NOTASI ILMIAH DAN ANGKA PENTING

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "NOTASI ILMIAH DAN ANGKA PENTING"

Transkripsi

1 NOTASI ILMIAH DAN ANGKA PENTING

2 Apa itu notasi ilmiah? Apa itu angka penting?

3 Dalam fisika, sering dijumapi bilangan yang sangat kecil atau sangat besar. Misalnya jari-jari atom hidrogen 0, m dan jari-jari matahari m. Pernahkah kalian melakukan kegiatan pengambilan data? Apakah hasil pengukuran dapat memperoleh nilai yang tepat? Proses pengukuran banyak sekali terjadi kesalahan. Untuk memuat semua keadaan itu maka pada hasil pengukuran dikenal angka pasti dan angka taksiran.

4 Indikator Pencapaian Kompetensi Menjelaskan konsep notasi ilmiah Menuliskan operasi bilangan dengan notasi ilmiah Menjelaskan konsep angka penting Menuliskan operasi bilangan dengan angka penting

5 Permasalahan Pada suatu kegiatan praktikum fisika, Ayu dan Eka mendapat tugas mengukur panjang potongan kayu menggunakan mistar. Diperoleh hasil sebagai berikut. Ayu mendapatkan hasil 15,65 cm sedangkan Eka mendapatkan hasil 15,6 cm. Berdasarkan hasil tersebut maka hasil pengukuran siapa yang paling tepat? Manakah dari hasil pengukuran tersebut yang merupakan angka pasti dan angka taksiran? Bagaimana cara menentukan angka penting pada pengukuran tersebut?

6 Permasalahan Pada hari Senin Made mendapatkan pelajaran fisika dengan materi tata surya. Made disuruh oleh guru untuk menyebutkan massa planet venus yang massanya sangat besar yaitu kg. Bagaimana cara menyederhanakan bilangan tersebut agar Made dapat lebih mudah membacakannya?

7 Notasi Ilmiah Notasi ilmiah adalah penulisan bilangan secara ilmiah Dalam notasi ilmiah, kita menuliskan bilangan sebagai hasil kali bilangan a dengan bilangan 10 berpangkat, yang disebut orde.

8

9 Contoh Soal Nyatakan dalam notasi ilmiah: (a) 927,4 m; (b) 0, kg; (c) 1002 m3.

10 Angka Penting Hasil pengukuran ketebalan lembaran kertas adalah 1,3 mm bila menggunakan jangka sorong, maka boleh jadi hasilnya adalah 1,28 mm bila menggunakan mikrometer sekrup. Angka-angka tersebut ada yang pasti dan ada yang taksiran. Dalam pengukuran pertama, 1 adalah angka pasti dan 3 adalah angka taksiran. Sedangkan pada pengukuran kedua, 1 adalah angka pasti, dan 2 dan 8 adalah angka taksiran. Angka-angka hasil pengukuran tersebut, baik angka yang pasti maupun angka taksiran disebut angka penting.

11 Aturan Angka Penting Semua angka bukan nol adalah angka penting. Hasil pengukuran 78,51 cm dan 56,5 g berturut-turut mempunyai 4 angka penting dan 3 angka penting. Angka nol yang terletak di antara dua angka selain nol adalah angka penting. Hasil pengukuran 205 kg dan 2,003 cm berturut-turut mempunyai 3 angka penting dan 4 angka penting.

12 Aturan Angka Penting Untuk bilangan desimal yang lebih kecil daripada satu, angka nol yang terletak di sebelah kiri angka bukan nol, baik di sebelah kiri maupun sebelah kanan tanda koma (desimal), tidak termasuk angka penting. Hasil pengukuran 0,51 cm dan 0,0215 g berturut-turut mempunyai 2 angka penting dan 3 angka penting. Deretan angka nol yang terletak di sebelah kanan angka bukan nol adalah angka penting, kecuali ada penjelasan lain. Penjelasan ini dapat berupa garis bawah pada angka terakhir yang masih dianggap angka penting. Hasil pengukuran kg mempunyai 4 angka penting, mempunyai 3 angka penting, dan mempunyai 2 angka penting.

13 Pembulatan Bilangan Jika angka setelah digit tertentu lebih besar dari 5, angka pada digit tersebut dibulatkan ke atas. Jika angka setelah digit tertentu lebih kecil dari 5, angka pada digit tersebut tidak dibulatkan. Untuk angka setelah digit tertentu sama dengan 5. Jika digit tertentu tersebut ganjil, angka pada digit tersebut dibulatkan ke atas. Jika genap, tidak dibulatkan.

14 Penjumlahan dan Pengurangan Pada operasi penjumlahan dan pengurangan angka penting perlu dilakukan pembulatan sedemikian rupa sehingga hasilnya hanya mengadung satu angka taksiran.

15 Perkalian dan Pembagian Pada operasi perkalian dan pembagian angka penting perlu dilakukan pembulatan sedemikian rupa sehingga hasilnya mempunyai angka penting sebanyak angka penting terkecil dari bilangan-bilangan tersebut. Berapakah hasil kali antara 0,281 cm dan 2,4 cm? Berapakah hasil bagi antara dan 82 cm3?

16 Perpangkatan dan Penarikan Akar Pada operasi perpangkatan dan penarikan akar angka penting perlu dilakukan pembulatan sedemikian rupa sehingga mempunyai angka penting sebanyak angka penting yang dipangkatkan atau ditarik akarnya.

