Standar Pengujian Peralatan Transformator

Ukuran: px
Mulai penontonan dengan halaman:

Download "Standar Pengujian Peralatan Transformator"

Transkripsi

1 Standar Pengujian Peralatan Transformator Fahmi Arif Kurnia Rahman Jurusan Teknik Elektro POLINES Jl. Prof. H. Sudarto, S. H. Tembalang Semarang INDONESIA Abstrak Transformer atau trafo merupakan suatu peralatan yang dapat mengubah tenaga listrik dari suatu level tegangan ke level tegangan lainnya. Trafo ini tentunya diharapkan dapat bekerja pada performa yang diinginkan. Oleh karena itu, sebelum trafo dapat digunakan pada sistem tenaga listrik, maka perlu dilakukan beberapa rangkaian pengujian pada trafo daya tersebut. Pengujian transformator dilaksanakan menurut SPLN D : 2007 (Rev. SPLN 50: 1997 dan SPLN 50: 1982) dengan melalui tiga macam pengujian, sebagaimana diuraikan juga dalam IEC 60076, yaitu: pengujian rutin, pengujian jenis, pengujian khusus, pengujian serah-terima, pengujian lapangan. Beberapa peralatan yang digunakan dalam pengujian Transformer diantaranya: tangen delta 2000 & delta 3000, tangen delta oil transformer, insulation test MIT1020, transformer turn ratio 310, transformer ohmmeter, dielectric breakdown, voltage OTS100 AF/2, dissolve gas analysis potable. Keywords Transformator, trafo, pengujian, SPLN, IEC, peralatan, listrik. I. PENDAHULUAN Dalam pola pendistribusian tenaga listrik ke pengguna tenaga listrik di suatu kawasan, penggunaan sistem tegangan menengah sebagai jaringan utama adalah upaya utama untuk menghindarkan rugi-rugi penyaluran (losses) dengan kualitas persyaratan tegangan yang harus dipatuhi oleh PT PLN Persero selaku pemegang kuasa usaha utama sebagaimana diatur dalam UU Ketenagalistrikan No. 30 Tahun Dengan ditetapkannya standar Tegangan Menengah sebagai tegangan operasi yang digunakan di Indonesia adalah 20 kv, maka peralatan- peralatan JTM wajib memenuhi kriteria enjineering kemananan ketenagalistrikan, termasuk didalamnya adalah peralatan transformator. Transformator (trafo) adalah salah satu peralatan utama dalam penyaluran energi listrik yang berfungsi mengkonversikan tegangan. Trafo ini tentunya diharapkan dapat bekerja pada performa yang diinginkan. Karena apabila peralatan ini tidak bekerja dengan semestinya, maka penyaluran energi listrik menjadi terganggu dan bahkan dapat menyebabkan terhentinya pasokan listrik pada suatu jaringan listrik yang saling terinterkoneksi satu sama lain. Terhentinya pasokan listrik tersebut tentunya merugikan berbagai pihak mulai dari konsumen listrik ataupun produsen listrik yang dalam hal ini PT PLN. Oleh karena itu, sebelum trafo dapat digunakan pada sistem tenaga listrik, maka perlu dilakukan beberapa rangkaian pengujian pada trafo daya tersebut. Hal ini dimaksudkan agar trafo daya tersebut dapat bekerja sesuai dengan spesifikasinya pada berbagai kondisi di lapangan. A. Tujuan Dalam penulisan makalah ini, penulis bertujuan untuk : 1) Mengetahui pengertian dan jenis-jenis trafo. 2) Mengetahui klasifikasi standar pengujian trafo yang diperlukan sebagai bahan acuan. 3) Membandingkan klasifikasi trafo yang baik dan trafo yang buruk. 4) Mengetahui peralatan-peralatan yang digunakan dalam pengujian trafo. 5) Mempelajari studi kasus atau contoh pengujian trafo. B. Ruang Lingkup Materi Materi yang dibahas pada makalah ini meliputi pengertian, jenis-jenis, cara pengujian, perlatan-peralatan pengujian, dan studi kasus trafo. II. PEMBAHASAN TRANSFORMATOR Transformer atau trafo merupakan suatu peralatan yang dapat mengubah tenaga listrik dari suatu level tegangan ke level tegangan lainnya. Trafo biasanya terdiri atas dua bagian inti besi atau lebih yang dibungkus oleh belitan belitan kawat tembaga. Prinsip pengubahan level tegangan dilakukan dengan memanfaatkan banyaknya jumlah belitan pada inti trafo. Bila salah satu kumpulan belitan, biasanya disebut belitan primer, diberikan suatu tegangan yang berubah-ubah, maka akan menghasilkan mutual flux yang berubah-ubah dengan besar amplitude yang tergantung pada tegangan, frekuensi tegangan, dan jumlah lilitan kawat tembaga dibelitan primer. Mutual flux yang terjadi akan terhubung dengan belitan lain yang disebut sisi sekunder dan akan menginduksi suatu tegangan yang berubah-ubah di dalamnya dengan nilai tegangan yang bergantung pada jumlah lilitan pada belitan sekunder. Dengan mengatur perbandingan jumlah lilitan antara sisi primer dan sekunder, maka akan dapat ditentukan rasio tegangan ataupun sering disebut rasio trafo. A. Trafo Tidak Berbeban Gambar 1 menunjukkan suatu bentuk trafo dengan rangkaian pada sisi sekunder dalam keadaan terbuka ataupun tidak berbeban, dan pada bagian primernya diberikan tegangan berubahubah vi. Kemudian arus iφ, yang biasa disebut sebagai arus eksitasi, akan mengalir pada sisi primer dan menghasilkan flux yang berubah-ubah secara magnetik. Flux tersebut menghasilkan gaya gerak listrik (emf) dengan persamaan sebagai berikut ini:

2 dimana : λ1 = flux di sisi primer φ = flux di inti trafo yang menghubungkan kedua belitan N1 = jumlah lilitan kawat di belitan primer Dengan membandingkan persamaan (2) dan (3) maka dapat diperoleh, Ma ka dapat dikatakan bahwa prinsip pengubahan tegangan pada trafo dilakukan dengan perbandingan antara jumlah belitan antara sisi primer dengan sisi sekundernya. Apabila suatu beban dihubungkan pada sisi sekunder trafo maka akan dihasilkan arus i2 dengan mmf N2i2. Dari persamaan (1) dan dengan mengasumsikan permeabilitas inti trafo yang sangat besar, maka penambahan beban pada sisi sekunder trafo tidak mempengaruhi flux inti trafo. Total eksitasi mmf pada inti trafo tidak akan berubah dan bahkan dapat diabaikan. Maka akan diperoleh: Gambar 1. Trafo dengan sisi sekunder hubungan terbuka B. Trafo Hubung Beban Bila belitan lilitan kawat tembaga di sisi sekunder pada gambar 1 diatas dihubungkan dengan beban, maka akan terlihat seperti pada gambar 2. N1 adalah jumlah lilitan di sisi primer dan N2 adalah jumlah lilitan di sisi sekunder. Belitan sisi sekunder terhubung ke beban dan diasumsikan bahwa arus yang keluar dari belitan sekunder adalah bernilai positif, maka arus tersebut akan menghasilkan gaya gerak magnet yang berlawanan arah dengan yang dihasilkan oleh arus dari lilitan primer. Dengan menganggap resistansi belitan dapat diabaikan, maka akan dihasilkan flux yang terbatas pada inti trafo yang menghubungkan kedua inti belitan (flux bocor diasuksikan dapat diabaikan). Gambar 2. Trafo ideal terhubung dengan beban Dengan asumsi tersebut di atas, maka pada gambar 1 dapat dikatakan apabila tegangan yang berubah waktu v1 diberikan pada belitan primer akan dihasilkan flux inti φ yang menghasilkan gaya gerak listrik e1 yang sebanding dengan tegangan v1. Dari kedua persamaan diatas dapat dituliskan persamaan (7) di bawah ini, Perbandingan arus yang mengalir pada sisi primer dengan sisi sekunder adalah berbanding terbalik dengan perbandingan antara jumlah lilitan pada kedua belitan trafo. Dari persamaan (4) dan (7) dapat dituliskan persamaan berikut v1i1 = v2i2. (8) Dari persamaan (8) dapat dikatakan bahwa suplai daya yang terjadi pada sisi primer trafo akan bernilai sama dengan yang disalurkan pada sisi sekundernya akibat dari tidak adanya disipasi daya dan rugi-rugi daya. C. Rangkaian Pengganti Trafo Pada umumnya, trafo yang digunakan di dunia ketenagalistrikan bukanlah trafo-trafo ideal, karena sangatlah sulit untuk memperoleh bahan pada inti dan belitan trafo yang dapat menghasilkan persamaan-persamaan sesuai dengan keadaan saat trafo pada keadaan ideal. Hal ini disebabkan oleh resistansi pada belitan, fluksi nyasar (rugi-rugi fluksi), dan permeabilitas inti trafo. Agar dapat memperoleh gambaran terhadap trafo yang digunakan, maka digunakanlah pemodelan trafo dengan cara membuat rangkaian pengganti pada trafo. Rangkaian pengganti trafo dapat dilihat seperti gambar di bawah ini. Flux pada inti juga terhubung ke bagian sekunder trafo sehingga menghasilkan induksi gaya gerak gerak listrik emf e2 sehingga belitan sekunder akan menghasilkan tegangan pada terminalnya dengan persamaan. Gambar 3. Rangkaian pengganti trafo

