Laporan Praktikum Laboratorium Teknik Material 1 Modul A Uji Tarik

Ukuran: px
Mulai penontonan dengan halaman:

Download "Laporan Praktikum Laboratorium Teknik Material 1 Modul A Uji Tarik"

Transkripsi

1 Laporan Praktikum Laboratorium Teknik Material 1 Modul A Uji Tarik oleh : Nama : Catia Julie Aulia NIM : Kelompok : 7 Anggota (NIM) : 1. Conrad Cleave Bonar ( ) 2. Catia Julie Aulia () 3. Hutomo Tanoto ( ) 4. Fakhri Arsyi Hawari ( ) Tanggal Praktikum : Rabu, 13 April 2016 Tanggal Penyerahan Laporan : Selasa, 19 April 2016 Nama Asisten (NIM) : I Gede Bagus Eka S. W. ( ) Laboratorium Metalurgi dan Teknik Material Program Studi Teknik Material Fakultas Teknik Mesin dan Dirgantara Institut Teknologi Bandung 2016

2 BAB I PENDAHULUAN 1.1 Latar Belakang Sesuai dengan namanya, uji tarik adalah pengujian mekanik yang memberikan beban tarik pada material uji dengan kecepatan pembebanan yang statis. Uji tarik merupakan salah satu pengujian yang bersifat merusak. Standar pengujian tarik mengacu pada ASTM E8/E8M. Uji tarik banyak digunakan di industri karena informasi yang diberikannya mengenai sifat mekanik material cukup banyak dan mudah untuk diolah. Selain itu, pengujian ini juga dapat digunakan untuk hampir semua jenis material, dimulai dari logam, keramik, dan polimer. Informasi yang diperoleh dari uji tarik biasa digunakan sebagai dasar pemilihan material, pengembangan paduan, kontrol kualitas, dan proses desain dalam berbagai kondisi. Pada awalnya, banyak industri yang membutuhkan bahan baku untuk membuat suatu produk. Untuk memastikan kualitas bahan baku yang dibutuhkan dan memastikan apakah bahan baku yang ada sesuai atau tidak, dilakukanlah uji tarik. 1.2 Tujuan Praktikum Tujuan dari Praktikum Uji Tarik adalah : 1. Menentukan modulus elastisitas spesimen. 2. Menentukan nilai yield strength spesimen. 3. Menentukan nilai ultimate tensile strength spesimen. 4. Menentukan nilai konstanta kekuatan dan koefisien strain hardening. 5. Menentukan ductility spesimen. 6. Mengetahui fenomena yang terjadi pada uji tarik. Page 2 of 39

3 BAB II TEORI DASAR 2.1 Uji Tarik Uji tarik adalah pengujian mekanik yang memberikan beban tarik pada material uji dengan kecepatan pembebanan yang statis. Pada uji tarik, spesimen diberi beban gaya tarik pada satu sumbu yang bertambah secara kontinyu, bersamaan dengan itu dilakukan pengamatan terhadap perpanjangan yang dialami oleh benda uji. Standar pengujian tarik mengacu pada ASTM E8/E8M. 2.2 Skema Uji Tarik (Sumber : Callister, William D. Materials and Science Engineering An Introduction, 6th edition. John Wiley & Sons, Inc ) Gambar 1. Skema Alat Uji Tarik Pada uji tarik, spesimen dipasang pada mesin uji tarik dan dihubungkan ke extensometer melalui strain gauge. Extensometer adalah alat yang mengukur perubahan panjang yang dialami spesimen dengan strain gauge sebagai sensor. Crosshead bergerak sehingga membuat load cell bergerak. Load cell akan memberikan gaya dan menimbulkan tegangan tarik pada spesimen. Spesimen yang menerima tegangan tarik akan mengalami perubahan panjang. Perubahan Page 3 of 39

4 panjang yang terjadi pada spesimen akan terdeteksi oleh strain gauge yang terpasang pada spesimen dan terukur oleh extensometer yang terhubung pada strain gauge. Data perubahan panjang dan perubahan gaya yang diterima oleh spesimen pun diperoleh dan dapat diolah lebih lanjut. 2.3 Spesimen Uji Tarik (Sumber : ASTM E 8M) Gambar 2. Bentuk Spesimen Uji Tarik Berdasarkan standar ASTM E8/E8M, untuk jenis material logam, panjang gage length spesimen adalah 4 kali diameter spesimen. Spesimen uji berbentuk silinder dengan dimensi sebagai berikut : Standard Specimen Small-Size Specimen Proportional to Standard 12, ,5 G 62,5 ± 0,1 45,0 ± 0,1 30,0 ± 0,1 20,0 ± 0,1 12,5 ± 0,1 D 12,5 ± 0,2 9,0 ± 0,1 6,0 ± 0,1 4,0 ± 0,1 2,5 ± 0,1 R A Dengan : G = Gage length D = Diameter R = Radius of fillet Page 4 of 39

5 A = Length of reduced section 2.4 Baja ST-37 Baja ST-37 merupakan salah satu jenis baja yang paling sering digunakan. Berdasarkan literatur [1], nilai modulus elastisitas baja ST37 adalah 200 GPa. Baja ini mempunyai nilai ultimate tensile strength sebesar 370 MPa (tidak diberi perlakuan) dengan yield strength sebesar 298 MPa. 2.5 Kurva Stress Strain Data hasil pengujian tarik dapat diolah menjadi kurva tegangan vs regangan. Kita mengenal dua tipe stress-strain, yaitu engineering stress engineering strain dan true stress true strain. Dari kurva dibawah dapat dilihat perbedaan diantara keduanya. (Sumber : Slide Kuliah Sifat Mekanik Material) Gambar 3. Kurva Stress-Strain 1. Engineering Stress Engineering Strain Sesuai dengan namanya, engineering stress engineering strain adalah nilai dari tegangan dan regangan yang telah direkayasa. Rekayasa yang dimaksud adalah dengan mengasumsikan bahwa luas penampang untuk setiap pembebanan adalah sama, yaitu luas penampang awal. Kita Page 5 of 39

6 tahu, semakin diberi beban, luas penampang spesimen akan selalu turun untuk setiap penambahan beban sehingga untuk meminimalkan faktor geometri ini dibentuklah engineering stress engineering strain untuk memudahkan perhitungan. Nilai engineering stress dapat dihitung melalui persamaan berikut : (1) Dengan : σ = engineering stress (N/m 2 ) F = beban yang bekerja pada spesimen (N) A 0 = luas penampang awal spesimen (m 2 ) Dan untuk engineering strain dapat dihitung melalui persamaan berikut : (2) Dengan : ε = engineering strain l o = panjang awal spesimen (m) l i = panjang akhir spesimen (m) 2. True Stress True Strain True stress true strain adalah nilai tegangan dan regangan yang sebenarnya, dimana perubahan luas penampang spesimen seiring dengan penambahan beban juga diperhitungkan. Nilai true stress true strain dapat dihitung dengan mengkonversi nilai dari engineering stress engineering strain dengan persamaan : a.) Sesaat sebelum necking ( ) ( ) (3) Dengan : σ t = true stress (N/m 2 ) ( ) (4) Page 6 of 39

7 σ = engineering stress (N/m 2 ) ε = engineering strain ε t = true strain b.) Setelah terjadi necking (5) (6) Dengan : σ t = true stress (N/m 2 ) F = beban yang diberikan pada spesimen (N) A i = luas penampang spesimen (m 2 ) ε t = true strain A o = luas penampang awal spesimen (m 2 ) 2.6 Fenomena Pada Uji Tarik Dalam pengujian tarik, terdapat fenomena-fenomena yang akan terjadi, diantaranya : 1. Deformasi Elastis Deformasi elastis adalah perubahan bentuk suatu material secara tidak permanen, dimana material tersebut dapat kembali lagi ke bentuk semula. 2. Deformasi Plastis Deformasi plastis adalah perubahan bentuk suatu material secara permanen. Meskipun beban yang diberikan dihilangkan, material tersebut tidak dapat kembali ke bentuk semula. 3. Necking Page 7 of 39

8 Necking adalah penyempitan luas penampang setempat yang mulai ada setelah beban mencapai ultimate tensile strength nya. (Sumber : Slide Kuliah Sifat Mekanik Material) Gambar 4. Perubahan yang Akan Terjadi Pada Material Saat Uji Tarik 4. Strain Hardening Strain hardening adalah fenomena pada material yang menyebabkan material tersebut menjadi lebih keras dan kuat ketika mengalami deformasi plastis. 5. Luders Band (Sumber : Dieter G. E. Mechanical Metalurgy, SI Metric Edition, 4th ed.) Gambar 5. Luders Band Luders band adalah fenomena yang terjadi pada baja karbon rendah dimana nilai yield strength nya mengalami perpanjangan. Ketika Page 8 of 39

