Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain :

Ukuran: px
Mulai penontonan dengan halaman:

Download "Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain :"

Transkripsi

1 Transformasi Linier Objektif:. definisi transformasi linier umum.. definisi transformasi linier dari R n ke R m. 3. invers transformasi linier. 4. matrix transformasi 5. kernel dan jangkauan 6. keserupaan.definisi TRANSFORMASI LINIER UMUM Transformasi linier umum adalah sebuah fungsi yang memetakan suatu ruang vector B ke suatu ruang vector C, sehingga variable A dinyatakan sebagai transformasi linier dari B ke C. Pernyataan tersebut ditunjukkan pada skema dibawah ini : Jika A : B C Variabel akan disebut sebagai transformasi linier jika semua vector u dan v yang ada pada B dan semua scalar c, seperti : T(u + v) = T(u) + T(v) T(cu) = ct(u) Transformasi linier akan tampak terlihat jelas jika B = C dan akan dinyatakan dalam bentuk A: B B yang disebut dengan operator linier pada B. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain : Fungsi diatas bernilai real. Contoh : f(x) = x + sin x Fungsi diatas merupakan fungsi variabel. Contoh: f(x,y) = (x+y) Fungsi diatas merupakan fungsi n variable. Contoh:

2 f(x, x,.,x n ) = a x + a x + + a n x n Fungsi diatas bernilai vektor. Contoh: f(t) = (t +,t) Fungsi diatas merupakan fungsi variabel bernilai vektor. Contoh: F(x,y) = (cos x, sin y).fungsi DARI R n KE R m Fungsi adalah aturan yang mengkaitkan setiap x elemen di daerah definisi di R n ke f(x) elemen di daerah hasil di R m. Fungsi diatas disebut juga transformasi dai R n ke R m. Sistem persamaan linear (SPL) dapat dinyatakan dalam perkalian matriks vektor, seperti:, dimana vektor di R m sedangkan vektor di R n kemudian A matriks mxn. Matriks disebut matriks standard untuk transformasi linier T. Sedangkan transformasi nol dinyatakan dengan dan transformasi identitias dinyatakan dengan. Transformasi linier dari jika memiliki invers berupa. Transformasi Elementer Pada Baris dan Kolom Matriks Transformasi Elamenter pada matriks adalah: Penukaran tempat baris ke i dan ke j (baris ke i dijadikan baris ke j dan baris ke j dijadikan baris ke i), ditulis H ij (A) Penukaran tempat kolom ke i dan kolom ke j (kolom ke i dijadikan kolom ke j atau sebaliknya), ditulis K ij (A) Memperkalikan baris ke i dengan skalar Memperkalikan kolom ke i dengan, ditulis ditulis Menambah baris ke i dengan Menambah kolom ke i dengan kali baris ke j, ditulis kali kolom ke j,ditulis

3 3.INVERS TRANSFORMASI LINIER Jika suatu transformasi elementer adalah: Bentuk Kampanyon Koefisien-koefisien dari matriks tersebut adalah koefisien deret λ dari persamaan karakteristik: Dua bentuk kampanyon, tergantung pada koefisien-koefisin yang muncul pada kolom pertama atau baris terakhir. Contoh : Kampanyon kolom Kampanyon baris

4 Persamaan karakteristik : CONTOH KASUS Pada pertemuan enam ini akan dibahas contoh kasus menggunakan transformasi linier. Dibawah ini diberikan sebuah matriks A dengan anggota matriksnya adalah: Berdasarkan matriks tersebut, carilah matriks B yang dihasilkan sederetan transformasi elementer H 3 (-), H (), H, K 4 (), K 3 ().. Maka matriks B yang digunakan adalah: 4.MATRIKS TRANSFORMASI LINIER UMUM Misalkan A adalah suatu matriks berorde m n. Jika notasi matriks digunakan untuk vektor di R m dan R n, maka dapat didefinisikan suatu fungsi T: R n R m dengan T(x) = Ax Jika x adalah matriks n x, maka hasil kali Ax adalah matriks m x ; jadi T memetakan R n ke dalam R m dan T linier *teorema Jika T: R n R m adalah transformasi linier, dan jika e, e,, en adalah basis baku untuk R n, maka T adalah perkilaan oleh A atau T(x) = Ax dimana A adalah matriks yang mempunyai vektor kolom T(e), T(e),.., T(e3)