3 Pada umumnya, satuan satuan yang ada pada rangkaian pengganti trafo sudah diinformasikan pada nameplate trafo saat trafo sudah melewati serangkaian pengujian pada laboratorium sehingga dapat digunakan di lapangan. Namun, untuk dapat mengetahui parameter reaktansi dan induktansi tiap belitan pada trafo, dapat dilakukan dengan dua jenis pengujian, yakni uji hubung singkat dan uji opencircuit. Uji hubung singkat digunakan untuk mengetahui impedansi ekivalen dari kedua belitan (R1+jX1 dan R2+jX2), sedangkan uji open-circuit yang dilakukan dengan keadaan sisi sekunder terbuka, dilakukan untuk mengetahui rugi rugi magnetik trafo (Rc dan Xm) yang dimodelkan secara paralel dengan kedua belitan pada trafo. Rugi rugi magnetik ini disebabkan oleh inti trafo dan belitan trafo yang menghasilkan fluksi pada trafo. Untuk keadaan short circuit, maka berlaku formula sebagai berikut ini untuk mengetahui parameter impedansi tiap belitan trafo. Untuk saat keadaan open-circuit, maka digunakan formula berikut ini untuk mengetahui parameter Rc dan Xm. III. PEMBAHASAN PENGUJIAN TRANSFORMATOR Semua sistem pengukuran yang digunakan pada pengujian-pengujian harus bersertifikat, terkalibrasi periodik dan tertelusur sesuai aturan yang tertuang dalam ISO Macam pengujian pada setiap klasifikasi pengujian tercantum pada dibawah ini. TABEL I MACAM PENGUJIAN Catatan : R = pengujian rutin ; J= pengujian jenis S = pengujian serah-terima ; L = pengujian lapangan Tidak dilakukan pada sisi primer untuk trasformator dengan tegangan pengenal 20 kv/ 3. Untuk transformator dengan tegangan pengenal 20 kv/ 3, pengujian dilakukan pada tegangan uji 3,46 tegangan nominal. Setelah pengujian kenaikan suhu, transformator harus mampu dienerjais tanpa beban pada 105% tegangan pengenal selama 2 jam. Dapat dilakukan dengan waktu uji lebih cepat. PT PLN (Persero) dapat menetapkan mata uji khusus maupun merubah atau menambahkan mata uji dengan menyatakannya saat pemesanan. Pengujian transformator dilaksanakan menurut SPLN D : 2007 (Rev. SPLN 50: 1997 dan SPLN 50: 1982) dengan melalui tiga macam pengujian, sebagaimana diuraikan juga dalam IEC 60076, yaitu: 1. Pengujian Rutin Pengujian rutin adalah pengujian yang dilakukan terhadap setiap transformator, meliputi: A. Pengujian tahanan isolasi Pengukuran tahanan isolasi dilakukan pada awal pengujian dimaksudkan untuk mengetahui secara dini kondisi isolasi transformator, untuk menghindari kegagalan yang fatal dan pengujian selanjutnya, pengukuran dilakukan antara: Tahanan isolasi antara kumparan fase Tahanan isolasi antara kumparan primer dan kumparan sekunder Tahanan isolasi antara tangki dengan tanah (khusus untuk transformator yang memakai pengaman tangki). Harga tahanan isolasi ini digunakan untuk kriteria kering tidaknya transformator, juga untuk mengetahui apakah ada bagian-bagian yang terhubung singkat Berdasarkan IEC standar, ketentuan tahanan isolasi adalah: 1kV = 1M ohm Catatan : 1kV = besar tegangan fase terhadap tanah. Kebocoran arus yang diizinkan setiap kv= 1mA.

4 B. Pengujian tahanan kumparan Pengukuran tahanan kumparan adalah untuk mengetahui berapa nilai tahanan listrik pada kumparan yang akan menimbulkan panas bila kumparan tersebut dialiri arus. Nilai tahanan belitan dipakai untuk perhitungan rugi-rugi tembaga transformator. Pada saat melakukan pengukuran yang perlu diperhatikan adalah suhu belitan pada saat pengukuran yang diusahakan sama dengan suhu udara sekitar, oleh karenanya diusahakan arus pengukuran kecil. Peralatan yang digunakan untuk pengukuran tahanan di atas 1 Ohm adalah Wheatstone Bridge, sedangkan untuk tahanan yang lebih kecil dari 1 ohm digunakan Precition Double Bridge. Pengukuran dilakukan pada setiap phasa transformator, yaitu antara terminal: 1) Pengukuran pada terminal tegangan tinggi a) Pada transformator 3 phasa - phasa A - phasa B - phasa B - phasa C - phasa C - phasa A b) Transformator 1 phasa Terminal H1-H2 untuk transformator double bushing dan terminal H dengan Ground untuk transformator single bushing dan pengukuran sisi tegangan rendah c) Pada transformator 3 phasa - phasa a - phasa b - phasa b - phasa c - phasa c - phasa a d) Transformator 1 phasa (terminal X1-X4 dengan X2-X3 dihubung singkat. C. Pengujian perbandingan belitan Pengukuran perbandingan belitan adalah untuk mengetahui perbandingan jumlah kumparan sisi tegangan tinggi dan sisi tegangan rendah pada setiap tapping, sehingga tegangan output yang dihasilkan oleh transformator sesuai dengan yang dikehendaki, toleransi yang diijinkan adalah: a. 0,5 % dari rasio tegangan atau b. 1/10 dari persentase impedansi pada tapping nominal. Pengukuran perbandingan belitan dilakukan pada saat semi assembling yaitu, setelah coil transformator diassembling dengan inti besi dan setelah tap changer terpasang, pengujian kedua ini bertujuan untuk mengetahui apakah posisi tap transformator telah terpasang secara benar dan juga untuk pemeriksaan vector group transformator. Pengukuran dapat dilakukan dengan menggunakan Transformer Turn Ratio Test (TTR), misalnya merk Jemes G. Biddle Co Cat. No atau Cat. No D. Pengujian vector group Pemeriksaan vector group bertujuan untuk mengetahui apakah polaritas terminal-terminal transformator positif atau negatif. Standar dari notasi yang dipakai adalah Additive dan Subtractive. E. Pengujian rugi-rugi tanpa beban (No Load Losses Test) Rugi-rugi tanpa beban merupakan rugi-rugi yang terkait dengan eksitasi trafo. No load test yang diukur meliputi Rugi-rugi inti Rugi-rugi dielektrik Rugi-rugi konduktor pada lilitan yang terkait dengan arus eksitasi Rugi-rugi konduktor oleh arus sirkulasi pada belitan paralel Pengukuran ini bertujuan untuk mengukur rugi rugi saat belitan sekunder tidak terhubung sama sekali pada beban. F. Pengujian rugi-rugi beban (Load Losses Test) Rugi rugi beban (load losses) merupakan rugi rugi yang diakibatkan oleh beban pada trafo. Rugi rugi ini mencakup I 2 R pada belitan dan bus bar yang disebabkan oleh arus yang mengalir pada beban yang terhubung pada trafo. Load losses diukur dengan mengaplikasikan hubung singkat pada terminal high voltage atau terminal lowvoltage pada trafo dan memberikan tegangan tertentu melalui terminal yang berlainan untuk menghasilkan arus yang mengalir pada belitan belitan pada trafo. Untuk mendapatkan hasil pengujian yang akurat, maka ada beberapa hal yang harus diperhatikan sebagai berikut: a. Untuk dapat mengetahui suhu dari belitan belitan pada trafo dengan tingkat akurasi tertentu, minimal ketiga kondisi dibawah ini harus dipenuhi: (1) Suhu dari tiap belitan trafo harus dalam keadaan stabil, (2) Suhu pada tiap belitan tarafo harus diukur dengan cepat sesaat sebelum dan sesudah pengujian load losses dan tegangan impedansi beban. Rata rata pengukuran diambil sebagai data untuk menentukan suhu yang sebenarnya, (3) Perbedaan suhu antara sebelum dan sesudah pengujian tidak lebih dari 5 0 C pada tiap belitan. b. Konduktor yang digunakan untuk menghubungsingkatkan belitan low-voltage yang berarus tinggi harus memiliki luas yang sama atau lebih besar dari timah trafo. c. Frekuensi yang digunakan dari sumber pengujian untuk mengukur load losses dan tegangan impedansi beban harus ±0,5 % dari nilai nominal trafo.

