GARIS DAN SUDUT. (Materi SMP Kelas VII Semester1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "GARIS DAN SUDUT. (Materi SMP Kelas VII Semester1)"

Transkripsi

1 GARIS DAN SUDUT (Materi SMP Kelas VII Semester1)

2

3 Garis dan Sudut Memahami Kedudukan Garis dan Sudut a. Menemukan konsep titik, garis, dan bidang Dalam ilmu Geometri, terdapat beberapa istilah atau sebutan yang tidak memiliki definisi (undefined terms), antara lain, titik, garis, dan bidang.meskipun ketiga istilah tersebut tidak secara formal didefinisikan, sangat penting disepakati tentang arti istilah tersebut. Perhatikan gambar berikut ini. Titik tidak memiliki ukuran, biasanya dideskripsikan menggunakan tanda noktah,seperti pada gambar di atas. Penamaan titik menggunakan huruf kapital, seperti titika, titik B, titik C, dan sebagainya. Sedangkan, garis direpresentasikan oleh suatu garis lurus dengan dua tanda panah di setiap ujungnya yang mengindikasikan bahwa garis tersebut panjangnya tak terbatas. Suatu bidang direpresentasikan oleh permukaan meja atau dinding. Pada Gambar Selanjutnya, beberapa konsep dasar dalam geometri juga harus dipahami tanpa didefinisikan. Salah satu diantaranya, konsep letak suatu titik pada suatu garis atau pada suatu bidang. Mari perhatikan gambar di bawah ini. 1. Posisi titik terhadap garis

4 2. Posisi titik terhadap bidang 3. Titik-titik segaris Dua atau lebih dikatakan segaris jika titik-titik tersebut terletak pada garis yang sama. Pada Gambar 4.3 titik A dan titik B dikatakan segaris, karena sama-sama terletak pada garis l. 4. Titik-titik sebidang Dua atau lebih dikatakan sebidang jika titik-titik tersebut terletak pada bidang yang sama. Pada Gambar 4.5 titik C dan titik D dikatakan sebidang, karena sama-sama terletak pada bidang ß.

5 Gambar 4.6 di atas adalah kondisi daerah yang dihubungkan oleh sebuah jembatan. Jembat merupakan struktur penghubung antara dua tempat yang terpisah. Jembatan berperan sebagai penghubung dua daerah yang dipisahkan oleh sungai. Andaikan sisi kiri sungai sebagai titik A, sisi kanan sungai sebagai titik B dan ruas garis AB merepresentasikan jembatan itu sendiri. Adanya ruas garis AB menjadikan dua titik A dan B terhubung. Jika titik A merupakan titik pangkal ruas segmen garis AB, maka titik B merupakan titik ujung ruas garis AB. Masalah lain yang akan kita pahami berikutnya adalah cahaya yang dihasilkan senter. Mari cermati Gambar 4.7.

6 Mari kita fokus pada cahaya yang memancar lurus dan besar (garis kuning). Tentunya, pangkal dari cahaya tersebut adalah senter. Jika kita hanya perhatikan pada gambar, kita dapat menentukan ujung cahaya, tetapi pada kejadian sebenarnya cahaya tersebut tidak memiliki ujung. Jadi pada kejadian ini, kita menemukan suatu pengamatan terhadap objek yang memiliki titik awal, tetapi tidak memiliki ujung. Dari tiga kajian di atas, terdapat dua pemahaman yang berkaitan dengan garis, segmen garis, dan sinar garis (sinar). Secara geometri, ketiga istilah tersebut kita deskripsikan sebagai berikut. Gambar di bawah ini adalah garis yang melalui titik A dan B disebut garis AB, dinotasikan AB Tanda panah pada kedua ujung AB artinya dapat diperpanjang sampai tak terbatas. Gambar di bawah ini adalah ruas garis (segmen) AB, disimbolkan AB, dengan titik A dan B merupakan titik ujung ruas garis AB.

7 b. Kedudukan Garis Pembahasan pada buku ini, kalian akan lebih banyak menggunakan garis daripada dua yang lain. Alasannya, semua kajian matematika harus berlaku secara umum, bukan hanya pada sebagian. Selanjutnya kita akan mengkaji posisi satu garis dengan garis yang lain. 1. Garis Berpotongan Dua buah garis akan berpotongan jika memiliki tepat satu titik persekutuan. Misalkan terdapat dua garis yakni AB dan CD, maka kondisi berpotongan dapat digambarkan sebagai berikut: 2. Garis Sejajar Kondisi sejajar akan terjadi jika dua garis berada di bidang yang sama dan tidak memiliki persekutuan. Contoh dua garis yang sejajar adalah sebagai berikut: 3. Garis Berhimpit Kondisi berhimpit akan terjadi jika dua garis terletak pada satu garis lurus, sehingga seolah-olah hanya terdapat satu garis saja. Contoh garis yang saling berhimpit

