TRANSFORMASI AFFIN PADA BIDANG

Ukuran: px
Mulai penontonan dengan halaman:

Download "TRANSFORMASI AFFIN PADA BIDANG"

Transkripsi

1 Jurnal Matematika Vol. No. November 03 [ : 8 ] TRANSFORMASI AFFIN PADA BIDANG Gani Gunawan dan Suwanda Program Studi Matematika, Fakultas MIPA, Universitas Islam Bandung Prgram Studi Statistika, Fakultas MIPA, Universitas Islam Bandung ggani07@yahoo.com; wanda_00358@yahoo.co.id Abstrak Menjelaskan sifat objek geometri Euclid secara analitis dan aljabar dalam matematika daat dijelaskan dengan sebuah transformasi. Dalam hal ini transformasi diandang sebagai emetaan bijeksi terhada dirinya sendiri. Masalahnya adalah transformasi yang seerti aa daat diterakan agar objek geometri ada suatu bidang Eucild daat dijelaskan secara analitis dan aljabar sedemikian sehingga beberaa sifat geometri yang ada ada bidang tersebut daat diertahankan. Transformasi affin D adalah sebuah transformasi ada bidang yang daat mengatasi hal itu, di mana transformasi ditentukan oleh sebuah matriks ersegi yang invertible dan sebuah vektor kolom. Transformasi affin bersifat linier, sehingga sifat objek geometris yang ditransformasi adalah invariant. Dalam hal ini transformasi affin memertahankan kesegarisan, kesejajaran, dan erbandingan, namun tidak mengawetkan kesebangunan. Kata kunci : geometri affin, transfomasi, invarian. Pendahuluan Seerti yang telah diketahui bahwa objek titik ada geometri Euclid adalah meruakan unsur terkecil yang membangun sistem matematika geometri tersebut. Oleh karena itu bangun geometri yang terbentuk ada bidang atau ruang dalam geometri ini daat dijelaskan melalui objek titik itu sendiri. Dalam erkembangan selanjutnya sifat objek geometri Euclid ini daat dijelaskan secara analitik dan aljabar. Untuk keerluan menjelaskannya, dierlukan suatu cara matematis yang daat menjabarkannya. Sehingga timbul suatu ermasalahan untuk itu. Pertama, bagaimanakah cara menjelaskan sifat objek geometri Euclid agar daat dijelaskan secara analitik dan aljabar? Kedua, bagaimanakah mengindentifikasi titik ada bidang Euclid dengan sebuah vektor? Ketiga, bagaimanakah mentransformasi ruang titik ada bidang Euclid dengan ruang vektor? Keemat, sifat geometri aa saja yang daat diertahankan ada saat ruang titik ditransformasi dengan ruang vektor?. Pemetaan sebagai Transformasi Bidang Untuk membahas masalah ertama daat dijelaskan melalui konse fungsi atau emetaan. Misalkan A dan B adalah himunan yang tidak hama. Suatu fungsi atau emetaan f dari A ke B yang dinotasikan dengan f : A B adalah sebuah asangan terurut (a,b), dengan aa dan bb yang bersifat untuk setia aa ada sebuah bb yang tunggal sedemikain sehingga (a,b)f atau daat ditulis f(a) = b. Dalam hal ini daat dikatakan b adalah eta dari a ada f, dan a adalah ra-eta b ada f. Himunan A disebut domain f, dan himunan B disebut co-domain f. Himunan f(a) = {f(a) aa} adalah himunan bagian dari B disebut range dari f. Suatu fungsi f: A B disebut surjektif (atau onto) jika f(a) = B, yaitu f surjektif jika untuk setia bb ada aa sedemikan sehingga f(a) = b. Fungsi f: A B disebut injektif (atau satu ke satu) jika untuk setia unsur di range f adalah eta dari teat satu unsur di domain f, yaitu jika f(x) = f(y) maka x = y. Selanjutnya suatu fungsi f: A B disebut bijektif jika f surjektif dan injektif. Berdasarkan engertian fungsi atau emetaan tersebut, terlihat bahwa suatu unsur ada suatu himunan yang satu daat ditransformasi menjadi unsur di himunan yang lain. Oleh karena itu, berdasarkan gagasan yang ada ada konse emetaan tersebut, agar sifat suatu objek

2 Gani Gunawan & Suwanda ada geometri Euclid daat dijelaskan secara analitik dan aljabar maka objek geometri tersebut harus ditransformasi menjadi objek yang daat diberlakukannya sistem matematika secara analitis dan aljabar. Transformasi dalam hal ini diandang sebagai fungsi bijektif ada dirinya sendiri. Misalkan E adalah bidang Euclid. Setia titik P ada bidang E daat dinyatakan oleh asangan terurut (x,y ) dalam sistem koordinat XOY. Titik P daat dinyatakan oleh vektor osisi OP x, y Gambar. Titik (x,y ) direresentasikan sebagai, OP x y Dalam hal ini OP x, y daat digunakan untuk mereresentasikan x. Koleksi vektor yang dibentuk dari titik ada bidang Euclid membentuk ruang vektor. Akibatnya emetaan f : E E berkoresondensi dengan emetaan dengan f P P', ', ',, f x y x y x y f : sedemikian sehingga untuk P E. Ini berarti f dan f secara tunggal mendefinisikan emetaan f dengan sistem koordinat teta sebagai enstransformasian bidang. Oleh karena itu, titik P ada bidang XOY akan berkorensondensi dengan vektor tunggal OP. Setia objek geometri di E berkoresondensi secara tunggal dengan vektor OP di di mana P. Himunan f() yang f P : P E daat dinyatakan dengan didefinisikan sebagai f OP : OP vektor xy,, oleh karena itu reresentasi titik (x,y) daat dinyatakan sebagai Contoh Pemetaan di bawah ini daat diandang sebagai emetaan titik ke titik ada geometri Euclid atau emetaan vektor ke vektor di. dan f x, y x 3 y, x y g x, y x 3y, x y 4.