17 Materi Vektor Selanjutnya: Penjumlahan

18 TERIMA KASIH

Lampiran 3 LEMBAR KERJA SISWA

Lampiran 3 LEMBAR KERJA SISWA Lampiran 3 LEMBAR KERJA SISWA A. Lembar Kerja Siswa Sub Pokok Bahasan : Notasi Ilmiah dan Angka penting Alokasi Waktu : 80 menit Indikator : a. Menjelaskan konsep notasi ilmiah. b. Menuliskan operasi bilangan

Lebih terperinci

Pensil adalah sesuatu yang diukur panjangnya. Contoh : Panjang pensil 5 cm. 5 adalah nilai besaran panjang dari pensil

Pensil adalah sesuatu yang diukur panjangnya. Contoh : Panjang pensil 5 cm. 5 adalah nilai besaran panjang dari pensil 1. Pengukuran dan Besaran a. Mengukur adalah mebandingkan sesuatu dengan sesuatu yang lain yang yang ditetapkan sebagai satuan Contoh : Mengukur panjang pensil dengan menggunakan penggaris Pensil adalah

Lebih terperinci

MENGUKUR BESARAN DAN MENERAPKAN SATUANNYA

MENGUKUR BESARAN DAN MENERAPKAN SATUANNYA MENGUKUR BESARAN DAN MENERAPKAN SATUANNYA Menggunakan Alat Ukur Yang Tepat untuk Mengukur Suatu Besaran Fisis MUH. ARAFAH, S.Pd. e-mail: muh.arafahsidrap@gmail.com website://arafahtgb.wordpress.com JENIS-JENIS

Lebih terperinci

Angka Penting dan Notasi Ilmiah

Angka Penting dan Notasi Ilmiah Angka Penting dan Notasi Ilmiah Lihat juga: bilangan Kalkulator di bawah ini akan memformat sebuah bilangan sesuai dengan angka penting yang dibutuhkan serta notasi ilmiahnya. Pembulatan akan dilakukan

Lebih terperinci

FISIKA. Kelas X PENGUKURAN K-13. A. BESARAN, SATUAN, DAN DIMENSI a. Besaran

FISIKA. Kelas X PENGUKURAN K-13. A. BESARAN, SATUAN, DAN DIMENSI a. Besaran K-13 Kelas X FISIKA PENGUKURAN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan. 1. Memahami definisi besaran dan jenisnya. 2. Memahami sistem satuan dan dimensi besaran.

Lebih terperinci

BESARAN DAN PENGUKURAN

BESARAN DAN PENGUKURAN A. BESARAN DAN SATUAN adalah sesuatu yang dapat diukur dan dapat dinyatakan dengan bilangan dan satuan. Satuan adalah sesuatu yang menyatakan ukuran suatu besaran yang diikuti bilangan. dalam fisika terbagi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN : Pertama / 2 x 45 menit : Ceramah dan praktik o Menyiapkan instrumen secara tepat serta melakukan pengukuran dengan benar berkaitan dengan besaran pokok panjang, massa, waktu, dengan mempertimbangkan

Lebih terperinci

BILANGAN PECAHAN. A. Pengertian Bilangan Pecahan dan Pecahan Senilai Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai

BILANGAN PECAHAN. A. Pengertian Bilangan Pecahan dan Pecahan Senilai Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai BILANGAN PECAHAN A. Pengertian Bilangan Pecahan dan Pecahan Senilai Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai a b dengan a, b bilangan bulat dan b 0. Bilangan a disebut pembilang dan

Lebih terperinci

Standar Kompetensi 1. Menerapkan Konsep besaran fisika dan pengukurannya

Standar Kompetensi 1. Menerapkan Konsep besaran fisika dan pengukurannya Standar Kompetensi 1. Menerapkan Konsep besaran fisika dan pengukurannya Kompetensi Dasar 1.1. Mengukur besaran fisika (massa, panjang dan waktu) 1.2. Menganalisis besaran - besaran fisika serta satuannya

Lebih terperinci

BESARAN DAN SATUAN DISUSUN OLEH : STEVANUS ARIANTO PENDAHULUAN PENGUKURAN JANGKA SORONG MIKROMETER SEKRUP BESARAN DASAR FAKTOR SI SATUAN DIMENSI

BESARAN DAN SATUAN DISUSUN OLEH : STEVANUS ARIANTO PENDAHULUAN PENGUKURAN JANGKA SORONG MIKROMETER SEKRUP BESARAN DASAR FAKTOR SI SATUAN DIMENSI BESARAN DAN SATUAN DISUSUN OLEH : STEVANUS ARIANTO PENDAHULUAN PENGUKURAN JANGKA SORONG MIKROMETER SEKRUP CONTOH SOAL CONTOH SOAL CARA ANALITIS BESARAN DASAR FAKTOR SI SATUAN DIMENSI ANGKA PENTING KEGIATAN

Lebih terperinci

1. Hasil pengukuran yang ditunjukkan oleh jangka sorong berikut adalah... Jawab:

1. Hasil pengukuran yang ditunjukkan oleh jangka sorong berikut adalah... Jawab: TUGAS INDIVIDU 1. Hasil pengukuran yang ditunjukkan oleh jangka sorong berikut adalah... Jawab: 2. Panjang sebuah pensil ditunjukkan oleh nonius sebuah jangka sorong seperti gambar samping. Panjang pensil

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

PENGUKURAN BESARAN. x = ½ skala terkecil. Jadi ketelitian atau ketidakpastian pada mistar adalah: x = ½ x 1 mm = 0,5 mm =0,05 cm

PENGUKURAN BESARAN. x = ½ skala terkecil. Jadi ketelitian atau ketidakpastian pada mistar adalah: x = ½ x 1 mm = 0,5 mm =0,05 cm PENGUKURAN BESARAN A. Pengertian Mengukur Mengukur adalahmembandingkan suatu besaran dengan besaran lain yang dijadikan standar satuan. Misalnya kita mengukur panjang benda, dan ternyata panjang benda

Lebih terperinci

BAB I BESARAN DAN SATUAN

BAB I BESARAN DAN SATUAN BAB I BESARAN DAN SATUAN A. STANDAR KOMPETENSI :. Menerapkan konsep besaran fisika, menuliskan dan menyatakannya dalam satuan dengan baik dan benar (meliputi lambang, nilai dan satuan). B. Kompetensi Dasar

Lebih terperinci

Kelas 10 Fisika BAB 1 Pengkuran dan Besaran

Kelas 10 Fisika BAB 1 Pengkuran dan Besaran BAB 1 Pengkuran dan Besaran Ringkasan Materi A. Besaran Besaran adalah suatu pernyataan yang mempunyai ukuran dan satuan. Secara garis besar, besaran dalam fisika dibagi menjadi dua bagian, yaitu: besaran

Lebih terperinci

Lembar Kegiatan Siswa

Lembar Kegiatan Siswa Lembar Kegiatan Siswa Tingkat Satuan Pendidikan : SMA Negeri Jakarta Kelas : X -. Kelompok : Anggota :.......... 6.. Waktu praktikum :.,.. A. Judul Praktikum : Pengukuran panjang B. Tujuan Praktikum :.