8 Cermati kembali Gambar 4.9, untuk satuan waktu 24 jam. 1. Ada berapa kali dapat ditemukan garis (jarum jam, menit dan detik) berhimpit? 2. Ada berapa kali terbentuk sudut siku-siku (90 ) antara jarum menit dan jarum jam? Untuk membantu kita memahami lebih mudah tentang kedudukan garis, mari cermati setiap gambar di bawah ini. Pada Gambar 4.10 (i), titik P merupakan pertongan garis l dan garis k. Sedangkan pada Gambar 4.10 (ii), titik P merupakan perpotongan garis k, l dan m. Selain titik, terdapat juga daerah-daerah yang terbentuk oleh garis-garis yang berpotongan tersebut. Untuk Gambar 4.10 (i) terdapat 4 daerah yang terbentuk oleh hasil perpotongan garis k dan garis l, serta Gambar 4.10 (ii) menghasilkan 6 daerah yang terbentuk oleh hasil perpotongan ketiga garis tersebut. Gambar 4.11 berikut ini, menyajikan garis-garis yang saling sejajar. Ciri yang menunjukkan dua atau tiga garis (terletak pada satu bidang datar) saling sejajar jika jarak antar garis yang sejajar selalu sama dan tidak pernah berpotongan. Perhatikan gambar di bawah ini.

9 Walaupun pada Gambar 4.11 kelihatannya garis-garis tersebut tidak sama panjang,tidak menjadi alasan untuk menyebut garis-garis tersebut tidak sejajar. Intinya adalah, jika garis tersebut diperpanjang maka tidak pernah berpotongan, dan terletak pada satu bidang datar, maka garisgaris tersebut merupakan garis-garis sejajar. b. Menemukan Konsep Sudut Banyak aktivitas yang kia lakukan dalam kehidupan sehari-hari berkaitan dengan sudut. Misalnya pemanah, sudut terbentuk antara tangan dengan badan pemanah. Untuk gambar pemancing, garis bantu merah sengaja ditambah untuk menunjukkan lebih jelas sudut yang terbentuk antara pancingan dengan bidang datar. Sudut terbentuk karena dua sinar bertemu pada titik pangkalnya. Secara matematis, hubungan sinar garis dan titik sudut diilustrasikan sebagai berikut.

10 Menentukan besar sudut yang dibentuk oleh jarum jam Selanjutnya, mari kita cermati pengukuran sudut yang terbentuk oleh jarum jam danjarum menit pada waktu-waktu yang lain. Perputaran selama 12 jam jarum jam berputar sebesar 360, akibatnya pergeseran tiap satu jam adalah Penamaan sudut = 30º. Secara matematis, penamaan sudut diperlukan untuk mempermudah penamaan sudut untuk kajian selanjutnya. Mari kita perhatikan Gambar berikut.

11 Alat ini dapat membantu kita mengukur suatu sudut yang sudah terbentuk dan membentuk besar sudut yang akan digambar.

12 Perlu kita kenalkan bahwa, terdapat ukuran sudut standar yang perlu kita ketahui, seperti yang disajikan pada gambar di bawah ini. Dengan memperhatikan ukuran setiap sudut, lengkapilah besar sudut berdasarkan jenis-jenis sudut.

13 Memahami Hubungan Antar Sudut Mari kita perhatikan gambar-gambar berikut ini Pada Gambar 4.18 terdapat sudut berpelurus, sudut berpenyiku dan sudut bertolak belakang. Pada kegiatan kali ini kalian akan memperlajari ketiga bentuk hubungan antar sudut tersebut yang rinciannya dikemas dalam kasus-kasus berikut ini. a. Sudut Berpelurus dan Sudut Berpenyiku Hubungan Antar Sudut 1. Sudut Berpenyiku Dua sudut dikatakan berpenyiku, jika jumlah besar kedua sudut tepat Sudut Berpelurus Dua sudut dikatakan berpelurus, jika jumlah besar kedua sudut tepat 180 b. Sudut saling betolak belakang

14 Pada gambar 4.28, <PTR bertolak belakang dengan <STQ, dan <PTS bertolak belakang dengan <RTQ. Sudut yang saling bertolak belakang mempunyai besar sudut yang sama. c. Hubungan sudut-sudut pada dua garis sejajar Sekarang, coba perhatikan kembali gambar lintasan kereta api dan modelnya di bawah ini. Garis k dan garis l, dipotong oleh garis garis m pada Gambar 4.29 sehingga membentuk delapan sudut. Sudut-sudut ini mempunyai nama khusus sesuai dengan posisinya.

