Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier"

Transkripsi

1 Aplikasi Deret Fourier (FS) 1. Deret Fourier Menurut Fourier setiap fungsi periodik dapat dinyatakan sebagai jumlah fungsi sinus dan cosinus yang tak berhingga jumlahnya dan dihubungkan secara harmonis. Maka, karena respons paksaan terhadap setiap bentuk sinusoida/cosinusoida dapat ditentukan dengan mudah dengan konsep fasor, maka respons dari rangkaian linier terhadap fungsi pemaksa periodik yang umum bisa didapat dengan mensuperposisikan respons-respons parsial. Pernyataan sebuah fungsi periodik dapat diwakili dengan fungsi sinus dan fungsi cosinus yang banyaknya tak berhingga dapat diperoleh dengan meninjau sebuah contoh sederhana. Mula-mula kita anggap ada sebuah fungsi cosinus yang mempunyai frekuensi radian 0, v 1 (t) = 2 cos 0 t dengan 0 = 2 f 0 T dan perioda 1 f Meskipun T biasanya tidak diberi indeks nol, tapi yang dimaksud adalah perioda dari frekuensi dasar. Harmonik dari bentuk sinus ini mempunyai frekuensi n 0, dengan 0 adalah frekuensi dasar dan n = 1,2,3,. Frekuensi harmonik pertama adalah frekuensi dasar atau fundamental. Selanjutnya kita pilih tegangan harmonik ke tiga : v 3a (t) = cos 3 0 t v 1 (t) yang fundamental, harmonik ke tiga v 3a (t) dan jumlah kedua gelombang ini diperlihatkan sebagai fungsi waktu dalam gambar 1a. Perlu diperhatikan jumlahan kedua gelombang tersebut adalah periodik dengan perioda T = 2 / 0, atau sama dengan perioda gelombang fundamentalnya. 2. Aplikasi Deret Fourier Salah satu aplikasi dari deret fourier adalah pada pemisahan perpaduan gelombang. Suatu gelombang yang bergerak pada satu medium bukan hanya gelombang yang berupa gelombang tunggal namun merupakan perpaduan dari banyak gelombang. Dengan menggunakan deret fourier maka perpaduan dari banyak panjang gelombang ini dapat dipisahkan kembali menjadi gelombang-gelombang penyusunnya. Misalkan saja pada gelombang radio. Gelombang radio FM mempunyai frekuensi 88 Mhz sampai dengan 108 Mhz. Tapi yang menimbulkan pertanyaan adalah kenapa kita dapat mendengarkan suara penyiar radionya padahal batas

2 pendengaran manusia hanya 20 Hz sampai dengan Hz saja?. Ini dapat dijawab karena gelombang radio tersebut hanya sebagai pembawa. Yang nantinya pada radio penerima gelombang datang tersebut akan dipecah kembali yang salah satunya berupa gelombang suara yang dapat kita dengarkan. Pada gambar diatas disajikan dua bentuk gelombang yang mempunyai bentuk yang sangat berbeda. Namun pada gambar kiri itu merupakan gelombang perpaduan dari banyak sekali gelombang. Sedangkan pada gambar kanan merupakan bentukbentuk gelombang yang menyusun gambar kiri tadi. Gambar kiri dapat di pecah menjadi gambar kanan dengan bantuan deret fourier. Hal ini pula yang berlaku pada frekuensi radio yang telah disinggung sebelumnya. Untuk fungsi f(t) periodic dengan interval (-t,t) bukan (-π,π). Perubahan sederhana pada variable dapat digunakan untuk mentransformasikan interval integrasi dari (-π,π) ke (-t,t) dengan t = 1 Tπ dt = 1 dtπ

3 selesaikan t, maka di peroleh t = T π Maka di perolehlah f(x) = 1 nπ t' 2 a 0 + ancos( T n=1 ) + n=1 bnsin ( nπ t ' T ) Maka di dapatlah bentuk gelombang menjadi seperti berikut Secara umum deret Fourier dapat dinyatakan dalam bentuk berikut ini Dengan masing-masing koefisien adalah