Lebih terperinci

Pentalogy BIOLOGI SMA

Pentalogy BIOLOGI SMA GENTA GROUP in PLAY STORE CBT UN SMA IPA Buku ini dilengkapi aplikasi CBT UN SMA IPA android yang dapat di-download di play store dengan kata kunci genta group atau gunakan qr-code di bawah. Kode Aktivasi

Lebih terperinci

Paket 2 PENGUKURAN. Pendahuluan

Paket 2 PENGUKURAN. Pendahuluan Paket 2 PENGUKURAN Pendahuluan Fokus pada paket ini adalah pengukuran. Pembahasan tentang pengukuran ini merupakan bahasan kelanjutan dari paket sebelumnya yaitu besaran dan satuan. Paket ini akan menguraikan

Lebih terperinci

Bentuk Pangkat, Akar dan Logaritma

Bentuk Pangkat, Akar dan Logaritma BAB 1 Bentuk Pangkat, Akar dan Logaritma Penggunaan bentuk pangkat, akar, dan logaritma banyak dijumpai di pelajaran lain, misalnya fisika, kimia, biologi, dan lain-lain. Dalam fisika, logaritma dapat

Lebih terperinci

Pengantar Ilmu Kimia

Pengantar Ilmu Kimia Bab1 Pengantar Ilmu Kimia Kimia : Ilmu Pengetahuan bagi Abad 21 Kesehatan dan Pengobatan Sistem sanitasi Operasi dengan anestesi Vaksin dan antibiotik Energi dan Lingkungan Energi Fosil Energi Surya Energi

Lebih terperinci

1. Bilangan Bulat Bilangan bulat adalah bilangan bukan pecahan yang terdiri dari bilangan :

1. Bilangan Bulat Bilangan bulat adalah bilangan bukan pecahan yang terdiri dari bilangan : BAB I BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan bukan pecahan yang terdiri dari bilangan : Bulat positif (,,, 4, 5, ) Nol : 0 Bulat Negatif (,-5,-4,-,-,-) Himpunan Bilangan bulat A = {, -4,

Lebih terperinci

BAB 5 Bilangan Berpangkat dan Bentuk Akar

BAB 5 Bilangan Berpangkat dan Bentuk Akar BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi

Lebih terperinci

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal:

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal: Solusi Pengayaan Matematika Edisi 4 April Pekan Ke-, 006 Nomor Soal: 3-40 3. Manakah yang paling besar di antara bilangan-bilangan 0 9 b, 5 c, 0 d 5, dan 0 e 4 3? A. e B. d C. c D. b E. a Solusi: [E] 5

Lebih terperinci

Pengukuran Besaran Fisis

Pengukuran Besaran Fisis Bab 1 Pengukuran Besaran Fisis Kompetensi Umum: Mahasiswa mampu melakukan pengukuran dan perhitungan serta menggambarkan besaran fisis dengan metode dan notasi ilmiah Kompetensi Khusus: 1. Mahasiswa mampu

Lebih terperinci

ANALISIS PENGUKURAN. Gambar 1 Pengukuran dan ralat: g = (9.801 ± 0.002) m/s 2

ANALISIS PENGUKURAN. Gambar 1 Pengukuran dan ralat: g = (9.801 ± 0.002) m/s 2 1 ANALISIS PENGUKURAN Ralat (Uncertainties), Perambatan ralat (Propagation of Error), Pencocokan Kuadrat tekecil (Least Square Fitting), dan Analisis Grafik 1. Pengukuran 1.1 Ralat dalam Pengukuran Dalam

Lebih terperinci

pangkatnya dari bilangan 10 yang dipangkatkan ( 1

pangkatnya dari bilangan 10 yang dipangkatkan ( 1 Desimal A. Pendahuluan Desimal dapat digunakan untuk menyatakan bilangan yang sangat besarataupun bilangan yang sangat kecil, yang tidak dapat dinyatakan dengan bilangan bulat ataupun rasional. Misalnya

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

BAB II PENGUKURAN DASAR

BAB II PENGUKURAN DASAR Laporan Praktikum Fisika Dasar 3 BAB II PENGUKURAN DASAR 2.1 MAKSUD DAN TUJUAN 1. Dapat melakukan pengukuran terhadap besaran dasar : panjang, massa, waktu. 2. Dapat melakukan pengukuran terhadap besaran

Lebih terperinci

Bab 2. Relasi dan Fungsi. Standar Kompetensi

Bab 2. Relasi dan Fungsi. Standar Kompetensi Bab Relasi dan Fungsi Standar Kompetensi. Memahami sifat-sifat operasi hitung bilangan dan penggunaanya dalam pemecahan masalah pemecahan masalah. Kompetensi Dasar. Melakukan operasi hitung bilangan pecahan..

Lebih terperinci

Standar Kompetensi 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan masalah

Standar Kompetensi 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan masalah Apa yang akan Anda Pelajari? Bilangan pecahan biasa, campuran, desimal, persen, dan permil Mengubah bentuk pecahan ke bentuk yang lain Operasi hitung tambah, kurang, kali, bagi, dan pangkat dengan melibatkan

Lebih terperinci

Dalam konvensi tersebut dijumpai bahwa suatu bilangan yang tidak disertai indeks berarti bilangan tersebut dinyatakan dalam desimal atau basis-10.

Dalam konvensi tersebut dijumpai bahwa suatu bilangan yang tidak disertai indeks berarti bilangan tersebut dinyatakan dalam desimal atau basis-10. SISTEM BILANGAN Sistem bilangan yang biasa digunakan pada piranti digital adalah sistem-sistem bilangan biner, desimal, dan heksa-desimal. Sistem desimal tidak mudah diterapkan dalam mesin digital. Sistem

Lebih terperinci

Mengukur Besaran dan Menerapkan Satuannya

Mengukur Besaran dan Menerapkan Satuannya STANDAR KOMPETENSI Mengukur Besaran dan Menerapkan Satuannya KOMPETENSI DASAR Menguasai konsep besaran dan satuannya. Menguasai konsep dimensi dan angka penting. Melakukan penjumlahan dan perkalian vektor.