Hutan. Barat Laut. Pejabat Pos. Barat Daya. Kedai

Hutan. Barat Laut. Pejabat Pos. Barat Daya. Kedai 1 ab 4 Garis ILNGN dan Sudut K ata Kunci Hutan Sekolah ukit Titik Garis idang Sudut Sudut erpenyiku Sudut erpelurus Sudut Sehadap Sudut erseberangan Sudut ertolak elakang. K D ompetensi asar 1. Memahami

Lebih terperinci

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si. VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada

Lebih terperinci

matematika K-13 PERSAMAAN GARIS LURUS K e l a s

matematika K-13 PERSAMAAN GARIS LURUS K e l a s K- matematika K e l a s XI PERSAMAAN GARIS LURUS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian garis, garis pada koordinat Cartesius,

Lebih terperinci

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

Bab 5 - Garis dan Sudut

Bab 5 - Garis dan Sudut Bab 5 - Garis dan Sudut Gambar 5.1 Gambar benda di sekitar kita yang membentuk sudut Sumber: Koleksi pribadi Di Sekolah Dasar, kita sudah diperkenalkan tentang garis dan sudut. Ini bisa menjadi dasar bagi

Lebih terperinci

( 2y) ( ) Uji Kompetensi x. y n. x y 3y ; untuk x = 2 dan y = x

( 2y) ( ) Uji Kompetensi x. y n. x y 3y ; untuk x = 2 dan y = x Uji Kompetensi -. A. Sederhanakanlah operasi bilangan berpangkat berikut.. 9. 6 6. B. Dengan menggunakan sifat bilangan berpangkat, sederhanakanlah bentuk berikut.. x.7x.(x). p ( ). q. p q. y.( x. z) (

Lebih terperinci

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T.

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T. Geometri Bangun Datar Suprih Widodo, S.Si., M.T. Geometri Adalah pengukuran tentang bumi Merupakan cabang matematika yang mempelajari hubungan dalam ruang Mesir kuno & Yunani Euclid Geometri Aksioma /postulat

Lebih terperinci

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas

Lebih terperinci

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya.

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. ab 7 angun Ruang Sisi Datar Standar Kompetensi Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. Kompetensi Dasar 4.1 Menentukan hubungan antara dua garis, serta besar

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan Modul 1 SUDUT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian sudut, ukuran sudut, satuan ukuran sudut, ragam sudut berdasarkan ukuran sudut, cara pengukuran

Lebih terperinci

Matematika II : Vektor. Dadang Amir Hamzah

Matematika II : Vektor. Dadang Amir Hamzah Matematika II : Vektor Dadang Amir Hamzah sumber : http://www.whsd.org/uploaded/faculty/tmm/calc front image.jpg 2016 Dadang Amir Hamzah Matematika II Semester II 2016 1 / 24 Outline 1 Pendahuluan Dadang

Lebih terperinci

BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA

Lebih terperinci

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor

Lebih terperinci

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 Satuan Pendidikan : SMP Mata Pelajaran : MATEMATIKA Kelas : VII (TUJUH) Jumlah : 40 Bentuk

Lebih terperinci

BESARAN VEKTOR B A B B A B

BESARAN VEKTOR B A B B A B Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Titik, Garis, dan Bidang Pada geometri, tepatnya pada sistem aksioma, terdapat istilah tak terdefinisi. Istilah tak terdefinisi adalah istilah dasar yang digunakan dalam membangun

Lebih terperinci

ANGKA UKUR. Angka ukur diletakan di tengah-tengah garis ukur. Angka ukur tidak boleh dipisahkan oleh garis gambar. Jadi boleh ditempatkan dipinggir.

ANGKA UKUR. Angka ukur diletakan di tengah-tengah garis ukur. Angka ukur tidak boleh dipisahkan oleh garis gambar. Jadi boleh ditempatkan dipinggir. PEMBERIAN UKURAN ANGKA UKUR Angka ukur diletakan di tengah-tengah garis ukur. Angka ukur tidak boleh dipisahkan oleh garis gambar. Jadi boleh ditempatkan dipinggir. ANGKA UKUR Jika angka ukur ditempatkan

Lebih terperinci

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan

Lebih terperinci

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun

Lebih terperinci

KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN AKHIR SEMESTER GENAP

KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN AKHIR SEMESTER GENAP KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN AKHIR SEMESTER GENAP Jenis Sekolah : SMP/MTs Penulis : Gresiana P Mata Pelajaran : Matematika Jumlah Soal : 40 nomor Kelas : VII (TUJUH) Bentuk Soal : Pilihan

Lebih terperinci

MENGGAMBAR PROYEKSI BENDA

MENGGAMBAR PROYEKSI BENDA MENGGAMBAR PROYEKSI BENDA A. MENGGAMBAR PROYEKSI Proyeksi adalah ilmu yang mempelajari tentang cara menggambarkan penglihatan mata kita dari suatu benda tiga dimensi kedalam kertas gambar secara dua dimensi

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memerebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 0 PENYISIHAN II PERORANGAN LCCM TINGKAT SMP x. I. x x II. x x x 6 x III. x x 6

Lebih terperinci

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 ALFIANI ATHMA PUTRI ROSYADI, M.Pd 4/14/2012 KUMPULAN DEFINISI DAN AKSIOMA DALAM GEOMETRI Nama Definisi 2.1 Definisi 2.2 Definisi 2.3 Definisi 2.4 Definisi 2.5