5 Penghitungan nilai koreksi rugi rugi akibat kenaikan temperatur saat uji load losses dan tegangan impedansi dari data yang diperoleh dilakukan dengan menggunakan formula di bawah ini. Dimana: Ps(Tm) : stray losses (watt) pada suhu Tm P(Tm) : rugi rugi beban trafo (transformer load losses) (watt) pada suhu Tm Pr(Tm) : rugi rugi I 2 R yang dihitung (watt) pada suhu Tm G. Pengujian tegangan terapan (Withstand Test) Pengujian ini dimaksudkan untuk menguji kekuatan isolasi antara kumparan dan body tangki. Pengujian dilakukan dengan memberi tegangan uji sesuai dengan standar uji dan dilakukan pada: tegangan tinggi terhadap sisi tegangan rendah dan body yang di ke tanahkan tegangan rendah terhadap sisi tegangan tinggi dan body yang di ke tanahkan pengujian 60 detik H. Pengujian tegangan induksi (Induce Test) Pengujian tegangan induksi bertujuan untuk mengetahui kekuatan isolasi antara layer dari tiap-tiap belitan dan kekuatan isolasi antara belitan transformator. Pengujian dilakukan dengan memberi tegangan supply dua kali tegangan nominal pada salah satu sisi dan sisi lainnya dibiarkan terbuka. Untuk mengatasi kejenuhan pada inti besi (core) maka frekuensi yang digunakan harus dinaikkan sesuai denga kebutuhan. Lama pengujian tergantung pada besarnya frekuensi pengujian dan waktu pengujian maksimum adalah 60 detik I. Pengujian kebocoran tangki Pengujian kebocoran tangki dilakukan setelah semua komponen transformator sudah terpasang. Pengujian dilakukan untuk mengetahui kekuatan dan kondisi paking dan las transformator. Pengujian dilakukan dengan memberikan tekanan nitrogen (N2) sebesar kurang lebih 5 psi dan dilakukan pengamatan pada bagian-bagian las dan paking dengan memberikan cairan sabun pada bagian tersebut. Pengujian dilakukan sekitar 3 jam apakah terjadi penurunan tekanan 2. Pengujian Jenis A. Pengujian kenaikan suhu Pengujian kenaikan suhu dimaksudkan untuk mengetahui berapa kenaikan suhu oli dan kumparan transformator yang disebabkan oleh rugi-rugi transformator apabila transformator dibebani. Pengujian inijuga bertujuan untuk melihat apakah penyebab panas transformator sudah cukup effisien atau belum. Pada transformator dengan tapping tegangan di atas 5% pengujian kenaikan suhu dilakukan pada tappng tegangan terendah (arus tertinggi), pada transformator dengan tapping maksimum 5% pengujian dilakukan pada tapping nominal. Pengujian kenaikan suhu sama dengan pengujian beban penuh, pengujian dilakukan dengan memberikan arus transformator sedemikian hingga membangkitkan rugi-rugi transformator, yaitu rugi beban penuh dan rugi beban kosong. B. Pengujian tegangan impulse Pengujian impulse ini dimaksudkan untuk mengetahui kemampuan dielektrik dari sistem isolasi transformator terhadap tegangan surja petir. Pengujian impuls adalah pengujian dengan memberi tegangan lebih sesaat dengan bentuk gelombang tertentu. Tegangan tinggi impuls umumnya terbagi manjadi dua, yaitu tegangan tinggi impuls petir dan tegangan tinggi surja hubung. C. Pengujian tegangan tembus oli Pengujian tegangan tembus oli dimaksudkan mengetahui kemampuan dielektrik oli. Hal ini dilakukan karena selain berfungsi sebagai pendingin dari transformator, oli juga berfungsi sebagai isolasi. Persyaratan yang ditentukan adalah sesuai dengan standart SPLN 49-1 : 1982, IEC 158 dan IEC 296 yaitu: > = 30 KV/2,5 mm sebelum purifying > = 50 KV/2,5 mm setelah purifying 3. Pengujian Khusus Pengujian khusus adalah pengujian yang lain dari uji rutin dan jenis, dilaksanakan atas persetujuan pabrik denga pembeli dan hanya dilaksanakan terhadap satu atau lebih transformator dari sejumlah transformator yang dipesan dalam suatu kontrak. Pengujian khusus meliputi : A. Dielektrick test Tujuan pengujian dielektrik pada trafo adalah untuk mengetahui bahwa trafo telah didesain sehingga dapat bertahan terhadap tegangan lebih yang tidak tepat pada trafo berkaitan pada level kemampuan isolasi trafo. Suhu trafo selama uji dielektrik haruslah berada diantara 10 0 C 40 0 C. Pengujian dielektrik dapat dilakukan pada kondisi low-frequency dielectric test. Pengujian ini dilakukan dengan beberapa acuan seperti yang tertera pada Tabel 2 dan Tabel 3. TABEL 2. HUBUNGAN ANTARA TEGANGAN NOMINAL SISTEM DENGAN BIL UNTUK SISTEM PADA 34,5 KV BIL (KV) HINGGA LEBIH KECIL DARI 34,5 KV

6 TABEL 2. HUBUNGAN ANTARA TINGKATAN ISOLASI DIELEKTRIK PADA TRAFO KERING DENGAN TINGKAT BIL 200 KV DAN DIBAWAHNYA Ø : arc tan (x/r) (dalam radian) e : bilangan logaritma alami C. Pengujian impedansi urutan nol pada transformator tiga phasa D. Harmonik pada arus beban kosong E. Tingkat bunyi akuistik F. Daya yang diambil oleh motor-motor kipas dan pompa minyak B. Hubung singkat Pengujian hubung singkat (short circuit) dilakukan pada trafo untuk dapat mengetahui kemampuan trafo terhadap tekanan elektrik dan mekanik yang disebabkan oleh hubung singkat pada bagian beban. Hubung singkat yang dimaksud dapat meliputi hubung singkat satu fase ke tanah, fase - fase, tiga fase, dan double fase ke tanah. Kejadian hubung singkat dapat membentuk arus simetri dan arus asimetri pada trafo. a. Arus simetri (symmetrical current) Formula yang digunakan untuk menghitung arus hubung singkat (I SC, dalam ampere rms) adalah : Dimana: I R : arus nominal pada trafo ( per unit) Z T : impedansi trafo pada keadaan I (per unit) Z S : impedansi sistem sebagai beban yang terhubung ke trafo (per unit) Sehingga arus simetri hubung singkat yang terjadi dengan besar beberapa kali dari arus normalnya adalah: b. Arus asimetri (asymmetrical current) Trafo didesain untuk dapat bertahan terhadap arus asimetri yang mencapai puncaknya di awal cycle saat arus tersebut mengalir di trafo. Arus asimetri, I SC (pk asymm) dapat diketahui dengan formula berikut : Dimana, 4. Pengujian Serah-Terima Mata uji pengujian serah-terima adalah sama dengan mata uji pengujian rutin (Tabel 6 kolom 4), tetapi PT PLN dapat menambah mata uji lainnya dengan menyatakannya pada saat pemesanan. Pengujian serah-terima dilaksanakan di laboratorium PLN atau pabrikan. Prosedur pengujian adalah sebagai berikut: A. Transformator yang akan diserah-terimakan harus telah lulus uji jenis dan identik dengan transformator yang diuji jenis. B. Transformator yang akan diserah-terimakan harus lulus uji rutin dan dilengkapi dengan laporan pengujiannya. C. Pengujian serah terima disaksikan oleh PT PLN. D. Jumlah sampel adalah 10% (dibulatkan) dari jumlah yang akan diserahterimakan dengan jumlah minimum 1 (satu) unit pada kelompok tersebut. Transformator identik Sebuah transformator dapat dinyatakan identik satu sama lain bila: A. Daya pengenal, tegangan tertinggi (Um) sisi belitan primer dan sekunder, kelompok vektor harus sama. B. Tegangan impedans harus sama dengan toleransi ± 10%. C. Rugi tanpa beban harus sama dengan toleransi ± 10% D. Rugi I²R pada belitan primer dan sekunder harus sama dengan toleransi ± 10% E. Arus tanpa beban harus sama dengan toleransi 30%. F. Bahan dasar, desain dan konstruksi dari belitan dan inti besi harus sama G. Letak busing tegangan tinggi maupun tegangan rendah harus sama, tetapi jenis busing dapat berbeda (porselin atau plug-in). H. Jumlah dan ukuran sirip pendingin harus sama, toleransi ukuran sirip 5% I. Dimensi tangki harus sama dengan toleransi 5% Penilaian pengujian serah terima Kriteria penilaian pengujian serah-terima : A. Sampel transformator dinyatakan baik, jika hasil pengujian dari seluruh mata uji pada kolom 6 Tabel 6 berhasil baik. B. Seluruh transformator yang akan diserahterimakan dinyatakan diterima jika semua sampel yang diuji hasilnya baik.