Lebih terperinci

Jangka sorong Kegunaan

Jangka sorong Kegunaan Jangka sorong adalah alat ukur yang ketelitiannya dapat mencapai seperseratus milimeter. Terdiri dari dua bagian, bagian diam dan bagian bergerak. Pembacaan hasil pengukuran sangat bergantung pada keahlian

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 200 BIDANG MATEMATIKA TEKNOLOGI SESI II (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 20 MENIT ============================================================

Lebih terperinci

BAB I BILANGAN BULAT dan BILANGAN PECAHAN

BAB I BILANGAN BULAT dan BILANGAN PECAHAN BAB I BILANGAN BULAT dan BILANGAN PECAHAN A. Bilangan Bulat I. Pengertian Bilangan bulat terdiri atas bilangan bulat positif atau bilangan asli, bilangan nol dan bilangan bulat negatif. Bilangan bulat

Lebih terperinci

Pendahuluan. Angka penting dan Pengolahan data

Pendahuluan. Angka penting dan Pengolahan data Angka penting dan Pengolahan data Pendahuluan Pengamatan merupakan hal yang penting dan biasa dilakukan dalam proses pembelajaran. Seperti ilmu pengetahuan lain, fisika berdasar pada pengamatan eksperimen

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Satuan Pendidikan Mata Pelajaran Kelas / Semester Peminatan Materi Pokok Alokasi Waktu : SMA Negeri 1 Pagak : Fisika : X / Satu : MIA : Besaran dan Satuan : 2 3 JP A. Kompetensi

Lebih terperinci

Beberapa Uji Keterbagian Bilangan Bulat

Beberapa Uji Keterbagian Bilangan Bulat Beberapa Uji Keterbagian Bilangan Bulat Untuk menguji suatu bilangan bulat dapat dibagi (habis dibagi) atau tidak dapat dibagi oleh bilangan bulat lain kita dapat menggunakan kalkulator atau dengan metode

Lebih terperinci

Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian.

Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian. Glosarium A Akar pangkat dua : akar pangkat dua suatu bilangan adalah mencari bilangan dari bilangan itu, dan jika bilangan pokok itu dipangkatkan dua akan sama dengan bilangan semula; akar kuadrat. Asosiatif

Lebih terperinci

BAB II KESALAHAN SISWA MENGGUNAKAN JANGKA SORONG PADA MATERI PENGUKURAN. untuk menyatakan suatu sifat fisis dalam bilangan sebagai hasil

BAB II KESALAHAN SISWA MENGGUNAKAN JANGKA SORONG PADA MATERI PENGUKURAN. untuk menyatakan suatu sifat fisis dalam bilangan sebagai hasil BAB II KESALAHAN SISWA MENGGUNAKAN JANGKA SORONG PADA MATERI PENGUKURAN A. Kesalahan Pengukuran Menurut Soetojo dan Sustini (1993: 1), pengukuran adalah suatu teknik untuk menyatakan suatu sifat fisis

Lebih terperinci

KHAIRUL MUKMIN LUBIS

KHAIRUL MUKMIN LUBIS Barisan dan Deret Eni Sumarminingsih, SSi, MM Elizal A. Barisan Aritmetika Definisi Barisan aritmetik adalah suatu barisan bilangan yang selisih setiap dua suku berturutan selalu merupakan bilangan tetap

Lebih terperinci

Bab. Pengukuran dan Besaran. A. Pengukuran B. Angka Penting C. Besaran dan Satuan. Hasil yang harus Anda capai:

Bab. Pengukuran dan Besaran. A. Pengukuran B. Angka Penting C. Besaran dan Satuan. Hasil yang harus Anda capai: Bab 1 Sumber: Young Scientist, 1994 Melalui pengukuran, para peneliti dapat mengetahui bahwa lebah mampu melihat dengan jelas benda yang ada di permukaan Bumi dari ketinggian 1.600 m. Pengukuran dan Besaran

Lebih terperinci

Mengenal Bilangan Bulat

Mengenal Bilangan Bulat Mengenal Bilangan Bulat Kita sudah mempelajari bilangan-bilangan yang dimulai dari nol sampai tak terhingga. Selama ini yang kita pelajari 0 (nol) adalah bilangan terkecil. Tetapi tahukah kamu bahwa ada

Lebih terperinci

FMIPA FISIKA UNIVERSITAS TANJUNGPURA Page 1

FMIPA FISIKA UNIVERSITAS TANJUNGPURA Page 1 A. Latar Belakang dan Tujuan Fisika adalah ilmu pengetahuan yang berbasis pada pengamatan terhadap gejala alam. Inti dari pengamatan adalah pengukuran. Dengan demikian, fisika adalah ilmu pengetahuan yang

Lebih terperinci

itu menunjukan keadaan obyek sebagaimana adanya, tidak dipengaruhi oleh perasaan pengukur atau suasana sekitar tempat mengukur pada saat itu.

itu menunjukan keadaan obyek sebagaimana adanya, tidak dipengaruhi oleh perasaan pengukur atau suasana sekitar tempat mengukur pada saat itu. PENGUKURAN Sifat-sifat fisis suatu benda dapat dipelajari secara kualitatif dan kuantitatif. Untuk mempelajari sifat dan keadaan benda secara kuantitatif diperlukan pengukuran. Perhatikan gambar berikut

Lebih terperinci

Atau, kita dapat menyusun semua bersebelahan agar menghemat tempat menjadi :

Atau, kita dapat menyusun semua bersebelahan agar menghemat tempat menjadi : Atau, kita dapat menyusun semua bersebelahan agar menghemat tempat menjadi : 3 5 7, 1 2 1 x 24 24 29 232 239 x 10 0 1 x 232 x 0 1 1 3 1 5 0,15 10 357,1 239, 15 10 Contoh : Dengan cara yang sama, selesaikanlah,