3 Transformasi Affin ada Bidang 3 Hasil emetaan x oleh f dan g Secara geometri daat digambarkan sebagai berikut Gambar. Pemetaan oleh f dan g dari bidang ke bidang Lebih lanjut melalui emetaan bijektif, memungkinkan untuk menjelaskan asek sifat objek geometri bidang ini melalui endekatan analitis dan aljabar matrik. Oleh karena itu, emetaan dan f x, y x 3 y, x y daat dinyatakan dalam matrik sebagai berikut 3 x f x Ax y, g x, y x 3y, x y 4 dan g x 3 x Ax y 4 sehingga vektor hasil emetaanya daat ditentukan seerti di bawah ini 3 Ai 0, 3 3 Ai b Aj, 3 0 A j b 4 3. Secara geometri hasil emetaannya daat digambarkan sebagai berikut

4 4 Gani Gunawan & Suwanda Gambar 3. Transformasi vektor ke vektor Jelas bahwa f dan g memetakan segmen garis ke garis (gambar 3). Untuk mengetahui di mana f dan g memetakan titik (0,0), (0,), (,0), dan (,) cuku dengan menentukan citra bangun ersegi satuan S yang memiliki simul di emat titik tersebut. Oleh karena itu eta bidang ersegi satuan S adalah berua bidang jajaran genjang f(s) dan g(s) (gambar ). Ini berarti jelas bahwa f dan g juga memetakan bidang ke bidang. 3. Transformasi Affin ada Bidang Dari uraian embahasan di atas, terlihat bahwa untuk daat menjelaskan sifat objek geometri Euclid ada bidang agar daat dijelaskan secara analitik dan aljabar, maka unsur terkecil embentuk geometri tersebut harus dindentifikasi dengan sebuah vektor ada bidang. Pengindentifikasian daat dilakukan jika sebuah titik direresentasikan dalam sebuah vektor melalui suatu transformasi atau emetaan bijeksi. Pentransformasi ruang titik ada bidang Euclid dengan ruang vektor dalam matematika daat dilakukan melalui transformasi affin ada bidang yang selanjutnya disebut transformasi affin D sedemikian sehingga sifat geometri ada saat ruang titik ditransformasi dengan ruang vektor daat diertahankan. Transformasi affin D adalah sebuah emetaan dari ke yang ditentukan oleh sebuah matrik ersegi yang invertible dan sebuah vektor kolom, secara matematik didefinisikan sebagai berikut; Definisi Misalkan A adalah matrik x yang invertible, dan b vektor kolom di, maka transformasi affin D dinyatakan sebagai emetaan f : yang didefinisikan oleh x Ax b Akibat dari endefinisian tersebut daat ditunjukan bahwa komosisi dari dua transformasi affin D masih transformasi affin D dan invers dari transformasi D adalah masih transformasi affin D seerti yang dinyatakan ada teorema 3. dan teorema 3. berikut; Teorema 3.. Komosisi dari dua transformasi affin D adalah masih affin D.

5 Transformasi Affin ada Bidang 5 Bukti Misalkan A dan A adalah matrik x yang invertible, dan b dan b vektor kolom di, maka untuk sebarang Akibatnya Jika dimisalkan A = D. Teorema 3.. x transformasi affin D T x Ax b AA dan b = T x T T x A b A A x b b = dan T x A x b = A A x A b b b maka Invers dari transformasi affin D adalah juga affin D. T x Ax b adalah transformasi affin Bukti Misalkan A adalah matrik x yang invertible, dan b vektor kolom di a transformasi affin D untuk sebarang x daat dinyatakan, maka untuk suatu a Ax b atau Ax b a Jadi x A b a = A b A a Jika dituliskan kembali dalam bentuk x Bb c dengan B A dan c berarti invers dari transformasi affin D adalah masih affin D. A a, maka ini Dari endefinisian dan kedua teorema tersebut terlihat bahwa transformasi affin D meruakan emetaan bijektif yang daat mengindentifikasi ruang titik ada bidang Euclid ke dalam ruang vektor berdimensi dua. Akibatnya bangun bidang geometri Euclid yang dietakan oleh transformasi affin daat diertahankan asek dimensi bidangnya. Selain dari itu, dengan transformasi affin D sifat objek geometri bidang Euclid daat dijelaskan secara analitik dan aljabar. Geometri transformasi bidang berikut adalah meruakan transformasi affin, yaitu adalah translasi, rotasi, dilatasi uniform, dilatasi non uniform, refleksi, dan shearing