4 5 Contoh soal Kita langsung saja ke contohnya. Kita ingin menjabarkan sebuah fungsi periodik dalam bentuk sinus dan cosinus. Untuk memudahkan perhitungan kita mulai dengan fungsi yang memiliki periode 2π seperti di bawah ini Pertama kita cari nilai dari a 0 terlebih dahulu

5 Setelah a 0 diketahui kita cari nilai dari a n Untuk sembarang n bilangan bulat Nilai b n dapat kita cari dengan perhitungan seperti dibawah ini

6 7 Nilai dari cosn0=1 Untuk n bilangan genap n= 2, 4, 6, kita dapatkan tetapi jika n bilangan ganjil n=1, 3, 5, kita akan mendapatkan Sehingga Atau kita juga dapat menuliskan dengan bentuk seperti ini Untuk n= 1, 2, 3, 4, 5,

7 Jadi jelas bahwa b n hanya memiliki nilai tidak nol ketika n sama dengan bilangan ganjil. Dari perhitungan di atas kita dapat menuliskan Dengan n= 1, 3, 5,.. Lalu apa artinya deretan fungsi di atas? Kita simulasikan fungsi di atas. Tak perlu dengan program yang susah, cukup dengan excel saja sudah dapat dilakukan. Kita lihat gambar berikut ini

8 9

9 Jadi fungsi periodik yang ada pada awal pembahasan tadi dapat diuraikan kedalam bentuk sinus dan cosinus. Terlihat bahwa semakin besar n maka tampak gerigi pada puncak gelombang semakin banyak. Jika nilai n semakin kecil maka gerigi tersebut akan tampak sangat halus sehingga gambar akan membentuk gelombang periodik seperti pada awal pembahasan sebelumnya.

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

DERET FOURIER DAN APLIKASINYA DALAM FISIKA Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER

Lebih terperinci

BAB IV DERET FOURIER

BAB IV DERET FOURIER BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut

Lebih terperinci

5.1 Fungsi periodik, fungsi genap, fungsi ganjil

5.1 Fungsi periodik, fungsi genap, fungsi ganjil Bab 5 DERET FOURIER Pada Bab sebelumnya kita telah membahas deret Taylor. Syarat fungsi agar dapat diekspansi ke dalam deret Taylor adalah fungsi tersebut harus terdiferensial pada setiap tingkat. Untuk

Lebih terperinci

Deret Fourier. (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya. Fungsi Genap dan Fungsi Ganjil

Deret Fourier. (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya. Fungsi Genap dan Fungsi Ganjil TKS 4007 Matematika III Deret Fourier (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Fungsi Genap dan Fungsi Ganjil Perhitungan koefisien-koefisien Fourier sering kali

Lebih terperinci

Analisis Sinusoida. Dibuat Oleh : Danny Kurnianto Diedit oleh : Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto

Analisis Sinusoida. Dibuat Oleh : Danny Kurnianto Diedit oleh : Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto Analisis Sinusoida Dibuat Oleh : Danny Kurnianto Diedit oleh : Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto 1. Fungsi Pemaksa Sinusoida 1.1 Karakteristik sinusoida Kita

Lebih terperinci

DERET FOURIER. 1. Pendahuluan

DERET FOURIER. 1. Pendahuluan DERET FOURIER 1. Pendahuluan Teorema Fourier: Suatu fungsi periodik terhadap waktu, x p (t), dengan perioda dasar T 0, dapat dinyatakan sebagai jumlah tak hingga dari gelombang-gelombang sinusoidal. Fungsi

Lebih terperinci

SYARAT DIRICHLET. 1, 1 < t < 0

SYARAT DIRICHLET. 1, 1 < t < 0 SYARAT DIRICHET Misalkan f t adalah fungsi yang licin bagian demi bagian, berperioda, maka deret fourier konvergen. Ke nilai f t untuk setiap titik di mana fungsi f kontinu.. Ke nilai f t + + f t bagi

