAS sudah beroperasi 30 tahun sejak

Lebih terperinci