6 6 Gani Gunawan & Suwanda Geometri transformasi bidang Citra transformasi bidang (i) Translasi, daat dinyatakan oleh T x x b I x b, I adalah matrik indentitas ordo x (ii) Rotasi T x R x, daat dinyatakan oleh 0 R cos sin 0 sin cos rotasi adalah matrik (iii) Dilatasi uniform T x I x, daat dinyatakan oleh a I a a 0 0 a, untuk suatu skalar a (iv) Dilatasi non uniform daat dinyatakan oleh T x Iab x, I ab a 0 0 b, untuk suatu skalar a dan b (v) Refleksi T x M x daat dinyatakan oleh x M x 0 0 adalah matrik refleksi

7 Transformasi Affin ada Bidang 7 (vi) Shearing T x S x daat dinyatakan oleh x S x h, untuk suatu skalar h Secara umum sifat suatu objek geometri yang ditransformasi melalui transforamsi affin daat ditunjukan dalam teorema 3.3 berikut Teorema 3.3 T x Ax b adalah transformasi Affin, maka T i. Memetakan segmen garis ke segmen garis ii. Memertahankan sifat kesejajaran antara garis dengan garis iii. Memetakan bidang segi n ke bidang segi n iv. Memertahankan rasio anjang dua segmen garis sejajar Misalkan Bukti (i) Misalkan l adalah segmen garis, maka ersamaan l daat ditulis dalam bentuk vektor tu, untuk suatu t di interval tutu I. Sehingga untuk setia t [0,] T tu A tu b A b t Au = tu dengan A b dan u Au. Akibatnya T(l) = l dengan l = tu untuk t [0,] adalah juga segmen garis. (ii) Misalkan l : tu dan m: q tv untuk setia t adalah dua buah garis yang sejajar. Maka v ku untuk suatu k. Oleh karena itu T tu A tu b A b t Au tu, dan T q tv A q t ku b A q t ku b = Aq b t Aku b q t ku Ini berarti l dan m dietakan ke garis l dan m yang sejajar. (iii) Dalam hal ini akan dibuktikan dengan induksi. Misalkan n = 3, Pandang sebuah bidang segitiga G. Maka G daat direresentasikan dalam bentuk vektor u sv tw, untuk st, [0,], dan s + t dengan v dan w adalah vektor yang tidak segaris. Akibatnya

8 8 Gani Gunawan & Suwanda T G T u sv tw Au sv tw b = Au b s Av t Aw = u sv tw, dengan st, [0,] dan s + t. Karena u dan v tidak segaris, maka menurut (ii) v Av dan w Aw tidak sejajar. Jadi G dietakan ke segitiga G, di mana G = u sv tw. Sekarang misalkan T memetakan setia bidang segi n ke bidang segi n untuk setia n, dengan 3 n k, dan misalkan P adalah olygon dengan k+ sisi. Misalkan AB adalah diagonal dalam P, maka disgonal ini membagi P menjadi dua olygon, yaitu P dan P yang masing-masing memuat t dan k +3 t sisi, untuk suatu t dengan 3 t k. Menurut hiotesis induksi di atas, T(P ) dan T(P ) masing-masing akan meruakan olygon yang dibentuk dengan t sisi dan k +3 t sisi. Karena olygon ini akan memunyai segment garis dari T(A) ke T(B) sebagai diagonal, maka gabungan P dan P akan membentuk sebuah olygon dengan k + sisi. Ini berlaku untuk setia olygon dengan n sisi. Terbukti bahwa T memetakan bidang segi n ke bidang segi n. (iv) Pandang dua buah segmen garis sejajar, S dan S yang dinyatakan dalam bentuk vektor S i : tu untuk t [0,]. Karena dua garis tersebut sejajar, maka u ku untuk suatu k. Misalkan ui adalah anjang untuk segmen garis S i, rasio ajang segmen garis S dan S adalah k. Maka menurut (i), segmen garis S i dietakan ke segmen garis yang memunyai anjang Au i. Karena Au Aku k Au anjang T(S ) dan T(S ) adalah juga k., maka Au k Au yang menunjukan bahwa rasio 4. Kesimulan Karena transformasi meruakan emetaan bijektif terhada dirinya sendiri, maka dengan transformasi unsur embentuk terkecil ada geometri Euclid di bidang daat di andang sebagai vektor di bidang, sehingga sifat objek geometri Euclid ada bidang daat dijelaskan secara analitik dan aljabar. Agar engindentifikasian ruang titik ada bidang Euclid yang dilakukan melalui transformasi vektor daat memertahankan sifat-sifat yang dietakannya, maka transformasi geometri yang mungkin adalah transformasi affin ada bidang. Seerti yang telah dijelaskan, transformasi affin bersifat linier, sehingga sifat objek geometris yang ditransformasi adalah invariant. Dalam hal ini transformasi affin memertahankan kesegarisan, kesejajaran, dan erbandingan, namun tidak mengawetkan kesebangunan. Daftar Pustaka [] Berger, Marcel (987), Geometry I, Berlin: Sringer, ISBN [] Hakan Haberdar (0), Affine Transformation Examle, University of Houston. Retrieved March 0. [3] Hazewinkel, Michiel, ed. (00), Affine Transformation, Encycloedia of Mathematics, Sringer. [4] Nomizu, Katsumi; Sasaki, S. (994), Affine Differential Geometry (New ed.), Cambridge University Press.

