Gelanggang Evalusi dan Sifat-sifatnya

Ukuran: px
Mulai penontonan dengan halaman:

Download "Gelanggang Evalusi dan Sifat-sifatnya"

Transkripsi

1 Vol. 5, No.1, 52-57, Juli 2008 Gelanggang Evalusi dan Sifat-sifatnya Amir Kamal Amir Astrak Sifat-sifat gelanggang evaluasi eserta pemuktiannya sudah ada dieerapa literatur seperti misalnya pada McConnel & Roson (1987). Namun demikian penyajiannya elum terurai dengan jelas sehingga alur pemuktian masih sulit dimengerti. Tulisan ini akan menguraikan secara terperinci dan sistematik dengan ahasa yang mudah dimengerti sifat-sifat dan uktinya terseut. Sifat-sifat yang akan diahas antara lain adalah sifat-sifat yang menghuungkan gelanggang evaluasi dengan lapangan pecahan, gelanggang lokal, gelanggang Noetherian, sifat terurut total, dan terintegral tutup. Kata Kunci : Lapangan pecahan, gelanggang evaluasi, lokal, Noetherian, terurut total, terintegral tutup. 1. Pendahuluan Suatu sugelanggang R dari lapangan K adalah Gelanggang Evaluasi dari K jika setiap elemen tak nol K, maka salah satu dari atau erada dalam R. Beerapa contoh: 1. Misalkan K = Q, himpunan ilangan rasioanal, dengan p adalah ilangan prima r tertentu. Pilih R adalah himpunan semua ilangan rasioanal yang erentuk p m / n, dimana r 0 dan p tidak memagi m dan tidak memagi n. 2. Misalkan K k() x, dimana k adalah suatu lapangan, dan misalkan R adalah himpunan semua fungsi-fungsi rasional f / g k( x ) sedemikian sehingga deg f deg g. Sifat-sifat dari gelanggang ini sudah anyak diturunkan dalam literatur seperti yang disajikan pada McConnel & Roson (1987). Namun demikian penyajian pemuktian dari sifatsifat terseut elum terurai dengan jelas sehinga alur pemuktian masih sulit dimengerti. Papa paper ini disajikan ukti yang leih terperinci menggunakan ahasa yang sederhana sehingga alur pemuktian isa diikuti dari tahap ke tahap. 2. Beerapa Pengertian dan Notasi Gelanggang Lokal Dalam ilmu Matematika, leih khusus dalam aljaar astrak, suatu gelanggang R adalah suatu Gelanggang Lokal jika gelanggang terseut memiliki salah satu dari sifat-sifat yang saling ekuivalen erikut ini: R mempunyai maksimal ideal kiri yang tunggal R mempunyai maksimal ideal kanan yang tunggal Jurusan Matematika FMIPA Universitas Hasanuddin Makassar

2 53 Identitas perkalian tidak sama dengan identitas penjumlahan dan penjumlahan semarang dua elemen ukan unit dalam R akan menghasilkan elemen ukan unit. Identitas perkalian tidak sama dengan identitas penjumlahan dan jika x adalah semarang elemen dari R, maka x atau 1 x adalah elemen unit. Sifat ketiga di atas mengatakan ahwa, himpunan elemen-elemen ukan unit dalam suatu Gelanggang Lokal mementuk suatu ideal. Seagai contoh, semua lapangan merupakan Gelanggang Lokal, karena hanya {0} yang merupakan ideal maksimal dalam gelanggang ini. Daerah Integral Suatu Daerah Integral adalah suatu gelanggang komutatif dengan identitas terhadap penjumlahan adalah 0 dan identitas terhadap perkalian adalah 1 sedemikian sehingga identitas penjumlahan tidak sama dengan identitas perkalian, dimana perkalaian semarang dua anggota yang tidak nol selalu menghasilkan anggota yang tidak nol pula. Atau dengan kata lain, tidak ada anggota yang merupakan pemagi nol. Seagai contoh, gelanggang dari ilangan-ilangan ulat adalah daerah integral. Leih lanjut, suatu daerah integral dimana setiap idealnya merupakan ideal utama, yaitu idealnya dapat diangun oleh satu elemen saja, diseut Daerah Ideal Utama (Principal Ideal Domain, PID). Seagai contoh, untuk K adalah lapangan, maka K[x], gelanggang dari polinomialpolinomial dalam satu variael dengan koefisien-koefisien ada dalam K, merupakan Daerah Ideal Utama. Lapangan dari Pecahan (Field of Fractions) Setiap daerah integral dapat dijadikan seagai ahan pementukan seuah lapangan dari pecahan (Lapangan Pecahan untuk singkatnya). Anggota-anggota dari Lapangan Pecahan dari suatu daerah integral R eretuk a/ dengan a dan dalam R. Lapangan Pecahan dari gelanggang R dinotasikan seagai Quot(R) atau Frac(R). Lapangan Pecahan, Quot(R), dari daerah integral R dapat dikonstruksi seagai erikut: Quot(R) adalah himpunan dari kelas-kelas ekuivalensi dari pasangan [n,d], dimana n dan d adalah elemenelemen dari R dan d tidak nol, dan relasi ekuivalensinya adalah: [n, d] ekuivalen dengan [m, ] jika dan hanya jika n = md (kelas ekuivalensi [n,d] dapat dipandang seagai pecahan n/d). Penjumlahan dari kelas-kelas ekuivalensi [n.d] dan [m,] adalah kelas ekuivalensi [n + md, d] dan perkaliannya adalah kelas ekuivalensi [mn, d]. Beerapa contoh : 1. Lapangan pecahan dari gelanggang ilangan ulat adalah ilangan rational, Q: Quot( Z ). 2. Misalkan R: { ai a, Z } adalah gelanggang dari ilangan-ilangan ulat Gauss, maka Quot ( R) { cdi c, dq }, lapangan dari ilangan-ilangan rasional Gauss. Integral Penutup (Integral Closure) Misalkan S adalah seuah daerah integral dengan R adalah suatu sugelanggang dari S. Suatu elemen s dari S dikatakan integral atas R jika s adalah merupakan suatu akar dari suatu polinomial monik dengan koefisien-koefisien dalam R. Dapat ditunjukkan ahwa himpunan semua elemen-elemen dari S yang merupakan elemen integral atas R mementuk sugelanggang dari S yang memuat R. Gelanggang ini