7 C. Jika lebih dari 1 (satu) sampel mengalami kegagalan, maka semua transformator yang diajukan (akan diserahterimakan) ditolak, karena dianggap dalam kelompok tersebut masih ada cacat. D. Jika 1 (satu) sampel mengalami kegagalan, pada dasarnya semua transformator yang diajukan belum dapat diterima dan pengujian dapat diulang dengan mengambil sampel baru sejumlah yang pertama. Jika semua sampel baru diuji dengan hasil baik, maka semua transformator yang diajukan dianggap baik dan dapat diterima. Jika dalam pengujian ulang masih ada 1 (satu) sampel saja mengalami gagal, maka seluruh transformator yang diajukan ditolak. E. Terhadap kelompok transformator yang dinyatakan ditolak pada butir C dan D, pabrikan atau pemasok dapat mensortir dan transformator yang baik dapat diajukan kembali. Untuk pengajuan kembali pabrikan harus meneliti sebab-sebab kegagalan dan bila kegagalan menyangkut sistem produksi, pabrikan harus memperbaiki proses produksinya. 5. Pengujian Lapangan Pengujian lapangan dilakukan oleh PLN unit. Mata uji pengujian lapangan tercantum pada Tabel 1 kolom 7 IV. PEMBAHASAN PERALATAN PENGUJIAN TRAFO Beberapa peralatan yang digunakan dalam pengujian Transformer diantaranya : 1. TANGEN DELTA 2000 & DELTA 3000 Pengukuran tangen delta pada Transformator, untuk menguji kelayakan isolasi trafo dan dapat mengukur arus eksistensi dari gulungan trafo. 2. TANGEN DELTA OIL TRANSFORMER Pengujian Power Factor dari isolasi minyak trafo. Gambar 5. Tangen Delta Oil Transformer Dihubungkan dengan perangkat utama DELTA 2000 atau DELTA 3000 dapat menginject tegangan hingga 10kV Pengujian dilakukan pada 25 derajat dan 100 derajat Celcius Standard ASTM D INSULATION TEST MIT1020 Insulation test dan Polarity Index dimana pengujian untuk mengukur kekuatan dan kelayakan bahan isolasi Gambar 6. Insulation Test MIT1020 Gambar 4. Tangen Delta 2000 Teruji baik, pada daerah dengan interferensi tinggi hingga mencapai 765 kv. Dioperasikan secara otomatis, mempersingkat waktu pengujian dan meminimalisir kesalahan pengujian oleh operator. Dilengkapi dengan thermal print-out external, sehingga pengukuran dapat langsung terbaca. Dapat melakukan pengujian pada TRAFO dengan sistem GIS Dapat membaca dan merekam Transformator yang didesain dengan sistem Tangen Delta Negative. 500 V, 1000 V, 2500 V, 5000 V dan V Variasi test pada volatse 25 V hingga V Akurasi baik dengan toleran 5% 4. TRANSFORMER TURN RATIO 310 Pengukuran untuk mengetahui Rasio, Arus Eksitasi, Pergeseran Fasa dan Persen Error antar belitan Transformer yang diukur. Gambar 7. Transformer Turn Ratio 310

8 Keunggulan: Pengukuran dengan jangkauan rasio tertinggi (45,000:1) dan akurasi tertinggi (0,1%) Bekerja pada daerah interferensi tinggi/teganan tinggi. 5. TRANSFORMER OHMMETER Untuk Mengetahui nilai resistansi Trafo pada tiap tiap tap changer. Gambar 8. Transformer Ohmmeter Portable untuk mengukur DC winding, motor, tap Changer Memungkinkan pengukuran arus DC primer dan sekunder pada winding secara bersamaan. Dilengkapi dengan Electromagnetic safety indicator 6. DIELCTRIC BREAKDOWN VOLTAGE OTS100 AF/2 Pengukuran tegangan tembus dari isolasi minyak pada Tranformator Gambar 9. Dielectric Breakdown Voltage OTS100 AF/2 Mampu menginject tegangan hingga mencapai 100kV Standard test ASTM D2877, IEC 156, UNF21, ASTM D1816 Print Out Internal 7. DISSOLVED GAS ANALYSIS PORTABLE Untuk mengetahui kandungan gas terlarut (ppm) dan sampel minya trafo. Gambar 10. Dissolved Gas Analysis Portable Dapat diketahui secara lansung pada lokasi uji 7 Fault Gas : C02,CO,H2,C2H2,C2H4,C2H6,CH4 Portable dalam carry case sehingga dapat dibawa kelokasi uji Standard IEEE C57.104; IEC dan ASTM D Diagnosis tools: Duval Triangle, Rogger Ratio, Key Glass V. PENUTUP Makalah ini berisi tentang definisi transformator, dimana transformator adalah suatu peralatan yang dapat mengubah tenaga listrik dari suatu level tegangan ke level tegangan lainnya. Dalam pengujiannya berdasarkan SPLN D : 2007 terdapat lima macam pengujian, yaitu pengujian rutin, pengujian jenis, pengujian khusus, pengujian serah-terima, pengujian lapangan. Beberapa peralatan yang digunakan dalam pengujian Transformer diantaranya: tangen delta 2000 & delta 3000, tangen delta oil transformer, insulation test MIT1020, transformer turn ratio 310, transformer ohmmeter, dielectric breakdown, voltage OTS100 AF/2, dissolve gas analysis potable. Penyusun berharap makalah ini berguna untuk penulis pribadi dan siapa saja yang ingin memperlajari pengujiannya tranformator. REFERENSI [1] Anonim. Techniques for High-Voltage Testing. IEEE: Std4, [2] Anonim. IEC International Electrotechnical Commission: 1999 [3] Meriam, L, J., & Kraige, G. L. Mekanika Teknik Dinamika. Jakarta: Erlangga, [4] Tobing, L., Bonggas. Peralatan Tegangan Tinggi. Jakarta: Erlangga [5] Kelompok Bidang Distribusi. SPLN D Spesifikasi Transformator Distribusi. PT PLN (Persero): [6] Kelompok Pembakuan Bidang Transmisi. SPLN 50 Pengujian Transformator. PT PLN (Persero): [7] media/listrik/listrik_07/ch4/index.html [8] html [9] [10]

Pengujian Transformator

Pengujian Transformator Pengujian Transformator Pengujian transformator dilaksanakan menurut SPLN 50-1982 dengan melalui tiga macam pengujian, sebagaimana diuraikan juga dalam IEC 76 (1976), yaitu : - Pengujian Rutin Pengujian

