Table of Contents. Table of Contents 1

Ukuran: px
Mulai penontonan dengan halaman:

Download "Table of Contents. Table of Contents 1"

Transkripsi

1 Table of Contents Table of Contents 1 1 Pendahuluan Koreksi dan deteksi pola kesalahan Laju Informasi Efek dari penambahan paritas Menaksir katakode yang ditransmisikan Beberapa konsep Aljabar Bobot dan Jarak Decoding ketetanggaan maksimum Kepercayaan DKM Kode Pendeteksi Kesalahan Kode Pengoreksi Kesalahan Kode Linier Kode linier dan kode dual Basis dan dimensi Basis kode C = S dan C Matriks pembangun dan matriks cek paritas Jarak kode linier dan Koset Proses decoding kode linier Kode Sempurna dan kode yang berkaitan Batas kode Kode Sempurna Kode Hamming Kode diperluas Kode Golay dan Perluasannya Decoding kode Golay diperluas dan kode Golay

2 1 4 Kode Linier Siklis Polinom dan kata Kode linier siklis Mencari kode linier siklis Polinom pembangun kode dual Bibliography 87 Bibliography 88

3 Chapter 1 Pendahuluan Teori Koding (Coding theory) merupakan ilmu yang mempelajari teknik dan metoda transmisi data/infomasi melalui saluran komunikasi yang tidak bebas gangguan (noisy) secara efisien dan akurat. Teori Koding telah berkembang begitu pesat dan memliki aplikasi yang sangat cukup luas, diantaranya minimisasi gangguan dari perekaman compact disc, transfer data dari memori ke CPU komputer atau antar CPU komputer, transaksi ATM, dan komunikasi satelit. Media fisis yang digunakan untuk melakukan transfer data biasa disebut dengan saluran; Sebagai contoh, kabel telepon dan atmosfir. Gangguan (noisy) didefinisikan sebagai sesuatu yang tidak diinginkan yang dapat menyebabkan informasi yang diterima tidak sama dengan informasi yang dikirimkan. Gangguan dapat terjadi karena adanya petir, goresan, hujan meteor, panas matahari, gangguan radio, dan lain-lain. Teori koding bekerja hanya sebatas pada masalah pendeteksian dan pengoreksian kesalahan transmisi yang disebabkan oleh gangguan tersebut. Perhatikan diagram pada Gambar 1.1 yang mengilustrasikan sistem transmisi informasi secara umum. Pada sistim ini, adanya gangguan adalah bagian yang paling penting; Karena tanpa gangguan, teori koding tidak begitu diperlukan. Dalam kajian selanjutnya, kita akan memberikan asumsi-asumsi berikut ini: 2

4 3 Figure 1.1: Sistem transmisi informasi Informasi dapat dinyatakan sebagai barisan 0-1. Kita sebut 0 dan 1 sebagai digit. Kata merupakan suatu barisan digit. Panjang dari kata adalah banyaknya digit yang menyusun kata tersebut. Kata misalnya mempunyai panjang 5. Saluran komunikasi yang digunakan pada kajian ini adalah saluran biner. Kode biner merupakan suatu himpunan kata biner (tersusun oleh digit 0 dan 1 ). Berikut ini contoh dari dua kode: C = {00, 1101}, C = {00, 01, 10, 11}. Kode blok adalah suatu kode yang setiap katanya mempunyai panjang sama. Panjang ini disebut panjang kode. Semua kata yang termasuk dalam kode C disebut sebagai katakode. Diskusi Cacah semua kata dengan panjang 3, 4 dan Tentukan banyaknya kata dengan panjang n. 3. Berikan suatu kode yang berisi semua kata dengan panjang 6 dan mempunyai jumlah angka 1 yang genap. Beberapa asumsi tambahan untuk saluran perlu diberikan. Pertama, panjang katakode yang diterima tidak mengalami perubahan. Ini berarti bahwa katakode yang dikirim

5 4 berpanjang n maka kata yang diterima pasti berpanjang n. Kedua, dalam membaca kode, kita dapat dengan mudah mengetahui awal dari suatu kata. Sebagai contoh, bila kita menggunakan katakode panjang 3 dan menerima , maka dibaca secara berturutan 100, 110 dan 001. Ketiga, gangguan dapat terjadi dimana saja. Ini berarti, kita tahu bahwa setiap digit dalam katakode dapat mengalami gangguan dalam transmisi. Suatu saluran biner dikatakan simetri bila digit 0 dan 1 ditransmisikan dengan akurasi yang sama. Ini berarti bahwa probabilitas menerima digit yang benar tidak tergantung pada digit yang dikirimnya. Kepercayaan suatu saluran biner simetri (SBS) adalah bilangan real p, 0 p 1, dimana p adalah probabilitas menerima digit sesuai dengan digit yang dikirim. Diagram di bawah menggambarkan saluran biner simetri: Figure 1.2: Saluran simetri biner Dalam banyak hal, sangat sukar menaksir probabilitas p untuk suatu saluran yang diberikan. Namun, nilai eksak p tidak mempengaruhi secara siknifikan pada kerangka teori koding itu sendiri. Bila p = 1 maka saluran komunikasi sangat baik (tidak pernah ada gangguan transmisi data). Sehingga, hal ini tidak menarik. Hal yang serupa berlaku bila p = 0. Setiap saluran dengan 0 < p 1 2 dapat dengan mudah diubah menjadi saluran dengan 1 2 p < 1. Sehingga, untuk selanjutnya, dapat mengasumsikan bahwa kita menggunakan saluran biner simetri dengan probabilitas p, 1 2 < p < 1. (Catatan: kasus

6 5 p = 1 2 diberikan dalam latihan.) Diskusi Kenapa saluran dengan p = 0 tidak menarik? 2. Terangkan bagaimana merubah saluran dengan 0 < p 1/2 menjadi suatu saluran dengan 1/2 p < Apa yang dapat anda katakan untuk saluran dengan p = 1/2? 1.1 Koreksi dan deteksi pola kesalahan Pada bagian ini akan dikenalkan dua konsep dasar dalam Teori Koding, yakni pengoreksian dan pendeteksian suatu pola kesalahan. Misal, dalam suatu transmisi data, kata yang diterima ternyata bukan merupakan suatu katakode. Maka, jelas terjadi suatu kesalahan selama proses tranmisi. Hal ini menyatakan bahwa kita telah mendeteksi adanya satu atau lebih kesalahan. Konsep pengoreksian kesalahan mungkin dapat dikenakan. Dalam, proses pengoreksian biasanya intuisi kita menyarankan bahwa kata yang diterima seharusnya dikoreksi dengan melakukan sedikit mungkin perubahan. Perhatikan beberapa contoh di bawah ini: Contoh Misal Kode C 1 = {00, 10, 01, 11}. Maka setiap kata yang diterima merupakan katakode, sehingga C 1 tidak dapat mendeteksi adanya kesalahan. Kode C 1 tidak dapat mengoreksi karena setiap kata yang diterima tidak perlu perubahan untuk menjadi katakode. Contoh Ubah kode C 1 dengan mengulang setiap katakodenya 3 kali dan didapat kode C 2 = {000000, , , }. Kode ini salah satu contoh kode pengulangan. Misal kata yang diterima. Karena kata ini tidak di C 2, maka kami dapat mendeteksi sedikitnya ada satu kesalahan. Untuk menjadikan katakode, kata perlu diubah sedikitnya pada satu digitnya menjadi Sehingga kita mengharap bahwa memang kata yang ditransmisikan, sehingga kita mengoreksi menjadi Kode C 2 dapat mengoreksi satu kesalahan. Contoh Kode C 3 = {000, 101, 011, 110}. Kode C 3 ini didapat dengan menambahkan digit ketiga pada setiap katakode di C 1 sehingga jumlah digit 1 pada setiap katakode genap.

7 6 Digit tambahan ini disebut sebagai digit cek-paritas. Misal 100 adalah kata yang diterima. Karena bukan katakode, maka pasti ada kesalahan. Setiap kata 000, 101 dan 110 dapat diubah satu digitnya untuk menjadi kata yang diterima. Jadi, dalam hal ini, kami akan mengoreksi 100 menjadi salah satu dari 000, 101 atau 110 daripada 011. Diskusi Bila C 4 kode yang diperoleh dari C 1 dengan mengulang setiap katakodenya 4 kali maka berapa kesalahan yang dapat dikoreksi? 2. Bagaimana kalau diulang 5 kali? 1.2 Laju Informasi Laju informasi r(c) untuk suatu kode C yang mempunyai panjang n didefinisikan sebagai: 1 n log 2 C. Karena 1 C 2 n untuk kode biner C maka laju informasi berharga diantara 0 dan 1. Sebagai contoh, laju informasi untuk kode C 1, C 2 dan C 3 berturut-turut adalah 1, 1/3 dan 2/3. Laju infomasi dapat diinterpretasikan sebagai perbandingan antara jumlah digit pembawa pesan dan jumlah selruh digit dalam katakode. 1.3 Efek dari penambahan paritas Untuk menunjukkan efek dramatis dari penambahan digit cek-paritas pada suatu kode, perhatikan ilustrasi berikut ini. Misal bahwa semua kata panjang 11 merupakan katakode; maka tidak ada kesalahan yang dapat terdeteksi. Misalkan p = dan kecepatan transmisi dalam saluran tersebut adalah 10 7 digit per detik. Maka Probabilitas bahwa kata yang diterima tidak sesuai dengan kata yang dikirim adalah kira-kira 11p 10 (1 p), yakni sekitar 11/10 8. Sehingga jumlah kata yang ditransmisikan secara tidak benar adalah: = 0.1 kata per detik.