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N Pemetaan (fungsi) f dari himpunan A ke himpunan B adalah suatu hubuungan yang memasangkan setiap unsur di A dengan tepat satu unsur di B. Jika a A dan pasangannya b B, maka ditulis

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

Hasil Kali Dalam Berbobot pada Ruang L p (X)

Hasil Kali Dalam Berbobot pada Ruang L p (X) Hasil Kali Dalam Berbobot ada Ruang L () Muhammad Jakfar, Hendra Gunawan, Mochammad Idris 3 Universitas Negeri Surabaya, muhammadjakfar@unesa.ac.id Institut Teknologi Bandung, hgunawan@math.itb.ac.id 3

Lebih terperinci

BAB V KESIMPULAN. Berdasarkan uraian pada Bab III dan Bab IV maka dapat disimpulkan sebagai

BAB V KESIMPULAN. Berdasarkan uraian pada Bab III dan Bab IV maka dapat disimpulkan sebagai BAB V KESIMPULAN Berdasarkan uraian ada Bab III dan Bab IV maka daat disimulkan sebagai berikut 1. Keluarga emetaan K C,δ (R, R) dan L C,δ (R, R) adalah beberaa bentuk keluarga emetaan demi linear dari

Lebih terperinci

HITUNGAN KOORDINAT, AZIMUTH/ARAH DAN JARAK

HITUNGAN KOORDINAT, AZIMUTH/ARAH DAN JARAK PENGUKURAN POLIGON Pengukuran dan Pemetaan Hutan : HITUNGAN KOORDINAT, AZIMUTH/ARAH DAN JARAK Y φq Dq Q(Xq,Yq) θq P(X,Y) φq = Azimuth/arah P ke Q 0 X θq Dq = Azimuth/arah Q ke P = Jarak dari P ke Q P(X,Y)

Lebih terperinci

KAJIAN KONSEP RUANG NORMA-2 DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA

KAJIAN KONSEP RUANG NORMA-2 DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA Jurnal Matematika Murni dan Teraan εsilon Vol. 07, No.01, 013), Hal. 13 0 KAJIAN KONSEP RUANG NORMA- DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA Wahidah 1 dan Moch. Idris 1, Program Studi Matematika

Lebih terperinci

REPRESENTASI FUNGSIONAL-2 DI l p. Yosafat Eka Prasetya Pangalela Institut Teknologi Bandung

REPRESENTASI FUNGSIONAL-2 DI l p. Yosafat Eka Prasetya Pangalela Institut Teknologi Bandung JMP : Volume 4 Nomor, Juni 202, hal. 23-29 REPRESENTASI FUNGSIONAL-2 DI l Yosafat Eka Prasetya Pangalela Institut Teknologi Bandung matrix_ye@yahoo.co.id Hendra Gunawan Institut Teknologi Bandung ABSTRACT.

Lebih terperinci

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka

Lebih terperinci

BAB 2 RUANG BERNORM. 2.1 Norm dan Ruang `p. De nisi 2.1 Misalkan V ruang vektor atas R, Sebuah fungsi k:k : V! R yang memenuhi sifat-sifat berikut :

BAB 2 RUANG BERNORM. 2.1 Norm dan Ruang `p. De nisi 2.1 Misalkan V ruang vektor atas R, Sebuah fungsi k:k : V! R yang memenuhi sifat-sifat berikut : BAB 2 RUANG BERNORM 2. Norm dan Ruang ` De nisi 2. Misalkan V ruang vektor atas R, Sebuah fungsi kk V! R yang memenuhi sifat-sifat berikut [N] kxk 0 jika dan hanya jika x 0 [N2] kxk jj kxk untuk setia

Lebih terperinci

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T BAB I PENDAHULUAN. Latar Belakang dan Permasalahan Bidang ilmu analisis meruakan salah satu cabang ilmu matematika yang di dalamnya banyak membicarakan konse, aksioma, teorema, lemma disertai embuktian

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

>> SOAL MATEMATIKA SMA KELAS X SEMESTER 2 << ( 100 SOAL MATEMATIKA )

>> SOAL MATEMATIKA SMA KELAS X SEMESTER 2 << ( 100 SOAL MATEMATIKA ) >> SOAL MATEMATIKA SMA KELAS X SEMESTER > Pilihlah jawaban yang benar! Soal nomor samai 60 tentang Trigonometri:. Cos 0 o senilai dengan. cos 0 o cos 0 o sin 0 o cos 0 o sin

Lebih terperinci

TRANSFORMASI DAN PENCERMINAN

TRANSFORMASI DAN PENCERMINAN TRANSFORMASI DAN PENCERMINAN DISUSUN OLEH: KELOMPOK 1 (SATU) 1.AISYAH (4007005) 2.WIWIN AGUSTINA (4007018) 3.MARTINI (4007024) 4.TUKIJO (4007009) Dosen Pengampu : Fadli, S.Si, M.Pd. SEKOLAH TINGGI KEGURUAN

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 999 Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT 0. Misalkan diketahui fungsi f dengan ; 0 f() = ; < 0 Gunakan de nisi turunan untuk memeriksa aakah f 0 (0)

Lebih terperinci

TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga.

TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. 1 TRANSFORMASI Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Sebuah fungsi yang bijektif adalah sebuah fungsi yang bersifat: 1.

Lebih terperinci

SIFAT-SIFAT SEMIGRUP BEBAS DAN MONOID BEBAS DALAM BENTUK HIMPUNAN WORD

SIFAT-SIFAT SEMIGRUP BEBAS DAN MONOID BEBAS DALAM BENTUK HIMPUNAN WORD Prosiding Semirata FMIP Universitas Lung 213 SIFT-SIFT SEMIGRUP BEBS DN MONOID BEBS DLM BENTUK HIMPUNN WORD Rolan Pane 1 Sri Gemawati 1 Novia Yumitha sarie 2 Firdaus 1 Deartment of mathematis FMIP Universitas

Lebih terperinci

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung e-mail: e.sumiaty@yahoo.com Abstrak Diketahui ruang fungsi klasik L (, ). Melalui oerator T ada ruang

Lebih terperinci

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

erkalian Silang, Garis & Bidang dalam Dimensi 3

erkalian Silang, Garis & Bidang dalam Dimensi 3 erkalian Silang, Garis & Bidang dalam Dimensi 3 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat menghitung perkalian silang dari suatu vektor dan mengetahui

Lebih terperinci

France title. Handy of transformation of Geometry. Tangkas Geometri Transformasi

France title. Handy of transformation of Geometry. Tangkas Geometri Transformasi France title Handy of transformation of Geometry Tangkas Geometri Transformasi i TANGKAS GEOMETRI TRANSFORMASI Meyta Dwi Kurniasih Isnaini Handayani Pendidikan Matematika Fakultas Pendidikan dan Ilmu Pendidikan

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR

EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR Elma Rahayu Manuharawati Jurusan Matematika Fakultas Matematika Ilmu Pengetahuan Alam Universitas Negeri Surabaya 603 Jurusan Matematika Fakultas

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

ALTERNATIIF LAIN MENENTUKAN PANJANG GARIS SINGGUNG DI LUAR PARABOLA

ALTERNATIIF LAIN MENENTUKAN PANJANG GARIS SINGGUNG DI LUAR PARABOLA Jurnal Matematika Vol. 6 No. November 07 ISSN: -5056 / 598-8980 htt://ejournal.unisba.ac.id/ Diterima: 8/07/07 Disetujui: //07 Publikasi Online: 8//07 ALTERNATIIF LAIN MENENTUKAN PANJANG GARIS SINGGUNG

Lebih terperinci

Vektor di Bidang dan di Ruang

Vektor di Bidang dan di Ruang Vektor di Bidang dan di Ruang 4.1. Pengertian, notasi,dan operasi pada ektor Vektor merupakan istilah untuk menyatakan besaran yang mempunyai arah. Secara geometris, ektor dinyakan dengan segmen-segmen

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 10 11 12 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2 Transformasi Linier

Lebih terperinci

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta 1 RELASI Oleh: Mega Inayati Rif ah, S.T., M.Sc. 2 RELASI Relasi adalah suatu aturan yang memasangkan anggota himpunan

Lebih terperinci

SIMAK UI 2010 Matematika Dasar

SIMAK UI 2010 Matematika Dasar SIMAK UI 00 Matematika Dasar Kode Soal 307 Doc. Name: SIMAKUI00MATDAS307 Version: 0-0 halaman 0. Dua buah dadu dilemar secara bersamaan. x adalah angka yang keluar dari dadu ertama. y adalah angka yang

Lebih terperinci

TRANSFORMASI BALIKAN

TRANSFORMASI BALIKAN TRANSFORMASI BALIKAN Disusun Oleh : Nama : Dodi Sunhaji (4007017) Esty Gustina (4007199) Indah Sri (4007015) Warnitik (4007009) Oryza Sativa Kelas : VIA Prodi : Matematika Mata Kuliah : Geometri Transformasi

Lebih terperinci

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 2008 1 Identitas Mata Kuliah 1. Nama Mata Kuliah : Analisis

Lebih terperinci

a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3

a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Pendahuluan Notasi dan Pengertian Dasar Skalar, suatu konstanta yang dituliskan dalam huruf kecil Vektor,

Lebih terperinci

WARP PADA SEBUAH SEGITIGA

WARP PADA SEBUAH SEGITIGA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 26 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND WARP PADA SEBUAH SEGITIGA ABDUL ZAKY, MAHDHIVAN SYAFWAN Program Studi Matematika, Fakultas Matematika dan

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

GEOMETRI TRANSFORMASI MATERI

GEOMETRI TRANSFORMASI MATERI GEOMETRI TRANSFORMASI MATERI TRANSFORMASI BALIKAN DISUSUN OLEH : KELOMPOK IV 1. Retno Fitria Pratiwi ( 2010 121 179 ) 2. Nanda Wahyuni Pritama ( 2010 121 140 ) 3. Verawati (2010 121 173 ) KELAS : 5 D Dosen

Lebih terperinci

BAB II FUNGSI DAN GRAFIK FUNGSI

BAB II FUNGSI DAN GRAFIK FUNGSI BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai alikasi koresondensi/hubunan antara dua himunan serin terjadi. Sebaai 4 contoh volume bola denan