Lebih terperinci

ANALISIS DERET FOURIER UNTUK MENENTUKAN PERSAMAAN FUNGSI GELOMBANG SINUSOIDAL ARUS AC PADA OSILOSKOP

ANALISIS DERET FOURIER UNTUK MENENTUKAN PERSAMAAN FUNGSI GELOMBANG SINUSOIDAL ARUS AC PADA OSILOSKOP ANAISIS DERE FOURIER UNUK MENENUKAN PERSAMAAN FUNGSI GEOMBANG SINUSOIDA ARUS AC PADA OSIOSKOP 1.Dian Sandi,.Imas R.E, Malinda Pendidikan Fisika UHAMKA Jakarta Email 1.diansandi@gmail.com.iye1@yahoo.com

Lebih terperinci

Deret Fourier. Slide: Tri Harsono PENS ITS Politeknik Elektronika Negeri Surabaya (PENS) - ITS

Deret Fourier. Slide: Tri Harsono PENS ITS Politeknik Elektronika Negeri Surabaya (PENS) - ITS Deret Fourier Slide: Tri Harsono PENS ITS trison@eepis-its.edu . Pendahuluan Gelombang di alam nyata merupakan : Jumlahan gelombang-gelombang pembentuknya (=gelombanggelombang harmonisanya) Suatu gelombang

Lebih terperinci

4. Deret Fourier pada Interval Sebarang dan Aplikasi

4. Deret Fourier pada Interval Sebarang dan Aplikasi 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret trigonometri tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Suatu sistem tenaga listrik dikatakan ideal jika bentuk gelombang arus yang dihasilkan dan bentuk gelombang tegangan yang disaluran ke konsumen adalah gelombang sinus murni.

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral 2 Darpublic BB 7 Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banyak peristiwa terjadi secara siklis sinusoidal, seperti

Lebih terperinci

Spektrum dan Domain Sinyal

Spektrum dan Domain Sinyal Spektrum dan Domain Sinyal 1 Sinyal dan Spektrum Sinyal Komunikasi merupakan besaran yang selalu berubah terhadap besaran waktu Setiap sinyal dapat dinyatakan di dalam domain waktu maupun di dalam domain

Lebih terperinci

4. Deret Fourier pada Interval Sebarang dan Aplikasi

4. Deret Fourier pada Interval Sebarang dan Aplikasi 8 Hendra Gunawan 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret

Lebih terperinci

Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik

Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik Eko Rendra Saputra, Agus Purwanto, dan Sumarna Pusat Studi Getaran dan Bunyi, Jurdik Fisika, FMIPA, UNY ABSTRAK Penelitian ini bertujuan untuk menganalisa

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI

FUNGSI DAN GRAFIK FUNGSI FUNGSI DAN GRAFIK FUNGSI Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x, maka dikatakan bahwa besaran y tersebut merupakan fungsi besaran x. secara umum ditulis: y= f(x)

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

(GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP

(GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP (GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP Judul Mata Kuliah : Rangkaian Listrik III Nomer Kode / SKS : Diskripsi singkat : Metode transformasi untuk pemecahan persamaan diferensial menawarkan

Lebih terperinci

C.1 OSILASI GANDENG PEGAS

C.1 OSILASI GANDENG PEGAS Mata Kuliah GELOMBANG-OPTIK OPTIK TOPIK I SUB TOPIK OSILASI GANDENG C. SISTEM OSILASI DUA DERAJAT KEBEBASAN:OSILASI GANDENG Satu derajat kebebasan: Misalkan: pegas yang memiliki satu simpangan Dua derajat

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

Darpublic Nopember 2013

Darpublic Nopember 2013 Darpublic Nopember 213 www.darpublic.com 7. Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banak peristiwa terjadi secara siklis sinusoidal, seperti misalna gelombang cahaa, gelombang radio pembawa,

Lebih terperinci

Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. (

Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. ( Gelombang Stasioner 16:33 Segala ada No comments Apa yang terjadi jika ada dua gelombang berjalan dengan frekuensi dan amplitudo sama tetapi arah berbeda bergabung menjadi satu? Hasil gabungan itulah yang

Lebih terperinci

SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A. Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017

SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A. Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017 SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017 TUJUAN PERKULIAHAN Memahami berbagai pernyataan gelombang sinyal Memahami konsep harmonisa

Lebih terperinci

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T Data dan Sinyal Data yang akan ditransmisikan kedalam media transmisi harus ditransformasikan terlebih dahulu kedalam bentuk gelombang elektromagnetik. Bit 1 dan 0 akan diwakili oleh tegangan listrik dengan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD-045315 Mingg u Ke Pokok Bahasan dan TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajaran Media Tugas

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

BAB VIII PERSAMAAN DIFERENSIAL PARSIAL

BAB VIII PERSAMAAN DIFERENSIAL PARSIAL BAB VIII PERSAMAAN DIFERENSIAL PARSIAL 1. Pendahuluan : Pemodelan Arus Panas Satu Dimensi Y Bahan penyekat (insulator) A Batang 0 L X Z Misalkan bila ada batang yang dapat menghantarkan panas. Batang tersebut

Lebih terperinci

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan Getaran Teredam Dalam Rongga Tertutup pada Sembarang Bentuk Dari hasil beberapa uji peredaman getaran pada pipa tertutup membuktikan bahwa getaran teredam di dalam rongga tertutup dapat dianalisa tidak

Lebih terperinci

Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan.

Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan. Untai Elektrik I Waveforms & Signals Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Secara umum, tegangan dan arus dalam sebuah untai elektrik dapat dikategorikan menjadi tiga jenis

Lebih terperinci

s(t) = C (2.39) } (2.42) atau, dengan menempatkan + )(2.44)

s(t) = C (2.39) } (2.42) atau, dengan menempatkan + )(2.44) 2.9 Analisis Fourier Alasan penting untuk pusat osilasi harmonik adalah bahwa virtually apapun osilasi atau getaran dapat dipecah menjadi harmonis, yaitu getaran sinusoidal. Hal ini berlaku tidak hanya

Lebih terperinci

Husna Arifah,M.Sc : Persamaan Bessel: Fungsi-fungsi Besel jenis Pertama

Husna Arifah,M.Sc : Persamaan Bessel: Fungsi-fungsi Besel jenis Pertama Bentuk umum PD Bessel : x 2 y"+xy' +(x 2 υ 2 )y =...() Kita asumsikan bahwa parameter υ dalam () adalah bilangan riil dan tak negatif. Penyelesaian PD mempunyai bentuk : y(x) = x r m = a m x m = a m xm

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt. 1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB III ANALISIS SPEKTRAL PADA RUNTUN WAKTU MODEL ARIMA. Analisis spektral adalah metode yang menggambarkan kecendrungan osilasi

BAB III ANALISIS SPEKTRAL PADA RUNTUN WAKTU MODEL ARIMA. Analisis spektral adalah metode yang menggambarkan kecendrungan osilasi BAB III ANALISIS SPEKTRAL PADA RUNTUN WAKTU MODEL ARIMA Analisis spektral adalah metode yang menggambarkan kecendrungan osilasi atau getaran dari sebuah data pada frekuensi tertentu. Analisis spektral

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

BAB III METODE PENGAMBILAN DAN PENGOLAHAN DATA SEISMOELEKTRIK. palu. Dari referensi pengukuran seismoelektrik di antaranya yang dilakukan oleh

BAB III METODE PENGAMBILAN DAN PENGOLAHAN DATA SEISMOELEKTRIK. palu. Dari referensi pengukuran seismoelektrik di antaranya yang dilakukan oleh BAB III METODE PENGAMBILAN DAN PENGOLAHAN DATA SEISMOELEKTRIK 3.1 Metode Pengambilan Data Ada beberapa konfigurasi pengukuran yang digunakan dalam pengambilan data seismoelektrik di lapangan. Konfigurasi

Lebih terperinci

PENDAHULUAN. Kardiawarman, Ph.D. Modul 7 Fisika Terapan 1

PENDAHULUAN. Kardiawarman, Ph.D. Modul 7 Fisika Terapan 1 PENDAHULUAN Di dalam modul ini Anda akan mempelajari Aplikasi Rangkaian Elektronika Dalam eknologi Audio Visual yang mencakup: teknik pemancar dan penerima audio, serta pemancar dan penerima audio-video.