3 54 selanjutnya diseut integral penutup dari R. Jika setiap elemen dari S yang merupakan elemen integral atas R sudah erada di dalam R, maka R diseut Terintegral tutup (integrally Closed) dalam S. Untuk contoh, himpunan ilangan-ilangan ulat Z adalah terintegral tutup. Integral penutup dari Z dalam ilangan kompleks C adalah himpunan semua ilangan-ilangan ulat aljaar. Gelanggang Noetherian Suatu Gelanggang Noetherian adalah suatu gelanggang yang memenuhi kondisi rantai memesar pada ideal-idealnya. Leih jelasnya: Suatu gelanggang adalah Noetherian-kiri jika memenuhi kondisi rantai memesar pada ideal-ideal kirinya. Suatu gelanggang adalah Noetherian-kanan jika memenuhi kondisi rantai memesar pada ideal-ideal kanannya. Suatu gelanggang adalah Noetherian jika memenuhi Noetherian-kanan dan Noetherian-kiri. Ada definisi yang lain yang ekuivalen dengan definisi Noetherian-kiri, yaitu : Setiap ideal kiri I dari R adalah diangun erhingga, dalam arti ada elemen-elemen a1,..., an dalam I sedemikian sehingga I Ra1... Ra n. 3. Sifat-sifat dari Gelanggang Evaluasi dari K. Mulai dari sini sampai akhir, paper ini dimisalkan ahwa V adalah Gelanggang Penilaian Sifat-sifat dari Gelanggang Evaluasi. 1. Lapangan Pecahan dari V adalah K. Misalkan K adalah lapangan pecahan dari V. Akan ditunjukkan ahwa K = K. Amil K ', maka karena K adalah lapangan pecahan, maka a, dimana a, V. Karena V K dan K adalah lapangan maka a K. Langkah ini memuktikan ahwa K' K. Selanjutnya, amil K, dimana tidak nol, maka V atau V. Jika V, maka K ', sedangkan jika V, maka 1 K '. Langkah ini 1 memuktikan ahwa K' K yang sekaligus melengkapi pemuktian sifat ini. 2. Semarang sugelanggang dari K yang memuat V adalah suatu Gelanggang Evaluasi dari K Misalkan V adalah sugelanggang dari K yang memuat V. Akan ditunjukkan ahwa V adalah suatu gelangang penilaian dari K. Amil, dimana tidak nol. Karena V K adalah gelanggang penilaina dari K, maka V atau memuat V, maka V ' atau V '. 3. V adalah gelanggang lokal. V. Selanjutnya, karena V

4 55 Kita akan tunjukkan ahwa himpunan M dari anggota-anggota yang ukan anggota satuan dari V adalah suatu Ideal. Untuk memuktikan ahwa M adalah ideal akan ditunjukkan dua hal, yaitu (1). a, M, maka a M dan (2). rv dan a M, maka ra M. Jika a dan adalah anggota-anggota satuan tidak nol, maka salah satu dari a/ atau /a yang erada di V, karena V adalah gelanggang evaluasi dari K. Jika a V, maka a (1 a ) M (sea jika (1 a) M erarti (1 a ) adalah anggota satuan dari V, yang akan menyeakan anggota satuan juga. Hal ini tidak mungkin karena dari awal sudah diasumsikan ahwa ukan anggota satuan). Serupa dengan itu, Jika V, maka a a M. Selanjutnya, jika rv dan a M, maka ra M, kalau tidak demikian maka a akan merupakan anggota unit yang akan ertentangan dengan asumsi semula. 4. V adalah terintegral tutup Misalkan adalah suatu elemen tak nol dari K, dengan intergral terhadap V. Untuk menunjukkan ahwa V adalah terintegral tutup, akan ditunjukkan ahwa erada dalam V. Karena V adalah gelanggang evaluasi dari K, maka V atau V. Jika V, maka pemuktian sudah selesai. Namun, jika V, maka terleih dahulu kita memperhatikan ahwa adalah integral terhadap V. Dengan demikian terdapat suatu persamaan yang eretuk n n cn c1 c0 0. ( n) Dengan c i V. Jika persamaan ini dikalikan dengan, maka kita akan memperoleh ( n2) ( n) cn cn2 c1 c0. Karena c i dan erada dalam V, maka disimpulkan ahwa ( n2) ( n) cn cn2 c1 c0 V. 5. Jika I dan J adalah ideal-ideal dari V, maka salah satu dari I J atau J I enar. Sehingga ideal-ideal dari V terurut total oleh urutan himpunan agian. Untuk memuktikan ini, akan ditunjukkan ahwa, jika I tidak termuat dalam J, maka J I. Misalkan I tidak termuat dalam J, pilih anggota a I \ J (dari sini diketahui a 0 ). Selanjutnya, untuk menunjukkan ahwa J I, akan ditunjukkan ahwa, jika J, maka I. Jika 0, maka ukti sudah selesai. Sekarang asumsikan ahwa 0. Karena V adalah gelanggang evaluasi, maka / a V atau a / V. Namun demikian dipastikan / a V, karena apaila a / V, akan diperoleh a( a / ) J yang akan erakiat terjadinya kontradiksi. Oleh karena itu disimpulkan ( / a) a I. 6. Kealikan dari 5, misalkan V adalah daerah integral dengan lapangan pecahan K. Jika idealideal dari V terurut total oleh urutan himpunan agian, maka V adalah seuah gelanggang evaluasi.

5 56 Jika adalah elemen taknol dari K, maka ( a/ ) dengan a dan elemen-elemen taknol dari V (K adalah lapangan pecahan dari V). Dengan hipotesis ahwa ideal-ideal dari V terurut total oleh urutan himpunan agian, maka diperoleh a atau a. Jika a, maka a n n untuk suatu n. Dari sini diketahui a / V. Namun, jika a, maka dengan cara yang analog diperoleh / a V. 7. Jika V adalah gelanggang penilaian Noetherian, maka V adalah suatu Daerah Ideal Utama m (PID). Leih lanjut, untuk suatu pv, setiap ideal erentuk p, m 0. Karena V adalah Noetherian, suatu ideal I dari V adalah diangun erhingga, katakanlah diangun oleh a1,, a n. Dengan sifat 5, kita dapat mengatur kemali indeks dari a i sedemikian sehingga a1 a2 a n. Tetapi itu erarti I an I, sehingga I a n. 8. Let R adalah seuah sugelanggang dari lapangan K. Integral penutup R dari R dalam K adalah irisan dari semua gelanggang-gelanggang evaluasi V dari K sedemikian sehingga V R. Untuk pemuktian sifat ini kita memutuhkan teorema erikut ini. Bukti dari teorema ini disajikan dengan lengkap pada [...] Teorema 1. Misalkan R adalah suatu sugelanggang dari lapangan K, dan h : R C adalah suatu homomorfisma gelanggang dari R ke suatu lapangan aljaar tertutup C, maka maka h mempunyai ekstensi maksimal ( Vh, ). Dengan kata lain, V adalah sugelanggang dari K yang memuat R, h adalah suatu ektensi dari h, dan tidak ada ektensi ke sugelanggang yang leih esar. Leih lanjut, untuk semarang maksimal ekstension, V adalah suatu gelanggang evaluasi dari K. Bukti sifat 8: Jika a R, maka a adalah integral atas R. Dari sini, a integral atas semarang gelanggang penilaian V R. Tetapi karena V terintegral tutup maka dengan sifat 4, diperoleh a V. Uraian di atas memuktikan ahwa integral penutup R adalah himpunan agian dari irisan dari semua gelanggang-gelanggang penilaian V dari K. Kealikannya, misalkan a anggota irisan semua gelanggang-gelanggang evaluasi V dari K. Kemudian andaikan a R, maka a tidak erada pada gelanggang R ' R[ a ].(karena jika a erada dalam R atau a merupakan polinomial dari a, maka kita dapat mengalikan polinomial terseut dengan a erpangkat tertentu untuk mendapatkan polinomila monik yang dipennuhi oleh a, yang menyeakan a merupakan anggota R ). Dengan demikian, a 1 ukan anggota unit dari R. (karena jika a dengan R ', maka a a1 aa R ', akan terjadi kontradiksi). Oleh karena itu, a masuk ke suatu