Lebih terperinci

Angka Penting. Sumber Gambar : site: gurumuda.files.wordpress.com. Angka Penting

Angka Penting. Sumber Gambar : site: gurumuda.files.wordpress.com. Angka Penting Angka Penting Sumber Gambar : site: gurumuda.files.wordpress.com Angka Penting Angka Penting Angka penting adalah Semua angka yang diperoleh dari hasil pengukuran angka-angka pasti Angka penting terdiri

Lebih terperinci

MGMP Fisika Kabupaten Klaten Media Belajar Mandiri Siswa 1. Berbagai Macam Alat Ukur dalam Kehidupan Sehari - hari

MGMP Fisika Kabupaten Klaten Media Belajar Mandiri Siswa 1. Berbagai Macam Alat Ukur dalam Kehidupan Sehari - hari Kompetensi Dasar 1.1. Bertambah keimanannya dengan menyadari hubungan keteraturan dan kompleksitas alam dan jagat raya terhadap keberan Tuhan yang menciptakannya 1.2. Menyadari Kebesaran Tuhan yang mengatur

Lebih terperinci

BAB I BILANGAN. Skema Bilangan. I. Pengertian. Bilangan Kompleks. Bilangan Genap Bilangan Ganjil Bilangan Prima Bilangan Komposit

BAB I BILANGAN. Skema Bilangan. I. Pengertian. Bilangan Kompleks. Bilangan Genap Bilangan Ganjil Bilangan Prima Bilangan Komposit BAB I BILANGAN Skema Bilangan Bilangan Kompleks Bilangan Real Bilangan Imajiner Bilangan Rasional Bilangan Irasional Bilangan Bulat Bilangan Pecahan Bilangan Cacah Bilangan Bulat Negatif Bilangan Asli

Lebih terperinci

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

Besaran merupakan segala sesuatu yang dapat diukur dan dinyatakan dengan angka, misalnya panjang, massa, waktu, luas, berat, volume, kecepatan, dll.

Besaran merupakan segala sesuatu yang dapat diukur dan dinyatakan dengan angka, misalnya panjang, massa, waktu, luas, berat, volume, kecepatan, dll. Besaran merupakan segala sesuatu yang dapat diukur dan dinyatakan dengan angka, misalnya panjang, massa, waktu, luas, berat, volume, kecepatan, dll. Besaran dibagi menjadi dua yaitu besaran pokok dan besaran

Lebih terperinci

Sifat 1 Untuksebarang bilangan rasional a tak nol dan sebarang bilangan bulat m dan n, berlaku a m. a m = a m + n

Sifat 1 Untuksebarang bilangan rasional a tak nol dan sebarang bilangan bulat m dan n, berlaku a m. a m = a m + n Bilangan Berpangkat Kita ingat kembali bahwa untuk bilangan-bilangan cacah a, m, dan n dengan a 0, berlaku: 1 a m = a a a a (sebanyak m faktor) a m a n = a m + n a 0 = 1, di mana a 0 Notasi-notasi di atas

Lebih terperinci

Pengukuran 2. Modul 1 PENDAHULUAN

Pengukuran 2. Modul 1 PENDAHULUAN Modul 1 Pengukuran 2 Drs. Sutrisno, M.Pd. D PENDAHULUAN alam mata kuliah Fisika Dasar 1 telah dibahas mengenai pengukuran, besaran, satuan, dan dimensi. Pembahasan itu lebih menekankan kepada pengetahuan

Lebih terperinci

ULANGAN UMUM SEMESTER 1

ULANGAN UMUM SEMESTER 1 ULANGAN UMUM SEMESTER A. Berilah tanda silang (x) pada huruf a, b, c, d atau e di depan jawaban yang benar!. Kesalahan instrumen yang disebabkan oleh gerak brown digolongkan sebagai... a. kesalahan relatif

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 1 MEKANIKA (PENGUKURAN DASAR PADA BENDA PADAT)

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 1 MEKANIKA (PENGUKURAN DASAR PADA BENDA PADAT) LAPORAN PRAKTIKUM FISIKA DASAR MODUL 1 MEKANIKA (PENGUKURAN DASAR PADA BENDA PADAT) Nama : Nova Nurfauziawati NPM : 240210100003 Tanggal / jam : 7 Oktober 2010 / 13.00-15.00 Asisten : Dicky Maulana JURUSAN

Lebih terperinci

MATERI : FISIKA KEPERAWATAN. DOSEN PENGAJAR : I WAYAN SUPARDI,S.Si., M.Si., M.MKom

MATERI : FISIKA KEPERAWATAN. DOSEN PENGAJAR : I WAYAN SUPARDI,S.Si., M.Si., M.MKom MATERI : FISIKA KEPERAWATAN DOSEN PENGAJAR : I WAYAN SUPARDI,S.Si., M.Si., M.MKom Fisika Keperawatan Oleh : Nama : I Wayan Supardi, S.Si,M.Si.,M.MKom Alamat : Jl. Perum. Taman Mulia No. 25 Jimbaran Pekerjaan

Lebih terperinci

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan

Lebih terperinci

BAB I. PENGUKURAN. Kompetensi : Mengukur besaran fisika (massa, panjang, dan waktu) Pengalaman Belajar :

BAB I. PENGUKURAN. Kompetensi : Mengukur besaran fisika (massa, panjang, dan waktu) Pengalaman Belajar : BAB I. PENGUKURAN Kompetensi : Mengukur besaran fisika (massa, panjang, dan waktu) Pengalaman Belajar : Memahami peta konsep tentang besaran fisika, Mengenal besaran pokok dan satuan standar besaran pokok

Lebih terperinci

Bab 1 Besaran Fisika dan Satuannya

Bab 1 Besaran Fisika dan Satuannya Bab 1 Besaran Fisika dan Satuannya Ayo Uji Pemahaman Anda 1. (13,35 ± 0,05) cm. (a) (1,670 ± 0,005) cm (b) (6,30 ± 0,005) cm 3. (a) 6,5 + 43 0,01 = (6,930 ± 0,005) mm (b) 4,0 + 11 0,01 = (4,110 ± 0,005)

Lebih terperinci

A. Jangkauan Terbesar

A. Jangkauan Terbesar A. Jangkauan Terbesar Batas Waktu Batas Memori 1 detik 512 MB Pak Chanek baru saja mengadakan ulangan harian pelajaran muatan lokal SDA (Struktur Data dan Algoritma). Ulangan tersebut dilaksanakan serentak

Lebih terperinci

1. Besaran-besaran di bawah ini yang bukan termasuk besaran vektor adalah...

1. Besaran-besaran di bawah ini yang bukan termasuk besaran vektor adalah... Jawaban 1 A 11 C 21 D 31 D 2 D 12 D 22 B 32 C 3 E 13 E 23 C 33 D 4 E 14 B 24 E 34 B 5 C 15 E 25 C 35 B 6 D 16 A 26 D 36 C 7 D 17 B 27 A 37 E 8 B 18 B 28 D 38 B 9 D 19 E 29 E 39 C 10 A 20 B 30 D 40 E 1.