Lebih terperinci

TRANSFORMATOR DAYA & PENGUJIANNYA

TRANSFORMATOR DAYA & PENGUJIANNYA TRANSFORMATOR DAYA & PENGUJIANNYA Transformator tenaga adalah suatu peralatan tenaga listrik yang berfungsi untuk menyalurkan tenaga/daya listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya

Lebih terperinci

Transformator Daya dan Cara Pengujiannya

Transformator Daya dan Cara Pengujiannya Transformator Daya dan Cara Pengujiannya Transformator tenaga adalah suatu peralatan tenaga listrik yang berfungsi untuk menyalurkan tenaga/daya listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya

Lebih terperinci

PROSEDUR PENGUJIAN TAHANAN ISOLASI TRAFO

PROSEDUR PENGUJIAN TAHANAN ISOLASI TRAFO PROSEDUR PENGUJIAN TAHANAN ISOLASI TRAFO 1. Tujuan Percobaan : Untuk mengetahui kondisi isolasi trafo 3 fasa Untuk mengetahui apakah ada bagian yang hubung singkat atau tidak 2. Alat dan Bahan : Trafo

Lebih terperinci

BAB II PRINSIP DASAR TRANSFORMATOR

BAB II PRINSIP DASAR TRANSFORMATOR BAB II PRINSIP DASAR TRANSFORMATOR 2.1 UMUM Transformator (trafo ) merupakan piranti yang mengubah energi listrik dari suatu level tegangan AC lain melalui gandengan magnet berdasarkan prinsip induksi

Lebih terperinci

Teknik Tenaga Listrik (FTG2J2)

Teknik Tenaga Listrik (FTG2J2) Teknik Tenaga Listrik (FTG2J2) Kuliah 4: Transformator Ahmad Qurthobi, MT. Engineering Physics - Telkom University Daftar Isi Transformator Ideal Induksi Tegangan pada Sebuah Coil Tegangan Terapan dan

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH

STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH (Aplikasi pada PLTU Labuhan Angin, Sibolga) Yohannes Anugrah, Eddy Warman Konsentrasi Teknik Energi

Lebih terperinci

BAB III METODE PENENTUAN VECTOR GROUP

BAB III METODE PENENTUAN VECTOR GROUP BAB III METODE PENENTUAN VECTOR GROUP 3.1 Pengujian Vector Group Transformator Salah satu pengujian yang dilakukan pada transformator adalah pengujian vector group transformator. Pengujian vector group

Lebih terperinci

BAB IV PEMBAHASAN KONSTRUKSI CORE PADA TRANSFORMATOR. DISTRIBUSI 20/0,4 kv, 315 kva. (Aplikasi Di PT Trafoindo Prima Perkasa)

BAB IV PEMBAHASAN KONSTRUKSI CORE PADA TRANSFORMATOR. DISTRIBUSI 20/0,4 kv, 315 kva. (Aplikasi Di PT Trafoindo Prima Perkasa) BAB IV PEMBAHASAN KONSTRUKSI CORE PADA TRANSFORMATOR DISTRIBUSI 20/0,4 kv, 315 kva (Aplikasi Di PT Trafoindo Prima Perkasa) 4.1. Penentuan dimensi core Transformator Distribusi 20 / 0,4 kv dengan Konstruksi

Lebih terperinci

BAB III DEFINISI DAN PRINSIP KERJA TRAFO ARUS (CT)

BAB III DEFINISI DAN PRINSIP KERJA TRAFO ARUS (CT) BAB III DEFINISI DAN PRINSIP KERJA TRAFO ARUS (CT) 3.1 Definisi Trafo Arus 3.1.1 Definisi dan Fungsi Trafo Arus (Current Transformator) yaitu peralatan yang digunakan untuk melakukan pengukuran besaran

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 15 BAB III LANDASAN TEORI Tenaga listrik dibangkitkan dalam Pusat-pusat Listrik seperti PLTA, PLTU, PLTG, PLTP dan PLTD kemudian disalurkan melalui saluran transmisi yang sebelumnya terlebih dahulu dinaikkan

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

IEC STANDAR LABORATORIUM SEBAGAI STANDAR UJI TRAFO DAYA TEGANGAN MENENGAH

IEC STANDAR LABORATORIUM SEBAGAI STANDAR UJI TRAFO DAYA TEGANGAN MENENGAH Marsud Hamid, IEC Standar 60076 Laboratorium Sebagai Standar Uji Trafo Daya IEC STANDAR 60076 LABORATORIUM SEBAGAI STANDAR UJI TRAFO DAYA TEGANGAN MENENGAH Marsud Hamid Jurusan Pendidikan Teknik Elektro

Lebih terperinci

BAB III METODE EVALUASI PENGUJIAN BELITAN TRAFO DISTRIBUSI

BAB III METODE EVALUASI PENGUJIAN BELITAN TRAFO DISTRIBUSI BAB III METODE EVALUASI PENGUJIAN BELITAN TRAFO DISTRIBUSI 3.1 Analisa Kondisi Trafo Dalam Keadaan Offline Analisa offline merupakan analisa yang diperlukan untuk mengetahui kondisi kesehatan trafo distribusi

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang lain, melalui suatu gandengan magnet dan berdasarkan prinsip induksi

BAB II TINJAUAN PUSTAKA. yang lain, melalui suatu gandengan magnet dan berdasarkan prinsip induksi BAB II TINJAUAN PUSTAKA 2.1 Transformator Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain,

Lebih terperinci

PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20

PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20 Laporan Penelitian PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20 Oleh : Ir. Leonardus Siregar, MT Dosen Tetap Fakultas Teknik LEMBAGA PENELITIAN UNIVERSITAS HKABP NOMMENSEN MEDAN 2013 Kata Pengantar Puji

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

Kerja Praktek PT.Petrokimia Gresik 1

Kerja Praktek PT.Petrokimia Gresik 1 Makalah seminar kerja praktek PEMELIHARAAN TRANSFORMATOR DAYA GARDU INDUK 150 KV PT.PETROKIMIA GRESIK Joko Susilo, Abdul Syakur Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Jl. Prof.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Transformator Transformator atau transformer atau trafo adalah suatu peralatan listrik elektromagnetik statis yang berfungsi untuk memindah dan mengubah energi listrik

Lebih terperinci

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder TRANSFORMATOR PENGERTIAN TRANSFORMATOR : Suatu alat untuk memindahkan daya listrik arus bolak-balik dari suatu rangkaian ke rangkaian lainnya secara induksi elektromagnetik (lewat mutual induktansi) Bagian-bagian

Lebih terperinci

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING 2.1 Jenis Gangguan Hubung Singkat Ada beberapa jenis gangguan hubung singkat dalam sistem tenaga listrik antara lain hubung singkat 3 phasa,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain, melalui

Lebih terperinci

TRANSFORMATOR. 1. Pengertian Transformator

TRANSFORMATOR. 1. Pengertian Transformator TRANSFORMATOR 1. Pengertian Transformator Transformator atau transformer atau trafo adalah komponen elektromagnet yang dapat mengubah taraf suatu tegangan AC ke taraf yang lain. Selain itu tranformator

Lebih terperinci

atau pengaman pada pelanggan.

atau pengaman pada pelanggan. 16 b. Jaringan Distribusi Sekunder Jaringan distribusi sekunder terletak pada sisi sekunder trafo distribusi, yaitu antara titik sekunder dengan titik cabang menuju beban (Lihat Gambar 2.1). Sistem distribusi

Lebih terperinci

BAB III PENGAMBILAN DATA

BAB III PENGAMBILAN DATA BAB III PENGAMBILAN DATA Didalam pengambilan data pada skripsi ini harus di perhatikan beberapa hal sebagai berikut : 3.1 PEMILIHAN TRANSFORMATOR Pemilihan transformator kapasitas trafo distribusi berdasarkan

Lebih terperinci

Makalah Seminar Kerja Praktek PEMELIHARAAN TRANSFORMATOR TENAGA PADA PLTU TAMBAK LOROK UNIT III

Makalah Seminar Kerja Praktek PEMELIHARAAN TRANSFORMATOR TENAGA PADA PLTU TAMBAK LOROK UNIT III Makalah Seminar Kerja Praktek PEMELIHARAAN TRANSFORMATOR TENAGA PADA PLTU TAMBAK LOROK UNIT III, Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Jl. Prof. Sudharto, Tembalang, Semarang