6 57 maksimal ideal M dari R. Misalkan C adalah penutup aljaar dari lapangan k = R /M, dan misalkan h adalah komposisi dari pemetaan kanonik R' R'/ M ' k dan inklusi k C. Dengan teorema di atas, h mempunyai maksimal ekstension ke h : V gelanggang evaluasi V dari K yang memuat R' R. Sekarang C untuk eerapa h( a ) h( a ) karena a M ' R, dan ha ( ) 0 yang diseakan oleh defenisi dari h. Seagai kosekuensinya av, karena jika av, maka Terjadi suatu kontradiksi (1) ( h h aa ) h( a) h( aa ) 0, 9. Misalkan R adalah suatu daerah integral dengan lapangan pecahan K, maka R adalah terintegral tutup jika dan hanya jika R V, yaitu irisan dari eerapa (tidak harus semua) gelanggang evaluasi dari K. Bukti dari kanan ke kiri mengikut dari sifat 8. Untuk ukti dari kanan ke kiri. Karena setiap V adalah terintegral tertutup maka dengan sifat 4 diperoleh, R juga terintegral tutup. 4. Kesimpulan Dari pemaparan di atas dapat ditarik eerapa kesimpulan: 1. Lapangan pecahan dari suatu gelanggang evaluasi sama dengan lapangannya sendiri. 2. Gelanggang evaluasi akan selalu juga merupakan gelanggang lokal. 3. Ideal-ideal dari suatu gelanggang evaluasi dapat diurutkan dengan menggunakan urutan himpunan agian. Begitu juga sealiknya, jika ideal-ideal dari suatu gelanggang dapat diurutkan, maka gelanggang teseut adalah gelanggang evalusi. 4. Jika suatu gelanggang sekaligus merupakan gelanggang evaluasi dan Noetherian, maka gelanggang terseut merupakan daerah ideal utama. Daftar Pustaka 1. McConnel, J.C., and Roson, J.C., Noncommutative Noetherian Rings, John Wiley & Sons, Fraleigh, J.B., A First Course in Astract Algera, Addison-Wesley, Lam, T.Y., Lectures on Modules and Rings, Springer-Verlag, , A First Course in Noncommutative Rings, Springer-Verlag, Roman, S., Advanced Linear Algera. Springer-Verlag, Wisauer, R., Foundation of Module and Ring Theory, Gordon and Breach Science,

Volume 1, Nomor 2, Desember 2007

Volume 1, Nomor 2, Desember 2007 Volume Nomor 2 Desemer 27 Barekeng Desemer 27 hal3-35 Vol No 2 TITIK-ANTARA DI DALAM RUANG METRIK DAN RUANG INTERVAL METRIK (Between-Points In Metric Space And Metric Interval Space MOZART W TALAKUA Jurusan

Lebih terperinci

BAB III PERLUASAN INTEGRAL

BAB III PERLUASAN INTEGRAL BAB III PERLUASAN INTEGRAL Pembahasan pada bab ini termuat pada ruang lingkup perluasan uniter atas suatu ring komutatif. Jika adalah suatu ring, maka yang dimaksud adalah suatu ring yang komutatif dan

Lebih terperinci

Isomorfisma dari Gelanggang Polinom Miring Kompleks ke Gelanggang Quaternion Riil

Isomorfisma dari Gelanggang Polinom Miring Kompleks ke Gelanggang Quaternion Riil Vol. 1, No. 1, 1-8, Juli 015 Isomorfisma dari Gelanggang Polinom Miring Kompleks ke Gelanggang Quaternion Riil Amir Kamal Amir 1 Abstrak Misalkan R adalah suatu gelanggang dengan identitas 1, adalah suatu

Lebih terperinci

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B.

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B. Bayangkan suatu fungsi seagai seuah mesin, misalnya mesin hitung. Ia mengamil suatu ilangan (masukan), maka fungsi memproses ilangan yang masuk dan hasil produksinya diseut keluaran. x Masukan Fungsi f

Lebih terperinci

BEBERAPA SIFAT DIMENSI KRULL DARI MODUL. Amir Kamal Amir 1)

BEBERAPA SIFAT DIMENSI KRULL DARI MODUL. Amir Kamal Amir 1) Paradigma, Vol. 14 No. 2 Agustus 2010 hlm. 105 112 BEBERAPA SIFAT DIMENSI KRULL DARI MODUL Amir Kamal Amir 1) 1) Jurusan Matematika FMIPA Universitas Hasanuddin, Makassar 90245 E-mail: amirkamalamir@yahoo.com

Lebih terperinci

Matriks & Operasi Matriks (2) Pertemuan 5 Aljabar Linear & Matriks

Matriks & Operasi Matriks (2) Pertemuan 5 Aljabar Linear & Matriks Matriks & Operasi Matriks () Pertemuan 5 Aljaar Linear & Matriks Sifat-sifat Operasi Matriks Perkalian antara dua matriks tidak mengikuti hukum komutatif, artinya AB tidak sama dengan BA (dengan asumsi

Lebih terperinci

PEMBENTUKAN IDEAL MAKSIMAL GELANGGANG POLINOM MIRING MENGGUNAKAN IDEAL GELANGGANG TUMPUANNYA

PEMBENTUKAN IDEAL MAKSIMAL GELANGGANG POLINOM MIRING MENGGUNAKAN IDEAL GELANGGANG TUMPUANNYA PEMBENTUKAN IDEAL MAKSIMAL GELANGGANG POLINOM MIRING MENGGUNAKAN IDEAL GELANGGANG TUMPUANNYA Amir Kamal Amir Jurusan Matematika FMIPA Universitas Hasanuddin Makassar amirkamalamir@yahoo.com ABSTRAK. Gelanggang

Lebih terperinci

IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL

IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL Vol 11, No 1, 71-76, Juli 2014 IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL Qharnida Khariani, Amir Kamal Amir dan Nur Erawaty Abstrak Teori gelanggang merupakan salah satu bagian di matematika

Lebih terperinci

SYARAT PERLU LAPANGAN PEMISAH. Bambang Irawanto Jurusan Matematika FMIPA UNDIP. Abstact. Keywords : extension fields, elemen algebra

SYARAT PERLU LAPANGAN PEMISAH. Bambang Irawanto Jurusan Matematika FMIPA UNDIP. Abstact. Keywords : extension fields, elemen algebra JURNAL MATEMATIKA DAN KOMPUTER Vol 4 No 2, 65-70, Agustus 2001, ISSN : 1410-8518 SYARAT PERLU LAPANGAN PEMISAH Bambang Irawanto Jurusan Matematika FMIPA UNDIP Abstact Field is integral domain and is a

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN DAN PERTIDAKSAMAAN Sumer: Art & Gallery 44 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi persamaan dan pertidaksamaan linier dan kuadrat terdiri atas tiga kompetensi dasar.