9 beban yang diberikan sudah mencapai yield point, tegangan yang akan dialami material berfluktuasi pada nilai tegangan yang cukup konstan hingga tegangan yang dialami material tersebut kembali naik. 6. Reduction Area Reduction area adalah pengurangan luas penampang suatu material pada saat mengalami deformasi plastis. 7. Fracture Fracture adalah patahnya suatu material karena tidak dapat menahan beban lagi. 2.7 Sifat Mekanik Pada Uji Tarik (Sumber : Gambar 6. Sifat Mekanik Pada Uji Tarik Dari pengujian uji tarik dapat diperoleh sifat mekanik sebagai berikut : 1. Modulus Elastisitas Modulus elastisitas atau kekakuan adalah nilai ketahanan suatu material untuk mengalami deformasi elastis ketika ada gaya diterapkan pada benda itu. Page 9 of 39

10 2. Yielding (Sumber : Slide Kuliah Sifat Mekanik Material) Gambar 7. Tipe Yielding Pada Material Yielding adalah nilai tegangan pada saat material akan terdeformasi plastis. Tipe yielding ada 4, yaitu : a. True Elastic Limit Nilai tegangan minimum dimana adanya pergerakan dislokasi. b. Proportional Limit Nilai tegangan maksimum dimana nilai tegangannya sebanding dengan nilai regangannya. c. Elastic Limit Nilai tegangan maksimum yang dapat diterima oleh suatu material tanpa adanya regangan secara permanen. d. Offset Yield Strength Nilai tegangan yang dibutuhkan untuk menghasilkan regangan sebesar 0,2 persen pada material. Nilai 0,2 persen ini merupakan suatu kesepakatan dimana pada regangan sebesar 0,2 persen, suatu material telah mengalami deformasi plastis. 3. Ultimate Tensile Strength Page 10 of 39

11 Ultimate tensile strength adalah nilai tegangan maksimum yang dapat diterima oleh suatu material. 4. Ductility Keuletan adalah kemampuan suatu material untuk terdeformasi sebelum mengalami kegagalan. 5. Resilience Resilience adalah kemampuan suatu material untuk menyerap energi ketika terdeformasi elastis dan untuk kembali ke bentuk semula. 6. Toughness Kekerasan adalah kemampuan suatu material untuk menyerap energi. Page 11 of 39

12 BAB III DATA PERCOBAAN DAN PENGOLAHAN DATA 3.1 Data Percobaan Material Mesin Uji Gage Length Awal Gage Length Akhir Diameter Awal Diameter Akhir Beban Skala Kecepatan : ST-37 : Universal Testing Machine (TARNO GROCKI) : 32,59 mm : 43,77 mm : 6,39 mm : 3,8 mm : N : 5 mm/min Beban (kn) Diameter (mm) 0 6, , , , , , , , , , , , ,14 Ultimate Tensile Strength : N Page 12 of 39

13 7.2 Pengolahan Data 1. Kurva Gaya vs. Regangan Dari data yang telah diperoleh, didapatkan nilai tegangan dan waktu. Untuk mengkonversi tegangan menjadi gaya, dilakukan perbandingan antara tegangan (mv) dengan gaya. Diketahui ultimate tensile strength pada spesimen uji adalah sebesar Nilai tersebut setara dengan nilai tegangan (mv) maksimum yang ada. Untuk pengolahan data yang lainnya, perbandingan antara ultimate tensile stregth dengan tegangan maksimum dijadikan sebagai acuan. Sehingga didapat persamaan : (mv) Untuk mencari nilai regangan, kita tahu bahwa kecepatan pada mesin uji adalah sebesar 5mm/min dan kita memiliki data berupa waktu. Sehingga kita dapat menghitung nilai regangan menggunakan persamaan : Dari perhitungan tersebut didapat tabel sebagai berikut : Page 13 of 39

14 Tabel 1. Pengolahan Data Gaya dan Regangan waktu (s) Milivolt Gaya (N) Regangan (mm) ,3554 0, ,988 0, ,879 0, ,958 0, ,755 0, ,1 0, ,909 1, ,231 1, ,554 1, ,524 1, ,289 1, ,464 1, ,014 2, ,696 2, ,418 2, ,24 2, ,38 2, ,52 2, ,41 3, ,93 3, ,07 3, ,51 3, ,25 3, ,64 3, ,15 4, ,46 4, Page 14 of 39

15 ,39 4, ,38 4, ,64 4, ,95 4, ,12 5, ,45 5, ,87 5, ,44 5, ,41 5, ,22 5, ,04 6, ,31 6, ,36 6, ,33 6, ,15 6, ,28 6, ,93 7, ,76 7, ,03 7, ,62 7, ,05 7, ,71 7, ,53 8, ,83 8, ,35 8, ,94 8, ,46 8, ,76 8, ,21 9, ,88 9, Page 15 of 39

16 F (N) Catia Julie Aulia ,08 9, , ,24 9, ,18 9, ,66 10, ,61 10, ,55 10, ,04 10, ,62 10, ,96 10, ,77 11, ,78 11, ,59 11, ,64 11, ,64 11,83329 Data yang telah diolah dapat diplotkan kedalam kurva F vs. l. Grafik 1. Kurva Gaya vs. Regangan Kurva Gaya vs. Regangan l (mm) Page 16 of 39

17 2. Kurva Engineering Stress Engineering Strain Dari pengolahan data sebelumnya, kita tahu nilai beban yang diberikan pada spesimen dan regangan yang terjadi pada spesimen. Dari data tersebut dapat dihitung nilai engineering stress dan engineering strain nya melalui persamaan : dan Dimana : A o = luas penampang awal = ( ) = ( ) = 32,0532 mm 2 l o = panjang awal spesimen = 32,59 mm Tabel 2. Pengolahan Data Engineering Stress Engineering Strain Gaya (N) Regangan (mm) σ e (MPa) Page 17 of 39

18 Page 18 of 39

19 Page 19 of 39

20 Engineering Stress (MPa) Catia Julie Aulia Data yang telah diolah dapat diplotkan kedalam kurva Engineering Stress vs. Engineering Strain. Grafik 2. Kurva Engineering Stress Engineering Strain Kurva Engineering Stress - Engineering Strain 600 σ uts = MPa σ y upper = MPa σ y lower = MPa ,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 Engineering Strain Dari kurva engineering stress vs. engineering strain didapatkan nilai ultimate tensile strength nya sebesar 552,2 MPa. Dari kurva juga diketahui bahwa terdapat Luders Band dengan nilai upper yield strength sebesar 408,0 MPa dan lower yield strength sebesar 372,85 MPa. σ uts = 552,2 MPa σ y upper = 408,0 MPa σ y lower = 372,85 MPa Berdasarkan literatur [1], nilai ultimate tensile strength baja ST37 seharusnya adalah sebesar 370 MPa dengan yield strength sebesar 298 MPa. Page 20 of 39

21 Engineering Stress (MPa) Catia Julie Aulia Dari kurva tersebut juga dapat dicari nilai modulus elastisitasnya dengan menggunakan regresi pada daerah elastis. Grafik 3. Kurva Engineering Stress Engineering Strain Pada Daerah Elastis Engineering Stress - Engineering Strain Pada Daerah Elastis y = x ,02 0,04 0,06 0,08 0,1 0,12 Engineering Strain Dari kurva diatas didapatkan persamaan : y = x 22,291 Dimana gradien dari kurva adalah modulus elastisitas spesimen, sehingga nilai dari modulus elastisitas spesimen adalah 4210,2 MPa. E = MPa = GPa Berdasarkan literatur [1], nilai modulus elastisitas baja ST37 seharusnya adalah 200 GPa. Page 21 of 39

22 3. Kurva True Stress True Strain Untuk menghitung nilai true stress dan true strain, dapat dilakukan dengan pengolahan data engineering stress dan engineering strain lebih lanjut. Pada kurva engineering stress engineering strain yang telah diperoleh, kita dapat membaginya menjadi 3 daerah. Yaitu : a. Daerah elastis sampai sebelum daerah plastis b. Daerah plastis sampai sesaat sebelum necking c. Daerah setelah terjadi necking sampai patah a. Daerah elastis sampai sebelum daerah plastis Pada daerah ini, tidak ada pengolahan data lanjutan untuk mengkonversi engineering stress engineering strain menjadi true stress true strain. Nilai stress dan strain nya sama persis. Hal ini disebabkan karena pada daerah elastis diasumsikan bahwa tidak terjadi perubahan luas penampang pada spesimen. Sehingga didapat nilai true stress true strain spesimen pada daerah elastis sebagai berikut : Tabel 3. True Stress True Strain pada Daerah Elastis σ e (MPa) Page 22 of 39