Lebih terperinci

Geometri Dimensi Dua

Geometri Dimensi Dua Geometri Dimensi Dua Materi Pelatihan Guru SMK Model Seni/Pariwisata/Bisnis Manajemen Yogyakarta, 28 November 23 Desember 2010 Oleh Dr. Ali Mahmudi JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

adalah. 7. Barisan aritmatika dengan suku ke-7 = 35 dan suku ke-13 = 53. Jumlah 27 suku pertama

adalah. 7. Barisan aritmatika dengan suku ke-7 = 35 dan suku ke-13 = 53. Jumlah 27 suku pertama MATEMATIKA (Paket ) Waktu : 20 Menit (025) 477 20 Website : Pilihlah jawaban yang paling tepat!. Ibu Aminah mempunyai untuk membuat gorengan diperlukan 7 2 kg tepung terigu. Untuk membuat roti diperlukan

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT GEOMETRI BIDANG Pada bab ini akan dibahas bentuk-bentuk bidang dalam ruang dimensi dua, keliling serta luasan dari bidang tersebut, bentuk ini banyak kaitannya dengan kegiatan ekonomi (bisnis dan manajemen)

Lebih terperinci

C 7 D. Pelat Buhul. A, B, C, D, E = Titik Buhul A 1 2 B E. Gambar 1

C 7 D. Pelat Buhul. A, B, C, D, E = Titik Buhul A 1 2 B E. Gambar 1 Konstruksi rangka batang atau vakwerk adalah konstruksi batang yang terdiri dari susunan batangbatang lurus yang ujungujungnya dihubungkan satu sama lain sehingga berbentuk konstruksi segitigasegitiga.

Lebih terperinci

KEPUTUSAN MENTERI PERHUBUNGAN NOMOR : KM 61 TAHUN 1993 TENTANG RAMBU-RAMBU LALU LINTAS DI JALAN MENTERI PERHUBUNGAN,

KEPUTUSAN MENTERI PERHUBUNGAN NOMOR : KM 61 TAHUN 1993 TENTANG RAMBU-RAMBU LALU LINTAS DI JALAN MENTERI PERHUBUNGAN, KEPUTUSAN MENTERI PERHUBUNGAN NOMOR : KM 61 TAHUN 1993 TENTANG RAMBU-RAMBU LALU LINTAS DI JALAN MENTERI PERHUBUNGAN, Menimbang : a. bahwa dalam Peraturan Pemerintah Nomor 43 Tahun 1993 tentang Prasarana

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XI ALAT PERAGA DALAM GEOMETRI RUANG

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XI ALAT PERAGA DALAM GEOMETRI RUANG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XI ALAT PERAGA DALAM GEOMETRI RUANG Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si

Lebih terperinci

LAMPIRAN 1 RANCANGAN MEDIA PEMBELAJARAN

LAMPIRAN 1 RANCANGAN MEDIA PEMBELAJARAN LAMPIRAN 1 RANCANGAN MEDIA PEMBELAJARAN Lampiran 1.a Lampiran 1.b. Lampiran 1.c. Lampiran 1.d. Lampiran 1.e. Lampiran 1.f. Garis-Garis Besar Isi Media Materi Garis dan Sudut Soal dan Kunci Jawaban Jabaran

Lebih terperinci

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI A. Titik, Garis, dan Bidang BANGUN GEOMETRI Suatu titik menyatakan letak atau posisi dari sesuatu yang tidak mempunyai ukuran, maka titik tidak mempunyai ukuran. Dikatakan bahwa titik berdimensi nol (tak

Lebih terperinci

Rencana Pelaksanaan Pembelajaran

Rencana Pelaksanaan Pembelajaran LAMPIRAN 1 40 LAMPIRAN 2 41 Rencana Pelaksanaan Pembelajaran Mata Pelajaan : Matematika Satuan Pendidikan : Sekolah Menengah Pertama Sekolah : SMP Negri 3 Mojolaban Kelas / Semester : VII / II Materi Pokok

Lebih terperinci

BAB I PENDAHULUAN. Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan

BAB I PENDAHULUAN. Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan BAB I PENDAHULUAN A. Latar Belakang Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan metria artinya pengukuran. Menurut sejarahnya, Geometri tumbuh pada zaman jauh sebelum masehi karena

Lebih terperinci

BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA)

BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA) BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA) ANWARIL HAMIDY NIM. 15709251018 PROGRAM STUDI PENDIDIKAN MATEMATIKA PROGRAM PASCASARJANA

Lebih terperinci

PENGGUNAAN METODE FAST FEEDBACK MODEL INDIKASI WARNA PADA PEMBELAJARAN FISIKA TENTANG PEMBENTUKAN BAYANGAN PADA LENSA

PENGGUNAAN METODE FAST FEEDBACK MODEL INDIKASI WARNA PADA PEMBELAJARAN FISIKA TENTANG PEMBENTUKAN BAYANGAN PADA LENSA PENGGUNAAN METODE FAST FEEDBACK MODEL INDIKASI WARNA PADA PEMBELAJARAN FISIKA TENTANG PEMBENTUKAN BAYANGAN PADA LENSA Siti Noor Fauziah 1, Ferdy S. Rondonuwu 1,2, Marmi Sudarmi 1 1 Program Studi Pendidikan