Lebih terperinci

Interpretasi Geometri Dari Sebuah Determinan

Interpretasi Geometri Dari Sebuah Determinan Jurnal Sains Matematika dan Statistika Vol No Juli 5 ISSN 46-454 Interpretasi Geometri Dari Sebuah Determinan Riska Yeni Syamsudhuha M D H Gamal 3 Jurusan Matematika Fakultas Mipa Universitas Riau Jl HR

Lebih terperinci

STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR

STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR STANDAR KOMPETENSI 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR 5.1 Menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks

Lebih terperinci

Algoritma Jaringan Syaraf Tiruan Hopfield

Algoritma Jaringan Syaraf Tiruan Hopfield 2.6. Jaringan Saraf Tiruan Hofield Jaringan syaraf Tiruan Hofield termasuk iterative autoassociative network yang dikembangkan oleh Hofield ada tahun 1982, 1984. Dalam aringan Hofield, semua neuron saling

Lebih terperinci

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain :

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain : Transformasi Linier Objektif:. definisi transformasi linier umum.. definisi transformasi linier dari R n ke R m. 3. invers transformasi linier. 4. matrix transformasi 5. kernel dan jangkauan 6. keserupaan.definisi

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

SILABUS. 1 / Silabus Matematika XII-IA. : 1.Menggunakan konsep integral dalam pemecahan masalah. Nilai Karakter

SILABUS. 1 / Silabus Matematika XII-IA. : 1.Menggunakan konsep integral dalam pemecahan masalah. Nilai Karakter SILABUS Satuan Pendidikan Mata Pelajaran Kelas/semester Reference Standar Kompetensi : SMA Negeri 5 Surabaya : : XII/1 : BSNP / CIE : 1.Menggunakan konsep integral dalam pemecahan masalah Kompetensi Dasar

Lebih terperinci

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi. BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

Dika Dwi Muharahman*, Nurul Gusriani, Elis Hertini. Departemen Matematika, Universitas Padjadjaran *E mail:

Dika Dwi Muharahman*, Nurul Gusriani, Elis Hertini. Departemen Matematika, Universitas Padjadjaran *E mail: Perubahan Perilaku Pengguna nstant Messenger dengan Menggunakan Analisis Koresondensi Bersama (Studi Kasus Mahasiswa di Program Studi S-1 Matematika FMPA Unad) Dika Dwi Muharahman*, Nurul Gusriani, Elis

Lebih terperinci

8.3 Inverse Linear Transformations

8.3 Inverse Linear Transformations 8.3 Inverse Linear Transformations Definition One to One Transformasi linear T:V W dikatakan one-to-one jika T memetakan vektor-vektor berbeda pada V ke vektorvektor berbeda pada W. Jika A adalah suatu

Lebih terperinci

MATEMATIKA INFORMATIKA 2 FUNGSI

MATEMATIKA INFORMATIKA 2 FUNGSI MATEMATIKA INFORMATIKA 2 FUNGSI PENGERTIAN FUNGSI Definisi : Misalkan A dan B dua himpunan tak kosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B. ATURAN

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

Pertemuan 6 Transformasi Linier

Pertemuan 6 Transformasi Linier Pertemuan 6 Transformasi Linier Objektif: 1. Praktikan memahami definisi transformasi linier umum. 2. Praktikan memahami definisi dari transformasi linier dari R n ke R m. 3. Praktikan memahami invers

Lebih terperinci

Integral dan Persamaan Diferensial

Integral dan Persamaan Diferensial Sudaryatno Sudirham Studi Mandiri Integral dan Persamaan Diferensial ii Darublic BAB 3 Integral (3) (Integral Tentu) 3.. Luas Sebagai Suatu Integral. Integral Tentu Integral tentu meruakan integral yang

Lebih terperinci

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi. SILABUS Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMA NEGERI 2 LAHAT : MATEMATIKA : XII / IPA : GANJIL STANDAR KOMPETENSI: 3. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan

Lebih terperinci

BAB-7 TRANSFORMASI 2D

BAB-7 TRANSFORMASI 2D BAB-7 TRANSFORMASI 2D Kita dapat melakukan transformasi terhadap objek, pada materi ini akan dibahas transformasi 2D yaitu translasi, skala, rotasi. By: I Gusti Ngurah Suryantara, S.Kom., M.Kom 7.1. PENDAHULUAN

Lebih terperinci

Geometri di Bidang Euclid

Geometri di Bidang Euclid Modul 1 Geometri di Bidang Euclid Dr. Wono Setya Budhi G PENDAHULUAN eometri merupakan ilmu pengetahuan yang sudah lama, mulai dari ribuan tahun yang lalu. Berpikir secara geometris dari satu bentuk ke

Lebih terperinci

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :

Lebih terperinci

GEOMETRI TRANSFORMASI SETENGAH PUTARAN

GEOMETRI TRANSFORMASI SETENGAH PUTARAN GEOMETRI TRANSFORMASI SETENGAH PUTARAN Disusun Oleh : Kelompok Empat (V1 A) 1. Purna Irawan (4007178 ) 2. Sudarsono (4007028 p) 3. Mellyza Vemi R. (4007217 ) 4. Kristina Nainggolan (4007013 ) 5. Desi Kartini