23 b. Daerah plastis sampai sesaat sebelum necking Pada daerah ini, data engineering stress engineering strain yang akan diolah adalah data dari daerah plastis sampai sesaat sebelum necking, dimana necking terjadi pada ultimate tensile strengthnya. Oleh karena itu, untuk daerah ini kita batasi hanya dari upper yield strength sampai sebelum ultimate tensile strength. Diketahui upper yield strength adalah 408 MPa dan ultimate tensile strength nya adalah 552,2 MPa. Kemudian, untuk mendapatkan nilai true stress true strain dapat dihitung melalui persamaan : ( ) ( ) dan ( ) Page 23 of 39

24 Tabel 4. True Stress True Strain pada Daerah Sebelum Necking σ e (MPa) σ t (MPa) Page 24 of 39

25 Page 25 of 39

26 c. Daerah setelah terjadi necking sampai patah Pada daerah ini, nilai true stress dan true strain dapat diperoleh melalui persamaan : dan Dengan A 0 = 32,0532 mm 2 F (kn) Diameter (mm) 5,81 σ t (MPa) , ,72 4, Page 26 of 39

27 True Stress (MPa) Catia Julie Aulia Dari data yang telah diolah didapatkan kurva true stress vs. true strain sebagai berikut : Grafik 4. Kurva True Stress vs. True Strain 1400 Kurva True Stress - True Strain ,2 0,4 0,6 0,8 1 True Strain 4. Kurva Log True Stress vs. True Strain Kemudian dari nilai true stress dan true strain yang telah diperoleh dapat dihitung nilai koefisien strain hardening dan konstanta kekuatannya melalui persamaan flow stress. Dengan : σ = true stress pada daerah setelah yield sampai necking K = konstanta kekuatan n = koefisien strain hardening ε = true strain pada daerah setelah yield sampai necking Page 27 of 39

28 True Stress (MPa) Catia Julie Aulia Untuk mendapatkan nilai konstanta kekerasan dan koefisien strain hardening digunakan regresi sehingga perlu diplotkan kurva log true stress vs. log true strain. Grafik 5. Kurva Log True Stress True Strain Log True Stress - True Strain y = x R² = ,5-2 -1,5-1 -0,5 0 True Strain 4 3,5 3 2,5 2 1,5 1 0,5 Dari kurva diatas didapatkan persamaan garis: y = x dimana persamaan flow stress nya adalah : sehingga didapatkan : n = log K = K = MPa log σ = n log ε + log K Berdasarkan literatur [2], nilai koefisien strain hardening untuk baja adalah 0,15-0,40 dengan konstanta kekerasan MPa. Page 28 of 39

29 BAB IV ANALISIS DATA Pengujian tarik merupakan pengujian yang bersifat merusak. Pengujian tarik banyak digunakan informasi yang diberikannya mengenai sifat mekanik material cukup banyak dan mudah untuk diolah. Material yang digunakan dalam pengujian ini adalah Baja ST 37. Berdasarkan literatur [1], diketahui nilai modulus elastisitas baja ST37 adalah 200 GPa. Baja ini mempunyai nilai ultimate tensile strength sebesar 370 MPa (tidak diberi perlakuan) dengan yield strength sebesar 298 MPa. Dari data percobaan, setelah diplotkan kurva engineering stress vs. engineering strain didapatkan nilai modulus elastisitas baja ST37 adalah sebesar 4,210 GPa. Nilai tersebut sangat jauh berbeda dengan literatur, yaitu 200 GPa. Hal tersebut disebabkan oleh adanya error dalam penentuan nilai modulus elastisitas. Kesalahan tersebut terjadi karena pada pengujian kali ini tidak menggunakan ekstensometer sehingga nilai beban dan elongasi kurang akurat karena nilai yang diolah merupakan perbandingan dari tegangan dengan ultimate tensile strengthnya. Nilai ultimate tensile strength nya pun didapat dari jarum skala yang ada sehingga terdapat human error ketika membaca skala. Penentuan nilai modulus elastisitasnya juga merupakan pendekatan (regresi) sehingga terdapat error didalamnya dimana idealnya pada daerah elastis grafik yang akan terbentuk murni lurus (linear). Selain itu, bisa jadi daerah spesimen yang terdeformasi berada diluar daerah yang telah ditandai oleh praktikan (daerah sepanjang gage length) sehingga nilai regangan yang didapat kurang akurat. Selain modulus elastisitas, didapat juga nilai yield strength nya. Pada pengujian kali ini terdapat fenomena luders band sehingga nilai yield strength yang didapat lebih dari satu. Nilai yield yang diambil adalah upper yield strength dan lower yield strengthnya. Upper yield strength yang diperoleh adalah sebesar 408 MPa dan lower yield strength nya sebesar 372,85 MPa. Nilai tersebut jauh berbeda dengan nilai yang ada pada literatur, yaitu 298 MPa. Perbedaan nilai Page 29 of 39

30 tersebut disebabkan oleh terdapat error pada pembacaan skala beban dan kurang akuratnya pengukuran diameter spesimen. Nilai ultimate tensile strength yang diperoleh pada pengujian ini adalah sebesar 552,2 MPa. Nilai tersebut jauh berbeda dengan nilai pada literatur, yaitu 370 MPa. Hal tersebut disebabkan oleh error yang ada pada pengukuran diameter spesimen sehingga diameter yang digunakan untuk menghitung luas penampang kurang akurat. Selain itu, adanya kesalahan dalam membaca skala beban maksimum pada mesin uji. Pada kenyataannya, nilai beban maksimum yang dapat diterima oleh spesimen tidak akan tepat Nilai tersebut merupakan pendekatan sehingga terdapat error didalamnya. Nilai koefisien strain hardening yang didapat adalah sebesar 0,9176 dengan konstanta kekerasan 2737,15 MPa. Berdasarkan literatur [2], nilai koefisien strain hardening untuk baja adalah 0,15-0,40 dengan konstanta kekerasan MPa. Nilai koefisien strain hardening dan konstanta kekerasan yang didapat berbeda dengan nilai yang ada pada literatur karena terdapat error propagation dimana sejak awal terdapat error pada pembacaan nilai beban yang terukur dan pengukuran dimensi spesimen, sehingga mempengaruhi nilai koefisien strain hardening dan konstanta kekerasannya. Selain itu, untuk nilai koefisien strain hardening dan konstanta kekerasan yang didapat berupa rentang yang cukup jauh karena tidak ditemukan literatur untuk baja ST37, sehingga yang digunakan adalah literatur untuk baja pada umumnya. Jadi error yang terjadi juga tidak dapat dipastikan apakah cukup besar atau cukup kecil. Pada pengujian kali ini diketahui beberapa fenomena yang terjadi, diantaranya deformasi, luders band, reduction area, necking, strain hardening, dan fracture. Deformasi adalah perubahan yang terjadi pada suatu material. Deformasi sendiri terbagi menjadi dua, yaitu deformasi elastis dan deformasi plastis. Deformasi elastis adalah perubahan bentuk yang terjadi pada suatu material yang tidak bersifat permanen, dimana material tersebut masih bisa kembali ke bentuk semula. Pada pengujian tarik, deformasi elastis dapat dilihat dari kurva stress strain yang linear. Deformasi plastis adalah perubahan bentuk yang terjadi pada suatu material secara permanen. Pada pengujian ini diketahui bahwa spesimen Page 30 of 39

31 mengalami perubahan bentuk. Selain itu, deformasi plastis juga dapat dilihat melalui kurva stress strain yang dihasilkan, yaitu pada kurva yang tidak linear. Luders band adalah fenomena yang terjadi pada baja karbon rendah dimana nilai yield strength nya mengalami perpanjangan. Pada luders band, spesimen mengalami fluktuasi tegangan pada nilai tegangan yang cukup konstan kemudian tegangan kembali naik. Fenomena ini dapat dilihat dari kurva stress strain, dimana terdapat fluktuasi tegangan pada daerah sekitar yield point. Pada pengujian ini juga diketahui bahwa spesimen mengalami reduction area, yaitu pengurangan luas penampang pada saat mengalami deformasi plastis. Semakin besar reduction area yang terjadi, maka semakin ulet spesimen tersebut. Necking adalah pengecilan diameter di suatu daerah pada spesimen ketika terdeformasi plastis. Fenomena necking ini terjadi saat spesimen mencapai ultimate tensile strengthnya hingga patah. Spesimen juga mengalami strain hardening, strain hardening adalah fenomena pada material ulet yang berubah menjadi lebih keras dan kuat pada saat mengalami deformasi plastis. Strain hardening terjadi karena adanya penumpukan dislokasi pada suatu daerah. Pengujian diakhiri dengan fenomena fracture, yaitu patahnya spesimen karena tidak dapat menahan beban lagi. Fenomena fracture ini dapat menentukan sifat ulet atau getas suatu material dari bentuk patahan yang terjadi. Pada pengujian ini, bentuk patahan yang terjadi adalah patahan ulet karena pada daerah patahan membentuk sudut sekitar 45 o terhadap garis normal. Oleh karena itu baja ST37 merupakan material yang ulet. Page 31 of 39