Lebih terperinci

METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS

METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS JURNAL MATEMATIKA DAN KOMPUTER Vol 6 No 3, 118-177, Desemer 2003, ISSN : 1410-8518 METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS Sunarsih dan Ahmad Khairul Ramdani Jurusan Matematika FMIPA UNDIP ABSTRAK

Lebih terperinci

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Vol. 9, No.1, 49-56, Juli 2012 Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Nur Erawaty 1, Andi Kresna Jaya 1, Nirwana 1 Abstrak Misalkan D adalah daerah integral. Unsur tak nol yang bukan unit

Lebih terperinci

METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS

METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS JURNAL MATEMATIKA DAN KOMPUTER Vol 6 No 3, 167-178, Desemer 2003, ISSN : 1410-8518 METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS Sunarsih dan Ahmad Khairul Ramdani Jurusan Matematika FMIPA UNDIP ABSTRAK

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 65-70, Agustus 2001, ISSN : SYARAT PERLU LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 65-70, Agustus 2001, ISSN : SYARAT PERLU LAPANGAN PEMISAH JURNAL MATEMATIKA DAN KOMPUTER Vol 4 No 2, 65-70, Agustus 2001, ISSN : 1410-8518 SYARAT PERLU LAPANGAN PEMISAH Bambang Irawanto Jurusan Matematika FMIPA UNDIP Abstact Field is integral domain and is a

Lebih terperinci

PERSAMAAN FUNGSI KUADRAT-1

PERSAMAAN FUNGSI KUADRAT-1 PERSAMAAN FUNGSI KUADRAT- Mata Pelajaran K e l a s Nomor Modul : Matematika : X (Sepuluh) : MAT.X.0 Penulis Pengkaji Materi Pengkaji Media : Drs. Suyanto : Dra.Wardani Rahayu, M.Si. : Drs. Soekiman DAFTAR

Lebih terperinci

Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( )

Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( ) Vol. 8, No.2, 64-68, Januari 2012 Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( ) Amir Kamal Amir Abstrak Misalkan R adalah suatu gelanggang dengan identitas 1, adalah suatu endomorfisma

Lebih terperinci

4. Mononom dan Polinom

4. Mononom dan Polinom Darpulic www.darpulic.com 4. Mononom dan Polinom Sudaratno Sudirham Mononom adalah pernataan tunggal ang erentuk k n, dengan k adalah tetapan dan n adalah ilangan ulat termasuk nol. Fungsi polinom merupakan

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

SIFAT GELANGGANG NOETHERIAN DAN GELANGGANG PERLUASANNYA. ABSTRAK Suatu gelanggang R disebut gelanggang Noetherian jika memenuhi sifat :

SIFAT GELANGGANG NOETHERIAN DAN GELANGGANG PERLUASANNYA. ABSTRAK Suatu gelanggang R disebut gelanggang Noetherian jika memenuhi sifat : SIFAT GELANGGANG NOETHERIAN DAN GELANGGANG PERLUASANNYA Raja Sihombing 1, Amir Kamal Amir 2, Loeky Haryanto 3 1 Mahasiswa Program Studi Matematika, FMIPA Unhas 2,3 Dosen Program Studi Matematika, FMIPA

Lebih terperinci

BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT

BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Standar kompetensi:. Memecahkan masalah yang erkaitan dengan fungsi, persamaan dan pertidaksamaan kuadrat Kompetensi Dasar:. Memahami konsep fungsi.

Lebih terperinci

6. 2 Menerapkan konsep fungsi linier Menggambarkan fungsi kuadrat Menerapkan konsep fungsi kuadrat

6. 2 Menerapkan konsep fungsi linier Menggambarkan fungsi kuadrat Menerapkan konsep fungsi kuadrat Sumer: Art and Gallery Standar Kompetensi 6. Memecahkan masalah yang erkaitan dengan fungsi, persamaan fungsi linier dan fungsi kuadrat Kompetensi Dasar 6. Mendeskripsikan peredaan konsep relasi dan fungsi

Lebih terperinci

Bil. Asli Bil. Bulat Bil. Cacah

Bil. Asli Bil. Bulat Bil. Cacah Bil. Asli Bil. Bulat Bil. Cacah I. Materi Ajar: Pertemuan : A. Macam-macam ilangan real. Bilangan Asli (A) Bilangan asli adalah suatu ilangan yang mula-mula dipakai untuk memilang. Bilangan asli dimulai

Lebih terperinci

Modul Perkalian. Oleh Samsul Arifin Jurusan Matematika FMIPA UGM Sekip Utara Yogyakarta 55281

Modul Perkalian. Oleh Samsul Arifin Jurusan Matematika FMIPA UGM Sekip Utara Yogyakarta 55281 Modul Perkalian Oleh Samsul Arifin Jurusan Matematika FMIPA UGM Sekip Utara Yogyakarta 5528 Abstrak Di dalam teori modul terdapat modul khusus yang disebut modul perkalian (multiplication modules). Misalnya

Lebih terperinci

COURSE NOTE : Sistem Persamaan Liniear

COURSE NOTE : Sistem Persamaan Liniear COURSE NOTE : Sistem Persamaan Liniear PERSAMAAN LINIEAR Secara umum kita mendefinisikan persamaan liniear dalam n variale x 1 x x n seagai erikut : dengan a1 a... an adalah konstanta real. a1x 1 ax ax...

Lebih terperinci

Volume 9 Nomor 1 Maret 2015

Volume 9 Nomor 1 Maret 2015 Volume 9 Nomor 1 Maret 015 Jurnal Ilmu Matematika dan Terapan Maret 015 Volume 9 Nomor 1 Hal. 1 10 KARAKTERISASI DAERAH DEDEKIND Elvinus R. Persulessy 1, Novita Dahoklory 1, Jurusan Matematika FMIPA Universitas

Lebih terperinci

Message Authentication Code (MAC) Pembangkit Bilangan Acak Semu

Message Authentication Code (MAC) Pembangkit Bilangan Acak Semu Bahan Kuliah ke-21 IF5054 Kriptografi Message Authentication Code (MAC) Pemangkit Bilangan Acak Semu Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004

Lebih terperinci

KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) KEGIATAN PEMBELAJARAN TEKNIK.

KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) KEGIATAN PEMBELAJARAN TEKNIK. SEKOLAH : SMP NEGERI 9 CIMAHI KELAS : IX MATA PELAJARAN : MATEMATIKA SEMESTER : ( DUA ) KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) BILANGAN Standar Kompetensi

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN...

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... 1 A. LATAR BELAKANG MASALAH... 1 B. PEMBATASAN MASALAH... 2 C.