5 CONTOH Carilah matriks baku (A) untuk tranformasi T: R 3 R yang didefinisikan oleh T(x) = (x+x, x+x3), untuk setiap x = (x, x, x3) dalam R n Jawab T: R 3 R Basis baku dari R 3 adalah: e = (, 0, 0) T(e) = ( + 0, 0 + 0) = (, 0) e = (0,, 0) T(e) = (0 +, + 0) = (, ) e = (0, 0, ) T(e3) = (0 + 0, 0 + ) = (0, ) Maka matriks A nya adalah vektor kolom bentukan dari T(e), T(e), dan T(e3), yaitu Buktikan jawaban tersebut! SOAL Misalkan T: R 3 R adalah transformasi matriks, dan misalkan: T(,0,0) = (,) T(0,,0) = (3,0) T(0,0,) = (4, -7) Hitunglah: a. Matriks transformasinya b. T(, 3, 8) c. T(x, y, z)

6 5.KERNEL DAN JANGKAUAN Jika T: V W adalah transformasi linier, maka himpunan vektor di V yang dipetakan ke 0, dinamakan dengan kernel (atau ruang nol) dari T. himpunan tersebut dinyatakan oleh ker(t). Hipunan semua vektor di W yang merupakan bayangan di bawah T dari paling sedikit satu vektor di V dinamakan jangkauan dari T; himpunan tersebut dinyatakan oleh R(T). Kernel dan jankauan pada matrix transformasi Jika TA : Rn Rm adalah perkalian matrix A mxn maka : Kernel dari TA ruang nol A Jangkauan dari TA ruang kolom pada A Kernel dan jankauan pada transformasi Nol Anggap T : V W adalah transformasi nol. Karena T memetakan setiap vektor pada V ke 0 ker(t) = V Apabila 0 adalah satu-satunya bayangan di bawah T dari vektor-vektor pada V Ker(T) = {0} Kernel dan jangkauan pada Operator indentitas Jika I:V V adalah operator identita Dimana I(v) = v untuk semua vektor pada V, setiap vektor pada V merupakan bayangan dari suatu vektor,yaitu vektor itu sendiri R(I ) = V. Karena satu-satunya vektor yang dipetakan I ke 0 adalah 0 ker(i ) = {0}. SIFAT TRANSFORMASI LINIER Jika T:V W adalah trasnformasi linier, maka T(0) = 0 T(-v) = -T(v) untuk semua v di V T(v-w) = T(v) T(w) untuk semua v dan w di V

7 RANK DAN NULITAS Jika T:V W adalah transformasi linier, maka dimensi jangkauan dari T dinamakan rank T, dan dimensi kernel dinamakan nulitas T Jika T:V W adalah trasnformasi linier, maka 6.KESERUPAAN Kernel dari T adalah sub-ruang dari V Jangkauan dari T adalah subruang dari W Jika L adalah transpormasi linieryang memetakkan rung vektor V berdmensi n kedalam dirinya sndri, maka lambang matriks dari L akan bergantung pada basis terurut yang diplih untuk p. Dengan menggunakan basis basis yang berbeda, maka di mugkinkan untuk melambangkan l dengan matriks matriks n x n yang berbeda. Kita mulai dengan meninjau satu contoh di dalam R. misalkan L adalah transpormasi linieryang memetakan R kedalam dirinya sendiri yang di definisikan oleh L (x) = (x, x + x ) r Karena L(e ) = ( ) dan L(e ) = ( 0 ) Maka lambang matrik dari L relatif terhadap { e, e } adalah A = ( 0 ) Jika kita menggunaka basis yang berbeda utk R, lambang matriks dari L akan berubah sebagai conyoh kita akan mengguakan u = ( ) dan u = ( ) untuk sebuah basis maka untuk menetukan lambang matriks dari L relaatif terhadap [u, u ], kita harus menentukan L(u ), L (u ) dan menuskan vektor vektor in sebagai kombinasi linier dari u dan u. Kita dapat menggunakan matrks A ntuk menentukan L(u ), L (u ). L(u ) = Au = ( 0 ) ( ) = ( )

8 L(u ) = Au = ( 0 ) ( ) = ( 0 ) Untuk menyataakan vektor-vektor ini dalam u dan u, kita menggunakan matriks transisi untuk mengubah basis terurt [e, e] menjadi [u, u ], Marilah kita hitung matriks transisi dari [u, u ], ke V [ e, e] sederhana dapat di lihat di bawah ini U = (u + u ) = ( ) Matriks transisi dari [e, e] ke [u, u ] jadi U = [ ] untuk menentukan koordinat-koordinat dari L(u ) dan L (u ) relatif terhadap [u, u ] kalikan vektor-vektor ini dengan U L(u ) = U Au = [ L(u ) = U Au = [ ] = ( 0 ) ] 0 = ( )

9 Daftar Pustaka servletjsp/#respond

Pertemuan 6 Transformasi Linier

Pertemuan 6 Transformasi Linier Pertemuan 6 Transformasi Linier Objektif: 1. Praktikan memahami definisi transformasi linier umum. 2. Praktikan memahami definisi dari transformasi linier dari R n ke R m. 3. Praktikan memahami invers