Lebih terperinci

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang BAB III PEMBAHASAN Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang didasarkan kepada enam postulat pada Geometri Netral dan Postulat Kesejajaran Hiperbolik. Akan dibahas sifat-sifat

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Kajian Teori 1. Konsep, Konsepsi, dan Miskonsepsi Konsep menurut Berg (1991:8) adalah golongan benda, simbol, atau peristiwa tertentu yang digolongkan berdasarkan sifat yang dimiliki

Lebih terperinci

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut :

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut : 1. Jika 3x2006 = 2005+2007+a, maka a sama dengan A) 2003 B) 2004 C) 2005 D) 2006 2. Berapa angka terbesar yang mungkin didapat dari kombinasi susunan enam kartu angka di bawah ini? A) 6 475 413 092 B)

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TAHUN 014 TINGKAT KABUPATEN/KOTA Sabtu, 8 Maret 014 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH

Lebih terperinci

SOAL UJIAN. NILAI I. PERSOALAN (BETUL-SALAH) 10 SOAL (LINGKARI HURUF (B) BILA BENAR dan HURUF (S) BILA DIANGGAP SALAH

SOAL UJIAN. NILAI I. PERSOALAN (BETUL-SALAH) 10 SOAL (LINGKARI HURUF (B) BILA BENAR dan HURUF (S) BILA DIANGGAP SALAH TENTARA NASIONAL INDONESIA ANGKATAN DARAT KODIKLAT ALT-1 SOAL UJIAN LOMBA : TONTANGKAS TA. 15 MATERI WAKTU : ILMU MEDAN UNTUK TAMTAMA : 2 JAM PELAJARAN (90 MENIT) TANGGAL :... NAMA : PKT/NRP : KOTAMA/SATUAN

Lebih terperinci

MODUL 4 LINGKARAN DAN BOLA

MODUL 4 LINGKARAN DAN BOLA 1 MODUL 4 LINGKARAN DAN BOLA Sumber: www.google.co.id Gambar 6. 6 Benda berbentuk lingkaran dan bola Dalam kehidupan sehari-hari kita banyak menjumpai benda-benda yang berbentuk bola maupun lingkaran.

Lebih terperinci

DIMENSI TIGA 1. Standar Kompetensi: Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga.

DIMENSI TIGA 1. Standar Kompetensi: Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga. DIMENSI TIGA 1 Standar Kompetensi: Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga. Kompetensi Dasar: 1. Menentukan kedudukan titik, garis,

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis BAB II RESULTAN (JUMLAH) DAN URAIAN GAYA A. Pendahuluan Pada bab ini, anda akan mempelajari bagaimana kita bekerja dengan besaran vektor. Kita dapat menjumlah dua vektor atau lebih dengan beberapa cara,

Lebih terperinci

Datar Sederhana. Bab 4 Unsur-Unsur Bangun. Tema 9 Negara Kelas Dewi

Datar Sederhana. Bab 4 Unsur-Unsur Bangun. Tema 9 Negara Kelas Dewi Bab 4 Unsur-Unsur Bangun Datar Sederhana Tema 9 Negara Kelas Dewi Tujuan Pembelajaran Pembelajaran ini bertujuan agar kamu mampu: mengelompokkan bangun datar mengenal sisi-sisi bangun datar mengenal sudut-sudut

Lebih terperinci

RINGKASAN MATERI SUDUT DAN PENGUKURAN SUDUT

RINGKASAN MATERI SUDUT DAN PENGUKURAN SUDUT RINGKASAN MATERI SUDUT DAN PENGUKURAN SUDUT Besar sudut dapat ditentukan atau diukur dengan berbagai cara, di antaranya dengan menggunakan sudut satuan dan yang paling tepat menggunakan sebuah alat yang

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis. 5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah

Lebih terperinci

DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. HUKUM-HUKUM GERAK NEWTON Beberapa Definisi dan pengertian yang berkaitan dgn hukum gerak newton

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

Matematika IPA (MATEMATIKA TKD SAINTEK)

Matematika IPA (MATEMATIKA TKD SAINTEK) Pembahasan Soal SBMPTN 2016 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA (MATEMATIKA TKD SAINTEK) Kumpulan SMART SOLUTION dan TRIK SUPERKILAT

Lebih terperinci

VEKTOR II. Tujuan Pembelajaran

VEKTOR II. Tujuan Pembelajaran Kurikulum 03 Kelas X matematika PEMINATAN VEKTOR II Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami tentang pembagian vektor.. Memahami tentang

Lebih terperinci

GESERAN atau TRANSLASI

GESERAN atau TRANSLASI GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3.