32 BAB V KESIMPULAN DAN SARAN Kesimpulan Kesimpulan dari uji tarik adalah sebagai berikut : 1. Nilai modulus elastisitas baja ST37 berdasarkan pengujian adalah sebesar 4,210 GPa. Nilai tersebut sangat jauh berbeda dengan literatur, yaitu 200 GPa. 2. Nilai yield strength pada baja ST37 berdasarkan pengujian adalah sebesar 408 MPa untuk upper yield strength dan sebesar 372,85 MPa untuk lower yield strength. Nilai tersebut jauh berbeda dengan nilai yang ada pada literatur, yaitu 298 MPa. 3. Nilai ultimate tensile strength baja ST37 berdasarkan pengujian adalah sebesar 552,2 MPa. Nilai tersebut jauh berbeda dengan nilai pada literatur, yaitu 370 MPa. 4. Nilai koefisien strain hardening baja ST37 berdasarkan pengujian adalah sebesar 0,9176 dengan konstanta kekerasan sebesar 2737,15 MPa. Nilai koefisien strain hardening jauh berbeda dengan nilai pada literatur, yaitu 0,15-0,40. Sedangkan nilai konstanta kekerasan hampir mendekati dengan nilai pada literatur, yaitu MPa. 5. Nilai keuletan baja ST37 dapat dilihat dari %EL nya, yaitu sebesar 34,30 %. 6. Fenomena yang terjadi pada uji tarik adalah deformasi elastis, deformasi plastis, luders band, reduction area, necking, strain hardening, dan fracture. Saran Saran dari uji tarik adalah sebagai berikut : 1. Untuk pengujian tarik lebih baik menggunakan ekstensometer agar data yang diperoleh lebih akurat dan meminimalisir error yang akan terjadi. Page 32 of 39

33 DAFTAR PUSTAKA Callister, William D. Materials and Science Engineering An Introduction, 6th edition. John Wiley & Sons, Inc Dieter G. E. Mechanical Metalurgy, SI Metric Edition, 4th ed. [1] Kirk, Mark. Constraint Effects in Fracture Theory and Applications 2nd volume diakses pada Selasa, 12 April 2016 pukul diakses pada Selasa, 12 April 2016 pukul diakses pada Selasa, 12 April 2016 pukul [2] diakses pada Senin, 28 April pukul Page 33 of 39

34 True Stress (MPa) Engineering Stress (MPa) Catia Julie Aulia LAMPIRAN Tugas Setelah Praktikum 1. Dari kurva yang anda dapatkan antara F vs. L, buat berturut-turut kurva engineering stress vs. engineering strain, kurva true stress vs. true strain, dan kurva log true stress vs. log true strain! Jawab : Kurva Engineering Stress - Engineering Strain σ y upper = MPa σ y lower = MPa σ uts = MPa ,1 0,2 0,3 0,4 Engineering Strain Kurva True Stress - True Strain ,2 0,4 0,6 0,8 1 True Strain Page 34 of 39

35 True Stress (MPa) Catia Julie Aulia Log True Stress - True Strain y = x R² = ,5-2 -1,5-1 -0,5 0 True Strain 4 3,5 3 2,5 2 1,5 1 0,5 2. Tentukan ultimate tensile strength, yield strength, persen elongasi, dan modulus elastisitas dari spesimen uji tarik ini! Jawab : Pada pengujian tarik, didapat : σ uts = 552,2 MPa σ y upper = 408,0 MPa σ y lower = 372,85 MPa E = MPa = GPa % EL = ( ) = ( ) = 34,30 % 3. Fenomena apa saja yang terjadi dalam pengujian tarik ini? Jawab : Deformasi elastis, deformasi plastis, luders band, reduction area, necking, strain hardening, dan fracture. 4. Jelaskan yang dimaksud dengan yield point phenomenon pada baja karbon rendah! Jawab : Page 35 of 39

36 Pada baja karbon rendah terdapat fenomena pada yield point dimana ketika sudah memasuki yield point, yield strength mengalami perpanjangan dan nilai tegangan yang dialami baja karbon rendah mengalami fluktuasi pada daerah tegangan yang relatif sama. 5. Kenapa necking terjadi di pengujian tarik? Jawab : Necking terjadi pada pengujian tarik karena spesimen sudah tidak dapat menerima beban lagi sehingga terjadi pengecilan diameter pada daerah tertentu. Berdasarkan pengujian, necking terjadi karena adanya tegangan geser maksimum pada spesimen (bentuk patahannya membentuk sudut 45 o terhadap garis normal). Rangkuman Pengujian tarik awalnya ada karena kebutuhan industri untuk memastikan apakah material yang akan digunakan sudah sesuai atau belum dan memenuhi standar atau tidak, agar tidak terjadi kegagalan ketika digunakan. Pengujian tarik ini digunakan karena merupakan salah satu pengujian yang dapat memberikan banyak informasi mengenai sifat mekanik suatu material, diantaranya modulus elastisitas, yield strength, ultimate tensile strength, modulus of rupture, toughness, resilience, dan ductility. Modulus elastisitas atau biasa disebut kekakuan adalah kemampuan suatu material untuk terdeformasi elastis setelah menerima beban. Modulus elastisitas pada kurva stress strain adalah kemiringan garis lurus yang ada pada kurva. Yield strength adalah tegangan yang dapat diterima oleh material sesaat sebelum mengalami deformasi plastis. Pada kurva uji tarik, yield strength adalah titik peralihan antara garis linear dengan garis yang sudah tidak linear lagi. Salah satu metode untuk menentukan nilai yield strength adalah dengan menggunakan metode offset. Metode offset adalah metode yang digunakan untuk mencari nilai yield strength pada regangan sebesar 0,2 persen. Nilai 0,2 persen itu sudah Page 36 of 39

37 menjadi suatu kesepakatan bahwa suatu material mulai mengalami deformasi plastis pada regangan 0,2 persen. Ultimate tensile strength adalah nilai beban maksimum yang dapat diterima oleh material atau nilai tegangan yang dapat menyebabkan material tersebut mengalami necking. Modulus of rupture adalah nilai beban yang dapat diterima oleh material hingga material tersebut patah. Toughness adalah kemampuan suatu material untuk menyerap energi. Pada kurva uji tarik, toughness merepresentasikan luas area dibawah kurva. Energi yang dapat diserap merupakan energi per satuan volume. Resilience adalah kemampuan suatu material untuk menyerap energi ketika terdeformasi elastis. Pada kurva uji tarik, resilience merepresentasikan luas area dibawah kurva daerah elastis (garis linear). Ductility atau keuletan adalah kemampuan suatu material untuk mengalami deformasi sebelum patah. Ductility dapat dilihat dari elongasi yang terjadi pada material. Spesimen yang digunakan pada pengujian ini memiliki penampang berbentuk lingkaran seperti gambar berikut ini : Bagian A adalah panjang spesimen. Bagian D adalah diameter spesimen. Bagian R adalah jari-jari fillet. Bagian G adalah gage length. Pada pengujian tarik, yang akan diukur adalah perubahan gage length nya. Bentuk penampang spesimen uji tarik yang digunakan adalah lingkaran, hal itu bertujuan agar menghindari terjadinya tegangan terkonsentrasi apabila menggunakan bentuk spesimen yang bersudut (bentuk penampang persegi). Terdapat perbedaan ukuran diameter pada ujung spesimen dengan bagian tengah spesimen, hal tersebut bertujuan agar bagian tengah spesimen mengalami tegangan lebih besar daripada bagian ujung spesimen. Semakin kecil luas penampang, dengan pemberian beban yang sama, maka akan mengalami tegangan yang lebih besar. Bagian sepanjang gage length sengaja diharapkan mengalami tegangan yang lebih besar daripada bagian ujungnya karena bagian yang akan kita Page 37 of 39