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 2. Sebuah gelombang transversal frekuensinya 400 Hz. Berapa jumlah

Lebih terperinci

Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage :

Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage : INSTITUT TEKNOOGI BANDUNG FAKUTAS MATEMATIKA DAN IMU PENGETAHUAN AAM PROGRAM STUDI FISIKA Jl. Ganesha No. Bandung, 43 Telp. () 5834, 5347, Fax. () 5645 Homepage : http://www.fi.itb.ac.id E-mail : fisika@fi.itb.ac.id

Lebih terperinci

Interferensi Cahaya. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

Interferensi Cahaya. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Interferensi Cahaya Agus Suroso (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Agus Suroso (FTETI-ITB) Interferensi Cahaya 1 / 39 Contoh gejala interferensi

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Sudaryatno Sudirham. Integral dan Persamaan Diferensial

Sudaryatno Sudirham. Integral dan Persamaan Diferensial Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup

Lebih terperinci

Ringkasan Materi Kuliah Bab II FUNGSI

Ringkasan Materi Kuliah Bab II FUNGSI Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,

Lebih terperinci

Bab 1 Pengenalan Dasar Sinyal

Bab 1 Pengenalan Dasar Sinyal Bab 1 Pengenalan Dasar Sinyal Tujuan: Siswa mampu menyelesaikan permasalahan terkait dengan konsep sinyal, menggambarkan perbedaan sinyal waktu kontinyu dengan sinyal waktu diskrit. Siswa mampu menjelaskan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

Deret Fourier dan Respons Frekuensi

Deret Fourier dan Respons Frekuensi Program Studi Teknik Telekomunikasi - Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Praktikum Pengolahan Sinyal Waktu Kontinyu sebagai bagian dari Mata Kuliah ET 2004 Modul 2 : Deret

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

Modulasi Sudut / Modulasi Eksponensial

Modulasi Sudut / Modulasi Eksponensial Modulasi Sudut / Modulasi Eksponensial Modulasi sudut / Modulasi eksponensial Sudut gelombang pembawa berubah sesuai/ berpadanan dengan gelombang informasi kata lain informasi ditransmisikan dengan perubahan

Lebih terperinci

TUGAS AKHIR PERBAIKAN UNJUK KERJA INVERTER SATU PHASA DENGAN MENGGUNAKAN KONTROL SINYAL MODULASI LEBAR PULSA

TUGAS AKHIR PERBAIKAN UNJUK KERJA INVERTER SATU PHASA DENGAN MENGGUNAKAN KONTROL SINYAL MODULASI LEBAR PULSA TUGAS AKHIR PERBAIKAN UNJUK KERJA INVERTER SATU PHASA DENGAN MENGGUNAKAN KONTROL SINYAL MODULASI LEBAR PULSA Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana (S-1)

Lebih terperinci

HANDOUT FISIKA KELAS XII (UNTUK KALANGAN SENDIRI) GELOMBANG MEKANIS

HANDOUT FISIKA KELAS XII (UNTUK KALANGAN SENDIRI) GELOMBANG MEKANIS YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A Jl. Merdeka No. Bandung 0. 7 Fa. 0. 587 http//: www.smasantaangela.sch.id, e-mail : smaangela@yahoo.co.id HANDOUT FISIKA KELAS XII

Lebih terperinci

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang.