Lebih terperinci

PENDIDIKAN MATEMATIKA SD 1

PENDIDIKAN MATEMATIKA SD 1 PENDIDIKAN MATEMATIKA SD (KPD / sks ) Oleh: M. Coesamin FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS LAMPUNG 0 PENDIDIKAN MATEMATIKA SD Materi:. Bilangan Bulat dan Bilangan Pecah a. Bilangan Bulat

Lebih terperinci

Lampiran 1. Soal. c) sinar datang menuju pusat kelengkungan. a) sinar datang sejajar sumbu utama. b) sinar datang menuju fokus

Lampiran 1. Soal. c) sinar datang menuju pusat kelengkungan. a) sinar datang sejajar sumbu utama. b) sinar datang menuju fokus L A M P I R A 26 Lampiran 1. Soal Tahap Soal Kartu Tugas Kartu Tugas 1 Kartu Tugas 2 Kartu Tugas 3 1. Gambarkan arah sinar pantul, garis normal serta sudut datang dan sudut pantulnya jika sinar datang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 1. Pengertian dan Karakteristik Metode Penemuan Terbimbing. menjelaskan, mengukur, membuat kesimpulan dan sebagainya.

BAB II TINJAUAN PUSTAKA. 1. Pengertian dan Karakteristik Metode Penemuan Terbimbing. menjelaskan, mengukur, membuat kesimpulan dan sebagainya. 10 BAB II TINJAUAN PUSTAKA A. Metode Penemuan Terbimbing 1. Pengertian dan Karakteristik Metode Penemuan Terbimbing Menurut Sund (dalam Suryosubroto, 2009: 179) penemuan adalah terjemahan dari discoveri,

Lebih terperinci

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Materi KKD I Konsep dasar geometri dan segitiga (termasuk teorema dan aksioma terkait) KKD II Poligon dan Lingkaran (sifat dan luas) KKD III

Lebih terperinci

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya

Lebih terperinci

3. Kuadrat dari hasil penjumlahan angka 5 dan 6, dikurangi hasil perkalian kedua angka tersebut

3. Kuadrat dari hasil penjumlahan angka 5 dan 6, dikurangi hasil perkalian kedua angka tersebut 1. Pada sisi kanan dan kiri sebuah jalan raya terdapat perumahan. Rumah-rumah yang terdapat di sisi kiri jalan dinomori berurutan dengan nomor ganjil dari angka 1 sampai 39. Rumah-rumah di sebelah kanan

Lebih terperinci

Satuan Ukuran (Waktu, Sudut, Jarak, dan Kecepatan)

Satuan Ukuran (Waktu, Sudut, Jarak, dan Kecepatan) Bab 5 Satuan Ukuran (Waktu, Sudut, Jarak, dan Kecepatan) Banyak sekali satuan ukuran yang digunakan dalam kehidupan sehari-hari. Coba siapa yang tahu contoh-contoh alat ukur yang sering digunakan? Pernahkah

Lebih terperinci

PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 2014 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA

PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 2014 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA email: koniciwa7@yahoo.co.id PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 0 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA. Sepuluh orang guru akan ditugaskan mengajar di tiga sekolah,yakni sekolah A, B, dan C, berturut

Lebih terperinci

Lampiran I. Soal. 2. Gambarkan garis normal apabila diketahui sinar datangnya! 3. Gambarkan garis normal apabila diketahui sinar datangnya!

Lampiran I. Soal. 2. Gambarkan garis normal apabila diketahui sinar datangnya! 3. Gambarkan garis normal apabila diketahui sinar datangnya! LAMPIRAN Tahap I : Menggambarkan garis normal dari bidang batas yang datar No. Soal No. Soal 1. Gambarkan garis normal apabila diketahui sinar datangnya! 2. Gambarkan garis normal apabila diketahui sinar

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA Pada Bab II ini akan diuraikan berbagai konsep dasar yang digunakan pada bagian pembahasan. Pada bab II ini akan dibahas pengenalan Geometri Non- Euclid, Geometri Insidensi, Geometri

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah I PENDHULUN. Latar elakang Geometri (daribahasayunani, geo = bumi, metria = pengukuran) secaraharfiah berarti pengukuran tentang bumi, adalahcabangdarimatematika yang mempelajari hubungan di dalamruang.

Lebih terperinci

LATIHAN UJIAN AKHIR SEKOLAH

LATIHAN UJIAN AKHIR SEKOLAH LATIHAN UJIAN AKHIR SEKOLAH BERSTANDAR NASIONAL MATEMATIKA WAKTU : 0 menit DEPARTEMEN PENDIDIKAN NASIONAL PETUNJUK UMUM 1. Periksa dan bacalah soal-soal sebelum menjawab.. Jawaban dikerjakan pada lembar

Lebih terperinci

Lampiran 1.1. Rencana Pelaksanaan Pembelajaran (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Lampiran 1.1. Rencana Pelaksanaan Pembelajaran (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Lampiran 1.1. Rencana Pelaksanaan Pembelajaran (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 1 Ngemplak Mata Pelajaran : Matematika Kelas/ Semester : VII/ 2 Materi Ajar : Garis

Lebih terperinci

BAB JENIS DAN BESAR SUDUT

BAB JENIS DAN BESAR SUDUT 9 JENIS DN ESR SUDUT Tata dan Dio belajar bersama. Mereka menyelidiki bendabenda yang mempunyai sudut. enda-benda tersebut di antaranya adalah buku, penggaris panjang, kotak tempat pensil, penghapus, penggaris