Lebih terperinci

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS

Lebih terperinci

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT. BAB 4 RUANG VEKTOR EUCLID Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Ruang n Euclid 2. Transformasi Linier dari R n dan R m 3. Sifat-sifat Transformasi Linier 4.1 RUANG N EUCLID Jika di bab

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

Aljabar Linier Lanjut. Kuliah 1

Aljabar Linier Lanjut. Kuliah 1 Aljabar Linier Lanjut Kuliah 1 Materi Kuliah (Review) Multiset Matriks Polinomial Relasi Ekivalensi Kardinal Aritmatika 23/8/2014 Yanita, FMIPA Matematika Unand 2 Multiset Definisi Misalkan S himpunan

Lebih terperinci

KISI-KISI PENULISAN SOAL UJIAN MATEMATIKA PEMINATAN TP 2015 / 2016

KISI-KISI PENULISAN SOAL UJIAN MATEMATIKA PEMINATAN TP 2015 / 2016 KISI-KISI PENULISAN SOAL UJIAN MATEMATIKA PEMINATAN TP 2015 / 2016 Nama Sekolah : SMA NEGERI 56 JAKARTA Mata Pelajaran : MATEMATIKA PEMINATAN Kurikulum : KUR 2013 MATERI KELAS X P1 P2 P3 mor 1. Menganalisis

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( )

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( ) The Rank Plus Nullity Theorem L(V,W) 1) Sembarang komplemen dari ker () adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker () )+dim(im () ) = dim(v) Teorema 2.8. Misal atau rk() +

Lebih terperinci

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n Nama : Yogi Sindy Prakoso NRP : 106 100 015 Jurusan : Matematika FMIPA-ITS Pembimbing : Drs. Suhud Wahyudi, M.Si Dra. Titik Mudiati, M.Si Abstrak Grah adalah

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 13 14 15 Materi Kuliah Transformasi Linier dari F n ke F m Perubahan Matriks Basis Matriks dari Transformasi Linier Perubahan Basis untuk Transformasi Linier Matriks-matriks Ekivalen

Lebih terperinci

BAB MATRIKS. Tujuan Pembelajaran. Pengantar

BAB MATRIKS. Tujuan Pembelajaran. Pengantar BAB II MATRIKS Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks persegi merupakan invers

Lebih terperinci

GEOMETRI AFFINE A. PENDAHULUAN

GEOMETRI AFFINE A. PENDAHULUAN 1 GEOMETRI FFINE. PENDHULUN Euclides telah mengumpulkan materinya dari beberapa sumber, maka tidak mengherankan bahwa geometri Euclides dapat diambil sarinya berupa dua geometri yang berlainan dalam dasar

Lebih terperinci

Pengantar Analisis Real

Pengantar Analisis Real Modul Pengantar Analisis Real Dr Endang Cahya, MA, MSi P PENDAHULUAN ada Modul ini disajikan beberapa topik pengantar mata kuliah Analisis Real, yang terbagi dalam beberapa kegiatan belajar yang harus

Lebih terperinci

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 PENGANTAR TOPOLOGI EDISI PERTAMA Dosen Pengampu: Siti Julaeha, M.Si UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 by Matematika Sains 2012 UIN SGD, Copyright 2015 BAB 0. HIMPUNAN, RELASI, FUNGSI,

Lebih terperinci

Transformasi Linear dari R n ke R m

Transformasi Linear dari R n ke R m TE0967 Teknik Numerik Sistem Linear Transformasi Linear dari R n ke R m Trihastuti gustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember OUTLINE

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Lyapunov

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Lyapunov Institut Teknologi Seuluh Noember Surabaya Analisa Kestabilan Lyaunov Contoh Soal Ringkasan Latihan Contoh Soal Ringkasan Latihan Sistem Keadaan Kesetimbangan Kestabilan dalam Arti Lyaunov Penyajian Diagram

Lebih terperinci

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari. BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi

Lebih terperinci

BAB V RELASI DAN FUNGSI

BAB V RELASI DAN FUNGSI BAB V RELASI DAN FUNGSI 6.1 Pendahuluan Relasi atau hubungan antara himpunan merupakan suatu aturan pengawasan antar himpunan tersebut, sebagai contohnya kalimat adalah ayah b atau kalimat 4 habis diabgi

Lebih terperinci

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian

Lebih terperinci

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

GEOMETRI. Transformasi & Analitik Ruang UNIVERSITAS HASANUDDIN. M Saleh AF. Geometri Transformasi Dan Analitik Ruang LKPP.