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 7 Transformasi Linear Sub Pokok Bahasan Definisi Transformasi Linear Matriks Transformasi Kernel dan Jangkauan Aplikasi Transformasi Linear Grafika Komputer Penyederhanaan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari 8.1 Transformasi Linier Umum Bukan lagi transformasi R n R m, tetapi transformasi linier dari ruang vektor V vektor W. Definisi Jika T: V W adalah suatu fungsi dari suatu ruang vektor V ke ruang vektor

Lebih terperinci

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd TRANSFORMASI LINEAR Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu : Abdul Aziz Saefudin, M.Pd Disusun oleh : Kelompok 7/ Kelas III A Endar Alviyunita 34400094 Ahmat Sehari ---------------

Lebih terperinci

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

8.3 Inverse Linear Transformations

8.3 Inverse Linear Transformations 8.3 Inverse Linear Transformations Definition One to One Transformasi linear T:V W dikatakan one-to-one jika T memetakan vektor-vektor berbeda pada V ke vektorvektor berbeda pada W. Jika A adalah suatu

Lebih terperinci

RUANG VEKTOR. Nurdinintya Athari (NDT)

RUANG VEKTOR. Nurdinintya Athari (NDT) 1 RUANG VEKTOR Nurdinintya Athari (NDT) RUANG VEKTOR Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Basis Subruang Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem kontrol

Lebih terperinci

Minggu II Lanjutan Matriks

Minggu II Lanjutan Matriks Minggu II Lanjutan Matriks Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum Tujuan Instruksional Khusus Jumlah Pertemuan : Matriks : A. Transformasi Elementer. Transformasi Elementer pada baris

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

Kumpulan Soal,,,,,!!!

Kumpulan Soal,,,,,!!! Kumpulan Soal,,,,,!!! Materi: Matriks & Ruang Vektor 1. BEBAS LINEAR S 3. BASIS DAN DIMENSI O A L 2. KOMBINASI LINEAR NeXt FITRIYANTI NAKUL Page 1 1. BEBAS LINEAR Cakupan materi ini mengkaji tentang himpunan

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan sifat-sifat dari ruang vektor

Lebih terperinci

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks DIKTAT PERKULIAHAN EDISI 1 Aljabar Linear dan Matriks Penulis : Ednawati Rainarli, M.Si. Kania Evita Dewi, M.Si. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 IF/011 1 DAFTAR ISI

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR A. DEFINISI DASAR 1. Definisi-1 Suatu pemetaan f dari ruang vektor V ke ruang vektor W adalah aturan perkawanan sedemikian sehingga setiap vektor v V dikawankan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR 7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut

Lebih terperinci

6. TRANSFORMASI LINIER

6. TRANSFORMASI LINIER 6. TRANSFORMASI LINIER 1. Definisi Transformasi Linier Jika F:V W adalah sebuah fungsi dari ruang vektor V ke dalam ruang vektor W, maka F disebut transformasi linier (pemetaan linier), jika: 1. F(u+v)

Lebih terperinci

Transformasi Linear dari R n ke R m

Transformasi Linear dari R n ke R m TE0967 Teknik Numerik Sistem Linear Transformasi Linear dari R n ke R m Trihastuti gustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember OUTLINE

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Pendahuluan Ruang vektor tidak hanya terbatas maksimal 3 dimensi saja 4 dimensi, 5 dimensi, dst ruang n-dimensi Jika n adalah bilangan bulat positif, maka sekuens sebanyak n

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

PERTEMUAN 11 RUANG VEKTOR 1

PERTEMUAN 11 RUANG VEKTOR 1 PERTEMUAN 11 RUANG VEKTOR 1 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat mengetahui definisi dan sifat-sifat dari ruang vektor Dapat mengetahui definisi

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd JURUSAN/PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI BANJARMASIN MARET MUQADIMAH Alhamdulillah penyusun ucapkan

Lebih terperinci

TEKNIK INFORMATIKA FENI ANDRIANI

TEKNIK INFORMATIKA FENI ANDRIANI EKNIK INFORMIK FENI NDRINI Definisi: Matriks adalah sekumpulan bilangan yang disusun dalam sebuah empat persegi panjang, secara teratur, di dalam baris-baris dan kolom-kolom. a a... a n a a... a n... a

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Himpunan vektor {v, v,.., v k } dalam R n disebut himpunan

Lebih terperinci

04-Ruang Vektor dan Subruang

04-Ruang Vektor dan Subruang 04-Ruang Vektor dan Subruang Vektor (1) Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Ruang Vektor Bagian 2: Nullspace of A: Solusi Ax = 0 Bagian 3: Rank dan Row-reduced-form