Lebih terperinci

BAB II KAJIAN TEORITIS DAN HIPOTESIS TINDAKAN Hakikat Kemampuan Mengenal Bentuk Bangun Datar Sederhana

BAB II KAJIAN TEORITIS DAN HIPOTESIS TINDAKAN Hakikat Kemampuan Mengenal Bentuk Bangun Datar Sederhana BAB II KAJIAN TEORITIS DAN HIPOTESIS TINDAKAN 2.1 Kajian Pustaka 2.1.1 Hakikat Kemampuan Mengenal Bentuk Bangun Datar Sederhana Kemampuan mengenal bentuk bangun datar sederhana adalah suatu kemampuan yang

Lebih terperinci

Pengembangan Pembelajaran Matematika Berbasis ICT : Penerapan Cabri

Pengembangan Pembelajaran Matematika Berbasis ICT : Penerapan Cabri 1 2 DAFTAR ISI Halaman DAFTAR ISI... 2 A. Penerapan Cabri pada Materi Jaring-Jaring (SMP)... 3 B. Penerapan Cabri pada Pembuktian Rumus Volum Limas Menggunakan Volum Prisma (SMP)... 9 oleh Aditya Nursasongko

Lebih terperinci

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Hakikat Pembelajaran Matematika 1. Pengertian Matematika Matematika merupakan salah satu ilmu yang sangat penting dalam dan untuk hidup kita. Banyak hal di sekitar kita yang berhubungan

Lebih terperinci

LAPORAN PERCOBAAN GERAK LURUS BERUBAH BERATURAN

LAPORAN PERCOBAAN GERAK LURUS BERUBAH BERATURAN LAPORAN PERCOBAAN GERAK LURUS BERUBAH BERATURAN I. TUJUAN PERCOBAAN Adapun tujuan percobaan ini adalah sebagai berikut. 1. Menyelidiki konsep Gerak Lurus Berubah Beraturan (GLBB) pada bidang miring dengan

Lebih terperinci

Pembahasan : untum membentuk jarring-jaring, maka setiap sisi yang berimpitan akan berimpitan secara tepat.

Pembahasan : untum membentuk jarring-jaring, maka setiap sisi yang berimpitan akan berimpitan secara tepat. SD kelas 4 - MATEMATIKA BAB 9. GARIS, SUDUT DAN PENGUBINANLATIHAN SOAL BAB 9 1. Jaring-jaring balok ditunjukkan oleh. Kunci Jawaban : A Pembahasan : untum membentuk jarring-jaring, maka setiap sisi yang

Lebih terperinci

OLEH : PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN ILMU SEKOLAH TINNGI KEGURUAN DAN ILMU PENDIDIKAN

OLEH : PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN ILMU SEKOLAH TINNGI KEGURUAN DAN ILMU PENDIDIKAN OLEH : 1. ASRIA HIRDA YANTI ( 4007014 ) 2. ANNIE RACHMAWATI ( 4006116 ) 3. RUPITA FITRIANI ( 4007036 ) 4. PERA HIJA TERISTIANA ( 4007001 ) 5. HARTATI SUSANTI ( 4007166 ) PROGRAM STUDI PENDIDIKAN MATEMATIKA

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang digunakan pada bagian pembahasan. Tinjauan yang dilakukan dengan memaparkan definisi mengenai unsur-unsur kajian geometri, aksioma kekongruenan,

Lebih terperinci

BAB V GEOMETRI DAN TRANSFORMASI

BAB V GEOMETRI DAN TRANSFORMASI BAB V GEOMETRI DAN TRANSFORMASI Pernahkah anda mengamati proses pekerjaan pembangunan sebuah rumah? Semua tahap pekerjaan tersebut, mulai dari perancangan hingga finishing, tidak terlepas dari penerapan

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Angin Angin adalah gerakan udara dari daerah yang bertekanan tinggi ke daerah yang bertekanan rendah. Kekuatan angin berlebihan dapat dikontrol menggunakan sistem manual atau otomatik.

Lebih terperinci

Untuk lebih jelasnya, perhatikan uraian berikut.

Untuk lebih jelasnya, perhatikan uraian berikut. KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN TENGAH SEMESTER GENAP Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor :

Lebih terperinci

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus.

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Bab 3 Persamaan Garis Lurus Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.4 Menentukan gradien, persamaan dan grafik garis lurus 3.1 Pengertian

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS

APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS Muhammad Farhan 13516093 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara Sistem Koordinat Cartesius.. Geometri Analitik Geometri analitik adalah suatu cabang ilmu matematika yang merupakan kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara persamaan

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Pengertian Konsep, Konsepsi dan Prakonsepsi Konsep adalah satuan arti yang mewakili sejumlah objek, misalnya benda-benda atau kejadian-kejadian yang mewakili kesamaan ciri khas