8 7 Ini berarti bahwa ada kesalahan 1 kata setiap 10 detik, 6 setiap 1 menit atau 360 setiap satu jam. Bagaimana sekarang bila kode tersebut ditambah dengan satu digit cek-paritas. Sehingga kode baru mempunyai panjang 12. Karena setiap kesalahan satu dapat terdeteksi, maka Probabilitas terjadinya kesalahan tanpa kita sadari adalah 12 p 10 (1 p) 2, yakni 2 sekitar Sehingga jumlah kata yang ditransmisikan secara tidak benar tanpa terdeteksi adalah = kata per detik. Ini berarti bahwa ada 1 kesalahan setiap 2000 hari. Fantastis, bukan! Diskusi Tentukan jumlah maksimum katakode dalam suatu kode panjang 4 yang dapat mendeteksi satu kesalahan. 2. Ulangi pertanyaan di atas untuk n = 5, 6 dan untuk sebarang n. 1.4 Menaksir katakode yang ditransmisikan Misalkan v katakode yang ditransmisikan dan w katakode yang diterima. Misal φ p (v, w): Probabilitas bahwa w katakode yang diterima jika v yang dikirimnya melalui saluran biner simetri (SBS) dengan reliabilitas p. Karena noise/gangguan terdistribusi secara random. Sehingga, jika v dan w berbeda pada d posisi maka didapat: φ p (v, w) = p n d (1 p) d. Contoh Misal C suatu kode dengan panjang 5. Maka untuk setiap v C, Probabilitas bahwa v diterima secara benar adalah: φ p (v, v) = p 5. Jika C maka dan jika p= 0.8 maka φ p (11010, 11101) = p 2 (1 p) 3, φ 0.8 (11010, 11101) = (0.8) 2 (0.2) 3 =

9 8 Dalam kenyataan, kita hanya tahu w, katakode yang diterima. Adapun v tidak kita ketahui. Asumsikan bahwa katakode v yang mempunyai banyak kesamaan dengan w adalah katakode yang sebenarnya dikirim ketika w diterima, yakni: φ p (v, w) = max{φ p (u, w) : u C}. Maka teorema dibawah ini memberikan kriteria untuk menemukan katakode v tersebut. Teorema Misal kita mempunyai SBS dengan 1 2 < p < 1. Misal v 1 dan v 2 katakode dan w suatu kata, semuanya panjang n. Misal bahwa v 1 berbeda dengan w dalam d 1 posisi dan v 2 berbeda dengan w dalam d 2 posisi. Maka, φ p (v 1, w) φ p (v 2, w) jdhj d 1 d 2. Bukti. Ini karena: φ p (v 1, w) φ p (v 2, w) jdhj p n d 1 (1 p) d 1 p n d 2 (1 p) d 2 jdhj ( p 1 p )d 2 d 1 1 jdhj d 1 d 2 (karena p 1 p > 1). Contoh Jika w = diterima pada saluran SBS dengan p =.98, katakode manakah dari berikut: 11011, 00111, 01000, yang kemungkinan besar dikirim? Karena paling mendekati w (tidak terlalu berbeda dengan w) maka dapat dikatakan katakode yang kemungkinan besar dikirim. Diskusi Misal w = diterima melalui saluran SBS dengan p =.90. Katakode manakah dibawah ini yang kemungkinan besar telah dikirim? , , , , Diskusikan tentang makna dari Teorema Apa yang harus diubah dalam Teorema bila a) 0 < p < 1/2; b) p = 1/2.

10 9 1.5 Beberapa konsep Aljabar Misal K = {0, 1} dan K n himpunan semua kata biner panjang n. Definisikan penjumlahan dan perkalian dari elemen K sbb.: = 0, = = 1, = = 0, 1 0 = 0, 0 1 = 0, 1 1 = 1. Penjumlahan dua elemen di K n didefisinikan sebagai penjumlahan per komponen dari elemen tersebut. Contoh: = Maka operasi penjumlahan di K n adalah tertutup. Buktikan! Sebut elemen di K sebagai skalar. Definisikan perkalian skalar di K n sebagai perkalian per komponen. Karena satusatunya skalar adalah 0 dan 1, maka perkalian skalar dari kata w hanya dapat berbentuk 0 w(= 0) atau 1 w(= w). Jelas K n tertutup terhadap perkalian skalar. Dengan operasi penjumlahan dan perkalian diatas, dapat ditunjukkan K n membentuk ruang vektor, yakni bahwa untuk setiap kata u, v dan w di K n dan setiap skalar a dan b berlaku: 1. u + v K n 2. (u + v) + w = u + (v + w) 3. u + 0 = 0 + u = u, dimana 0 kata nol 4. Ada v K n dimana v + v = v + v = u + v = v + u 6. av K n

11 10 7. a(u + v) = au + av 8. (a + b)u = au + bu 9. (ab)u = a(bu) 10. 1u = u. Diskusi Tunjukkan bahwa jika v K n maka v + v = Tunjukkan bahwa jika v dan w kata di K n dan v + w = 0 maka v = w. 3. Tunjukkan bahwa jika u, v dan w kata di K n dan u + v = w maka u + w = v. Catatan bahwa jika v dikirim pada SBS dan w diterima maka komponen v + w bernilai 0 bila komponen tersebut dari v secara benar ditransmisi, bernilai 1 bila komponen tsb di v ditransimi secara tidak benar. Jadi, v + w dapat disebut sebagai pola kesalahan atau kesalahan. Sebagai contoh, jika v = ditransimi dan w = yang diterima. Maka kesalahan terjadi pada komponen pertama, ketiga, dan keempat. Pola kesalahan adalah v + w = Bobot dan Jarak Misal v K n. Bobot Hamming wt(v), atau bobot, dari v adalah banyaknya digit 1 pada v. Jika v, w K n. Jarak Hamming d(v, w), atau jarak, dari v ke w adalah banyaknya posisi di v yang berbeda dari w. Contoh, d(01101, 11001) = 2. Tunjukkan bahwa d(v, w) = wt(v + w). Maka Probabilitas pada bagian 1.4 menjadi: φ p (v, w) = p n wt(u) (1 p) wt(u), dimana u adalah pola kesalahan u = v + w. Karenanya, φ p (v, w) disebut Probabilitas dari pola kesalahan u = v + w.

12 11 Diskusi Misal a skalar dan u, v kata panjang n. Tunjukkan bahwa: 1. wt(v + w) wt(v) + wt(w). 2. wt(av) = a d(v, w). 3. d(av, aw) = a d(v, w). 1.7 Decoding ketetanggaan maksimum Dua problem dasar dalam koding adalah: proses decoding dan encoding. Encoding. Untuk mengkonstruksi kode yang akan digunakan dalam mengirim pesan, lakukan berikut ini. Pilih bilangan bulat positif k sehingga suatu kata panjang k dapat menyatakan pesan. Bila P menyatakan banyaknya pesan berbeda maka P K k = 2 k. Kemudian, tentukan berapa digit yang perlu ditambahkan kepada setiap kata tersebut untuk membentuk kode (mis. panjang n) yang dapat mengoreksi kesalahan seperti yang dipersyaratkan. Untuk mengirim suatu pesan, transmiter mencari lebih dahulu kata panjang k yang menyatakan pesan tersebut dan kemudian mengirim katakode panjang n yang bersesuaian dengan kata panjang k tersebut. Decoding. Misal kata w K n diterima. Ada dua macam prosedur Decoding Ketetanggaan Maksimum (DKM) untuk menentukan katakode v C yang dikirim. 1. Decoding Ketetanggaan Maksimum Komplit (DKMK). Jika d(v, w) < d(y, w) untuk semua y C dan y v, maka decode w menjadi v. Jika ada beberapa kata di C yang terdekat dengan w, maka pilih sebrang kata tersebut dan decode w menjadi kata tersebut. 2. Decoding Ketetanggaan Maksimum Tak-Komplit (DKMTK). Bedanya dengan proses sebelumnya adalah bila terdapat beberapa kata di C yang terdekat dengan w maka

13 12 pengiriman ulang (retransmisi) pesan dilakukan. Perlu dicatat bahwa proses DKM tidak selalu dapat bekerja baik; Khususnya bila terlalu banyak kesalahan yang terjadi dalam proses pengiriman maka proses DKM tidak akan bekerja baik. Bila d(v, w) terkecil (atau dengan kata lain bahwa v katakode terdekat dari kata w yang diterima) maka menurut Teorema v mempunyai Probabilitas φ p (v, w) terbesar dibanding dengan katakode lainnya. Maka besar kemungkinan bahwa v katakode yang dikirim. Selanjutnya, karena d(v, w) = wt(v + w) maka Teorema dapat ditulis sebagai: φ p (v 1, w) φ p (v 2, w) jdhj wt(v 1 + w) wt(v 2 + w). Ini berarti bahwa katakode yang besar kemungkinan dikirim adalah katakode dengan pola kesalahan dengan bobot terkecil. Dengan demikian, penentuan pola kesalahan dapat dijadikan patokan dalam DKMTK. Contoh Misal M = 2. Pilih n = 3 dan C = {000, 111}. Jika v = 000 dikirim, kapan DKMTK men-decode secara benar dan kapan ia men-decode secara salah? Untuk menentukan hal tersebut, konstruksi tabel pola kesalahan berikut ini. w yang Pola Kesalahan Decode diterima 000+w 111+w v * * * * * * * * 111 Tabel 1. Tabel DKMTK untuk kode C = {000, 111}.