38 tinjau pada pengujian ini adalah bagian tengah atau disepanjang gage length nya, bukan bagian ujungnya. Pengujian tarik akan menghasilkan data berupa nilai beban dan elongasi yang terjadi pada spesimen. Data tersebut kemudian dapat diplotkan pada kurva stress strain. Spesimen yang digunakan biasanya baja karbon, baik itu baja karbon rendah, baja karbon medium, atau baja karbon tinggi. Perbedaan ketiga jenis baja karbon tersebut terletak pada komposisi karbonnya. Untuk tiap jenis baja karbon dengan komposisi karbon yang berbeda tentunya kurva hasil uji tariknya akan berbeda pula. Berikut perbandingan kurva uji tarik baja karbon rendah, medium, dan tinggi. Berdasarkan kurva yang ada, diketahui bahwa pada umumnya nilai modulus elastisitas untuk baja karbon adalah sama. Baja karbon tinggi lebih cepat mengalami patah dan lebih getas namun memiliki yield strength yang tinggi. Baja karbon medium lebih ulet dibandingkan dengan baja karbon tinggi, dan mengalami deformasi plastis cukup lama, namun yield strengthnya masih dibawah baja karbon tinggi. Baja karbon rendah mengalami fenomena luders band dimana ada perpanjangan nilai yield strength dan nilai tegangannya berfluktuasi. Fenomena tersebut disebabkan oleh adanya dislokasi yang menumpuk. Baja karbon rendah lebih ulet dibandingkan dengan baja karbon lainnya dan memiliki yield strength yang paling rendah diantara ketiga jenis baja karbon ini. State of stress untuk uji tarik adalah sebagai berikut : Page 38 of 39

39 (Sumber : Dari state of stress tersebut kita tahu bahwa pada uji tarik tegangan yang akan dialami oleh material hanya tegangan normal (tarik). Apabila dibuat lingkaran mohr nya : (Sumber : Dimana pada uji tarik, ketika nilai tegangan normalnya maksimum, tidak terdapat tegangan geser (sama dengan nol). Page 39 of 39

Laporan Praktikum Laboratorium Teknik Material 1 Modul D Uji Lentur dan Kekakuan

Laporan Praktikum Laboratorium Teknik Material 1 Modul D Uji Lentur dan Kekakuan Laporan Praktikum Laboratorium Teknik Material 1 Modul D Uji Lentur dan Kekakuan oleh : Nama : Catia Julie Aulia NIM : Kelompok : 7 Anggota (NIM) : 1. Conrad Cleave Bonar (13714008) 2. Catia Julie Aulia

Lebih terperinci

BAB II TEORI DASAR. Gage length

BAB II TEORI DASAR. Gage length BAB I PENDAHULUAN 1.1 Latar Belakang Uji tarik merupakan salah satu pengujian mekanik yang paling luas digunakan di industri dan di dunia pendidikan karena kemudahan dalam menganalisa data yang didapatkan

Lebih terperinci

Laporan Praktikum MODUL C UJI PUNTIR

Laporan Praktikum MODUL C UJI PUNTIR Laporan Praktikum MODUL C UJI PUNTIR Oleh : Nama : SOMAWARDI NIM : 23107012 Kelompok : 13 Tanggal Praktikum : November 2007 Nama Asisten (Nim) : Program Studi Teknik Mesin Fakultas Teknologi Industri Institut

Lebih terperinci

Mengenal Uji Tarik dan Sifat-sifat Mekanik Logam

Mengenal Uji Tarik dan Sifat-sifat Mekanik Logam Mengenal Uji Tarik dan Sifat-sifat Mekanik ogam Oleh zhari Sastranegara Untuk mengetahui sifat-sifat suatu bahan, tentu kita harus mengadakan pengujian terhadap bahan tersebut. da empat jenis uji coba

Lebih terperinci

TEGANGAN (YIELD) Gambar 1: Gambaran singkat uji tarik dan datanya. rasio tegangan (stress) dan regangan (strain) adalah konstan

TEGANGAN (YIELD) Gambar 1: Gambaran singkat uji tarik dan datanya. rasio tegangan (stress) dan regangan (strain) adalah konstan TEGANGAN (YIELD) Gambar 1: Gambaran singkat uji tarik dan datanya Biasanya yang menjadi fokus perhatian adalah kemampuan maksimum bahan tersebut dalam menahan beban. Kemampuan ini umumnya disebut Ultimate

Lebih terperinci

Laporan Awal Praktikum Karakterisasi Material 1 PENGUJIAN TARIK. Rahmawan Setiaji Kelompok 9

Laporan Awal Praktikum Karakterisasi Material 1 PENGUJIAN TARIK. Rahmawan Setiaji Kelompok 9 Laporan Awal Praktikum Karakterisasi Material 1 PENGUJIAN TARIK Rahmawan Setiaji 0706163735 Kelompok 9 Laboratorium Metalurgi Fisik Departemen Metalurgi dan Material FTUI 2009 MODUL 1 PENGUJIAN TARIK I.

Lebih terperinci

BAB 1. PENGUJIAN MEKANIS

BAB 1. PENGUJIAN MEKANIS BAB 1. PENGUJIAN MEKANIS 1.1.PENDAHULUAN Tujuan Pengujian Mekanis Untuk mengevaluasi sifat mekanis dasar untuk dipakai dalam disain Untuk memprediksi kerja material dibawah kondisi pembebanan Untuk memperoleh

Lebih terperinci

BAB IV SIFAT MEKANIK LOGAM

BAB IV SIFAT MEKANIK LOGAM BAB IV SIFAT MEKANIK LOGAM Sifat mekanik bahan adalah : hubungan antara respons atau deformasi bahan terhadap beban yang bekerja. Sifat mekanik : berkaitan dengan kekuatan, kekerasan, keuletan, dan kekakuan.

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 14 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Uji tarik adalah suatu metode yang digunakan untuk menguji kekuatan suatu bahan/material dengan cara memberikan beban gaya yang sesumbu (Askeland, 1985). Hasil

Lebih terperinci

BAB 2. PENGUJIAN TARIK

BAB 2. PENGUJIAN TARIK BAB 2. PENGUJIAN TARIK Kompetensi : Menguasai prosedur dan trampil dalam proses pengujian tarik pada material logam. Sub Kompetensi : Menguasai dan mengetahui proses pengujian tarik pada baja karbon rendah

Lebih terperinci

KONSEP TEGANGAN DAN REGANGAN NORMAL

KONSEP TEGANGAN DAN REGANGAN NORMAL KONSEP TEGANGAN DAN REGANGAN NORMAL MATERI KULIAH KALKULUS TEP FTP UB RYN - 2012 Is This Stress? 1 Bukan, Ini adalah stress Beberapa hal yang menyebabkan stress Gaya luar Gravitasi Gaya sentrifugal Pemanasan

Lebih terperinci

BAB III SIFAT MEKANIK MATERIAL TEKNIK

BAB III SIFAT MEKANIK MATERIAL TEKNIK BAB III SIFAT MEKANIK MATERIAL TEKNIK Material dalam penggunaannya selalu dikenai gaya atau beban. Oleh karena itu perlu diketahui karakter material agar deformasi yang terjadi tidak berlebihan dan tidak

Lebih terperinci

Bab II STUDI PUSTAKA

Bab II STUDI PUSTAKA Bab II STUDI PUSTAKA 2.1 Pengertian Sambungan, dan Momen 1. Sambungan adalah lokasi dimana ujung-ujung batang bertemu. Umumnya sambungan dapat menyalurkan ketiga jenis gaya dalam. Beberapa jenis sambungan

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

Sifat Sifat Material

Sifat Sifat Material Sifat Sifat Material Secara garis besar material mempunyai sifat-sifat yang mencirikannya, pada bidang teknik mesin umumnya sifat tersebut dibagi menjadi tiga sifat. Sifat sifat itu akan mendasari dalam

Lebih terperinci

ek SIPIL MESIN ARSITEKTUR ELEKTRO

ek SIPIL MESIN ARSITEKTUR ELEKTRO ek SIPIL MESIN ARSITEKTUR ELEKTRO EFEK WAKTU PERLAKUAN PANAS TEMPER TERHADAP KEKUATAN TARIK DAN KETANGGUHAN IMPAK BAJA KOMERSIAL Bakri* dan Sri Chandrabakty * Abstract The purpose of this paper is to analyze

Lebih terperinci

BAB IV SIFAT MEKANIK LOGAM

BAB IV SIFAT MEKANIK LOGAM BAB IV SIFAT MEKANIK LOGAM Sifat mekanik bahan adalah : hubungan antara respons atau deformasi bahan terhadap beban yang bekerja. Sifat mekanik : berkaitan dengan kekuatan, kekerasan, keuletan, dan kekakuan.

Lebih terperinci

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK MESIN UNIVERSITAS MEDAN AREA

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK MESIN UNIVERSITAS MEDAN AREA LAPORAN PRAKTIKUM PENGUJIAN PENGERUSAK DAN MICROSTRUKTUR DISUSUN OLEH : IMAM FITRIADI NPM : 13.813.0023 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK MESIN UNIVERSITAS MEDAN AREA KATA PENGANTAR Puji syukur

Lebih terperinci

KUAT TARIK BAJA 2/4/2015. Assalamualaikum Wr. Wb.