Lebih terperinci

Seminar Nasional Aljabar, Pengajaran Dan Terapannya

Seminar Nasional Aljabar, Pengajaran Dan Terapannya Tulisan ini telah dipresentasikan pada dipresentasikan dalam Seminar Nasional Alabar, Pengaaran Dan Terapannya dengan tema Kontribusi Alabar dalam Upaya Meningkatkan Kualitas Penelitian dan Pembelaaran

Lebih terperinci

PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN

PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN Amir Kamal Amir 1 Jurusan Matematika Fakultas MIPA Universitas Hasanuddin Jl. Perintis Kemerdekaan

Lebih terperinci

GELANGGANG ARTIN. Kata Kunci: Artin ring, prim ideal, maximal ideal, nilradikal.

GELANGGANG ARTIN. Kata Kunci: Artin ring, prim ideal, maximal ideal, nilradikal. Jurnal Matematika UNAND Vol. 2 No. 2 Hal. 108 114 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND GELANGGANG ARTIN IMELDA FAUZIAH, NOVA NOLIZA BAKAR, ZULAKMAL Program Studi Matematika, Fakultas Matematika

Lebih terperinci

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0 B.3 Fungsi Kuadrat a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menentukan titik potong grafik fungsi dengan sumu koordinat, sumu simetri dan nilai ekstrim suatu fungsi Menggamar

Lebih terperinci

BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah.

BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah. XIV V E K T O R 4. engertian adalah esaran yang mempunyai arah. Tafsiran geometri seuah vektor dilukiskan seagai panah. dengan titik pangkal (a x, a y, a z ) dan titik ujung ( x, y, z ) dinotasikan dengan.

Lebih terperinci

0,1,2,3,4. (e) Perhatikan jawabmu pada (a) (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam. 5. a b c d

0,1,2,3,4. (e) Perhatikan jawabmu pada (a) (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam. 5. a b c d 1 Pada grup telah dipelajari himpunan dengan satu operasi. Sekarang akan dipelajari himpunan dengan dua operasi. Ilustrasi 1.1 Perhatikan himpunan 0,1,2,3,4. (a) Apakah grup terhadap operasi penjumlahan?

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang masalah, batasan masalah, maksud dan tujuan penelitian, tinjauan pustaka, metode penelitian serta sistematika penulisan dari skripsi

Lebih terperinci

STRUKTUR ALJABAR: RING

STRUKTUR ALJABAR: RING STRUKTUR ALJABAR: RING BAHAN AJAR Oleh: Rippi Maya Program Studi Magister Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) SILIWANGI - Bandung 2016 1 Pada grup telah dipelajari

Lebih terperinci

MENENTUKAN DEVIASI DARI HIMPUNAN TERURUT PARSIAL

MENENTUKAN DEVIASI DARI HIMPUNAN TERURUT PARSIAL MENENTUKAN DEVIASI DARI HIMPUNAN TERURUT PARSIAL Amir Kamal Amir Kelompok Keahlian Aljabar Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin (UNHAS) Jl. Perintis Kemerdekaan KM.0 Makassar

Lebih terperinci

BAB 1 PENDAHULUAN. Masalah kependudukan di Indonesia merupakan masalah penting yang perlu

BAB 1 PENDAHULUAN. Masalah kependudukan di Indonesia merupakan masalah penting yang perlu BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah kependudukan di Indonesia merupakan masalah penting yang perlu mendapat perhatian dan pemahasan serius dari pemerintah dan ahli kependudukan. Bila para ahli

Lebih terperinci

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z)

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z) BAB 7 RESIDU DAN PENGGUNAAN 7 idu dan kutu Pada agian seelumnya telah kita pelajari ahwa suatu titik diseut titik singular dari f () ila f () gagal analitik di tetapi analitik pada suatu titik dari setiap

Lebih terperinci

HUBUNGAN DAERAH DEDEKIND DENGAN GELANGGANG HNP

HUBUNGAN DAERAH DEDEKIND DENGAN GELANGGANG HNP HUBUNGAN DAERAH DEDEKIND DENGAN GELANGGANG HNP TEDUH WULANDARI Departemen Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor Jl. Meranti, Kampus IPB Darmaga, Bogor 16680,

Lebih terperinci

PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN. Amir Kamal Amir

PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN. Amir Kamal Amir PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN Amir Kamal Amir Jurusan Matematika Fakultas MIPA Universitas Hasanuddin Jl. Perintis Kemerdekaan

Lebih terperinci

BAB VI DEFLEKSI BALOK

BAB VI DEFLEKSI BALOK VI DEFEKSI OK.. Pendahuluan Semua alok akan terdefleksi (atau melentur) dari kedudukannya apaila tereani. Dalam struktur angunan, seperti : alok dan plat lantai tidak oleh melentur terlalu erleihan untuk

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

PEMBENTUKAN GELANGGANG POLINOM MIRING DARI QUATERNION

PEMBENTUKAN GELANGGANG POLINOM MIRING DARI QUATERNION Pembentukan Gelanggang Polinom Miring dari Quaternion (Amir Kamal Amir) PEMBENTUKAN GELANGGANG POLINOM MIRING DARI QUATERNION Amir Kamal Amir 1 1 Jurusan Matematika Fakultas MIPA Universitas Hasanuddin

Lebih terperinci

KARAKTERISTIK GELANGGANG BILANGAN BULAT DAN PENGAITANNYA DENGAN TIGA STRUKTUR KHUSUS DAERAH INTEGRAL

KARAKTERISTIK GELANGGANG BILANGAN BULAT DAN PENGAITANNYA DENGAN TIGA STRUKTUR KHUSUS DAERAH INTEGRAL ARATERISTI GELANGGANG BILANGAN BULAT DAN PENGAITANNYA DENGAN TIGA STRUTUR HUSUS DAERAH INTEGRAL Eka Susilowati Fakultas eguruan dan Ilmu Pendidikan, Universitas PGRI Adi Buana Surabaya eka250@gmailcom

Lebih terperinci

SUBMODUL PRIMA, SEMIPRIMA, DAN PRIMER DI MODUL DAN MODUL FRAKSI

SUBMODUL PRIMA, SEMIPRIMA, DAN PRIMER DI MODUL DAN MODUL FRAKSI Jurnal Gammath, Volume 2 Nomor 1, Maret 2017 SUBMODUL PRIMA, SEMIPRIMA, DAN PRIMER DI MODUL DAN MODUL FRAKSI Lina Dwi Khusnawati FKIP Universitas Muhammadiyah Surakarta lina.d.khusnawati@ums.ac.id Abstrak

Lebih terperinci

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z)

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z) Ba 7 Residu dan Penggunaannya BAB 7 RESIDU DAN PENGGUNAAN 7 Residu dan kutu Pada agian seelumnya telah kita pelajari ahwa suatu titik diseut titik singular dari f () ila f () gagal analitik di tetapi analitik

Lebih terperinci

Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah dan Ring Endomorfisma dari Modul Distributif Lemah

Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah dan Ring Endomorfisma dari Modul Distributif Lemah Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah Ring Endomorfisma dari Modul Distributif Lemah Fitriani Jurusan Matematika FMIPA Universitas Lampung Email: fitriani_mathunila@yahoocoid AbstrakMisalkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid Bab 2 Daerah Euclid Pada bab ini akan dijelaskan mengenai daerah Euclid beserta struktur lain yang terkait nya. Beberapa struktur aljabar tersebut selanjutnya akan digunakan untuk melihat struktur gelanggang

Lebih terperinci

Sifat-Sifat Ideal Utama dan Ideal Maksimal dalam Near-Ring

Sifat-Sifat Ideal Utama dan Ideal Maksimal dalam Near-Ring PRISMA (208) PRISMA, Prosiding Seminar Nasional Matematika https://journal.unnes.ac.id/sju/index.php/prisma/ Sifat-Sifat Ideal Utama dan Ideal Maksimal dalam Near-Ring Zulfia Memi Mayasari Fakultas MIPA,

Lebih terperinci

AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL

AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL (Oleh: Sulastri Daruni, Bayu Surarso, Bambang Irawanto) Abstrak Misalnya F adalah lapangan perluasan dari lapangan K dan f(x) adalah polinomial

Lebih terperinci

Beberapa Sifat Ideal Bersih-N

Beberapa Sifat Ideal Bersih-N JURNAL FOURIER Oktober 216, Vol. 5, No. 2, 61-66 ISSN 2252-763X; E-ISSN 2541-5239 Beberapa Sifat Ideal Bersih-N Uha Isnaini dan Indah Emilia Wijayanti Jurusan Matematika FMIPA UGM, Yogyakarta, Sekip Utara,

Lebih terperinci

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2)

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2) Modul Strongly Supplemented A 6 Dzikrullah Akbar 1), Sri Wahyuni 2) 1) Mahasiswa S2 Matematika Jurusan Matematika FMIPA UGM Email : dzikoebar@yahoo.com 2) Dosen PS S2 Matematika Jurusan Matematika FMIPA

Lebih terperinci

REGULARISASI SISTEM SINGULAR DENGAN OUTPUT UMPAN BALIK u = Fy + v (Regularization of a Singular System by Feedback Output u = Fy + v )

REGULARISASI SISTEM SINGULAR DENGAN OUTPUT UMPAN BALIK u = Fy + v (Regularization of a Singular System by Feedback Output u = Fy + v ) arekeng Juni 7 hal3-37 Vol No RGULARISASI SISM SINGULAR DNGAN OUPU UMPAN ALIK u Fy + v Regularization of a Singular System y Feedack Output u Fy + v LVINUS RIHARD PRSULSSY Jurusan Matematika FMIPA Universitas

Lebih terperinci

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang ahan jar Statika Mulyati, ST., MT ertemuan XI, XII, XIII VI. Konstruksi Rangka atang VI. endahuluan Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka

Lebih terperinci

DETERMINAN, INVERS, PENYELESAIAN SISTEM PERSAMAAN LINEAR

DETERMINAN, INVERS, PENYELESAIAN SISTEM PERSAMAAN LINEAR DETERMINAN, INVERS, PENYELESAIAN SISTEM PERSAMAAN LINEAR DETERMINAN Definisi Setiap matriks kuadrat/persegi mempunyai suatu nilai khusus yang diseut determinan. determinan adalah jumlah hasil kali elementer

Lebih terperinci

Metode Simpleks Diperbaiki (Revised Simplex Method) Materi Bahasan

Metode Simpleks Diperbaiki (Revised Simplex Method) Materi Bahasan /7/ Metode Simpleks Diperaiki (Revised Simple Method) Kuliah TI Penelitian Operasional I Materi ahasan Dasar-dasar aljaar dari metode simpleks Metode simpleks yang diperaiki TI Penelitian Operasional I

Lebih terperinci

PEMETAAN MÖBIUS. Gani Gunawan. Jurusan Matematika, UNISBA, Jalan Tamansari No 1, Bandung,40116, Indonesia

PEMETAAN MÖBIUS. Gani Gunawan. Jurusan Matematika, UNISBA, Jalan Tamansari No 1, Bandung,40116, Indonesia Jurnal Matematika Vol6 No Novemer 006 [ : 7 ] PEMETAAN MÖBIUS Jurusan Matematika, UNISBA, Jalan Tamansari No, Banung,406, Inonesia ggan06@yahoocom Astrak Transformasi ilinear apat ikomposisikan ari transformasi

Lebih terperinci

GEOMETRI PROYEKTIF PG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG SIMETRIS. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang

GEOMETRI PROYEKTIF PG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG SIMETRIS. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang urnal atematika Vol, No3, Desemer 8: -5, ISSN: 4-858 GEOERI PROYEKIF PG(, p n ) UNUK EBENUK RANCANGAN BOK IDAK ENGKAP SEIBANG SIERIS Yuni Hidayati dan Bamang Irawanto, urusan atematika FIPA Uniersitas

Lebih terperinci

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Joko Harianto 1, Nana Fitria 2, Puguh Wahyu Prasetyo 3, Vika Yugi Kurniawan 4 Jurusan Matematika, Universitas Gadjah Mada, Yogyakarta Indonesia

Lebih terperinci

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani

Lebih terperinci

Konstruksi Rangka Batang

Konstruksi Rangka Batang Konstruksi Rangka atang Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka atang merupakan suatu konstruksi yang terdiri dari sejumlah atang atang

Lebih terperinci

RANK MATRIKS ATAS RING KOMUTATIF

RANK MATRIKS ATAS RING KOMUTATIF Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 1 (2013), hal. 63 70. RANK MATRIKS ATAS RING KOMUTATIF Eka Wulan Ramadhani, Nilamsari Kusumastuti, Evi Noviani INTISARI Rank dari matriks

Lebih terperinci

IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL PRIME IDEAL AND MAXIMAL IDEAL IN A POLYNOMIAL RING

IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL PRIME IDEAL AND MAXIMAL IDEAL IN A POLYNOMIAL RING IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL Qharnida Khariani, Amir Kamal Amir dan Nur Erawati Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin (UNHAS)

Lebih terperinci

HIMPUNAN BILANGAN BULAT NON NEGATIF PADA SEMIRING LOKAL DAN SEMIRING FAKTOR. Jl. Prof. H. Soedarto, S.H. Semarang 50275

HIMPUNAN BILANGAN BULAT NON NEGATIF PADA SEMIRING LOKAL DAN SEMIRING FAKTOR. Jl. Prof. H. Soedarto, S.H. Semarang 50275 HIMPUNAN BILANGAN BULAT NON NEGATIF PADA SEMIRING LOKAL DAN SEMIRING FAKTOR Meryta Febrilian Fatimah 1, Nikken Prima Puspita 2, Farikhin 3 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof.