14 13 Tanda * pada kolom kedua dan ketiga menyatakan pola kesalahan dengan bobot terkecil. Sehingga DKMTK akan men-decode secara benar bila yang dikirim v = 000 dan yang diterima salah satu dari 000, 100, 010, 001 dan DKMTK men-decode secara salah bila kata yg diterima salah satu dari 111, 110, 101, 011. Contoh Misal M = 3 dan pilih kode C = {0000, 0001, 1110} dengan n = 4. Konstruksi tabel DKMTK seperti pada contoh di atas. w yang Pola Kesalahan Decode diterima w 0001+w 1110+w v * * * * * * * * * * * Tabel 2. Tabel DKMTK untuk kode C = {0000, 0001, 1110}. Perlu dicatat bahwa dalam memilih nilai n dan kode C pada proses encoding, tiga kriteria di bawah ini penting untuk diperhatikan dalam menentukan baik-tidaknya pilihan: 1. Kata yang lebih panjang memerlukan waktu transfer dan decoding yang lebih lama;

15 14 Sehingga n sebaiknya tidak terlalu panjang. Dalam kata lain, laju informasi sebaiknya dibuat sedekat mungkin dengan angka Jika C besar maka tabel DKMTK akan membesar, sehingga akan memerlukan waktu lebih lama untuk diimplementasikan. Akan tetapi, dengan memilih C yang tepat akan dapat diperoleh metoda DKMTK yang lebih cepat. 3. Jika terdapat banyak kesalahan dalam transmisi maka DKM akan tidak bekerja baik. Maka perlu dipilih kode C sedemikian probabilitas bahwa DKM akan bekerja baik adalah tinggi. 1.8 Kepercayaan DKM Misal n dan C telah dipilih. Kita akan menentukan probabilitas θ p (C, v) bahwa jika v yang dikirim pada saluran SBS dengan probabilitas p maka DKMTK secara benar menyimpulkan bahwa v yang telah dikirim. Misal L(v) himpunan semua kata di K n yang dekat dengan v bila dibandingkan dengan kata lain di C. Maka θ p (C, v) adalah jumlah semua probabilitas φ p (v, w) dimana w L(v). Jadi, θ p (C, v) = w L(v) φ p (v, w). Catatan: L(v) adalah himpunan semua kata di K n dimana bila diterima, DKMTK akan menyimpulkan secara benar bahwa v yang telah dikirim. θ p (C, v) juga dapat dipandang sebagai hasil tambah dari probabilitas semua pola kesalahan v + w dimana w L(v). Contoh Misal p = 0.93, M = 2, n = 3 dan C = {000, 111}. Jika kata v = 000 dikirim maka probabilitas DKMTK medecode secara benar setelah satu transmisi adalah sebagai berikut: L(000) = {000, 100, 010, 001}.

16 15 Maka, θ p (C, 000 = φ p (000, 000) + φ p (000, 100) + φ p (000, 010) + φ p (000, 001) = p 3 + p 2 (1 p) + p 2 (1 p) + p 2 (1 p) = p 3 + 3p 2 (1 p) = Dengan cara yang sama, dapat dihitung bahwa θ p (C, 111) = Contoh Misal p = 0.93, M = 3, n = 4 dan C = {0000, 1010, 1110}. Untuk setiap v C hitung θ p (C, v). Untuk v = L(0000) = {0000, 0100, 0001}, θ p (C, v) = φ p (0000, 0000) + φ p (0000, 0100) + φ p (0000, 0001) = p 4 + p 3 (1 p) + p 3 (1 p) = Untuk v = L(0000) = {1010, 1011}, θ p (C, v) = φ p (1010, 1010) + φ p (1010, 1011) = p 4 + p 3 (1 p) = Untuk v = L(1110) = {1110, 0110, 1100, 1111, 0111, 1101}, dan mudah ditunjukkan bahwa θ p (C, v) = Diskusi Jika M = 2, n = 3 dan C = {001, 101}. Jika v = 001 dikirim, kapan DKMTK menyimpulkan/mendecode secara benar, dan kapan ia mendecode secara salah? 2. Jika M = 3 dan n = 3. Untuk setiap kata w K 3 yang diterima, tentukan kata v di C = {000, 001, 110} dimana DKMTK menyimpulkan secara benar. 3. Konstruksi tabel DKMTK untuk setiap kode dibawah dan hitung θ p (C, v) untuk setiap v di C dengan memakai p = a) C = {00000, 11111} b) C = {00000, 11110, 01111, 10001}

17 16 c) C = {0000, 1001, 0110, 1111} d) C = {00000, 11100, 00111, 11011}. 1.9 Kode Pendeteksi Kesalahan Kita akan membahas konsep tentang kode C pendeteksi kesalahan. Jika v C kata yang dikirim dan w K n yang diterima, maka u = v + w merupakan pola kesalahan. Karena setiap kata u K n dapat menjadi pola kesalahan maka kita ingin tahu pola kesalahan manakah yang dapat dideteksi oleh C. Kode C dikatakan dapat mendeteksi pola kesalahan u jika dan hanya jika v + u C untuk setiap v C. Dengan kata lain, u dapat dideteksi oleh C bila setiap katakode v yang ditransmisi, decoder dapat mengenali bahwa katakode yang diterimanya, yakni u + v, bukan merupakan katakode; Sehingga dapat disimpulkan terjadi kesalahan. Contoh Misal C = {001, 101, 110}. Untuk pola kesalahan u = 010, tentukan semua v untuk semua v C, yakni: = 011, = 111, = 100. Karena semua hasilnya bukan merupakan katakode maka C dapat mendeteksi pola kesalahan 010. Sedangkan bila u = 100 maka didapat: = 101, = 001, = 010. Karena = 101 C maka C tidak dapat mendeteksi pola kesalahan 100. Tabel DKMTK dapat digunakan untuk menentukan semua pola kesalahan yang dapat dideteksi oleh kode C. Kolom pertama memberikan semua kata di K n, sehingga kolom pertama dapat reinterpretasikan sebagai semua pola kesalahan yang mungkin. Jika dalam suatu baris tertentu (dengan kolom pertama mengandung u) semua jumlah u + v bukan merupakan katakode di C, maka C dapat mendeteksi u. Contoh Pandang kode C = {000, 111} dengan Tabel DKMTK disajikan pada Tabel 1 di atas. Semua pola kesalahan didaftarkan pada kolom 1. Untuk setiap u K 3, semua jumlah v + u (dengan v C) diberikan pada kolom 2 dan 3. Dapat disimpulkan bahwa C dapat mendeteksi pola kesalahan 100, 010, 001, 110, 101 dan 011; tapi ia tidak dapat mendeteksi pola kesalahan 000 atau 111.

18 17 Cara lain untuk menentukan semua pola kesalahan yang dapat dideteksi oleh suatu kode C adalah dengan mencari semua pola kesalahan yang tidak dapat dideteksi oleh C; Maka pola kesalahan sisanya merupakan yang dapat dideteksi oleh C. Untuk setiap v dan w di C, jika u = v + w maka u tidak dapat dideteksi oleh C karena v + u = w C. Jadi, {v + w : v, w C} merupakan himpunan semua pola kesalahan yang tidak dapat dideteksi oleh C. Contoh Misal C = {1000, 0100, 1111}. Karena, =0000, = 1100, = 0111 dan =1011, maka himpunan semua pola kesalahan yang tidak dapat dideteksi oleh C adalah {0000, 1100, 0111, 1011}. Jadi semua pola kesalahan yang dapat dideteksi adalah K 4 \{0000, 1100, 0111, 1011}. Untuk suatu kode C dengan sedikitnya dua kata, definisikan jarak dari kode C sebagai min{d(v, w) : v, w C v w}. Karena d(v, w) = wt(v + w), maka jarak kode C adalah min{wt(v + w) : v, w C, v w}. Sebagai contoh, bila C = {0000, 1010, 0111} maka jarak kode C adalah 2. Teorema Suatu kode C dengan jarak d akan dapat mendeteksi sedikitnya semua pola kesalahan taknol dengan bobot d 1. Tapi, ada sedikitnya satu pola kesalahan dengan bobot d yang tidak dapat dideteksi oleh C. Bukti. Misal u K n dengan wt(u) d 1, dan v C. Maka d(v, v + u) = wt(v + v + u) = wt(u) < d. Karena C mempunyai jarak d, maka v + u C. Dengan demikian C dapat mendeteksi u. Dari definisi jarak d, maka ada katakode v dan w di C dengan d(v, w) = d. Sebut pola kesalahan u = v +w. Karena w = v +u C maka C tidak dapat mendeteksi pola kesalahan u dengan bobot d. Suatu kode dikatakan kode pendeteksi t kesalahan bila ia dapat mendeteksi semua pola kesalahan taknol dengan bobot t dan tidak dapat mendeteksi sedikitnya satu pola kesalahan dengan bobot t + 1. Maka berdasar Teorema 1.9.4, setiap kode C dengan jarak kode d sedikitnya merupakan kode pendeteksi d 1 kesalahan.