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang. KOMPETENSI DASAR 3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata INDIKATOR 3.11.1. Mendeskripsikan gejala gelombang mekanik 3.11.2. Mengidentidikasi

Lebih terperinci

tidak terdefinisi ketika x = 1, tetapi dapat kita peroleh

tidak terdefinisi ketika x = 1, tetapi dapat kita peroleh Lecture 4. Limit A A. Definition of Limit Definisi 4.1 (a). Jika f adalah suatu fungsi, maka kita mengatakan bahwa jika nilai f(x) mendekati L saat x dipilih mendekati a. Dengan kata lain, bilangan L merupakan

Lebih terperinci

MATERI PENGOLAHAN SINYAL :

MATERI PENGOLAHAN SINYAL : MATERI PENGOLAHAN SINYAL : 1. Defenisi sinyal 2. Klasifikasi Sinyal 3. Konsep Frekuensi Sinyal Analog dan Sinyal Diskrit 4. ADC - Sampling - Aliasing - Quantiasasi 5. Sistem Diskrit - Sinyal dasar system

Lebih terperinci

Mekatronika Modul 6 Penyearah Gelombang menggunakan SCR

Mekatronika Modul 6 Penyearah Gelombang menggunakan SCR Mekatronika Modul 6 Penyearah Gelombang menggunakan SCR Hasil Pembelajaran : Mahasiswa dapat memahami dan mengidentifikasi penyearah gelombang menggunakan Silicon Controlled Rectifier (SCR) Tujuan Bagian

Lebih terperinci

I. Voltage Source Inverter (VSI) II. Metode PWM. A. Six-Step VSI B. Pulse-Width Modulated VSI. A. Sinusoidal PWM

I. Voltage Source Inverter (VSI) II. Metode PWM. A. Six-Step VSI B. Pulse-Width Modulated VSI. A. Sinusoidal PWM I. oltage Source Inverter (SI) A. Six-Step SI B. Pulse-Width Modulated SI II. Metode PWM A. Sinusoidal PWM B. Hysteresis (Bang-bang) C. Space ector PWM 2/5 oltage Source Inverter Tiga Fasa Six Step Gambar

Lebih terperinci

Reflektor Gelombang Berupa Serangkaian Balok

Reflektor Gelombang Berupa Serangkaian Balok Bab 4 Reflektor Gelombang Berupa Serangkaian Balok Setelah kita mengetahui bagaimana pengaruh dan dimensi optimum dari 1 balok terendam sebagai reflektor gelombang maka pada bab ini akan dibahas bagaimana

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t Fungsi Trigonometri Fungsi trigonometri berdasarkan lingkaran satuan (C), dengan jari-jari 1 dan pusat dititik asal. X 2 + y 2 = 1 Panjang busur AP = t Keliling C = 2π y Jika t = π, maka P setengah C P(,y)

Lebih terperinci

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1 KELAS XII LC FISIKA SMA KOLESE LOYOLA M1-1 MODUL 1 STANDAR KOMPETENSI : 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah KOMPETENSI DASAR 1.1. Mendeskripsikan gejala dan ciri-ciri

Lebih terperinci

3. Kekonvergenan Deret Fourier

3. Kekonvergenan Deret Fourier 3. Kekonvergenan Deret Fourier Sekarang kita akan membahas kekonvergenan deret Fourier, khususnya kekonvergenan titik demi titik. Melalui Contoh 2 yang dibahas pada bab sebelumnya kita mengetahui bahwa

Lebih terperinci

BAB I PENDAHULUAN. menggunakan rangkaian elektronika yang terdiri dari komponen-komponen seperti

BAB I PENDAHULUAN. menggunakan rangkaian elektronika yang terdiri dari komponen-komponen seperti BAB I PENDAHULUAN 1.1 Latar Belakang Filter merupakan suatu rangkaian yang berfungsi untuk melewatkan sinyal frekuensi yang diinginkan dan menahan sinyal frekuensi yang tidak dikehendaki serta untuk memperkecil

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

Mutawafaq Haerunnazillah 15B08011

Mutawafaq Haerunnazillah 15B08011 GELOMBANG STASIONER Gelombang stasioner merupakan perpaduan dua gelombang yang mempunyai frekuensi, cepat rambat, dan amplitudo yang sama besar namun merambat dalam arah yang berlawanan. Singkatnya, gelombang

Lebih terperinci

Bab II LANDASAN TEORI

Bab II LANDASAN TEORI Bab II LANDASAN TEORI Bab ini terdiri dari 3 bagian. Pada bagian pertama berisi tinjauan pustaka dari penelitian-penelitian sebelumnya. Pada bagian kedua diberikan teori penunjang untuk mencapai tujuan