GEOMETRI. Transformasi & Analitik Ruang UNIVERSITAS HASANUDDIN. M Saleh AF. Geometri Transformasi Dan Analitik Ruang LKPP. GEOMETRI Transformasi & Analitik Ruang D M M Refleksi M Saleh AF LKPP UNIVERSITAS HASANUDDIN BAB II TRANSFORMASI GEOMETRI DI A. Pendahuluan Salam hangat dan sejahtera bagi para pembelajar Kreatif! Bab

Lebih terperinci

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014 Transformasi Geometri Sederhana Farah Zakiyah Rahmanti 2014 Grafika Komputer TRANSFORMASI 2D Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

FUNGSI MATEMATIKA SISTEM INFORMASI 1

FUNGSI MATEMATIKA SISTEM INFORMASI 1 FUNGSI MATEMATIKA SISTEM INFORMASI 1 PENGERTIAN FUNGSI A disebut daerah asal (domain) dari f dan B disebut daerah hasil (Kodomain) dari f. Nama lain untuk fungsi adalah pemetaan atau transformasi. A Fungsi

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

Penerapan Kurva Eliptik Atas Zp Pada Skema Tanda Tangan Elgamal

Penerapan Kurva Eliptik Atas Zp Pada Skema Tanda Tangan Elgamal A7 : Peneraan Kurva Elitik Atas Z... Peneraan Kurva Elitik Atas Z Pada Skema Tanda Tangan Elgamal Oleh : Puguh Wahyu Prasetyo S Matematika, Universitas Gadjah Mada, Yogyakarta Email : uguhw@gmail.com Muhamad

Lebih terperinci

VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain

VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain VEKTOR y PENDAHULUAN PETA KONSEP a Vektor di R 2 Vektor di R 3 Perkalian Skalar Dua Vektor o 45 O x Proyeksi Ortogonal suatu Vektor pada Vektor Lain Soal-Soal PENDAHULUAN Dalam ilmu pengetahuan kita sering

Lebih terperinci

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR A. DEFINISI DASAR 1. Definisi-1 Suatu pemetaan f dari ruang vektor V ke ruang vektor W adalah aturan perkawanan sedemikian sehingga setiap vektor v V dikawankan

Lebih terperinci

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS XII ( 3 ) SEMESTER I

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS XII ( 3 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS XII ( 3 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMA/MA... Kelas / : XII Semester : I (SATU)

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui remis remis : () Jika Badu rajin belajar dan atuh ada orang tua, maka Aah membelikan bola basket () Aah tidak membelikan bola

Lebih terperinci

Vektor. Vektor. 1. Pengertian Vektor

Vektor. Vektor. 1. Pengertian Vektor Universitas Muhammadiyah Sukabumi Artikel Aljabar Vektor dan Matriks Oleh : Zie_Zie Vektor Vektor 1. Pengertian Vektor a. Definisi Vektor adalah suatu besaran yang mempunyai nilai (besar) dan arah. Contohnya

Lebih terperinci

KISI-KISI UJIAN SEKOLAH TAHUN 2016

KISI-KISI UJIAN SEKOLAH TAHUN 2016 KISI-KISI UJIAN SEKOLAH TAHUN 2016 MATA PELAJARAN : MATEMATIKA WAJIB Penyusun : Team MGMP Matematika JENJANG : SMA SMA DKI Jakarta KURIKULUM : Kurikulum 2013 No Urut Kompetensi Dasar Bahan Kls/Smt Materi

Lebih terperinci

SIFAT OPERASI DAN EKSISTENSI INVERS SUATU MATRIKS DALAM ALJABAR MAX-PLUS SISKA MARYANA DEWI

SIFAT OPERASI DAN EKSISTENSI INVERS SUATU MATRIKS DALAM ALJABAR MAX-PLUS SISKA MARYANA DEWI SIFAT OPERASI DAN EKSISTENSI INVERS SUATU MATRIKS DALAM ALJABAR MAX-PLUS SISKA MARYANA DEWI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

GESERAN atau TRANSLASI

GESERAN atau TRANSLASI GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3.

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

MATRIKS DAN TRANSFORTASI I. MATRIKS II. TRANSFORMASI MATRIKS & TRANSFORMASI. a b. a b DETERMINAN. maka determinan matriks A.

MATRIKS DAN TRANSFORTASI I. MATRIKS II. TRANSFORMASI MATRIKS & TRANSFORMASI. a b. a b DETERMINAN. maka determinan matriks A. MATRIKS DAN TRANSFORTASI I. MATRIKS PENGERTIAN Matriks adalah kumpulan ilangan yang dinyatakan dalam aris kolom. Matriks A = 5 dengan ukuran (ordo) : X. Artinya matriks terseut tersusun atas aris kolom.

Lebih terperinci

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = =

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = = VEKTOR Notasi Vektor (,, ) (,, ) Vektor atau Matriks Maka di atas dapat dinyatakan dengan: Kombinasi linear vektor basis maka; ( ) + ( ) + ( ) + + (,, ) Panjang Vektor Misalkan + + (,, ), maka panjang

Lebih terperinci

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga; BAB I VEKTOR A. DEFINISI VEKTOR 1). Pada mulanya vektor adalah objek telaah dalam ilmu fisika. Dalam ilmu fisika vektor didefinisikan sebagai sebuah besaran yang mempunyai besar dan arah seperti gaya,

Lebih terperinci

FUNGSI. Modul 3. A. Definisi Fungsi

FUNGSI. Modul 3. A. Definisi Fungsi Modul 3 FUNGSI A. Definisi Fungsi Definisi 1. Misalkan A dan B suatu himpunan. Suatu relasi f A x B, dimana setiap a A dipasangkan dengan tepat satu di b B, disebut dengan pemetaan (atau fungsi) dari A

Lebih terperinci