19 18 Contoh Diberikan kode C = {001, 101, 110} dengan jarak kode 1. Karena d 1 = 1 1 = 0, maka Teorema hanya dapat memberikan kepada kita bahwa sedikitnya ada satu pola kesalahan bobot 1 yang tidak dapat dideteksi oleh C, misal 100. Mudah diperiksa bahwa pola kesalahan 010 dan 001 (bobot 1), 110 dan 101 (bobot 2) dapat dideteksi oleh C. Diskusi Tentukan semua pola kesalahan yang dapat dideteksi oleh kode C = {000, 011, 101, 110}. Berapa kesalahan dapat dideteksi oleh C? 2. Misal C suatu kode yang terdiri dari semua kata panjang 4 dengan bobot genap. Tentukan pola kesalahan yang dapat dideteksi oleh C Kode Pengoreksi Kesalahan Jika kata v C yang ditransmisi pada saluran biner simetris (SBS) dan jika w kata yang diterima dengan pola kesalahan u = v+w, maka DKMTK akan menyimpulkan secara benar bahwa v yang dikirim ketika w yang diterima berjarak lebih dekat kepada v daripada kepada kata lain di C. Jika hal ini berlaku ketika pola kesalahan u terjadi tanpa bergantung pada katakode yang ditransmisikan maka C dikatakan dapat mengoreksi kesalahan u. Dengan kata lain, kode C dikatakan dapat mengoreksi pola kesalahan u jika untuk semua v C, v + u berjarak lebih dekat ke v dibanding dengan jarak ke katakode lain di C. Kode C dikatakan mengoreksi t kesalahan bila ia mengoreksi semua pola kesalahan dengan bobot t dan tidak mengoreksi sedikitnya satu pola kesalahan dengan bobot t + 1. Sebagai contoh, perhatikan kode C = {000, 111}. Kode C dapat mengoreksi pola kesalahan u = 010, karena d( , 000) < d( , 111) dan d( , 111) < d( , 000). Namun, C tidak dapat mengoreksi pola kesalahan u = 110, karena d( , 000) > d( , 111). Jadi v + u tidak lebih dekat dengan v = 000 daripada 111. Tabel DKMTK dapat digunakan untuk menentukan pola kesalahan mana saja yang dapat dikoreksi oleh kode C. Setiap tanda * yang diberikan pada suatu pola kesalahan u

20 19 pada kolom yang bersesuaian dengan katakode v menyatakan bahwa v + u lebih dekat ke v daripada ke katakode yang lain. Jadi pola kesalahan u tersebut dapat dikoreksi oleh C bila diberi tanda * pada setiap kolom di tabel DKMTK tersebut. Contoh Misal C = {001, 101, 110}. ApakahC dapat mengoreksi pola kesalahan u = 100? KIta konstruksi sebagian tabel DKMTK untuk kode C dimana pola kesalahan 100 muncul. Karena u = v + w dan u serta v tahu maka w dapat dihitung. Jelas bahwa u = 100 tidak mendapatkan tanda * pada setiap kolomnya, karenanya C tidak dapat mengoreksi 100. w yang Pola Kesalahan Decode diterima w 101+w 110+w v * * * 110 Tabel 3. Sebagian tabel DKMTK untuk kode C = {001, 101, 110}. Teorema Suatu kode C berjarak d akan mengoreksi semua pola kesalahan dengan bobot kurang dari atau sama dengan (d 1)/2. Namun, C tidak dapat mengoreksi sedikitnya satu pola kesalahan berbobot 1 + (d 1)/2. Bukti. Misal u suatu pola kesalahan dengan bobot wt(u) (d 1)/2. Misal v dan w dua katakode di C dengan w v. Kita akan tunjukkan bahwa d(v, v + u) < d(w, v + u). d(w, v + u) + d(v + u, v) d(w, v) d d(w, v + u) + wt(u) 2wt(u) + 1 d(w, v + u) wt(u) + 1 d(v, v + u) + 1. Maka C dapat mengoreksi u. Sekarang bila v dan w katakode dengan d(v, w) = d. Bentuk pola kesalahan u dengan dengan menukar d 1 (d 1)/2 dari d bit 1 pada v + w menjadi bit 0. Maka: d(v, v + u) = wt(u) = 1 + (d 1)/2, dan d(w, v + u) = wt(w + v + u) = d(v + w, u) = d (1 + (d 1)/2 ).

21 20 Jelas bahwa d(v, v + u) d(w, v + u), sehingga v + u tidak lebih dekat ke v daripada ke w. Jadi C tidak mengoreksi kesalahan u. Diskusi Untuk setiap kode C di bawah ini: (i) tentukan pola kesalahan yang dapat dikoreksi oleh C; (ii) tentukan semua pola kesalahan yang menurut Teorema dijamin dapat dikoreksi oleh C. (a) C = {101, 111, 011} (b) C = {00000, 11110, 01111, 10001} (c) C = {0000, 1001, 0110, 1111} (d) C = {000000, , , } 2. Misal C suatu kode yang terdiri dari semua kata panjang 4 dengan bobot genap. Tentukan pola kesalahan yang dapat dikoreksi oleh C. 3. Misal u 1 dan u 2 pola kesalahan panjang n, dan misal u 2 mempunyai nilai 1 pada setiap posisi 1 di u 1. Buktikan bahwa jika kode C mengoreksi u 2 maka ia juga mengoreksi u 1.

22 Chapter 2 Kode Linier 2.1 Kode linier dan kode dual Suatu kode C dikatakan linier bila v+w C untuk setiap v, w C. Dengan kata lain, kode linier adalah kode yang tertutup terhadap operasi penjumlahan kata. Contoh sederhana kode linier adalah C = {000, 111}, karena: = = = = 000 semuanya ada di C. Namun, C 1 = {000, 100, 110} bukan kode linier, karena 100 dan 110 ada di C tapi = 010 C 1. Jelas, kode linier C pasti memuat kata nol (0). Karena, bila v C maka per definisi linier: v + v = 0 ada di C. Salah satu keunggulan menggunakan kode linier adalah mudah untuk dihitung jaraknya. Yakni, jarak suatu kode linier C sama dengan bobot terkecil katakode taknol di C. Kenapa demikian? Perhatikan berikut ini. Misal jarak C adalah k, dan v dan w dua katakode di C yang memberikan d(v, w) = k. Misal c bobot terkecil di C. Karena C linier maka z = v + w C, dan wt(z) = wt(v + w) = d(v, w) = k. Jadi c k. Sebaliknya, jika c bobot terkecil di C dan wt(v) = c maka kelinieran C menjamin adanya 0 C, jadi d(0, v) = c. Sehingga k c. Jadi k = c. 21

23 22 Pada bab ini kita akan melihat bahwa kode linier mempunyai struktur yang menarik dan mempunyai banyak keunggulan dibanding dengan kode lainnya. Diantara beberapa keunggulannya adalah: 1. Untuk kode linier, prosedur DKM akan lebih sederhana dan lebih cepat. 2. Encoding kode linier akan lebih cepat dan memerlukan ruang penyimpanan yang lebih sedikit dibanding dengan kode tak linier sebarang. 3. Probabilitas θ p (C, v) dapat dihitung dengan mudah untuk kode linier. 4. Mudah untuk mengetahui semua pola kesalahan yang dapat dideteksi oleh suatu kode linier. 5. Mudah untuk mengetahui semua pola kesalahan yang dapat dikoreksi oleh suatu kode linier. Pada bab I, kita telah mendefinisikan ruang vektor atas K sebagai suatu sistim yang terdiri dari skalar (K) dan himpunan vektor K n, dalam hal ini kata-kata, dengan operasi tambah dua vektor dan perkalian skalar yang memenuhi 10 sifat pada bagaian 1.5. Subhimpunan U V disebut subruang dari ruang vektor V bila U tertutup terhadap operasi penjumlahan dan perkalian skalar, yakni jika v, w U maka v + w U dan av U untuk setiap a K. Karena satu-satunya skalar adalah 0 dan 1 maka U subruang dari K n jika dan hanya jika U tertutup terhadap operasi penjumlahan. Jadi, kode linier adalah suatu subruang dari K n. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v 1, v 2,, v k jika terdapat skalar a 1, a 2, a k sedemikian sehingga w = a 1 v 1 + a 2 v a k v k. Himpunan semua kombinasi linier dari vektor-vektor di S = {s 1, s 2,, s k } disebut sebagai linier span dari S, dan diberi notasi S. Dalam hal S = definisikan S = {0}. Mudah ditunjukkan bahwa untuk setiap subhimpunan S dari ruang vektor V, linier span S dari S membentuk subruang, dan selanjutnya subruang tersebut dikatakan dibangun

24 23 oleh S. Karena S subruang di K n maka S membentuk kode linier yang dibangun oleh S. Teorema Untuk setiap subhimpunan S dari K n, kode C = S yang dibangun oleh S terdiri dari kata-kata berikut ini: kata nol, semua kata di S, dan semua penjumlahan dua atau lebih kata di S. Contoh Misal S = {1000, 0011, 1100}. Maka kode C = S terdiri dari: 0000, 0011, = 1011, = 1111, 1000, 1100, = 0100, = Dengan demikian C = S = {0000, 1000, 0011, 1100, 1111, 1011, 0111, 0100}. Misal v = (v 1, v 2,, v n ) dan w = (w 1, w 2,, w n ) dua vektor di K n. Definisikan perkalian skalar atau perkalian titik v w dari v dan w sebagai v w = v 1 w 1 + v 2 w v n w n. Sebagai contoh di K 5, = = = 1. Vektor v dan w dikatakan saling ortogonal bila v w = 0. Sebagai contoh ortogonal dengan di K 5. Untuk himpunan S K n, kita katakan vektor v ortogonal pada S bila v s = 0 untuk semua s S. Himpunan semua vektor yang ortogonal pada S disebut komplemen ortogonal dari S, dan dinotasikan dengan S. Mudah ditunjukkan bahwa untuk setiap subhimpunan S dari ruang vektor V, komplemen ortogonal S membentuk suatu subruang di V. Selanjutnya, jika C = S maka C = S disebut sebagai kode dual dari C. Dalam hal C C maka kode C dikatakan ortogonal terhadap diri sendiri (self-orthogonal atau self-dual). Contoh Untuk S = {1000, 1010}, tentukan kode dual C = S. Pertanyaan ini sama persis dengan mencari semua kata v = (x, y, z, w) di K 4 yang memenuhi persyaratan berikut:

25 24 v 1000 = 0, v 1010 = 0. Dengan menghitung perkalian skalar diatas didapat x = 0 dan x + z = 0. Ini berarti bahwa x = z = 0 tetapi y dan w dapat salah satu dari 0 atau 1. Sehingga didapat: Diskusi dan C = S = {0000, 0001, 0100, 0101}. 1. Tentukan kode di bawah ini mana yang linier. (a) C = {101, 111, 110} (b) C = {00000, 01111, 11110, 10001} (c) C = {000, 001, 010, 011} (d) C = {0000, 1001, 0110, 1111} (e) C = {00000, 11100, 11011, 00111} 2. Tunjukkan bahwa himpunan semua kata panjang 4 dengan bobot genap membentuk kode linier dengan jarak Untuk setiap himpunan S dibawah ini daftarkan semua katakode yang termasuk dalam kode S. (a) S = {001, 010, 011, 111} (b) S = {1100, 1010, 0011} (c) S = {0001, 0010, 0100, 1000} (c) S = {10101, 11111, 11000, 01010, 10110} 4. Tunjukkan bahwa untuk setiap subhimpunan S dari ruang vektor V, komplemen ortogonal S membentuk suatu subruang di V. 5. Carilah kode dual C untuk setiap kode C = S pada No Buktikan bahwa himpunan C yang terdiri dari semua kata panjang n dengan bobot genap merupakan suatu kode linier dengan jarak a) Tentukan semua v K n yang memenuhi v v = 0. b) Tentukan v dan w di K n yang memenuhi wt(u + v) = wt(u) + wt(v) 2(u v). 8. Untuk setiap subhimpunan S di ruang vektor V, tunjukkan (S ) = S. 9. Berikan contoh kode yang self-dual di K Misalkan C suatu kode linier. Tunjukkan bahwa di dalam C semua vektornya berbobot genap atau separuh jumlah vektornya berbobot genap. 11. Apakah mungkin kita mempunyai 8 vektor di K 6 dengan d(u, v) 3 untuk setiap u dan v. 12. Apakah mungkin kita mempunyai 9 vektor di K 6 dengan d(u, v) 3 untuk setiap u dan v.

26 Basis dan dimensi Himpunan S = {v 1, v 2,, v k } dari vektor-vektor di K n dikatakan bergantung linier bila terdapat skalar a 1, a 2,, a k yang tidak semuanya nol sedemikian sehingga a 1 v 1 + a 2 v a k v k = 0. Bila tidak demikian, himpunan S dikatakan bebas linier. Contoh Apakah S = {1001, 1101, 0011} bebas linier? Misal ada skalar a, b dan c sehingga a(1001) + b(1101) + c(0011) = 0. Maka diperoleh a + b = 0, b = 0, c = 0 dan a + b + c = 0. Ini berakibat a = b = c = d = 0. Jadi, S bebas linier. Contoh Selidiki apakah S = {110, 011, 101, 100} bebas linier. Karena = 101 maka ini berarti bahwa terdapat skalar a = b = c = 1 dan d = 0 sehingga a(110) + b(011) + c(101) + d(100) = 0. Jadi S bergantung linier. Di dalam Aljabar Linier telah ditunjukkan bahwa setiap himpunan vektor S {0} senantiasa memuat subhimpunan terbesar yang bebas linier. Berikut ini contoh bagaimana subhimpunan terbesar tersebut ditemukan. Contoh Misal S = {110, 011, 101, 100}. Dari contoh kita tahu bahwa S bergantung linier, dan 1(110) + 1(011) + 1(101) + 0(100) = 000. Atau dapat dinyatakan bahwa: 101 = 1(110) + 1(011) + 0(100). Selanjutnya, hilangkan vektor 101 dari S, dan diperoleh S. Kemudian periksa kembali apakah S bebas linier. Bila S masih bergantung linier maka hapus vektor yang bergantung linier pada vektor-vektor sebelumnya dan diperoleh subhimpunan baru S. Proses ini diulangi terus menerus hingga diperoleh subhimpunan yang bebas linier. Dalam hal contoh ini, S sudah bebas linier. Jadi S = {110, 011, 100} subhimpunan terbesar yang bebas linier dari S. Subhimpunan takkosong B dari ruang vektor V disebut basis dari V jika memenuhi kedua syarat di bawah ini:

27 26 1. B membangun V (Ini berarti, B = V ), dan 2. B bebas linier. Catatan bahwa setiap himpunan bebas linier B senantiasa merupakan basis dari B. Karena setiap himpunan bergantung linier S memuat subhimpunan terbesar yang bebas linier maka kita dapat mengekstrak dari S untuk mendapatkan sebuah basis B untuk S. Hal khusus, bila S = {0} maka kita katakan basis S adalah. Contoh Misal S = {1001, 1101, 0011}. Dari contoh S bebas linier. Jadi S merupakan basis dari kode C = S = {0000, 1001, 1101, 0011, 0100, 1010, 1111, 0010} yang merupakan subruang di K 4. Contoh Misal S = {110, 011, 101, 100}. Dari contoh didapat bahwa S bergantung linier dan subhimpunan terbesar yang bebas linier adalah S = {110, 011, 100}. Maka S merupakan basis dari kode C = S. Kedua contoh ini mengilustrasikan bagaimana mencari suatu basis untuk kode C = S. Untuk mencari suatu basis dari kode dualnya C, ekstrak subhimpunan terbesar yang bebas linier dari C dengan cara seperti pada contoh Subhimpunan terbesar yang bebas linier dari suatu himpunan S tidak selalu tunggal. Sebagai contoh S = {110, 011, 100} bukan satu-satunya subhimpunan terbesar dari S yang bebas linier, karena S = {110, 101, 100} juga bebas linier. Maka S juga dapat diambil sebagai basis dari S. Secara umum, suatu ruang vektor mempunyai banyak basis. Akan tetapi, semua basis tersebut mempunyai jumlah elemen yang sama. Banyaknya elemen pada sebuah basis untuk suatu ruang vektor disebut sebagai dimensi dari ruang vektor tersebut. Sebagai contoh, K n mempunyai dimensi n karena setiap basis mempunyai n vektor. Salah satu basisnya adalah himpunan semua vektor bobot 1 di K n. Pada contoh 2.2.2, S mempunyai dimensi 3. Sedangkan dimensi dari subruang {0} adalah 0. Basis merupakan cara efisien untuk menyatakan kode linier C. Untuk setiap ruang vektor V, jika B = {v 1, v 2,, v k } suatu basis dari V maka setiap vektor w V dapat

28 27 dinyatakan secara tunggal sebagai kombinasi linier dari vektor-vektor di B; Yakni terdapat secara tunggal skalar a 1, a 2,, a k sehingga w = a 1 v 1 + a 2 v a k v k. Contoh Tulis vektor w = 011 sebagai kombinasi linier dari kata-kata di basis B = {100, 110, 001} dari K 3. Kita mencari a, b dan c sehingga w = 011 = a(100) + b(110) + c(001). Jadi diperoleh a = b = c = 1. Misalkan V ruang vektor dan S suatu subhimpunan di V yang bebas linier. Maka S dapat diperluas sehingga membentuk suatu basis dari V, dengan cara menambah beberapa vektor di luar S. Contoh Perluas himpunan bebas linier S = {110, 010} sehingga membentuk basis untuk K 3. Pertama, gabungkan S dengan suatu basis dari K 3 yang anda ketahui. Misal, ambil basis K 3 = {100, 010, 001}. Sehingga didapat: 110, 010, 100, 010, 001 yang akan direduksi menjadi suatu basis untuk K 3 dengan menghapus kata yang bergantung linier pada kata-kata sebelumnya (seperti proses pada contoh 2.2.3). Akhirnya diperoleh S = {110, 010, 001} basis dari K 3 yang memuat S. Sekarang kita sampai pada teorema penting berkaitan dengan kode linier. Jika suatu kode linier C mempunyai dimensi k dan jika {v 1, v 2,, v k } merupakan basis dari C, maka untuk suatu katakode w C dapat ditulis sebagai: w = a 1 v 1 + a 2 v a k v k, untuk suatu pilihan tunggal a 1, a 2,, a k. Karena setiap a i hanya dapat bernilai 0 atau 1 maka akan ada sebanyak 2 k pilihan untuk a 1, a 2,, a k ; sehingga terdapat tepat 2 k katakode di C. Teorema Suatu kode linier C yang berdimensi k akan memuat tepat 2 k katakode. Teorema berikut dapat ditunjukkan dengan menggunakan hasil elementer dari teori sistem persamaan linier. Teorema Misal C = S kode linier yang dibangun oleh subhimpunan S di K n. Maka (dimensi dari C) + (dimensi dari C ) = n.

29 28 Teorema terakhir pada bagian ini berkenaan dengan banyaknya basis untuk K n. Perlu dicatat bahwa ada takhingga banyaknya basis untuk R n. Teorema Suatu kode linier berdimensi k mempunyai 1 k! yang berbeda. Diskusi k 1 i=0 (2k 2 i ) buah basis 1. Carilah basis dan dimensi untuk setiap kode C = S dan kode dualnya C untuk setiap S pada soal No. 3, Diskusi Misal S subhimpunan di K 9, misal C = S dan misalkan C berdimensi 3. (a) Tentukan dimensi dari C. (b) Tentukan banyaknya katakode pada C. 3. Misalkan { , , } suatu basis dari C. Tentukan banyaknya katakode di kode linier C. 4. Tunjukkan bahwa dalam setiap kode linier self-ortogonal, salah satu diantara ini pasti berlaku: semua vektor berbobot kelipatan 4 atau separuh vektor berbobot genap tapi bukan kelipatan 4 dan separuh lagi berbobot kelipatan Basis kode C = S dan C Pada bagian ini kita akan membangun algoritma untuk menghasilkan basis untuk kode linier dan kode dualnya. Algoritma akan didasarkan pada operasi baris elementer. Misalkan S subhimpunan takkosong dari K n. Dua algortima pertama diberikan untuk mencari basis dari C = S. Algoritma Bentuk matriks A yang semua barisnya adalah kata di S. Gunakan operasi baris elementer untuk merubah matriks A menjadi bentuk eselon baris. Maka semua baris taknol dalam bentuk eselon baris tadi membentuk suatu basis C = S. Catatan: Matriks M dikatakan dalam bentuk eselon baris (BEB) jika semua baris nol dari M (bila ada) berada pada bagian bawah M, dan setiap leading 1 selalu berada pada sisi kanan dari leading 1 untuk baris diatasnya. Lebih jauh, jika setiap kolom leading memuat tepat angka 1, maka matriks M dikatakan dalam bentuk eselon baris tereduksi (BEBT)