Lebih terperinci

TE Sistem Linier

TE Sistem Linier TE 226 - Sistem Linier Jimmy Hasugian Electrical Engineering - Maranatha Christian University jimlecture@gmail.com - http://wp.me/p4scve-g KLASIFIKASI SINYAL - SISTEM Jimmy Hasugian (MCU) Klasifikasi Sinyal

Lebih terperinci

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan

Lebih terperinci

COBA PERHATIKAN GAMBAR GRAFIK BERIKUT

COBA PERHATIKAN GAMBAR GRAFIK BERIKUT GELOMBANG STASIONER COBA PERHATIKAN GAMBAR GRAFIK BERIKUT POLA GELOMBANG APAKAH YANG DIHASILKAN APABILA PERTEMUAN GELOMBANG DATANG DARI TITIK A DAN YANG SATUNYA LAGI DIPANTULKAN DARI TITIK B SEPERTI YANG

Lebih terperinci

PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN

PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN IRMA ISLAMIYAH 1105 100 056 FISIKA FMIPA INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PENDAHULUAN LATAR BELAKANG

Lebih terperinci

tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter

tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter tersebut. 1.5. Manfaat Penelitian Adapun manfaat dari penelitian ini dapat memberikan konsep mengenai penggunaan single

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.. Respon Impuls Akustik Ruangan. Respon impuls akustik suatu ruangan didefinisikan sebagai sinyal suara yang diterima oleh suatu titik (titik penerima, B) dalam ruangan akibat suatu

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

Transformasi Fourier 3.4 Transformasi Fourier

Transformasi Fourier 3.4 Transformasi Fourier Transformasi Fourier Ibnu Pradipta, 07/252949/TK/33237 Firman Nanda, 07/257710/TK/33529 Jurusan Teknik Elektro & Teknologi Informasi FT UGM, Yogyakarta 3.4 Transformasi Fourier Untuk membandingkan gambaran

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 5: Separasi Variabel untuk Persamaan Panas Orde Satu - Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Review

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : TEKNIK RANGKAIAN LISTRIK Kode Mata : DK - 23202 Jurusan / Jenjang : S1 SISTEM KOMPUTER Tujuan Instruksional Umum

Lebih terperinci

SINYAL DAN SISTEM DALAM KEHIDUPAN

SINYAL DAN SISTEM DALAM KEHIDUPAN SINYAL DAN SISTEM DALAM KEHIDUPAN DUM 27 Agustus 2014 Definisi Sinyal Sinyal merupakan sebuah fungsi yang berisi informasi mengenai keadaan tingkah laku dari sebuah sistem secara fisik, Meskipun sinyal

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

Suara Di Ruang Tertutup

Suara Di Ruang Tertutup Suara Di Ruang Tertutup Pada bab-bab sebelumnya menunjukkan bahwa meningkatnya bidang pembatas bunyi disertai dengan meningkatnya kompleksitas. Demikian bayangan yang dihasilkan pesawat yang terkena gelombang

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

PERANCANGAN TUNABLE BAND PASS FILTER AKTIF UNTUK APLIKASI ANALISIS SINYAL DENGAN DERET FOURIER

PERANCANGAN TUNABLE BAND PASS FILTER AKTIF UNTUK APLIKASI ANALISIS SINYAL DENGAN DERET FOURIER PERANCANGAN TUNABLE BAND PASS FILTER AKTIF UNTUK APLIKASI ANALISIS SINYAL DENGAN DERET FOURIER F.X. Hendra Prasetya Jurusan Teknik Elektro, Fakultas Teknologi Industri, Universitas Katolik Soegijapranata

Lebih terperinci

FFT Size dan Resolusi Frekuensi 2012

FFT Size dan Resolusi Frekuensi 2012 Info: Artikel ini adalah suplemen dari buku Pengambilan dan Pemahaman Data Teknis Loudspeaker yang Praktis. Sangat disarankan untuk membaca selesai bab 2 sebelum membaca artikel ini. Resolusi frekuensi