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

FORMAT GAMBAR PRAKTIKUM PROSES MANUFAKTUR ATA 2014/2015 LABORATURIUM TEKNIK INDUSTRI LANJUT UNIVERSITAS GUNADARMA

FORMAT GAMBAR PRAKTIKUM PROSES MANUFAKTUR ATA 2014/2015 LABORATURIUM TEKNIK INDUSTRI LANJUT UNIVERSITAS GUNADARMA FORMAT GAMBAR PRAKTIKUM PROSES MANUFAKTUR ATA 2014/2015 LABORATURIUM TEKNIK INDUSTRI LANJUT UNIVERSITAS GUNADARMA A. Perlengkapan Gambar 1. Drawing Pen ukuran 0,3 dan 0,5 mm 2. Maal 3 mm 3. Penggaris /

Lebih terperinci

Pendahuluan. 1.1 Latar Belakang

Pendahuluan. 1.1 Latar Belakang Pendahuluan 1.1 Latar elakang Geometri datar, merupakan studi tentang titik, garis, sudut, dan bangun-bangun geometri yang terletak pada sebuah bidang datar. erbagai mekanisme peralatan dalam kehidupan

Lebih terperinci

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika Pembahasan OSK Tahun 011 Tingkat SMP Bidang Matematika Bagian A : Pilihan Ganda 1. Nilai dari a. 113 b. c. 91 73 1 8! 9! + 3 adalah... d. e. 71 4 Jawaban : c 1 8! 9! + 3 = 10 9 10 + 3 = 73. Menggunakan

Lebih terperinci

DATA NAMA SISWA SMP NEGERI 1 BAWEN KELAS

DATA NAMA SISWA SMP NEGERI 1 BAWEN KELAS LAMPIRAN 38 LAMPIRAN 1 DATA NAMA SISWA SMP NEGERI 1 BAWEN KELAS KELAS VIII A NO NAMA 1 B1 2 B2 3 B3 4 B4 5 B5 6 B6 7 B7 8 B8 9 B9 10 B10 11 B11 12 B12 13 B13 14 B14 15 B15 16 B16 17 B17 18 B18 19 B19 20

Lebih terperinci

47

47 46 47 48 49 50 RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Sekolah Mata Pelajaran : SD Laboratorium Kristen Satya Wacana : Matematika Kelas / Semester : V/ 2 Materi Pokok : Sifat sifat bangun datar Waktu

Lebih terperinci

BAB II PEMBAHASAN. Gambar 2.1 Lenturan Gelombang yang Melalui Celah Sempit

BAB II PEMBAHASAN. Gambar 2.1 Lenturan Gelombang yang Melalui Celah Sempit BAB II PEMBAHASAN A. Difraksi Sesuai dengan teori Huygens, difraksi dapat dipandang sebagai interferensi gelombang cahaya yang berasal dari bagian-bagian suatu medan gelombang. Medan gelombang boleh jadi

Lebih terperinci

TUGAS MATA KULIAH GEOMETRI TRANSFORMASI

TUGAS MATA KULIAH GEOMETRI TRANSFORMASI TUGAS MATA KULIAH GEOMETRI TRANSFORMASI Dosen Pengampu HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 3 Nama : NPM : 1. Ahmad Muslim 08030007 2. Ivo ayu Septiana 08030159 3. Elsa Fitriana 08030200 SEKOLAH

Lebih terperinci

Sifat-Sifat Cahaya dan Hubungannya dengan Berbagai Alat-Alat Optik

Sifat-Sifat Cahaya dan Hubungannya dengan Berbagai Alat-Alat Optik Untuk mendapatkan gema dari satu suku kata, bunyi pantul harus datang secepatcepatnya sesudah detik, yaitu sesudah suku kata itu selesai diucapkan. Jarak yang ditempuh bunyi selama itu 340 m/detik detik

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Irisan Kerucut animation 1 animation 2 Irisan kerucut adalah kurva ang terbentuk dari perpotongan antara sebuah kerucut dengan bidang datar. Kurva irisan ini

Lebih terperinci

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair Bab II TINJAUAN PUSTAKA 2.1 Konsep Dasar Geometri Affin ( Rawuh, 2009) Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair yaitu aksioma yang menyatakan bahwa melalui suatu titik

Lebih terperinci

LATIHAN SOAL UTS BAB HIMPUNAN Oleh : Ghelvinny, S.Si (SMPN 199 Jakarta)

LATIHAN SOAL UTS BAB HIMPUNAN Oleh : Ghelvinny, S.Si (SMPN 199 Jakarta) LATIHAN OAL UT BAB HIMPUNAN Oleh : Ghelvinny,.i (MPN 199 Jakarta) 1. Yang merupakan himpunan lima bilangan prima yang pertama adalah a. { 1, 3, 5, 7, 9 } b. { 2, 3, 5, 7, 9 } c. { 1, 3, 5, 7, 11 } d. {

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( )

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( ) MAKALAH SEGITIGA BOLA disusun guna memenuhi tugas mata kuliah Astronomi Program Studi Pendidikan Fisika oleh 1. Dyah Larasati (4201412042) 2. Lina Kurniawati (4201412091) 3. Qonia Kisbata Rodiya (4201412116)

Lebih terperinci