30 29 Contoh Tentukan basis dari kode linier C = S untuk S = {11011, 10110, 01011, 11101} A = Matriks terakhir adalah bentuk eselon baris (BEB). Sehingga salah satu basis dari C adalah {11011, 01101, 00110}. Perlu dicatat bahwa Algoritma tidak menghasilkan basis yang tunggal untuk S. Algoritma (Mencari basis C). Bentuk matriks A yang kolom-kolomnya adalah katakata di S. Gunakan operasi baris elementer untuk merubah A menjadi bentuk eselon baris tereduksi (BEBT). Perhatikan kolom leading pada matriks BEBT. Maka kolom-kolom dari A yang berkorespondensi dengan kolom-kolom leading tadi membentuk suatu basis untuk C = S. Algoritma berikut ini digunakan untuk mencari suatu basis dari ruang dual C. Algoritma (Mencari basis untuk C ) Bentuk matriks A dimana baris-barisnya adalah kata di S. Gunakan operasi baris elementer untuk merubah A menjadi bentuk eselon baris tereduksi (BEBT). Misal G adalah matriks k n terdiri dari semua baris taknol dari BEBT. Misal X adalah matriks k (n k) yang diperoleh dari G dengan menghapus kolom leading dari G. Bentuk matriks H ukuran n (n k) sebagai berikut: 1. dalam baris H yang berkorespondensi dengan kolom leading dari G letakkan baris-baris X secara terurut; 2. pada baris lainnya dari H, letakkan baris-baris matrik identitas (n k) (n k) secara terurut. Maka kolom-kolom H membentuk basis untuk C. Algoritma di atas benar karena (n k) kolom dari H senantiasa bebas linier, dim C = n dim C = n k, dan dengan suatu permutasi kolom dari G dan baris dari H, berlaku GH = X + X = 0. Algoritma dapat diingat sebagai berikut. Pertama ubah matriks A menjadi bentuk BEBT: A G 0 (BEBT).

31 30 Permutasi kolom-kolom dari G untuk membentuk G = [I k, X]. bentuk matriks H sebagai berikut: H X. I n k Gunakan kebalikan dari permutasi yang digunakan pada kolom-kolom di G tadi untuk mendapatkan matriks H kembali dari H. Contoh Gunakan Algoritma untuk mencari basis dari C untuk S = {11011, 10110, 01011, 11101} A = Sekarang, bentuk G = , k = 3 dan X = 11. Kolom leading dari G adalah ,2 dan 3, sehingga baris-baris X diletakkan pada baris ke- 1, 2 dan 3 pada matriks H ukuran 5 (5 3). Baris sisanya dari H diisi dengan matriks identitas 2 2. Maka: Dengan Algoritma kolom-kolom H membentuk basis dari C. Contoh Misalkan n = 10 dan misal S suatu himpunan kata di K 10. Misal bentuk BEBT dari matriks A yang dihasilkan Algoritma mempunyai baris taknol seperti dibawah ini: G = Kolom leading dari G adalah 1, 4, 5, 7 dan 9. Kita permutasi kolom G dalam urutan 1, 4, 5, 7, 9, 2, 3, 6, 8, 10 (kolom leading dahulu) sehingga menjadi matriks:

32 31 G = Maka kita bentuk matriks H di bawah ini dan kemudian dengan mengatur kembali baris dari H sesuai dengan balikan dari permutasi yang digunakan pada kolom G tadi dan didapat H. H = ( X I ) = ; H = Dengan Algoritma 2.3.4, kolom-kolom H membentuk basis untuk C. Diskusi Dengan menggunakan Algoritma tentukan basis dari C untuk setiap kode C = S dimana (a) S = {010, 110, 111} (b) S = {0101, 1010, 1100} (c) S = {10110, 01110, 11110, 01010, 10111} (d) S = {111000, , , } (e) S = { , , , } 2. Untuk setiap himpunan S dibawah, gunakan Algoritma untuk menemukan basis B untuk kode C = S dan basis B untuk kode dual C. (a) S = {00000, , , } (b) S = {11100, 01110, 00111, 10011, 11001} (c) S = { , , , } Matriks pembangun dan matriks cek paritas Pada bagian untuk akan diberikan matriks yang penting untuk kode linier yang digunakan untuk proses encoding (dalam pengiriman pesan).

33 32 Rank dari suatu matriks A atas lapangan K adalah banyaknya baris taknol di setiap bentuk eselon baris dari matriks A. Dimensi k dari suatu kode C adalah dimensi dari subruang C di K n. Untuk selanjutnya, suatu kode linier dengan panjang n, dimensi k dan jarak d dinotasikan sebagai kode linier-(n, k, d). Jika C suatu kode linier panjang n dan dimensi k maka setiap matriks yang baris-barisnya membentuk suatu basis dari C disebut sebagai matriks pembangun (matriks generator) untuk C. Dengan demikian, matriks pembangun dari kode linier C harus mempunyai k baris dan n kolom, dan mempunyai rank tepat sama dengan k. Sehingga didapat teorema berikut. Teorema Matriks G adalah matriks pembangun dari suatu kode linier C jika dan hanya jika baris-baris dari G bebas linier. Teorema Jika G matriks pembangun untuk suatu kode C maka setiap matriks yang ekivalen (baris) dengan G juga merupakan matriks pembangun untuk C. Khususnya, setiap kode linier mempunyai matriks pembangun dalam bentuk eselon baris tereduksi (BEBT). Contoh Tentukan matriks pembangun dari kode linier C = {0000, 1110, 0101, 1011}. Dengan menggunakan Algoritma diperoleh, A = ( ) 1110 Jadi G = adalah matriks pembangun dari kode linier C. Bentuk eselon baris 0101 ( ) 1011 tereduksi dari matriks tersebut, yakni G 1 = juga merupakan matriks pembangun Misal G suatu matriks pembangun dari kode linier C panjang n dan dimensi k. Maka, untuk setiap kata u panjang k (ditulis sebagai vektor baris) v = ug merupakan suatu katakode di C. Ini benar karena, jika u = (c 1, c 2,, c k ) dan jika g 1 g 2 G =,. g k

34 33 dimana g 1, g 2,, g k adalah baris-baris dari G maka v = ug = c 1 g 1 + c 2 g c k g k merupakan kombinasi linier dari baris-baris G (vektor dari basis untuk C). Di sisi lain, karena setiap katakode v di C adalah kombinasi linier dari vektor-vektor basis untuk C (baris-baris dari G), maka v = wg untuk tepatnya satu w K k. Sehingga berlaku teorema di bawah. Teorema Jika G matriks pembangun suatu kode C panjang n dan dimensi k, maka C = {v = wg w K k } yang terdiri dari 2 k katakode. Lebih jauh, w 1 G = w 2 G jika dan hanya jika w 1 = w 2. Teorema menyatakan bahwa pesan yang akan diencode oleh kode linier-(n, k, d) adalah semua kata u K k. Pesan u diencode dengan matriks G menjadi v = ug. Sehingga hanya k digit dari setiap katakode yang digunakan untuk membawa pesan. Maka laju informasi dari kode linier-(n, k, d) adalah log 2 (2 k )/n = k/n. Contoh Misal C suatu kode linier-(5, 3, d) dengan matriks pembangun di bawah ini. Maka laju informasi dari C adalah k/n = 3/5. Semua pesan w K 3 dapat diencode dengan matriks G menjadi katakode panjang 5. Sebagai contoh pesan w = 110 diencode menjadi: v = wg = (110) = Selain matriks pembangun untuk kode C, ada satu matriks lagi, yakni matriks cek paritas, yang berguna berkenaan dengan suatu kode C. H disebut matriks cek paritas dari kode linier C jika kolom-kolom dari H membentuk basis dari kode dual C. Berdasarkan Teorema 2.2.9, jika C mempunyai panjang n dan dimensi k maka dimensi dari C adalah n k. Dengan demikian, setiap matrik cek paritas dari C akan berukuran n (n k) dengan rank (n k). Sehingga didapat teorema di bawah ini. Teorema Matriks H ukuran n (n k) merupakan matriks cek paritas dari kode linier C panjang n dan dimensi k jika dan hanya jika kolom-kolom H bebas linier. Misal H matriks cek paritas dari kode linier C. Mengingat bahwa C = {v K n v c = 0, c C} maka setiap w C akan bersifat bahwa wh = 0. Jadi diperoleh teorema berikut ini.