Lebih terperinci

ULANGAN TENGAH SEMESTER 1 TAHUN PELAJARAN 2013/2014 MATA PELAJARAN : FISIKA : LINTAS FISIKA : SENIN, 7 OKTOBER 2013 ;120 MENIT

ULANGAN TENGAH SEMESTER 1 TAHUN PELAJARAN 2013/2014 MATA PELAJARAN : FISIKA : LINTAS FISIKA : SENIN, 7 OKTOBER 2013 ;120 MENIT PEMERINTAH KOTA BALIKPAPAN DINAS PENDIDIKAN SMA NEGERI 5 BALIKPAPAN Jl. Abdi Praja Blok F No. 119 Ring Road Balikpapan Telp.(0542) 878237,878421 Fax.873970 Web-Site : www.sma5balikpapan.sch.id E-mail:tu@sma5balikpapan.sch.id

Lebih terperinci

BAHAN AJAR LEMBAR KERJA SISWA (LKS)

BAHAN AJAR LEMBAR KERJA SISWA (LKS) BAHAN AJAR LEMBAR KERJA SISWA (LKS) A. Pengertian LKS Lembar kerja siswa merupakan salah satu komponen dari perangkat pembelajaran yang bertujuan untuk mengukur kemampuan serta pemahaman siswa terhadap

Lebih terperinci

Pembahasan Soal Gravitasi Newton Fisika SMA Kelas X

Pembahasan Soal Gravitasi Newton Fisika SMA Kelas X Soal Gravitasi Newton Fisika SMA Kelas X http://gurumuda.net Contoh soal hukum gravitasi Newton Pelajari contoh soal hukum Newton tentang gravitasi lalu kerjakan soal hukum Newton tentang gravitasi. 1.

Lebih terperinci

Saat menemui penjumlahan langsung pikirkan hasilnya dengan cepat lalu lakukan penjumlahan untuk setiap jawaban yang diperoleh.

Saat menemui penjumlahan langsung pikirkan hasilnya dengan cepat lalu lakukan penjumlahan untuk setiap jawaban yang diperoleh. TRIK PENJUMLAHAN DENGAN BERPIKIR LANGSUNG HASILNYA Penjumlahan merupakan salah satu dari proses berpikir dan menghapal. Keahlian menjumlahkan secara cepat tidak bisa didapat begitu saja melainkan harus

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Pengertian dan notasi dari it suatu fungsi, f() di suatu nilai = a diberikan secara intuitif berikut. Bila nilai f() mendekati L untuk nilai mendekati a dari arah kanan maka dikatakan

Lebih terperinci

PENILAIAN SIKAP. Aspek Penilaian (1) (2) (3) (4) (5) (6)

PENILAIAN SIKAP. Aspek Penilaian (1) (2) (3) (4) (5) (6) Lampiran PENILAIAN SIKAP A. Lembar Observasi Sikap No. 2.. 4. 5. 6. 7. 8. 9. 0. Nama Siswa Aspek Penilaian () (2) () (4) (5) (6) Jumlah Skor Nilai Huruf B. Rubrik Penilaian Sikap Ilmiah No Aspek Penilaian

Lebih terperinci

Kompetensi Siswa Hakikat Fisika

Kompetensi Siswa Hakikat Fisika MENGUKUR Kompetensi Siswa 1. Menghayati dan mengamalkan ajaran agama yang dianutnya 2. Mengembangkan perilaku (jujur, disiplin, tanggung jawab, peduli, santun, ramah lingkungan, gotong royong, kerjasama,

Lebih terperinci

BESARAN, SATUAN, DIMENSI DAN ANGKA PENTING 1.1

BESARAN, SATUAN, DIMENSI DAN ANGKA PENTING 1.1 BESARAN, SATUAN, DIMENSI DAN ANGKA PENTING 1.1 PENDAHULUAN Fisika : Ilmu pengetahuan yang mempelajari benda-benda di alam, gejala-gejala, kejadian-kejadian alam serta interaksi dari benda-benda di alam.

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN IPA BAB I SATUAN DAN PENGUKURAN

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN IPA BAB I SATUAN DAN PENGUKURAN SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN IPA BAB I SATUAN DAN PENGUKURAN Dr. RAMLAWATI, M.Si. Drs. H. HAMKA L., M.S. SITTI SAENAB, S.Pd., M.Pd. SITTI RAHMA YUNUS, S.Pd., M.Pd. KEMENTERIAN PENDIDIKAN

Lebih terperinci

1. BESARAN 2. DIMENSI 3. ANGKA PENTING 4. NOTASI ILMIAH GURU MATA PELAJARAN FISIKA SMK N 4 PELAYARAN DAN PERIKANAN PAMUJI WASKITO R

1. BESARAN 2. DIMENSI 3. ANGKA PENTING 4. NOTASI ILMIAH GURU MATA PELAJARAN FISIKA SMK N 4 PELAYARAN DAN PERIKANAN PAMUJI WASKITO R BESARAN DAN SATUAN 1. BESARAN 2. DIMENSI 3. ANGKA PENTING 4. NOTASI ILMIAH GURU MATA PELAJARAN FISIKA SMK N 4 PELAYARAN DAN PERIKANAN PAMUJI WASKITO R 1. BESARAN Besaran adalah segala sesuatu yang dapat

Lebih terperinci

Sistem Pengukuran. 1. Benda-benda. di alam. fisika. besaran-besaran. didefinisikan.