KUAT TARIK BAJA 2/4/2015. Assalamualaikum Wr. Wb. Assalamualaikum Wr. Wb. KUAT TARIK BAJA Anggota Kelompok 8 : 1. Roby Al Roliyas (20130110067) 2. Nurwidi Rukmana (20130110071) 3. M. Faishal Abdulah (20130110083) 4. Chandra Wardana 5. Kukuh Ari Lazuardi

Lebih terperinci

Audio/Video. Metode Evaluasi dan Penilaian. Web. Soal-Tugas. a. Writing exam.skor:0-100(pan) b. Tugas : Jelaskan cara membuat diagram teganganregangan

Audio/Video. Metode Evaluasi dan Penilaian. Web. Soal-Tugas. a. Writing exam.skor:0-100(pan) b. Tugas : Jelaskan cara membuat diagram teganganregangan Media Ajar Pertemuan ke Tujuan Ajar/Keluaran/Indikator Topik (pokok, sub pokok bahasan, alokasi waktu) Teks Presentasi Gambar Audio/Video Soal-Tugas Web Metode Evaluasi dan Penilaian Metode Ajar (STAR)

Lebih terperinci

KEKUATAN MATERIAL. Hal kedua Penyebab Kegagalan Elemen Mesin adalah KEKUATAN MATERIAL

KEKUATAN MATERIAL. Hal kedua Penyebab Kegagalan Elemen Mesin adalah KEKUATAN MATERIAL KEKUATAN MATERIAL Hal kedua Penyebab Kegagalan Elemen Mesin adalah KEKUATAN MATERIAL Kompetensi Dasar Mahasiswa memahami sifat-sifat material Mahasiswa memahami proses uji tarik Mahasiswa mampu melakukan

Lebih terperinci

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial 2.1. Umum Akibat beban luar, struktur akan memberikan respons yang dapat berupa reaksi perletakan tegangan dan regangan maupun terjadinya perubahan bentuk.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Waktu dan pelaksanaan percobaan serta analisis sebagai berikut:

BAB III METODOLOGI PENELITIAN. Waktu dan pelaksanaan percobaan serta analisis sebagai berikut: BAB III METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Pelaksanaan Waktu dan pelaksanaan percobaan serta analisis sebagai berikut: 1. Tempat pengambilan data : Laboratorium Bahan Teknik Departemen Teknik Mesin

Lebih terperinci

Analisis Pengaruh Cooling Rate pada Material ASTM A36 Akibat Kebakaran Kapal Terhadap Nilai Kekuatan, Kekerasan dan Struktur Mikronya

Analisis Pengaruh Cooling Rate pada Material ASTM A36 Akibat Kebakaran Kapal Terhadap Nilai Kekuatan, Kekerasan dan Struktur Mikronya JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) G-42 Analisis Pengaruh Cooling Rate pada Material ASTM A36 Akibat Kebakaran Kapal Terhadap Nilai Kekuatan, Kekerasan dan Struktur

Lebih terperinci

ANALISA BESI BETON SERI KS DAN SERI KSJI DENGAN PROSES PENGUJIAN TARIK

ANALISA BESI BETON SERI KS DAN SERI KSJI DENGAN PROSES PENGUJIAN TARIK PENULISAN ILMIAH ANALISA BESI BETON SERI KS DAN SERI KSJI DENGAN PROSES PENGUJIAN TARIK FERDIYANTO (20407362) JURUSAN TEKNIK MESIN Latar Belakang Setiap produk yang diproduksi oleh industri mempunyai spesifikasi

Lebih terperinci

Sidang Tugas Akhir (TM091486)

Sidang Tugas Akhir (TM091486) Sidang Tugas Akhir (TM091486) Dosen Pembimbing : Dr. Ir. Soeharto, DEA Oleh : Budi Darmawan NRP 2105 100 160 Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya

Lebih terperinci

Pengukuran Compressive Strength Benda Padat

Pengukuran Compressive Strength Benda Padat Compressive Strength 1 Pengukuran Compressive Strength Benda Padat Mei Budi Utami (081211332009), Nur Aisyiah (081211331002), Firman Maulana Ikhsan (081211331003), Dewi Puji Lestari (081211331128), Muhimatul

Lebih terperinci

bermanfaat. sifat. berubah juga pembebanan siklis,

bermanfaat. sifat. berubah juga pembebanan siklis, SIFAT MEKANIK BAHAN Sifat (properties) dari bahan merupakan karakteristik untuk mengidentifikasi dan membedakan bahan-bahan. Semua sifat dapat diamati dan diukur. Setiap sifat bahan padat, khususnya logam,berkaitan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pandangan Umum terhadap Mesin Uji Tarik Untuk mengetahui sifat-sifat suatu bahan, tentu kita harus mengadakan pengujian terhadap bahan tersebut. Ada empat jenis uji coba yang

Lebih terperinci

UJI TARIK BAHAN KULIT IMITASI

UJI TARIK BAHAN KULIT IMITASI LAPORAN UJI BAHAN UJI TARIK BAHAN KULIT IMITASI Oleh : TEAM LABORATORIUM PENGUJIAN BAHAN JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG 2011 1 A. Pendahuluan Dewasa ini perkembangan material

Lebih terperinci

PENGARUH BENTUK TAKIKAN (NOTCHED) PADA POROS BAJA KARBON ST. 60 AKIBAT BEBAN TARIK

PENGARUH BENTUK TAKIKAN (NOTCHED) PADA POROS BAJA KARBON ST. 60 AKIBAT BEBAN TARIK PENGARUH BENTUK TAKIKAN (NOTCHED) PADA POROS BAJA KARBON ST. 60 AKIBAT BEBAN TARIK Hendri Nurdin (1), Mulianti (1) (1) Dosen Jurusan Teknik Mesin, FT-UNP ABSTRACT Shaft failure often occurs due to stress

Lebih terperinci

Deformasi Elastis. Figure 6.14 Comparison of the elastic behavior of steel and aluminum. For a. deforms elastically three times as much as does steel

Deformasi Elastis. Figure 6.14 Comparison of the elastic behavior of steel and aluminum. For a. deforms elastically three times as much as does steel Deformasi Elastis Deformasi Elastis Figure 6.14 Comparison of the elastic behavior of steel and aluminum. For a given stress, aluminum deforms elastically three times as much as does steel Deformasi Elastis

Lebih terperinci

MATERIAL TEKNIK 3 IWAN PONGO,ST,MT

MATERIAL TEKNIK 3 IWAN PONGO,ST,MT MATERIAL TEKNIK 3 IWAN PONGO,ST,MT SIFAT MEKANIS LOGAM DAN PADUAN MECHANICAL TESTING. Pengujian untuk menentukan sifat mekanis, yaitu sifat terhadap beban atau gaya mekanis seperti tarik, tekan, tekuk,

Lebih terperinci

PERILAKU TARIK BAJA STRUKTURAL DENGAN VARIASI LAJU CROSSHEAD

PERILAKU TARIK BAJA STRUKTURAL DENGAN VARIASI LAJU CROSSHEAD PERILAKU TARIK BAJA STRUKTURAL DENGAN VARIASI LAJU CROSSHEAD Anggit Murdani Teknik Mesin, Politeknik Negeri Malang Jl. Soekarno Hatta No.9 Malang 65141 Tlp: 341-44424 ; Fax : 341-4442 E-mail : anggitm@poltek-malang.ac.id

Lebih terperinci

FISIKA EKSPERIMENTAL I 2014

FISIKA EKSPERIMENTAL I 2014 Pengukuran Tensile Strength, dan Modulus Elastisitas Benda Padat Novi Tri Nugraheni (081211333009), Maya Ardiati (081211331137), Diana Ega Rani (081211331138), Firdaus Eka Setiawan (081211331147), Ratna

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Diagram Alir Penelitian Sebelum melakukan proses penelitian tentang pengelasan gesek dibuatlah diagram alir untuk menggambarkan proses-proses operasionalnya sehingga mudah

Lebih terperinci

PAPER KEKUATAN BAHAN HUBUNGAN TEGANGAN DAN REGANGAN. Oleh : Ni Made Ayoni Gede Panji Cahya Pratama

PAPER KEKUATAN BAHAN HUBUNGAN TEGANGAN DAN REGANGAN. Oleh : Ni Made Ayoni Gede Panji Cahya Pratama PAPER KEKUATAN BAHAN HUBUNGAN TEGANGAN DAN REGANGAN Oleh : Ni Made Ayoni 1011305003 Gede Panji Cahya Pratama 1011305004 Dian Asgar Paradisa 1011305005 Gede Andri 1011305006 Paul Ludgerrius R. 1011305007

Lebih terperinci

MAKALAH MATERIAL TEKNIK

MAKALAH MATERIAL TEKNIK MAKALAH MATERIAL TEKNIK UJI TARIK DAN KEKERASAN Oleh: Kelompok II David Yafisham (1107114368) Diki Ramadan (1107114179) Febrizal (1107114332) Jhona Heri (1107120827) Suhendra (1107114150) PROGRAM STUDI

Lebih terperinci

TEGANGAN DAN REGANGAN

TEGANGAN DAN REGANGAN Kokoh Tegangan mechanics of materials Jurusan Pengairan Fakultas Teknik Universitas Brawijaya TEGANGAN DAN REGANGAN 1 Tegangan Normal (Normal Stress) tegangan yang bekerja dalam arah tegak lurus permukaan

Lebih terperinci

V. UJI TARIK BAJA TULANGAN

V. UJI TARIK BAJA TULANGAN V. UJI TARIK BAJA TULANGAN 1. Pendahuluan. Semua bahan yang padat akan berubah bentuk apabila diberi beban. Perubahan bentuk itu tergantung pada besar beban, unsur kimia maupun kondisi bahan, bentuk benda

Lebih terperinci

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN. Tabel 10. Hasil uji tarik serat tunggal.