Lebih terperinci

Teorema-Teorema Utama Isomorphisma pada Near-Ring

Teorema-Teorema Utama Isomorphisma pada Near-Ring urnal Gradien Vol 11 o 2 uli 2015 : 1112-1116 Teorema-Teorema Utama somorphisma pada ear-ring Zulfia Memi Mayasari, Yulian Fauzi, Ulfasari Rafflesia urusan Matematika, Fakultas Matematika dan lmu Pengetahuan

Lebih terperinci

matematika K-13 PEMBAGIAN HORNER DAN TEOREMA SISA K e l a s

matematika K-13 PEMBAGIAN HORNER DAN TEOREMA SISA K e l a s i K- ateatika K e l a s XI PEMBAGIAN HORNER DAN TEOREMA SISA Tujuan Peelajaran Setelah epelajari ateri ini, kau diharapkan eiliki keapuan erikut.. Menguasai konsep peagian suku anyak dengan etode Horner..

Lebih terperinci

ALJABAR WEYL, CONTOH GELANGGANG NOETHER DAN PRIM

ALJABAR WEYL, CONTOH GELANGGANG NOETHER DAN PRIM ALJABAR WEYL, CONTOH GELANGGANG NOETHER DAN PRIM TEDUH WULANDARI Departemen Matematika, Fakultas Matematika dan Imu Pengetahuan Alam, Institut Pertanian Bogor Jl. Raya Pajajaran, Kampus IPB Baranangsiang,

Lebih terperinci

ISNN WAHANA Volume 68, Nomer 1, 1 Juni 2017 HUBUNGAN ANTARA DAERAH IDEAL UTAMA, DAERAH FAKTORISASI TUNGGAL, DAN DAERAH DEDEKIND

ISNN WAHANA Volume 68, Nomer 1, 1 Juni 2017 HUBUNGAN ANTARA DAERAH IDEAL UTAMA, DAERAH FAKTORISASI TUNGGAL, DAN DAERAH DEDEKIND HUBUNGAN ANTARA DAERAH IDEAL UTAMA, DAERAH FATORISASI TUNGGAL, DAN DAERAH DEDEIND Eka Susilowati Fakultas eguruan dan Ilmu Pendidikan, Universitas PGRI Adibuana Surabaya eka50@gmail.com Abstrak Setiap

Lebih terperinci

MODUL HASIL BAGI DARI SUATU MODUL DEDEKIND

MODUL HASIL BAGI DARI SUATU MODUL DEDEKIND MODUL HASIL BAGI DARI SUATU MODUL DEDEKIND Erlina Tri Susianti 1) Santi Irawati 2) Jurusan Matematika, FMIPA, Universitas Negeri Malang. email: erltrisa@yahoo.co.id, santira99@gmail.com Abstrak: Gelanggang

Lebih terperinci

AKAR-AKAR POLINOMIAL SEPARABLE SEBAGAI PEMBENTUK PERLUASAN NORMAL PADA RING MODULO

AKAR-AKAR POLINOMIAL SEPARABLE SEBAGAI PEMBENTUK PERLUASAN NORMAL PADA RING MODULO AKAR-AKAR POLINOMIAL SEPARABLE SEBAGAI PEMBENTUK PERLUASAN NORMAL PADA RING MODULO Saropah Mahasiswa Jurusan Matematika UIN Maulana Malik Ibrahim Malang e-mail: haforas@rocketmail.com ABSTRAK Salah satu

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisan Modul e Learning ini diiayai oleh dana DIPA BLU UNY TA 00 Sesuai dengan Surat Perjanjian Pelaksanaan

Lebih terperinci

Keberlakuan Teorema pada Beberapa Struktur Aljabar

Keberlakuan Teorema pada Beberapa Struktur Aljabar PRISMA 1 (2018) https://journal.unnes.ac.id/sju/index.php/prisma/ Keberlakuan Teorema pada Beberapa Struktur Aljabar Mashuri, Kristina Wijayanti, Rahayu Budhiati Veronica, Isnarto Jurusan Matenmatika FMIPA

Lebih terperinci

PERAN TEOREMA COHEN DALAM TEOREMA BASIS HILBERT PADA RING DERET PANGKAT

PERAN TEOREMA COHEN DALAM TEOREMA BASIS HILBERT PADA RING DERET PANGKAT PERAN TEOREMA COHEN DALAM TEOREMA BASIS HILBERT PADA RING DERET PANGKAT SKRIPSI Untuk memenuhi sebagai persyaratan Mencapai derajat Sarjana S-1 Program Studi Matematika Diajukan Oleh : Moch. Widiono 09610030

Lebih terperinci

SIFAT ARMENDARIZ P A D A BEBERAPA RING GRUP

SIFAT ARMENDARIZ P A D A BEBERAPA RING GRUP SIFAT ARMENDARIZ P A D A BEBERAPA RING GRUP oleh : Mulvi Ludiana (1) Cece Kustiawan (2) Sumanang Muhtar Gozali (2) ABSTRAK Dari suatu ring dan grup, dapat dikonstruksi suatu ring baru yang disebut ring

Lebih terperinci

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.

Lebih terperinci

ORDER UNSUR DARI GRUP S 4

ORDER UNSUR DARI GRUP S 4 Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

Modul Faktor Dari Modul Supplemented

Modul Faktor Dari Modul Supplemented Modul Faktor Dari Modul Supplemented A 16 Puguh Wahyu Prasetyo S2 Matematika FMIPA UGM, Yogyakarta Email : puguhwp@gmail.com Ari Suparwanto Jurusan Matematika FMIPA UGM, Yogyakarta Email : ari_suparwanto@ugm.ac.id

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Lingkungan mikro di dalam rumah tanaman khususnya di daerah tropika asah perlu mendapat perhatian khusus, mengingat iri iklim tropika asah dengan suhu udara yang relatif panas,

Lebih terperinci

TRIGONOMETRI. Bab. Di unduh dari : Bukupaket.com. Aturan sinus Aturan kosinus Luas segitiga A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

TRIGONOMETRI. Bab. Di unduh dari : Bukupaket.com. Aturan sinus Aturan kosinus Luas segitiga A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR a 6 TRIGONOMETRI A. KOMPETENSI DASAR DAN PENGALAMAN ELAJAR Kompetensi Dasar 1. Menghayati pola hidup disiplin, kritis, ertanggungjawa, konsisten dan jujur serta menerapkannya dalam kehidupan sehari hari..

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL Jurnal Matematika Murni dan Terapan Vol 5 No Juni 0: 43-5 TES FORMAL MOUL PROJEKTIF AN MOUL BEBAS ATAS RING OPERATOR IFERENSIAL Na imah Hijriati Program Studi Matematika Universitas Lambung Mangkurat Jl

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK HASIL KALI TENSO: KONSTUKSI, EKSISTENSI AN KAITANNYA ENGAN BAISAN EKSAK Samsul Arifin samsul_arifin@mail.ugm.ac.id Mahasiswa S Matematika FMIPA UGM alam tulisan ini akan dibahas mengenai konstruksi hasil

Lebih terperinci

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester)

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) UNIVERSITAS GADJAH MADA FAKULTAS MIPA, JURUSAN MATEMATIKA, PS S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematiika, Yogyakarta - 55281 Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester)

Lebih terperinci

A 10 Diagonalisasi Matriks Atas Ring Komutatif

A 10 Diagonalisasi Matriks Atas Ring Komutatif A 10 Diagonalisasi Matriks Atas Ring Komutatif Joko Harianto 1, Puguh Wahyu Prasetyo 2, Vika Yugi Kurniawan 3, Sri Wahyuni 4 1 Mahasiswa S2 Matematika FMIPA UGM, 2 Mahasiswa S2 Matematika FMIPA UGM, 3

Lebih terperinci

PROSES PERCABANGAN PADA DISTRIBUSI GEOMETRIK

PROSES PERCABANGAN PADA DISTRIBUSI GEOMETRIK PROSES PERCABANGAN PADA DISTRIBUSI GEOMETRIK Arantika Desmawati, Respatiwulan, dan Dewi Retno Sari S Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Seelas Maret Astrak.