35 34 Teorema Jika H matriks cek paritas dari kode linier C panjang n, maka C terdiri dari semua kata w K n yang memenuhi wh = 0. Algoritma dapat digunakan untuk mencari matriks cek paritas dari kode linier C dengan matriks pembangun G. Selanjutnya, sifat dan hubungan kedua matriks tersebut dapat diringkaskan sebagai berikut. Teorema Matriks G dan H berturut-turut merupakan matriks pembangun dan matriks cek paritas untuk suatu kode linier C jika dan hanya jika: (i) Baris dari G bebas linier, (ii) Kolom dari H bebas linier, (iii) Banyaknya baris dari G + Banyaknya kolom dari H = Banyaknya kolom dari G = Banyaknya baris dari H, dan (iv) GH = 0. Karena H T G T = (GH) T = 0 dan berdasar Teorema maka didapat teorema berikut. Teorema H adalah matriks cek paritas dari C jika dan hanya jika H T matriks pembangun dari C. G matriks pembangun dari C jika dan hanya jika G T matriks cek paritas dari C. Contoh Tentukan matriks cek paritas dari kode C = {0000, 1110, 0101, 1011}. Dari contoh didapat ( ) 1011 G 1 = = (I X) 0101 matriks pembangun dari C dalam BEBT. Dengan Algoritma kita dapat mengkonstruksi matriks cek paritas H: H = ( ) 11 X = 01 I matriks cek paritas dari C. Perlu dicatat bahwa vh = 00 untuk semua kata v C. Proses encoding, menurut Teorema 2.4.4, merupakan proses penambahan digit tambahan (redundancy digits) kepada digit informasi. Setidaknya ada dua cara encoding suatu kode C. Pertama, encoding dengan menggunakan kombinasi linier dari baris-baris pada

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

Kode, GSR, dan Operasi Pada

Kode, GSR, dan Operasi Pada BAB 2 Kode, GSR, dan Operasi Pada Graf 2.1 Ruang Vektor Atas F 2 Ruang vektor V atas lapangan hingga F 2 = {0, 1} adalah suatu himpunan V yang berisi vektor-vektor, termasuk vektor nol, bersama dengan

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

Sandi Blok. Risanuri Hidayat Jurusan Teknik Elektro dan Teknologi Informasi FT UGM

Sandi Blok. Risanuri Hidayat Jurusan Teknik Elektro dan Teknologi Informasi FT UGM Sandi Blok Risanuri Hidayat Jurusan Teknik Elektro dan Teknologi Informasi FT UGM Sandi Blok disebut juga sebagai sandi (n, k) sandi. Sebuah blok k bit informasi disandikan menjadi blok n bit. Tetapi sebelum

Lebih terperinci

3 HASIL DAN PEMBAHASAN

3 HASIL DAN PEMBAHASAN 3 HASIL DAN PEMBAHASAN 3.1 Formulasi Masalah Sejauh ini telah diperkenalkan bahwa terdapat tiga parameter yang terkait dengan konstruksi suatu kode, yaitu panjang, dimensi, dan jarak minimum. Jika C adalah

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN

BAB III HASIL DAN PEMBAHASAN 13 BAB III HASIL DAN PEMBAHASAN 3.1 Formulasi masalah Misalkan C [ n,k,d ] adalah kode linear biner yang mempunyai panjang n, berdimensi k dan jarak minimum d. kode C dikatakan baik jika n kecil, k besar

Lebih terperinci

Proses Decoding Kode Reed Muller Orde Pertama Menggunakan Transformasi Hadamard

Proses Decoding Kode Reed Muller Orde Pertama Menggunakan Transformasi Hadamard Vol 3, No 2, 22-27 7-22, Januari 207 22 Proses Decoding Kode Reed Muller Orde Pertama Menggunakan Transformasi Hadamard Andi Kresna Jaya Abstract The first order Reed Muller, that is written R(,r), is

Lebih terperinci

BAB I PENDAHULUAN. Penyampaian pesan dapat dilakukan dengan media telephone, handphone,

BAB I PENDAHULUAN. Penyampaian pesan dapat dilakukan dengan media telephone, handphone, BAB I PENDAHULUAN. Latar Belakang Sekarang ini teknologi untuk berkomunikasi sangatlah mudah. Penyampaian pesan dapat dilakukan dengan media telephone, handphone, internet, dan berbagai macam peralatan

Lebih terperinci

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A SILABI FRM/FMIPA/063-00 12 Februari 2013 Fakultas : MIPA Program Studi : Matematika Mata Kuliah & Kode : Teori Persandian / SMA 349 Jumlah sks : Teori

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah C. Tujuan

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah C. Tujuan BAB I PENDAHULUAN A. Latar Belakang Teori pendeteksian error dan pengoreksi sandi adalah cabang dari teknik mesin dan matematika yang berhubungan dengan transmisi dan storage yang dapat dipercaya. Dalam

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

Kode Sumber dan Kode Kanal

Kode Sumber dan Kode Kanal Kode Sumber dan Kode Kanal Sulistyaningsih, 05912-SIE Jurusan Teknik Elektro Teknologi Informasi FT UGM, Yogyakarta 8.2 Kode Awalan Untuk sebuah kode sumber menjadi praktis digunakan, kode harus dapat

Lebih terperinci

Deteksi dan Koreksi Error

Deteksi dan Koreksi Error Bab 10 Deteksi dan Koreksi Error Bab ini membahas mengenai cara-cara untuk melakukan deteksi dan koreksi error. Data dapat rusak selama transmisi. Jadi untuk komunikasi yang reliabel, error harus dideteksi

Lebih terperinci

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang BAB II KAJIAN TEORI Pada Bab II ini berisi kajian teori. Di bab ini akan dijelaskan beberapa definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang mendasari teori kode BCH. A. Grup

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Media informasi, seperti sistem komunikasi dan media penyimpanan untuk data, tidak sepenuhnya reliabel. Hal ini dikarenakan bahwa pada praktiknya ada (noise) atau inferensi

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

dari ruang vektor berdimensi hingga V (dimana I adalah suatu himpunan indeks) disebut basis bagi V jika V = span(ψ) dan vektorvektor

dari ruang vektor berdimensi hingga V (dimana I adalah suatu himpunan indeks) disebut basis bagi V jika V = span(ψ) dan vektorvektor BAB 3 FRAME Sinyal kontinu dapat kita diskritisasi dengan menggunakan ekspansi vektor. Sifat yang paling esensial untuk melakukan hal tersebut adalah adanya operator yang menjamin bahwa ekspansi vektor

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

KOREKSI KESALAHAN. Jumlah bit informasi = 2 k -k-1, dimana k adalah jumlah bit ceknya. a. KODE HAMMING

KOREKSI KESALAHAN. Jumlah bit informasi = 2 k -k-1, dimana k adalah jumlah bit ceknya. a. KODE HAMMING KOREKSI KESALAHAN a. KODE HAMMING Kode Hamming merupakan kode non-trivial untuk koreksi kesalahan yang pertama kali diperkenalkan. Kode ini dan variasinya telah lama digunakan untuk control kesalahan pada

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Pada BAB IV ini dibahas tentang permasalahan sebagai berikut: Kajian Teori yang digunakan dalam penelitian, Membahas Aritmetik Aljabar Matriks, Program-program Aritmetik Aljabar

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

PEDOMAN PENGGUNAAN SIMULATOR PENYANDIAN DAN PENGAWASANDIAN SISTEM KOMUNIKASI BERBASIS PERANGKAT LUNAK VISUAL C#

PEDOMAN PENGGUNAAN SIMULATOR PENYANDIAN DAN PENGAWASANDIAN SISTEM KOMUNIKASI BERBASIS PERANGKAT LUNAK VISUAL C# PEDOMAN PENGGUNAAN SIMULATOR PENYANDIAN DAN PENGAWASANDIAN SISTEM KOMUNIKASI BERBASIS PERANGKAT LUNAK VISUAL C# Simulator penyandian dan pengawasandian ini dirancang untuk meyimulasikan 10 jenis penyandian

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

KONSTRUKSI LEXICOGRAPHIC UNTUK MEMBANGUN KODE HAMMING (7, 4, 3)

KONSTRUKSI LEXICOGRAPHIC UNTUK MEMBANGUN KODE HAMMING (7, 4, 3) KONSTRUKSI LEXICOGRAPHIC UNTUK MEMBANGUN KODE HAMMING (7, 4, 3) Aurora Nur Aini, Bambang Irawanto Jurusan Matematika FMIPA UNDIP Jl. Prof. Soedarto, S. H, Semarang 5275 Abstract. Hamming code can correct

Lebih terperinci

BAB II DASAR TEORI. 7. Menuliskan kode karakter dimulai dari level paling atas sampai level paling bawah.

BAB II DASAR TEORI. 7. Menuliskan kode karakter dimulai dari level paling atas sampai level paling bawah. 4 BAB II DASAR TEORI 2.1. Huffman Code Algoritma Huffman menggunakan prinsip penyandian yang mirip dengan kode Morse, yaitu tiap karakter (simbol) disandikan dengan rangkaian bit. Karakter yang sering

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

METODE HAMMING PENDAHULUAN. By Galih Pranowo ing

METODE HAMMING PENDAHULUAN. By Galih Pranowo  ing METODE HAMMING By Galih Pranowo Emailing ga_pra_27@yahoo.co.id PENDAHULUAN Dalam era kemajuan teknologi komunikasi digital, maka persoalan yang utama adalah bagaimana menyandikan isyarat analog menjadi

Lebih terperinci

KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 5 DAN 7 ASRIZA RAHMA

KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 5 DAN 7 ASRIZA RAHMA KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 5 DAN 7 ASRIZA RAHMA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 10 11 12 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2 Transformasi Linier

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 13 DAN 15 HENDRAWAN

KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 13 DAN 15 HENDRAWAN KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 13 DAN 15 HENDRAWAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2012 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR 7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut

Lebih terperinci

BAB II KAJIAN TEORI. Himpunan merupakan suatu kumpulan obyek-obyek yang didefinisikan. himpunan bilangan prima kurang dari 12 yaitu A = {2,3,5,7,11}.