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN. Tabel 10. Hasil uji tarik serat tunggal. BAB IV HASIL PENGUJIAN DAN PEMBAHASAN 4.1. Pengujian Serat Tunggal Hasil pengujian serat tunggal kenaf menurut ASTM D 3379 dirangkum pada Tabel 10. Tabel ini menunjukan bahwa, nilai kuat tarik, regangan

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA IV.1 UJI BANDING Uji banding dilakukan di laboratorium PERTAMINA dan laboratorium Polimer Departemen Teknik Metalurgi dan Material FTUI. Sampel yang digunakan dalam uji banding ini

Lebih terperinci

Hukum Hooke. Diktat Kuliah 4 Mekanika Bahan. Ir. Elisabeth Yuniarti, MT

Hukum Hooke. Diktat Kuliah 4 Mekanika Bahan. Ir. Elisabeth Yuniarti, MT Hukum Hooke Diktat Kuliah 4 Mekanika Bahan Ir. lisabeth Yuniarti, MT Hubungan Tegangan dan Regangan (Stress-Strain Relationship) Untuk merancang struktur yang dapat berfungsi dengan baik, maka kita memerlukan

Lebih terperinci

BAB I PENDAHULUAN. untuk memenuhi dan memudahkan segala aktifitas manusia, karena aktifitas

BAB I PENDAHULUAN. untuk memenuhi dan memudahkan segala aktifitas manusia, karena aktifitas BAB I PENDAHULUAN 1.1. Latar Belakang Pada dasarnya teknologi yang ditemukan dalam segala hal bertujuan untuk memenuhi dan memudahkan segala aktifitas manusia, karena aktifitas dari manusia yang semakin

Lebih terperinci

Karakterisasi Baja Karbon Rendah Setelah Perlakuan Bending

Karakterisasi Baja Karbon Rendah Setelah Perlakuan Bending Karakterisasi Baja Karbon Rendah Setelah Perlakuan Bending Budi Setyahandana 1, Anastasius Rudy Setyawan 2 1,2 Program Studi Teknik Mesin Universitas Sanata Dharma Yogyakarta Kampus III Paingan, Maguwoharjo,

Lebih terperinci

BAB I PENDAHULUAN. Salah satu material yang sangat penting bagi kebutuhan manusia adalah

BAB I PENDAHULUAN. Salah satu material yang sangat penting bagi kebutuhan manusia adalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu material yang sangat penting bagi kebutuhan manusia adalah logam. Seiring dengan jaman yang semakin maju, kebutuhan akan logam menjadi semakin tinggi.

Lebih terperinci

BAB 3 SIFAT DAN PENGUJIAN BAHAN TEKNIK

BAB 3 SIFAT DAN PENGUJIAN BAHAN TEKNIK BAB 3 SIFAT DAN PENGUJIAN BAHAN TEKNIK 3.1. Pendahuluan Terdapat banyak sekali bahan/material yang sehari-hari digunakan didalam kehidupan manusia. Bahan tersebut memiliki sifat-sifat tertentu. Sebelum

Lebih terperinci

Impact Toughness Test. Sigit Ngalambang

Impact Toughness Test. Sigit Ngalambang Impact Toughness Test Sigit Ngalambang Definisi Ketangguhan (Toughness) Dalam ilmu material dan metalurgi, ketangguhan adalah kemampuan suatu material untuk menyerap energi pembebanan dari material tanpa

Lebih terperinci

PENGARUH KECEPATAN DAN TEMPERATUR UJI TARIK TERHADAP SIFAT MEKANIK BAJA S48C

PENGARUH KECEPATAN DAN TEMPERATUR UJI TARIK TERHADAP SIFAT MEKANIK BAJA S48C MAKARA, TEKLOGI, VOL. 7,. 1, APRIL 23 PENGARUH KECEPATAN DAN TEMPERATUR UJI TARIK TERHADAP SIFAT MEKANIK BAJA S48C Dedi Priadi 1, Iwan Setyadi 2 dan Eddy S. Siradj 1 1. Departemen Metalurgi dan Material,

Lebih terperinci

DIAGRAM STRESS STRAIN, SIFAT BAHAN, FAKTOR KEAMANAN DAN TEGANGAN KERJA

DIAGRAM STRESS STRAIN, SIFAT BAHAN, FAKTOR KEAMANAN DAN TEGANGAN KERJA DIAGRAM STRESS STRAIN, SIFAT BAHAN, FAKTOR KEAMANAN DAN TEGANGAN KERJA LDS, RYN Diagram Stress-Strain Setelah melakukan pengujian tarikan dan tekanan serta menentukan tegangan dan regangan pada beberapa

Lebih terperinci

Jurnal Mekanikal, Vol. 4 No. 2: Juli 2013: ISSN

Jurnal Mekanikal, Vol. 4 No. 2: Juli 2013: ISSN Jurnal Mekanikal, Vol. 4 No. 2: Juli 2013: 366 375 ISSN 2086-3403 OPTIMASI SIFAT MEKANIS KEKUATAN TARIK BAJA ST 50 DENGAN PERLAKUAN GAS CARBURIZING VARIASI HOLDING TIME UNTUK PENINGKATAN MUTU BAJA STANDAR

Lebih terperinci

Mekanika Bahan TEGANGAN DAN REGANGAN

Mekanika Bahan TEGANGAN DAN REGANGAN Mekanika Bahan TEGANGAN DAN REGANGAN Sifat mekanika bahan Hubungan antara respons atau deformasi bahan terhadap beban yang bekerja Berkaitan dengan kekuatan, kekerasan, keuletan dan kekakuan Tegangan Intensitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keliatan dan kekuatan yang tinggi. Keliatan atau ductility adalah kemampuan. tarik sebelum terjadi kegagalan (Bowles,1985).

BAB II TINJAUAN PUSTAKA. keliatan dan kekuatan yang tinggi. Keliatan atau ductility adalah kemampuan. tarik sebelum terjadi kegagalan (Bowles,1985). BAB II TINJAUAN PUSTAKA 2.1 Baja Bahan konstruksi yang mulai diminati pada masa ini adalah baja. Baja merupakan salah satu bahan konstruksi yang sangat baik. Baja memiliki sifat keliatan dan kekuatan yang

Lebih terperinci

CREEP. Contoh komponen-komponen yang potensial mengalami creep adalah.

CREEP. Contoh komponen-komponen yang potensial mengalami creep adalah. CREEP Def. Deformasi Plastis yang terjadi sebagai akibat dari lingkungan yang bertemperatur tinggi dan tegangan static yang tetap dalam kurun waktu yang lama. Contoh komponen-komponen yang potensial mengalami

Lebih terperinci

PENGARUH PEMANASAN DAN PERUBAHAN BENTUK PADA KEKUATAN TARIK POLYVINYL CHLORIDE (PVC)

PENGARUH PEMANASAN DAN PERUBAHAN BENTUK PADA KEKUATAN TARIK POLYVINYL CHLORIDE (PVC) PENGARUH PEMANASAN DAN PERUBAHAN BENTUK PADA KEKUATAN TARIK POLYVINYL CHLORIDE (PVC) Oleh Instansi e-mail : Ir. Muhammad Khotibul Umam Hs, MT : Jurusan Pendidikan Teknik Mesin FT UNY : umamhasan@lycos.com

Lebih terperinci

PRESENTASI TUGAS AKHIR PENGARUH SIFAT MEKANIK TERHADAP PENAMBAHAN BUBBLE GLASS, CHOPPED STRAND MAT DAN WOVEN ROVING PADA KOMPOSIT BENTUK POROS

PRESENTASI TUGAS AKHIR PENGARUH SIFAT MEKANIK TERHADAP PENAMBAHAN BUBBLE GLASS, CHOPPED STRAND MAT DAN WOVEN ROVING PADA KOMPOSIT BENTUK POROS PRESENTASI TUGAS AKHIR PENGARUH SIFAT MEKANIK TERHADAP PENAMBAHAN BUBBLE GLASS, CHOPPED STRAND MAT DAN WOVEN ROVING PADA KOMPOSIT BENTUK POROS Oleh : EDI ARIFIYANTO NRP. 2108 030 066 Dosen Pembimbing Ir.