Lebih terperinci

Implementasi Penggunaan Bilangan Fuzzy Trapezoidal untuk Mencari Jalur Kritis pada Jaringan Proyek Fuzzy

Implementasi Penggunaan Bilangan Fuzzy Trapezoidal untuk Mencari Jalur Kritis pada Jaringan Proyek Fuzzy JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) 1 Implementasi Penggunaan Bilangan Fuzzy Trapezoidal untuk Mencari Jalur Kritis pada Jaringan Proyek Fuzzy Farah Nurul Ilma,

Lebih terperinci

NOMOR 8 TAHUN 1997 TENTANG DOKUMEN PERUSAHAAN

NOMOR 8 TAHUN 1997 TENTANG DOKUMEN PERUSAHAAN UNDANG-UNDANG REPUBLIK INDONESIA NOMOR 8 TAHUN 1997 TENTANG DOKUMEN PERUSAHAAN Menimang: DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA, a. ahwa upaya untuk mewujudkan kesejahtaeraan umum

Lebih terperinci

KLASIFIKASI NEAR-RING Classifications of Near Ring

KLASIFIKASI NEAR-RING Classifications of Near Ring Jurnal Barekeng Vol 8 No Hal 33 39 (14) KLASIFIKASI NEAR-RING Classifications of Near Ring ELVINUS RICHARD PERSULESSY Jurusan Matematika Fakultas MIPA Universitas Pattimura Jl Ir M Putuhena, Kampus Unpatti,

Lebih terperinci

PENDEKATAN IDENTIFIKASI LOGIK UNTUK MENGATASI KESULITAN MAHASISWA DALAM MEMAHAMI DEFINISI DAN TEOREMA PADA STRUKTUR ALJABAR LANJUT 1

PENDEKATAN IDENTIFIKASI LOGIK UNTUK MENGATASI KESULITAN MAHASISWA DALAM MEMAHAMI DEFINISI DAN TEOREMA PADA STRUKTUR ALJABAR LANJUT 1 PENDEKATAN IDENTIFIKASI LOGIK UNTUK MENGATASI KESULITAN MAHASISWA DALAM MEMAHAMI DEFINISI DAN TEOREMA PADA STRUKTUR ALJABAR LANJUT 1 Antonius Cahya Prihandoko 2 Abstract Many students who take the Advanced

Lebih terperinci

SUBGRUP C-NORMAL DAN SUBRING H R -MAX

SUBGRUP C-NORMAL DAN SUBRING H R -MAX SUBGRUP C-NORMAL DAN SUBRING H R -MAX Kristi Utomo 1, Nikken Prima Puspita 2, R. Heru Tjahjana 3, Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H. Tembalang Semarang kristiu24@gmail.com

Lebih terperinci

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODULES AND BASES OF FREE MODULES Dian Mardiani Pendidikan Matematika, STKIP Garut Garut, Indonesia Alfid51@yahoo.com Abstrak Penelitian ini membahas beberapa

Lebih terperinci

Pembagi Bersama Terbesar Matriks Polinomial

Pembagi Bersama Terbesar Matriks Polinomial Vol. 11, No. 1, 63-70, Juli 2014 Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3 ABSTRAK Teori bilangan adalah cabang ilmu Matematika yang mempelajari

Lebih terperinci

TEORI RING LANJUT (MODUL PRIMA)

TEORI RING LANJUT (MODUL PRIMA) TEORI RING LANJUT (MODUL PRIMA) 23 Maret 2010 Samsul Arifin (09/290722/PPA/2875) Yunita Septriana Anwar (08/275043/PPA/2614) IDEAL PRIMA Definisi 1: Misalkan R ring dan ideal. I disebut prima jika untuk

Lebih terperinci

STUDI BANDING ANALISIS STRUKTUR PELAT DENGAN METODE STRIP, PBI 71, DAN FEM

STUDI BANDING ANALISIS STRUKTUR PELAT DENGAN METODE STRIP, PBI 71, DAN FEM Jurnal Teknik dan Ilmu Komputer STUDI BANDING ANALISIS STRUKTUR PELAT DENGAN METODE STRIP, PBI 71, DAN FEM A COMPARATIVE STUDY OF PLATE STRUCTURE ANALYSIS USING STRIP METHOD, PBI 71, AND FEM Guntara M.

Lebih terperinci

TEOREMA GREEN UNTUK MENYELESAIKAN PERHITUNGAN INTEGRAL GARIS

TEOREMA GREEN UNTUK MENYELESAIKAN PERHITUNGAN INTEGRAL GARIS TEOEMA GEEN UNTUK MENYELESAIKAN PEHITUNGAN INTEGAL GAIS Prasetio Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiah Purworejo Astrak Integral merupakan operasi kealikan dari turunan.

Lebih terperinci

Beberapa Sifat Ideal Bersih-N

Beberapa Sifat Ideal Bersih-N JURNAL FOURIER Oktober 216, Vol. 5, No. 2, 65-7 ISSN 2252-763X; E-ISSN 2541-5239 Beberapa Sifat Ideal Bersih-N Uha Isnaini dan Indah Emilia Wijayanti Jurusan Matematika FMIPA UGM, Yogyakarta, Sekip Utara,

Lebih terperinci

Disusun Oleh : Dewi Ratna Nawangsari NRP Dosen Pembimbing : Tri Tiyasmihadi, ST. MT

Disusun Oleh : Dewi Ratna Nawangsari NRP Dosen Pembimbing : Tri Tiyasmihadi, ST. MT STUDI PENGARUH BENTANGAN(SPAN) PADA SINGLE GIRDER OVERHEAD CRANE DENGAN KAPASITAS 5 TON TYPE EKKE DAN ELKE DAN KAPASITAS 10 TON TYPE EKKE TERHADAP BERAT KONSTRUKSI GIRDERNYA Disusun Oleh : Dewi Ratna Nawangsari

Lebih terperinci

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye DEAL DFEENSAL DAN HOMOMOFSMA DFEENSAL Na imah Hijriati, Saman Abdurrahman, Thresye Program Studi Matematika Universitas Lambung Mangkurat l. end. A. Yani Km. 36 Kampus Unlam Banjarbaru Email : imah_math@yahoo.co.id

Lebih terperinci