Lebih terperinci

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF

Lebih terperinci

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 10 11 12 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2 Transformasi Linier

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

Pertemuan 4 Aljabar Linear & Matriks

Pertemuan 4 Aljabar Linear & Matriks Pertemuan 4 Aljabar Linear & Matriks 1 Notasi : huruf besar tebal misalnya A, B, C Merupakan array dari bilangan, setiap bilangan disebut elemen matriks (entri matriks) Bentuk umum : m : jumlah baris (mendatar)

Lebih terperinci

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT. BAB 4 RUANG VEKTOR EUCLID Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Ruang n Euclid 2. Transformasi Linier dari R n dan R m 3. Sifat-sifat Transformasi Linier 4.1 RUANG N EUCLID Jika di bab

Lebih terperinci

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar:

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar: f g) f g C atau ( f g). Diperoleh bahwa: f g) ( f g) dg f ( f dg g) g dg f g Selanjutnya dibuktikan tertutup terhadap perkalian skalar: Ambil. f ) f C, R. Ditunjukkan bahwa. f C atau (. f ).. f ). diketahui

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A

Lebih terperinci

Aljabar Matriks. Aljabar Matriks

Aljabar Matriks. Aljabar Matriks Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks MATRIKS DEFINISI Matriks adalah susunan bilangan real atau bilangan kompleks (atau elemen-elemen) yang disusun dalam baris dan kolom sehinggga membentuk jajaran persegi panjang. Matriks memiliki m baris

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

Pertemuan 2 Matriks, part 2

Pertemuan 2 Matriks, part 2 Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).

Lebih terperinci

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor Bab RUANG VEKTOR. Ruang Vektor DEFINISI.. Suatu ruang vektor (V, +,, F) atas field (F, +), ditulis singkat V(F), adalah suatu himpunan tak kosong V dengan elemenelemennya disebut vektor, yang dilengkapi

Lebih terperinci

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks 2. MATRIKS 1. Pengertian Matriks Matriks adalah himpunan skalar yang disusun secara empat persegi panjang menurut baris dan kolom. Matriks diberi nama huruf besar, sedangkan elemen-elemennya dengan huruf

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah

Lebih terperinci

BAB I MATRIKS DEFINISI : NOTASI MATRIKS :

BAB I MATRIKS DEFINISI : NOTASI MATRIKS : BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Keterkendalian (Controlability)

Institut Teknologi Sepuluh Nopember Surabaya. Keterkendalian (Controlability) Institut Teknologi Sepuluh Nopember Surabaya Keterkendalian (Controlability) Contoh Soal Ringkasan Latihan Contoh Soal Ringkasan Latihan Vektor Bebas Linear Keterkendalian Keadaan Secara Sempurna dari

Lebih terperinci

Aljabar Linier & Matriks. Tatap Muka 2

Aljabar Linier & Matriks. Tatap Muka 2 Aljabar Linier & Matriks Tatap Muka 2 Matriks Matriks adalah susunan segi empat siku siku dari bilangan yang dibatasi dengan tanda kurung siku. Suatu matriks tersusun atas baris dan kolom, jika matriks

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Analytic Hierarchy Process (AHP) Sumber kerumitan masalah keputusan bukan hanya dikarenakan faktor ketidakpasatian atau ketidaksempurnaan informasi saja. Namun masih terdapat penyebab

Lebih terperinci

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT. BAB 6 RUANG HASIL KALI DALAM Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Hasil Kali Dalam 2. Sudut dan Keortogonalan pada Ruang Hasil Kali Dalam 3.Basis Ortogonal, Proses Gram-Schmidt 4.Perubahan

Lebih terperinci

Vektor. Vektor. 1. Pengertian Vektor

Vektor. Vektor. 1. Pengertian Vektor Universitas Muhammadiyah Sukabumi Artikel Aljabar Vektor dan Matriks Oleh : Zie_Zie Vektor Vektor 1. Pengertian Vektor a. Definisi Vektor adalah suatu besaran yang mempunyai nilai (besar) dan arah. Contohnya

Lebih terperinci

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi 7// NILAI EIGEN dan VEKTOR EIGEN Yang dipelajari.. Masalah Nilai Eigen dan Penyelesaiannya. Masalah Pendiagonalan Referensi : Kolman & Howard Anton. Ilustrasi Misalkan t : R n R n dengan definisi t(x)

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci

Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan

Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan C. Determinan dan Invers Matriks C.. Determinan Suatu matriks persegi selalu dapat dikaitkan dengan suatu bilangan yang disebut determinan. Determinan dari matriks persegi dinotasikan dengan. Untuk matriks

Lebih terperinci