Sistem Pengukuran. 1. Benda-benda. di alam. fisika. besaran-besaran. didefinisikan. Sistem Pengukuran Fisika: ilmu yang mempelajari tentang: 1. Benda-benda di alam 2. Gejala / fenomena fisis 3. Kejadian yang berlaku di alam Kajian dalam fisika banyak melibatkan pengukuran besaran-besaran

Lebih terperinci

MAKALAH MIKROMETER SEKRUP Leave a comment

MAKALAH MIKROMETER SEKRUP Leave a comment MAKALAH MIKROMETER SEKRUP Leave a comment 1. I. PENDAHULUAN Fisika adalah ilmu pengetahuan yang didasarkan atas percobaan. Dalam percobaan, pengukuran merupakan salah satu hal yang tidak boleh ditinggalkan.

Lebih terperinci

KELAS 8 NASKAH SOAL OLIMPIADE MATEMATIKA ANAK BANGSA HOTEL MERDEKA, 16 JANUARI 2011

KELAS 8 NASKAH SOAL OLIMPIADE MATEMATIKA ANAK BANGSA HOTEL MERDEKA, 16 JANUARI 2011 NSKH SOL OLIMPIDE MTEMTIK NK NGS HOTEL MERDEK, 6 JNURI 0 KELS 8 Pusat elajar nak angsa Kantor Pusat : Perumahan Taman sri III/74 Madiun Telepon : 035 454 Website : http://www.anak-bangsa.com E-mail : bangbangsasa@yahoo.com

Lebih terperinci

Besaran dan Satuan 1 BESARAN DAN SATUAN.

Besaran dan Satuan 1 BESARAN DAN SATUAN. Besaran dan Satuan 1 BESARAN DAN SATUAN. Fisika adalah ilmu pengetahuan yang mempelajari dan menyelidiki komponen-komponen materi dan interaksi antar komponen tersebut. Contoh : - Bagaimana energi mempengaruhi

Lebih terperinci

MODUL 2 DATA BESARAN LISTRIK & KETIDAKPASTIAN

MODUL 2 DATA BESARAN LISTRIK & KETIDAKPASTIAN MODUL 2 DATA BESARAN LISTRIK & KETIDAKPASTIAN PENDAHULUAN Proses pengukuran dalam elektronika instrumentasi bertujuan untuk memperoleh data-data besaran listrik yang selanjutnya diolah menjadi informasi.

Lebih terperinci

Dari data soal. Pembahasan Data dari soal di atas: r 1 = R r 2 = 2R g 1 = 10 m/s 2 g 2 =...

Dari data soal. Pembahasan Data dari soal di atas: r 1 = R r 2 = 2R g 1 = 10 m/s 2 g 2 =... Soal No. 1 Diketahui percepatan gravitasi di sebuah tempat pada permukaan bumi sebesar 10 m/s 2. Jika R adalah jari-jari bumi, tentukan percepatan gravitasi bumi pada tempat yang berjarak 2R dari pusat

Lebih terperinci

BILANGAN. Kita bisa menggunakan garis bilangan di bawah ini untuk memaknai penjumlahan 3 ditambah 4.

BILANGAN. Kita bisa menggunakan garis bilangan di bawah ini untuk memaknai penjumlahan 3 ditambah 4. BILANGAN A. BILANGAN BULAT Himpunan bilangan bulat adalah himpunan bilangan yang terdiri dari himpunan bilangan positif (bilangan asli), bilangan nol, dan bilangan bulat negatif. Himpunan bilangan bulat

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

Pengukuran Dasar dan Angka Penting

Pengukuran Dasar dan Angka Penting Bab 3 Pengukuran Dasar dan Angka Penting Pada bab ini mahasiswa diharapkan mampu: 1. Menjelaskan definisi dan jenis-jenis pengukuran. 2. Menjelaskan perbedaan antara pengukuran langsung dengan tidak langsung.

Lebih terperinci

OMITS 12. Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 2012 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA

OMITS 12. Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 2012 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA OMITS 2 Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 202 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA Olimpiade? Ya OMITS Petunjuk Pengerjaan Soal Babak Penyisihan Olimpiade

Lebih terperinci

PERTEMUAN 5. Teori Himpunan

PERTEMUAN 5. Teori Himpunan PERTEMUAN 5 Teori Himpunan Teori Himpunan Definisi 7: Himpunan (set) adalah kumpulan objek-objek yang terdfinisi dengan jelas Penyajian Himpunan 1. Enumerasi Enumerasi artinya menuliskan semua elemen (anggota)

Lebih terperinci

MODUL FISIKA. Kelas X. Fisika. SMA Negeri 2 Padalarang MODUL AJAR MANDIRI MATA PELAJARAN FISIKA SMA TERBUKA 1

MODUL FISIKA. Kelas X. Fisika. SMA Negeri 2 Padalarang MODUL AJAR MANDIRI MATA PELAJARAN FISIKA SMA TERBUKA 1 MODUL FISIKA Kelas X Fisika SMA Negeri 2 Padalarang MODUL AJAR MANDIRI MATA PELAJARAN FISIKA SMA TERBUKA 1 KATA PENGANTAR Puji syukur kami panjatkan ke hadirat Tuhan Yang Maha Esa karena atas rahmat dan

Lebih terperinci

KIMIA DASAR I. Dosen : Robby Noor Cahyono, M.Sc.

KIMIA DASAR I. Dosen : Robby Noor Cahyono, M.Sc. KIMIA DASAR I Dosen : Robby Noor Cahyono, M.Sc. PENDAHULUAN Kuliah KIMIA DASAR I SKS (kredit) : 3 sks Status : Wajib Tujuan Pembelajaran Mahasiswa dapat memahami dasar-dasar teori ilmu kimia dan reaksi-reaksi

Lebih terperinci

PR ONLINE MATA UJIAN: FISIKA (KODE A07)

PR ONLINE MATA UJIAN: FISIKA (KODE A07) PR ONLINE MATA UJIAN: FISIKA (KODE A07) 1. Gambar di samping ini menunjukkan hasil pengukuran tebal kertas karton dengan menggunakan mikrometer sekrup. Hasil pengukurannya adalah (A) 4,30 mm. (D) 4,18

Lebih terperinci

Berdasarkan kurikulum yang berlaku MATEMATIKA. Untuk SMP / MTS. Semester gasal. Nama :... Kelas :... Sekolah:...