Lebih terperinci

PEMAKAIAN DAN PEMELIHARAAN TRANSFORMATOR ARUS (CURRENT TRANSFORMER / CT)

PEMAKAIAN DAN PEMELIHARAAN TRANSFORMATOR ARUS (CURRENT TRANSFORMER / CT) PEMAKAIAN DAN PEMELIHARAAN TRANSFORMATOR ARUS (CURRENT TRANSFORMER / CT) Oleh : Agus Sugiharto Abstrak Seiring dengan berkembangnya dunia industri di Indonesia serta bertambah padatnya aktivitas masyarakat,

Lebih terperinci

APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR 2012 APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR

APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR 2012 APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR OLEH : KOMANG SUARDIKA (0913021034) JURUSAN PENDIDIKAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN GANESHA TAHUN AJARAN 2012 BAB

Lebih terperinci

Perbaikan Tegangan Sisi Sekunder Transformator Daya 150/20KV di Gardu Induk Ungaran

Perbaikan Tegangan Sisi Sekunder Transformator Daya 150/20KV di Gardu Induk Ungaran Perbaikan Tegangan Sisi Sekunder Transformator Daya 150/20KV di Gardu Induk Ungaran Alvian Novia Rizki Ahmad, Sri Sartono Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang, Indonesia

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolak-balik dari satu level ke

Lebih terperinci

Makalah Seminar Kerja Praktek OFFLINE PREVENTIVE MAINTENANCE TRANSFORMATOR TENAGA PADA PLTGU TAMBAK LOROK BLOK 1

Makalah Seminar Kerja Praktek OFFLINE PREVENTIVE MAINTENANCE TRANSFORMATOR TENAGA PADA PLTGU TAMBAK LOROK BLOK 1 Makalah Seminar Kerja Praktek OFFLINE PREVENTIVE MAINTENANCE TRANSFORMATOR TENAGA PADA PLTGU TAMBAK LOROK BLOK 1 1 Mahasiswa dan 2 Hafrizal Lazuardi Susiawan. 1, Karnoto, ST, MT. 2 Dosen Jurusan Teknik

Lebih terperinci

OPTIMALISASI KUALITAS TEGANGAN TRANSFORMATOR DISTRIBUSI UNTUK PELANGGAN PLN BERDASAR PADA WINDING RATIO

OPTIMALISASI KUALITAS TEGANGAN TRANSFORMATOR DISTRIBUSI UNTUK PELANGGAN PLN BERDASAR PADA WINDING RATIO OPTIMALISASI KUALITAS TEGANGAN TRANSFORMATOR DISTRIBUSI UNTUK PELANGGAN PLN BERDASAR PADA WINDING RATIO Muhammad Ade Nugroho, 1410017211121 Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas

Lebih terperinci

III PENGUMPULAN DAN PENGOLAHAN DATA

III PENGUMPULAN DAN PENGOLAHAN DATA III PENGUMPULAN DAN PENGOLAHAN DATA 3.1. Umum Berdasarkan standard operasi PT. PLN (Persero), setiap pelanggan energi listrik dengan daya kontrak di atas 197 kva dilayani melalui jaringan tegangan menengah

Lebih terperinci

PEMELIHARAAN TRANSFORMATOR DAYA PADA GARDU INDUK 150 kv SRONDOL PT. PLN (PERSERO) P3B JAWA BALI REGION JAWA TENGAH DAN DIY UPT SEMARANG

PEMELIHARAAN TRANSFORMATOR DAYA PADA GARDU INDUK 150 kv SRONDOL PT. PLN (PERSERO) P3B JAWA BALI REGION JAWA TENGAH DAN DIY UPT SEMARANG PEMELIHARAAN TRANSFORMATOR DAYA PADA GARDU INDUK 150 kv SRONDOL PT. PLN (PERSERO) P3B JAWA BALI REGION JAWA TENGAH DAN DIY UPT SEMARANG Hadha Alamajibuwono 1, Dr. Ir. Hermawan, DEA 2 1 Mahasiswa dan 2

Lebih terperinci

ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB

ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB 252 Oleh Vigor Zius Muarayadi (41413110039) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Mercu Buana Sistem proteksi jaringan tenaga

Lebih terperinci

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk II. TINJAUAN PUSTAKA A. Transformator Transformator merupakan suatu peralatan listrik yang berfungsi untuk memindahkan dan mengubah tenaga listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya,

Lebih terperinci

BAB III SISTEM PROTEKSI TEGANGAN TINGGI

BAB III SISTEM PROTEKSI TEGANGAN TINGGI BAB III SISTEM PROTEKSI TEGANGAN TINGGI 3.1 Pola Proteksi Gardu Induk Sistem proteksi merupakan bagian yang sangat penting dalam suatu instalasi tenaga listrik, selain untuk melindungi peralatan utama

Lebih terperinci

ANALISA BERBAGAI HUBUNGAN BELITAN TRANSFORMATOR 3 PHASA DALAM KEADAAN BEBAN LEBIH (APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT.

ANALISA BERBAGAI HUBUNGAN BELITAN TRANSFORMATOR 3 PHASA DALAM KEADAAN BEBAN LEBIH (APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT. ANALISA BERBAGAI HUBUNGAN BELITAN TRANSFORMATOR 3 PHASA DALAM KEADAAN BEBAN LEBIH (APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT. USU) Zul Fahmi Dhuha (1), Syamsul Amien (2) Konsentrasi Teknik

Lebih terperinci

PEMELIHARAAN TRAFO ARUS (CT) PADA PADA GARDU INDUK 150 KV PT. PLN (PERSERO) P3B JB REGION JAWA TENGAH DAN DIY UNIT PELAYANAN TRANSMISI SEMARANG

PEMELIHARAAN TRAFO ARUS (CT) PADA PADA GARDU INDUK 150 KV PT. PLN (PERSERO) P3B JB REGION JAWA TENGAH DAN DIY UNIT PELAYANAN TRANSMISI SEMARANG PEMELIHARAAN TRAFO ARUS (CT) PADA PADA GARDU INDUK 150 KV PT. PLN (PERSERO) P3B JB REGION JAWA TENGAH DAN DIY UNIT PELAYANAN TRANSMISI SEMARANG Aditya Teguh Prabowo 1, Agung Warsito 2 1 Mahasiswa dan 2

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA 2.1 UMUM Motor induksi merupakan motor arus bolak-balik yang paling banyak dipakai dalam industri dan rumah tangga. Dikatakan motor induksi karena arus rotor motor ini merupakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Distribusi Tenaga Listrik Sistem tenaga listrik adalah kumpulan atau gabungan dari komponenkomponen atau alat-alat listrik seperti generator, transformator, saluran transmisi,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain, melalui suatu

Lebih terperinci

Mesin Arus Bolak Balik

Mesin Arus Bolak Balik Teknik Elektro-ITS Surabaya share.its.ac.id 1 Mesin Arus Bolak balik TE091403 Institut Teknologi Sepuluh Nopember August, 2012 Teknik Elektro-ITS Surabaya share.its.ac.id ACARA PERKULIAHAN DAN KOMPETENSI

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Suatu sistem tenaga listrik dikatakan ideal jika bentuk gelombang arus yang dihasilkan dan bentuk gelombang tegangan yang disaluran ke konsumen adalah gelombang sinus murni.