BAB II KAJIAN TEORI. Himpunan merupakan suatu kumpulan obyek-obyek yang didefinisikan. himpunan bilangan prima kurang dari 12 yaitu A = {2,3,5,7,11}. BAB II KAJIAN TEORI A. Lapangan Berhingga Himpunan merupakan suatu kumpulan obyek-obyek yang didefinisikan dengan jelas pada suatu batasan-batasan tertentu. Contoh himpunan hewan berkaki empat H4 ={sapi,

Lebih terperinci

Makalah Teori Persandian

Makalah Teori Persandian Makalah Teori Persandian Dosen Pengampu : Dr. Agus Maman Abadi Oleh : Septiana Nurohmah (08305141002) Ayu Luhur Yusdiana Y (08305141028) Muhammad Alex Sandra (08305141036) David Arianto (08305141037) Beni

Lebih terperinci

Lampiran 1 Pembuktian Teorema 2.3

Lampiran 1 Pembuktian Teorema 2.3 LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)

Lebih terperinci

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan BASIS DAN DIMENSI Representasi Basis Jika S={v 1,v,...,v n ) adalah suatu basis dari ruang vektor V, maka tiap vektor v pada V dapat dinyatakan dalam bentuk v= c 1 v 1 + c v +... c n v n dengan cepat satu

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand Aljabar Linier Kuliah 3 5/9/2014 Yanita FMIPA Matematika Unand 1 Materi Kuliah 3 Jumlah Langsung, Hasilkali Langsung Himpunan Pembangun (Spans) dan Bebas Linier 5/9/2014 Yanita FMIPA Matematika Unand 2

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

Encoding dan Decoding Kode BCH (Bose Chaudhuri Hocquenghem) Untuk Transmisi Data

Encoding dan Decoding Kode BCH (Bose Chaudhuri Hocquenghem) Untuk Transmisi Data SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Encoding dan Decoding Kode BCH (Bose Chaudhuri Hocquenghem) Untuk Transmisi Data A-3 Luthfiana Arista 1, Atmini Dhoruri 2, Dwi Lestari 3 1,

Lebih terperinci

Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. . Matriks dan Sistem Persamaan Linear Definisi Persamaan dalam variabel dan y dapat ditulis dalam

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol

Lebih terperinci

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA Analisis komponen utama adalah metode statistika multivariat yang bertujuan untuk mereduksi dimensi data dengan membentuk kombinasi linear

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar:

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar: f g) f g C atau ( f g). Diperoleh bahwa: f g) ( f g) dg f ( f dg g) g dg f g Selanjutnya dibuktikan tertutup terhadap perkalian skalar: Ambil. f ) f C, R. Ditunjukkan bahwa. f C atau (. f ).. f ). diketahui

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan diuraikan mengenai landasan teori yang akan digunakan dalam bab selanjutnya. 2.1 Matriks Sebuah matriks, biasanya dinotasikan dengan huruf kapital tebal seperti A,

Lebih terperinci

BAB III PEMBAHASAN. Teori Pengkodean (Coding Theory) adalah ilmu tentang sifat-sifat kode

BAB III PEMBAHASAN. Teori Pengkodean (Coding Theory) adalah ilmu tentang sifat-sifat kode BAB III PEMBAHASAN A. Kode Reed Solomon 1. Pengantar Kode Reed Solomon Teori Pengkodean (Coding Theory) adalah ilmu tentang sifat-sifat kode dan aplikasinya. Kode digunakan untuk kompresi data, kriptografi,

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}:

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}: Definisi : Determinan dari matrik bujursangkar A berorde n adalah jumlah semua permutasi n (n!) hasil kali bertanda dari elemen-elemen matrik. Dituliskan : det(a) atau A (jr j r...j n ).a jr a j r...am

Lebih terperinci

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Pendahuluan Ruang vektor tidak hanya terbatas maksimal 3 dimensi saja 4 dimensi, 5 dimensi, dst ruang n-dimensi Jika n adalah bilangan bulat positif, maka sekuens sebanyak n

Lebih terperinci

RUANG VEKTOR. Nurdinintya Athari (NDT)

RUANG VEKTOR. Nurdinintya Athari (NDT) 1 RUANG VEKTOR Nurdinintya Athari (NDT) RUANG VEKTOR Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Basis Subruang Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem kontrol

Lebih terperinci

KONSTRUKSI BARISAN HITUNG SERAGAM SEIMBANG BERBASIS BARISAN TRANSISI KODE GRAY

KONSTRUKSI BARISAN HITUNG SERAGAM SEIMBANG BERBASIS BARISAN TRANSISI KODE GRAY Jurnal Wahana Matematika Sains, Volume 10, Nomor 1, April 2016 34 KONSTRUKSI BARISAN HITUNG SERAGAM SEIMBANG BERBASIS BARISAN TRANSISI KODE GRAY N. D. Sintiari, I. N. Suparta, D. Waluyo Jurusan Pendidikan

Lebih terperinci

ENCODING DAN DECODING KODE HAMMING SEBAGAI KODE TAK SIKLIK DAN SEBAGAI KODE SIKLIK Lilik Hardianti, Loeky Haryanto, Nur Erawaty

ENCODING DAN DECODING KODE HAMMING SEBAGAI KODE TAK SIKLIK DAN SEBAGAI KODE SIKLIK Lilik Hardianti, Loeky Haryanto, Nur Erawaty ENCODING DAN DECODING KODE HAMMING SEBAGAI KODE TAK SIKLIK DAN SEBAGAI KODE SIKLIK Lilik Hardianti, Loeky Haryanto, Nur Erawaty Abstrak Kode linear biner [n, k, d] adalah sebuah subruang vektor C GF(2

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

RANGKUMAN TEKNIK KOMUNIKASI DATA DIGITAL

RANGKUMAN TEKNIK KOMUNIKASI DATA DIGITAL RANGKUMAN TEKNIK KOMUNIKASI DATA DIGITAL DISUSUN OLEH : AHMAD DHANIZAR JUHARI (C5525) SEKOLAH TINGGI MANAGEMEN INFORMATIKA DAN KOMPUTER STMIK PALANGKARAYA TAHUN 22 TEKNIK KOMUNIKASI DATA DIGITAL Salah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODULES AND BASES OF FREE MODULES Dian Mardiani Pendidikan Matematika, STKIP Garut Garut, Indonesia Alfid51@yahoo.com Abstrak Penelitian ini membahas beberapa

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

Penerapan Operasi Matriks dalam Kriptografi

Penerapan Operasi Matriks dalam Kriptografi Penerapan Operasi Matriks dalam Kriptografi Muhammad Farhan Kemal 13513085 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)

Lebih terperinci

Kumpulan Soal,,,,,!!!

Kumpulan Soal,,,,,!!! Kumpulan Soal,,,,,!!! Materi: Matriks & Ruang Vektor 1. BEBAS LINEAR S 3. BASIS DAN DIMENSI O A L 2. KOMBINASI LINEAR NeXt FITRIYANTI NAKUL Page 1 1. BEBAS LINEAR Cakupan materi ini mengkaji tentang himpunan

Lebih terperinci

BAB X SISTEM PERSAMAAN LINIER

BAB X SISTEM PERSAMAAN LINIER BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan

Lebih terperinci

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum BAB 4 ORTOGONALISASI GRAM-SCHMIDT YANG DIPERUMUM Diberikan sebarang barisan hingga vektor di ruang Hilbert berdimensi hingga. Pada bab ini akan diberikan algoritma untuk menghitung frame Parseval pada

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).

Lebih terperinci

BAB II ARITMATIKA DAN PENGKODEAN

BAB II ARITMATIKA DAN PENGKODEAN TEKNIK DIGITAL/HAL. 8 BAB II ARITMATIKA DAN PENGKODEAN ARITMATIKA BINER Operasi aritmatika terhadap bilangan binari yang dilakukan oleh komputer di ALU terdiri dari 2 operasi yaitu operasi penambahan dan

Lebih terperinci

STRUKTUR ALJABAR 1. Kristiana Wijaya

STRUKTUR ALJABAR 1. Kristiana Wijaya STRUKTUR ALJABAR 1 Kristiana Wijaya i ii Daftar Isi Judul Daftar Isi i iii 1 Himpunan 1 2 Partisi dan Relasi Ekuivalen 3 3 Grup 6 4 Koset Dan Teorema Lagrange, Homomorphisma Grup Dan Grup Faktor 11 Indeks

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 13 Kompresi Citra. Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 13 Kompresi Citra. Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 13 Kompresi Citra Indah Susilawati, S.T., M.Eng. Program Studi Teknik Informatika/Sistem Informasi Fakultas Teknologi Informasi Universitas Mercu Buana Yogyakarta 2015 KULIAH

Lebih terperinci

Matematika Diskrit 1

Matematika Diskrit 1 Dr. Ahmad Sabri Universitas Gunadarma Pendahuluan Apakah Matematika Diskrit itu? Matematika diskrit adalah kajian terhadap objek/struktur matematis, di mana objek-objek tersebut diasosiasikan sebagai nilai-nilai

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor Bab RUANG VEKTOR. Ruang Vektor DEFINISI.. Suatu ruang vektor (V, +,, F) atas field (F, +), ditulis singkat V(F), adalah suatu himpunan tak kosong V dengan elemenelemennya disebut vektor, yang dilengkapi

Lebih terperinci

TTG3B3 - Sistem Komunikasi 2 Linear Block Code

TTG3B3 - Sistem Komunikasi 2 Linear Block Code TTG3B3 - Sistem Komunikasi 2 Linear Block Code S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom Oleh: Linda Meylani Agus D. Prasetyo Tujuan Pembelajaran Memahami fungsi dan parameter

Lebih terperinci

BEBERAPA KARAKTERISTIK KRIPTOSISTEM KUNCI PUBLIK BERDASARKAN MATRIKS INVERS TERGENERALISASI

BEBERAPA KARAKTERISTIK KRIPTOSISTEM KUNCI PUBLIK BERDASARKAN MATRIKS INVERS TERGENERALISASI BEBERAPA KARAKTERISTIK KRIPTOSISTEM KUNCI PUBLIK BERDASARKAN MATRIKS INVERS TERGENERALISASI Oleh Budi Murtiyasa FKIP Universitas Muhammadiyah Surakarta Makalah disampaikan pada Seminar Nasional Matematika

Lebih terperinci