Berdasarkan kurikulum yang berlaku MATEMATIKA. Untuk SMP / MTS. Semester gasal. Nama :... Kelas :... Sekolah:... Berdasarkan kurikulum yang berlaku MATEMATIKA Untuk SMP / MTS 7 7 Semester gasal Nama :... Kelas :... Sekolah:... Melakukan Operasi Hitung Bilangan Bulat dan Pecahan Standar Kompetensi Kompetensi Dasar

Lebih terperinci

PEMECAHAN MASALAH MATEMATIKA

PEMECAHAN MASALAH MATEMATIKA PEMECAHAN MASALAH MATEMATIKA Oleh: Kusnandi A. Pengantar Masalah dalam matematika adalah suatu persoalan yang siswa sendiri mampu menyelesaikannya tanpa menggunakan cara atau algoritma yang rutin. Maksudnya

Lebih terperinci

KUMPULAN SOAL-SOAL OMITS

KUMPULAN SOAL-SOAL OMITS KUMPULAN SOAL-SOAL OMITS SOAL Babak Penyisihan Olimpiade Matematika ITS 2011 (OMITS 11) Tingkst SMP Se-derajat BAGIAN I.PILIHAN GANDA 1. Berapa banyak faktor positif/pembagi dari 2011? A. 1 B. 2 C. 3 D.

Lebih terperinci

PEMERINTAH KABUPATEN MUARO JAMBI D I N A S P E N D I D I K A N

PEMERINTAH KABUPATEN MUARO JAMBI D I N A S P E N D I D I K A N PEMERINTAH KABUPATEN MUARO JAMBI D I N A S P E N D I D I K A N Alamat : Komplek perkantoran Pemda Muaro Jambi Bukit Cinto Kenang, Sengeti UJIAN SEMESTER GANJIL SEKOLAH MENENGAH ATAS (SMA) TAHUN PELAJARAN

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

SD kelas 4 - MATEMATIKA PECAHAN (K13 REVISI 2016)UJI KOMPETENSI PECAHAN (K13 REVISI 2016)

SD kelas 4 - MATEMATIKA PECAHAN (K13 REVISI 2016)UJI KOMPETENSI PECAHAN (K13 REVISI 2016) 1. Perhatikan gambar berikut! SD kelas 4 - MATEMATIKA PECAHAN (K13 REVISI 2016)UJI KOMPETENSI PECAHAN (K13 REVISI 2016) Berdasarkan gambar berikut, nilai pecahan yang dapat menunjukkan bagian yang diarsir

Lebih terperinci

I. Ulangan Bab 2. Pertanyaan Teori 1. Tentukanlah besar dan arah vektor-vektor berikut : a. V = 3, 1. b. V = 1, 3. c. V = 5, 8.

I. Ulangan Bab 2. Pertanyaan Teori 1. Tentukanlah besar dan arah vektor-vektor berikut : a. V = 3, 1. b. V = 1, 3. c. V = 5, 8. I. Ulangan Bab Pertanaan Teori 1. Tentukanlah besar dan arah vektor-vektor berikut : a. V = 3, 1 b. V = 1, 3 c. V = 5, 8 a. Besar V adalah V 3 1 31 4 Arah V adalah 1 1 tan = 3 30 3 3 b. Besar V adalah

Lebih terperinci

Bilangan Biner. Bentuk umum dari bilangan biner dan bilangan desimal adalah : Biner Desimal

Bilangan Biner. Bentuk umum dari bilangan biner dan bilangan desimal adalah : Biner Desimal Bilangan Biner Sebagai contoh dari bilangan desimal, untuk angka 157: 157 (10) = (1 x 100) + (5 x 10) + (7 x 1) Perhatikan! bilangan desimal ini sering juga disebut basis 10. Hal ini dikarenakan perpangkatan

Lebih terperinci

TEORI KETIDAKPASTIAN PADA PENGUKURAN

TEORI KETIDAKPASTIAN PADA PENGUKURAN I. PENDAHULUAN TEORI KETIDAKPASTIAN PADA PENGUKURAN Di dalam percobaan Fisika hasil-hasil yang diperoleh biasanya tidak dapat diterima begitu saja sebab hasil percobaan tersebut harus dipertanggungjawabkan

Lebih terperinci

ANGKA UKUR. Angka ukur diletakan di tengah-tengah garis ukur. Angka ukur tidak boleh dipisahkan oleh garis gambar. Jadi boleh ditempatkan dipinggir.

ANGKA UKUR. Angka ukur diletakan di tengah-tengah garis ukur. Angka ukur tidak boleh dipisahkan oleh garis gambar. Jadi boleh ditempatkan dipinggir. PEMBERIAN UKURAN ANGKA UKUR Angka ukur diletakan di tengah-tengah garis ukur. Angka ukur tidak boleh dipisahkan oleh garis gambar. Jadi boleh ditempatkan dipinggir. ANGKA UKUR Jika angka ukur ditempatkan

Lebih terperinci

Pengukuran, Besaran, dan Satuan

Pengukuran, Besaran, dan Satuan B a b 1 Pengukuran, Besaran, dan Satuan Sumber: CD Image Pada bab ini, Anda akan diajak untuk dapat menerapkan konsep besaran Fisika dan pengukurannya dengan cara mengukur besaran Fisika, seperti massa,

Lebih terperinci

BAB I PENGUKURAN DAN BESARAN

BAB I PENGUKURAN DAN BESARAN BAB I PENGUKURAN DAN BESARAN STANDAR KOPETENSI Agar dapat menerapkan konsep besaran fisika dan pengukurannya. KOPETENSI DASAR Mengukur besaran-besaran fisika (massa, panjang dan waktu). I. PENDAHULUAN

Lebih terperinci

BAB VI BILANGAN REAL

BAB VI BILANGAN REAL BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul

Lebih terperinci