Lebih terperinci

BENTUK GELOMBANG AC SINUSOIDAL

BENTUK GELOMBANG AC SINUSOIDAL BENTUK GELOMBANG AC SINUSOIDAL. PENDAHULUAN Pada bab sebelunya telah dibahas rangkaian resistif dengan tegangan dan arus dc. Bab ini akan eperkenalkan analisis rangkaian ac diana isyarat listriknya berubah

Lebih terperinci

) dengan. atau sub barisan (subsequences) dari X ,,,..., kemudian dipilih hasil index barisan Contoh, jika X =

) dengan. atau sub barisan (subsequences) dari X ,,,..., kemudian dipilih hasil index barisan Contoh, jika X = Section 3.4 Barisan Bagian dan Teorema Bolzano Weierstrass Di bagian ini kita akan diberikan konsep dari barisan bagian dari barisan bilangan real. Secara informal, barisan bagian dari barisan adalah satu

Lebih terperinci

ANALISA IMAGE SIDIK JARI DIGITAL MENGGUNAKAN METODE WAVELET PAKET Oleh: Suparti Staf Pengajar Jurusan Matematika, FMIPA, Undip

ANALISA IMAGE SIDIK JARI DIGITAL MENGGUNAKAN METODE WAVELET PAKET Oleh: Suparti Staf Pengajar Jurusan Matematika, FMIPA, Undip ANALISA IMAGE SIDIK JARI DIGITAL MENGGUNAKAN METODE WAVELET PAKET Oleh: Suparti Staf Pengajar Jurusan Matematika, FMIPA, Undip Abstrak Dalam proses pengiriman image seringkali mengalami noise (gangguan)

Lebih terperinci

Tujuan dari Bab ini:

Tujuan dari Bab ini: Data dan Sinyal Tujuan dari Bab ini: Pembaca memahami representasi data dan sinyal analog maupun digital. Pembaca mampu membuat representasi sinyal dalam domain waktu dan domain frekuensi. Pembaca memahami

Lebih terperinci

Pengertian Fungsi. MA 1114 Kalkulus I 2

Pengertian Fungsi. MA 1114 Kalkulus I 2 Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

Analisis Ajeg dari Sinusoidal

Analisis Ajeg dari Sinusoidal Analisis Ajeg dari Sinusoidal Slide-08 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 23 Materi Kuliah 1 Karakteristik Sinusoid Bentuk Umum Pergeseran Fase Sinus Kosinus 2 Tanggapan Paksaan thdp Sinusoid

Lebih terperinci

Prinsip superposisi Jika dua atau lebih gelombang merambat dalam satu medium yang sama, gelombang resultan-nya sama dengan jumlahan aljabar dari

Prinsip superposisi Jika dua atau lebih gelombang merambat dalam satu medium yang sama, gelombang resultan-nya sama dengan jumlahan aljabar dari Pertemuan 8 1 Jika gelombang-gelombang sinusoidal yang bergabung dalam satu medium yang sama mempunyai frekuensi dan panjang-gelombang yang sama, maka sebuah pola stasioner dapat terbentuk. Pola stasioner

Lebih terperinci

6. OPTIKA FOURIER 6.1. ANALISIS FOURIER

6. OPTIKA FOURIER 6.1. ANALISIS FOURIER 6. OPTIKA FOURIER 6.1. ANALISIS FOURIER Dala intererensi, diraksi, terjadi superposisi dua buah gelobang bahkan lebih. Seringkali superposisi terjadi antara gelobang yang eiliki aplitudo, panjang gelobang

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 7 Transformasi Fourier. Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 7 Transformasi Fourier. Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 7 Transformasi Fourier Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana

Lebih terperinci

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik

Lebih terperinci

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif Resonansi paralel sederhana (rangkaian tank ) Kondisi resonansi akan terjadi pada suatu rangkaian tank (tank circuit) (gambar 1) ketika reaktansi dari kapasitor dan induktor bernilai sama. Karena rekatansi

Lebih terperinci