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

TRANSFORMATOR ARUS DAN PEMELIHARAAN TRANSFORMATOR ARUS PADA PT. PLN (PERSERO) P3B REGION JAWA TENGAH & DIY UPT SEMARANG GIS 150kV SIMPANG LIMA

TRANSFORMATOR ARUS DAN PEMELIHARAAN TRANSFORMATOR ARUS PADA PT. PLN (PERSERO) P3B REGION JAWA TENGAH & DIY UPT SEMARANG GIS 150kV SIMPANG LIMA TRANSFORMATOR ARUS DAN PEMELIHARAAN TRANSFORMATOR ARUS PADA PT. PLN (PERSERO) P3B REGION JAWA TENGAH & DIY UPT SEMARANG GIS 150kV SIMPANG LIMA Lutfi Lastiko Wibowo. 1, Ir.Agung Warsito, DHET. 2 1 Mahasiswa

Lebih terperinci

BAB III. Tinjauan Pustaka

BAB III. Tinjauan Pustaka BAB III Tinjauan Pustaka 3.1 Pengertian Sistem Distribusi Tenaga Listrik Sistem Distribusi Merupakan Bagian dari sistem tenaga listrik.sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari

Lebih terperinci

BAB IV HASIL DAN ANALISIS. 4.1 Analisa Pengujian Rasio Kumparan / Belitan Trafo Dengan TTR

BAB IV HASIL DAN ANALISIS. 4.1 Analisa Pengujian Rasio Kumparan / Belitan Trafo Dengan TTR BAB IV HASIL DAN ANALISIS 4.1 Analisa Pengujian Rasio Kumparan / Belitan Trafo Dengan TTR Rasio perbandingan belitan trafo distribusi yang masih baik ditunjukkan dengan hasil pengukuran yang masih berada

Lebih terperinci

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti 6 BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN 2.1 Sistem Tenaga Listrik Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti PLTA, PLTU, PLTD, PLTP dan PLTGU kemudian disalurkan

Lebih terperinci

BAB III PENGAMAN PRIMER TRAFO DISTRIBUSI PT. PLN (Persero) AJ GAMBIR

BAB III PENGAMAN PRIMER TRAFO DISTRIBUSI PT. PLN (Persero) AJ GAMBIR BAB III PENGAMAN PRIMER TRAFO DISTRIBUSI PT. PLN (Persero) AJ GAMBIR 3.1 Kondisi Wilayah Berdirinya PLN Distribusi Jakarta Raya dan Tangerang diawali pada tahun 1897, yaitu dengan mulai digarapnya bidang

Lebih terperinci

BAB II TRANSFORMATOR. II.1 UMUM Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan

BAB II TRANSFORMATOR. II.1 UMUM Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan BAB II TRANSFORMATOR II.1 UMUM Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolak-balik dari satu level ke

Lebih terperinci

PEMELIHARAAN ALMARI KONTROL

PEMELIHARAAN ALMARI KONTROL PEMELIHARAAN ALMARI KONTROL Yudi Yantoro,Sabari D3 Teknik Elektro Politeknik Harapan Bersama Jl Dewi Sartika No 71 Tegal Telp/Fax (0283) 352000 ABSTRAK Dilapangan dijumpai juga kasus Almari Kontrol Transformator-Almari

Lebih terperinci

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih BAB II TRASFORMATOR II. UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

Analisis Unjuk Kerja Tiga Unit Inter Bus Transformers 500 MVA 500/150/66 kv di GITET Kediri

Analisis Unjuk Kerja Tiga Unit Inter Bus Transformers 500 MVA 500/150/66 kv di GITET Kediri ELPOSYS Jurnal Sistem Kelistrikan Vol. 03 No.1, ISSN: 2355 9195, E-ISSN: 2356-0533 Analisis Unjuk Kerja Tiga Unit Inter Bus Transformers 500 MVA 500/150/66 kv di GITET Kediri Aan M. Ilham *a), Rachmat

Lebih terperinci

INSTRUMENT TRANSFORMERS. 4.1 Pendahuluan

INSTRUMENT TRANSFORMERS. 4.1 Pendahuluan MINGGU IV Instrument Transformers Introduction Current transformers Measuring and protective current transformers Selecting core material Connection of a CT INSTRUMENT TRANSFORMERS 4.1 Pendahuluan Instrumen

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1. Umum Sistem distribusi listrik merupakan bagian dari sistem tenaga listrik. Sistem distribusi listrik bertujuan menyalurkan tenaga listrik dari sumber daya listrik atau pembangkit

Lebih terperinci

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA BAB III 3 METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian ini akan dilakukan di Laboratorium Konversi Energi Listrik, Departemen Teknik Elektro, Fakultas Teknik,. Penelitian dilaksanakan selama dua bulan

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Isolasi memiliki peranan penting pada sistem tenaga listrik. Isolasi melindungi sistem tenaga listrik dari gangguan seperti lompatan listrik atau percikan, isolasi

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Pada dasarnya, definisi dari sebuah sistem tenaga listrik mencakup tiga bagian penting, yaitu pembangkitan, transmisi, dan distribusi, seperti dapat terlihat

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

ENERGY IS OUR BUSINESS. Transformer Test. Himawan Samodra Pauwels Trafo Asia Temperature Rise TRANSFORMING YOUR NEEDS INTO SOLUTIONS

ENERGY IS OUR BUSINESS. Transformer Test. Himawan Samodra Pauwels Trafo Asia Temperature Rise TRANSFORMING YOUR NEEDS INTO SOLUTIONS ENERGY IS OUR BUSINESS Transformer Test Himawan Samodra Pauwels Trafo Asia 1 General Tujuan Transformer Test : Untuk memverifikasi seberapa jauh transformer memenuhi requirement tertentu (loading capability,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformator Transformator atau trafo adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB LANDASAN TEOR. Gangguan Pada Sistem Tenaga Listrik Gangguan dapat mengakibatkan kerusakan yang cukup besar pada sistem tenaga listrik. Banyak sekali studi, pengembangan alat dan desain sistem perlindungan

Lebih terperinci

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK 3.1 Tahapan Perencanaan Instalasi Sistem Tenaga Listrik Tahapan dalam perencanaan instalasi sistem tenaga listrik pada sebuah bangunan kantor dibagi

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

ANALISIS PENGUKURAN DAN PEMELIHARAAN TRANSFORMATOR DAYA PADA GARDU INDUK 150 kv SRONDOL

ANALISIS PENGUKURAN DAN PEMELIHARAAN TRANSFORMATOR DAYA PADA GARDU INDUK 150 kv SRONDOL Makalah Seminar Kerja Praktek ANALISIS PENGUKURAN DAN PEMELIHARAAN TRANSFORMATOR DAYA PADA GARDU INDUK 150 kv SRONDOL Gunara Fery Fahnani. 1, Karnoto ST, MT. 2 1 Mahasiswa dan 2 Dosen Jurusan Teknik Elektro,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

BAB I DASAR TEORI I. TRANSFORMATOR

BAB I DASAR TEORI I. TRANSFORMATOR BAB I DASAR TEORI I. TRANSFORMATOR Transformator atau trafo adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang

Lebih terperinci

BAB IV RELAY PROTEKSI GENERATOR BLOK 2 UNIT GT 2.1 PT. PEMBANGKITAN JAWA-BALI (PJB) MUARA KARANG

BAB IV RELAY PROTEKSI GENERATOR BLOK 2 UNIT GT 2.1 PT. PEMBANGKITAN JAWA-BALI (PJB) MUARA KARANG BAB IV RELAY PROTEKSI GENERATOR BLOK 2 UNIT GT 2.1 PT. PEMBANGKITAN JAWA-BALI (PJB) MUARA KARANG 4.1 Tinjauan Umum Pada dasarnya proteksi bertujuan untuk mengisolir gangguan yang terjadi sehingga tidak

Lebih terperinci

BAB III. Transformator

BAB III. Transformator BAB III Transformator Transformator merupakan suatu alat listrik yang mengubah tegangan arus bolak-balik dari satu tingkat ke tingkat yang lain melalui suatu gandengan magnet dan berdasarkan prinsipprinsip

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

ABSTRAK. Kata kunci : Arus Transien, Ketahanan Transformator, Jenis Beban. ABSTRACT. Keywords : Transient Current, Transformer withstand, load type.

ABSTRAK. Kata kunci : Arus Transien, Ketahanan Transformator, Jenis Beban. ABSTRACT. Keywords : Transient Current, Transformer withstand, load type. Jurnal Reka Elkomika 2337-439X Januari 2013 Jurnal Online Institut Teknologi Nasional Teknik Elektro Itenas Vol.1 No.1 Analisis Arus Transien Transformator Setelah Penyambungan Beban Gedung Serbaguna PT

Lebih terperinci

BAB I PENDAHULUAN. energy listrik terutama bagi kalangan industri, bisnis, pemerintah dan masyarakat umum.

BAB I PENDAHULUAN. energy listrik terutama bagi kalangan industri, bisnis, pemerintah dan masyarakat umum. BAB I PENDAHULUAN 1.1 Latar Belakang Di setiap Negara, energy listrik sudah menjadi salah satu kebutuhan pokok bagi kehidupan umat manusia, termasuk di Indonesia. Banyak manfaat yang di dapat dari energy

Lebih terperinci

BAB III TAPPING DAN TAP CHANGER 3.1 Penentuan Jumlah Tap Pusat-pusat pembangkit tenaga listrik berada jauh dari pusat beban, hal ini mengakibatkan kerugian yang cukup besar dalam penyaluran daya listrik.

Lebih terperinci

Transformator (trafo)

Transformator (trafo) Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa

Lebih terperinci

D. Relay Arus Lebih Berarah E. Koordinasi Proteksi Distribusi Tenaga Listrik BAB V PENUTUP A. KESIMPULAN B. SARAN...

D. Relay Arus Lebih Berarah E. Koordinasi Proteksi Distribusi Tenaga Listrik BAB V PENUTUP A. KESIMPULAN B. SARAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... v MOTTO... vi HALAMAN PERSEMBAHAN... vii KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR GAMBAR... xii DAFTAR TABEL... xiv INTISARI...

Lebih terperinci

BAB I PENDAHULUAN. atau penurunan tegangan yang diakibatkan pusat-pusat pembangkit tenaga listrik

BAB I PENDAHULUAN. atau penurunan tegangan yang diakibatkan pusat-pusat pembangkit tenaga listrik BAB I PENDAHULUAN I.1. Latar Belakang Salah satu masalah yang terdapat dalam sistim tenaga listrik adalah perubahan atau penurunan tegangan yang diakibatkan pusat-pusat pembangkit tenaga listrik berada

Lebih terperinci

CURRENT TRANSFORMER DAN POTENSIAL TRANSFORMER

CURRENT TRANSFORMER DAN POTENSIAL TRANSFORMER CURRENT TRANSFORMER DAN POTENSIAL TRANSFORMER Apa yang dilakukan oleh Trafo Pengukuran? - Mengukur Arus dan Tegangan di Transmisi Tegangan Tinggi dan Switchgears dalam keadaan normal maupun gangguan -

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dijelaskan tentang gangguan pada sistem tenaga listrik, sistem proteksi tenaga listrik, dan metoda proteksi pada transformator daya. 2.1 Gangguan dalam Sistem Tenaga

Lebih terperinci

ANALISA PEMILIHAN TRAFO DISTRIBUSI BERDASARKAN BIAYA RUGI-RUGI DAYA DENGAN METODE NILAI TAHUNAN

ANALISA PEMILIHAN TRAFO DISTRIBUSI BERDASARKAN BIAYA RUGI-RUGI DAYA DENGAN METODE NILAI TAHUNAN ANALISA PEMILIHAN TRAFO DISTRIBUSI BERDASARKAN BIAYA RUGI-RUGI DAYA DENGAN METODE NILAI TAHUNAN Rizky Ferdinan Eddy Warman Konsentrasi Teknik Energi Listrik Departemen Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

BAB IV OPTIMALISASI BEBAN PADA GARDU TRAFO DISTRIBUSI

BAB IV OPTIMALISASI BEBAN PADA GARDU TRAFO DISTRIBUSI BAB IV OPTIMALISASI BEBAN PADA GARDU TRAFO DISTRIBUSI 4.1 UMUM Proses distribusi adalah kegiatan penyaluran dan membagi energi listrik dari pembangkit ke tingkat konsumen. Jika proses distribusi buruk

Lebih terperinci

REKONDISI TRANSFORMATOR UNTUK MENGATASI MENURUNNYA KEMAMPUAN ISOLASI PADA TRANSFORMATOR DISTRIBUSI 20 kv

REKONDISI TRANSFORMATOR UNTUK MENGATASI MENURUNNYA KEMAMPUAN ISOLASI PADA TRANSFORMATOR DISTRIBUSI 20 kv REKONDISI TRANSFORMATOR UNTUK MENGATASI MENURUNNYA KEMAMPUAN ISOLASI PADA TRANSFORMATOR DISTRIBUSI 20 kv (Transformer Recondition in order to overcome Reduction of Insulation Performance in Distribution

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

Latar Belakang Masalah. Perumusan Masalah

Latar Belakang Masalah. Perumusan Masalah pendahuluan Latar Belakang Masalah PT. PLN (Persero) sebagai satu satunya perusahaan listrik milik negara Predictive Maintenance Transformator sebagai peralatan penting penyaluran listrik Perumusan Masalah

Lebih terperinci

PEMELIHARAAN GENERATOR PADA PLTA JELOK UBP MRICA

PEMELIHARAAN GENERATOR PADA PLTA JELOK UBP MRICA Makalah Seminar Kerja Praktek PEMELIHARAAN GENERATOR PADA PLTA JELOK UBP MRICA Herda Dwi Cahyanova (L2F 008 132) Email: cahyanovaht@yahoo.com Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

Lebih terperinci

BAB 2 DASAR TEORI. lain, melalui suatu gandengan magnet dan berdasarkan prinsip induksi

BAB 2 DASAR TEORI. lain, melalui suatu gandengan magnet dan berdasarkan prinsip induksi BAB DASAR TEORI. Umum Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian ke rangkaian listrik yang lain, melalui suatu gandengan magnet

Lebih terperinci

STUDI PERENCANAAN PENGGUNAAN PROTEKSI POWER BUS DI PT. LINDE INDONESIA GRESIK

STUDI PERENCANAAN PENGGUNAAN PROTEKSI POWER BUS DI PT. LINDE INDONESIA GRESIK STUDI PERENCANAAN PENGGUNAAN PROTEKSI POWER BUS DI PT. LINDE INDONESIA GRESIK Nama : Sandi Agusta Jiwantoro NRP : 2210105021 Pembimbing : 1. Dr. Ir. Margo Pujiantara, MT. 2. Dr. Dedet Candra Riawan, ST.

Lebih terperinci

PEMELIHARAAN PENTANAHAN PADA PENTANAHAN ABSTRAK

PEMELIHARAAN PENTANAHAN PADA PENTANAHAN ABSTRAK PEMELIHARAAN PENTANAHAN PADA PENTANAHAN Soehardi, Sabari D3 Teknik Elektro Politeknik Harapan Bersama Jl Dewi Sartika No 71 Tegal Telp/Fax (0283) 352000 ABSTRAK Dilapangan dijumpai juga kasus Pentanahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Dasar-Dasar Sistem Proteksi 1 Sistem proteksi adalah pengaman listrik pada sistem tenaga listrik yang terpasang pada : sistem distribusi tenaga listrik, trafo tenaga, transmisi

Lebih terperinci

BAB II TRANSFORMATOR. Transformator merupakan suatu alat listrik statis yang mampu mengubah

BAB II TRANSFORMATOR. Transformator merupakan suatu alat listrik statis yang mampu mengubah BAB II TRANSFORMATOR II. UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN. fasa dari segi sistim kelistrikannya maka dilakukan pengamatan langsung

BAB IV ANALISA DAN PERHITUNGAN. fasa dari segi sistim kelistrikannya maka dilakukan pengamatan langsung BAB IV ANALISA DAN PERHITUNGAN 4.1 Umum Untuk menganalisa kegagalan pengasutan pada motor induksi 3 fasa dari segi sistim kelistrikannya maka dilakukan pengamatan langsung ( visual ) terhadap motor induksi

Lebih terperinci

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

PEMELIHARAAN JARINGAN TEGANGAN RENDAH. G. Suprijono. D3 Teknik Elektro Politeknik Harapan Bersama Jl Dewi Sartika No 71 Tegal Telp/Fax (0283)

PEMELIHARAAN JARINGAN TEGANGAN RENDAH. G. Suprijono. D3 Teknik Elektro Politeknik Harapan Bersama Jl Dewi Sartika No 71 Tegal Telp/Fax (0283) PEMELIHARAAN JARINGAN TEGANGAN RENDAH G. Suprijono D3 Teknik Elektro Politeknik Harapan Bersama Jl Dewi Sartika No 71 Tegal Telp/Fax (0283) 352000 ABSTRAK Dilapangan dijumpai juga kasus Jaringan Tegangan

Lebih terperinci

Proses Pembangkitan Tegangan Tinggi AC

Proses Pembangkitan Tegangan Tinggi AC Proses Pembangkitan Tegangan Tinggi AC Bentuk tegangan tinggi yang dibangkitkan dapat berupa: Tegangan AC, DC (konstan) atau Impuls. Tegangan AC dan DC digunakan untuk transmisi daya listrik, juga dipakai

Lebih terperinci