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 33 III. METODE PENELITIAN Metode penelitian adalah suatu cara yang digunakan dalam penelitian, sehingga pelaksanaan dan hasil penelitian bisa untuk dipertanggungjawabkan secara ilmiah. Penelitian ini menggunakan

Lebih terperinci

I. PENDAHULUAN. untuk diperkirakan kapan terjadinya, dan tidak dapat dilihat secara kasat mata

I. PENDAHULUAN. untuk diperkirakan kapan terjadinya, dan tidak dapat dilihat secara kasat mata I. PENDAHULUAN A. Latar Belakang Banyak masalah yang timbul dalam pengerjaan mekanis di lapangan yang dialami oleh ahli-ahli teknis dalam bidangnya seperti masalah fatik yang sulit untuk diperkirakan kapan

Lebih terperinci

BAB IV HASIL EKSPERIMEN DAN ANALISIS

BAB IV HASIL EKSPERIMEN DAN ANALISIS IV-1 BAB IV HASIL EKSPERIMEN DAN ANALISIS Data hasil eksperimen yang di dapat akan dilakukan analisis terutama kemampuan daktilitas beton yang menggunakan 2 (dua) macam serat yaitu serat baja dan serat

Lebih terperinci

BAB IV DATA HASIL PENELITIAN

BAB IV DATA HASIL PENELITIAN BAB IV DATA HASIL PENELITIAN 4.1 PEMBUATAN SAMPEL 4.1.1 Perhitungan berat komposit secara teori pada setiap cetakan Pada Bagian ini akan diberikan perhitungan berat secara teori dari sampel komposit pada

Lebih terperinci

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PENULISAN Umumnya, pada masa lalu semua perencanaan struktur direncanakan dengan metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan dipikul

Lebih terperinci

Perpatahan Rapuh Keramik (1)

Perpatahan Rapuh Keramik (1) #6 - Mechanical Failure #2 1 TIN107 Material Teknik Perpatahan Rapuh Keramik (1) 2 Sebagian besar keramik (pada suhu kamar), perpatahan terjadi sebelum deformasi plastis. Secara umum konfigurasi retakan

Lebih terperinci

PERENCANAAN ELEMEN MESIN RESUME JURNAL BERKAITAN DENGAN POROS

PERENCANAAN ELEMEN MESIN RESUME JURNAL BERKAITAN DENGAN POROS Judul : PERENCANAAN ELEMEN MESIN RESUME JURNAL BERKAITAN DENGAN POROS ANALISA KEKUATAN PUNTIR DAN KEKUATAN LENTUR PUTAR POROS BAJA ST 60 SEBAGAI APLIKASI PERANCANGAN BAHAN POROS BALING-BALING KAPAL Pengarang

Lebih terperinci

HALAMAN PERNYATAAN ORISINALITAS

HALAMAN PERNYATAAN ORISINALITAS DAFTAR SIMBOL BJ : Berat Jenis ρ : Berat Jenis (kg/cm 3 ) m : Massa (kg) d : Diameter Kayu (cm) V : Volume (cm 3 ) EMC : Equilibrium Moisture Content σ : Stress (N) F : Gaya Tekan / Tarik (N) A : Luas

Lebih terperinci

dislokasi pada satu butir terjadi pada bidang yang lebih disukai (τ r max).

dislokasi pada satu butir terjadi pada bidang yang lebih disukai (τ r max). DEFORMASI PLASTIS BAHAN POLIKRISTAL Deformasi dan slip pada bahan polikristal lebih kompleks. Polikristal terdiri dari banyak butiran ( grain ) yang arah slip berbeda satu sama lain. Gerakan dislokasi

Lebih terperinci

MODUL PRAKTIKUM METALURGI (LOGAM)

MODUL PRAKTIKUM METALURGI (LOGAM) MODUL PRAKTIKUM METALURGI (LOGAM) FAKULTAS TEKNIK MESIN UNIVERSITAS MUHAMMADIYAH SURAKARTA BAB I PENDAHULUAN 1.1 Latar Belakang Dalam perancangan konstruksi mesin harus diupayakan menggunakan bahan seminimal

Lebih terperinci

PENGUJIAN BAJA-TULANGAN

PENGUJIAN BAJA-TULANGAN PENGUJIAN BAJA-TULANGAN 5.1. Umum Besi baja atau sering disebut dengan baja saja merupakan paduan antara abesi dan karbon, dengan kandungan karbon yang lebih sedikit dibandingkan pada besi tuang, tetapi

Lebih terperinci

Pertemuan I,II,III I. Tegangan dan Regangan

Pertemuan I,II,III I. Tegangan dan Regangan Pertemuan I,II,III I. Tegangan dan Regangan I.1 Tegangan dan Regangan Normal 1. Tegangan Normal Konsep paling dasar dalam mekanika bahan adalah tegangan dan regangan. Konsep ini dapat diilustrasikan dalam

Lebih terperinci

TIN107 - Material Teknik #5 - Mechanical Failure #1. TIN107 Material Teknik

TIN107 - Material Teknik #5 - Mechanical Failure #1. TIN107 Material Teknik #5 - Mechanical Failure #1 1 TIN107 Material Teknik Pembahasan 2 Jenis Perpatahan Mekanisme Perpatahan Perambatan Retakan Perpatahan Intergranular Mekanika Perpatahan Pemusatan Tekanan Ductile vs Brittle

Lebih terperinci

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh III. METODE PENELITIAN Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh rumah tangga yaitu tabung gas 3 kg, dengan data: Tabung 3 kg 1. Temperature -40 sd 60 o C 2. Volume 7.3

Lebih terperinci

MECHANICAL FAILURE (KERUSAKAN MEKANIS) #2

MECHANICAL FAILURE (KERUSAKAN MEKANIS) #2 #5 MECHANICAL FAILURE (KERUSAKAN MEKANIS) #2 Perpatahan Rapuh Keramik Sebagian besar keramik (pada suhu kamar), perpatahan terjadi sebelum deformasi plastis. Secara umum konfigurasi retakan untuk 4 metode

Lebih terperinci

REANALYSIS SIFAT MEKANIS MATERIAL KOMPONEN ALAT ANGKAT KENDARAAN NIAGA KAPASITAS 2 TON

REANALYSIS SIFAT MEKANIS MATERIAL KOMPONEN ALAT ANGKAT KENDARAAN NIAGA KAPASITAS 2 TON REANALYSIS SIFAT MEKANIS MATERIAL KOMPONEN ALAT ANGKAT KENDARAAN NIAGA KAPASITAS 2 TON Reki Walewangko 1), Rudy Poeng 2), Jefferson Mende 3) Jurusan Teknik Mesin Universitas Sam Ratulangi 2013 ABSTRACT

Lebih terperinci

RANCANG BANGUN KIT PENENTUAN MODULUS YOUNG KAWAT BERBASIS MIKROKONTROLER

RANCANG BANGUN KIT PENENTUAN MODULUS YOUNG KAWAT BERBASIS MIKROKONTROLER JurnalInovasiFisikaIndonesia(IFI)Volume6 Nomor3Tahun217,hal84-89 RANCANG BANGUN KIT PENENTUAN MODULUS YOUNG KAWAT BERBASIS MIKROKONTROLER Dita Puji Issriza 1), Abdul Kholiq 2), Dzulkiflih 3) 1) Mahasiswa

Lebih terperinci

KORELASI NILAI KUAT TARIK DAN MODULUS ELASTISITAS BAJA DENGAN KEKERASAN PADA EQUOTIP PORTABLE ROCKWELL HARDNESS NASKAH PUBLIKASI TEKNIK SIPIL

KORELASI NILAI KUAT TARIK DAN MODULUS ELASTISITAS BAJA DENGAN KEKERASAN PADA EQUOTIP PORTABLE ROCKWELL HARDNESS NASKAH PUBLIKASI TEKNIK SIPIL KORELASI NILAI KUAT TARIK DAN MODULUS ELASTISITAS BAJA DENGAN KEKERASAN PADA EQUOTIP PORTABLE ROCKWELL HARDNESS NASKAH PUBLIKASI TEKNIK SIPIL Ditujukan untuk memenuhi persyaratan memperoleh gelar Sarjana

Lebih terperinci

Laporan Praktikum. Laboratorium Teknik Material III. Modul B Teori Laminat Klasik. oleh :

Laporan Praktikum. Laboratorium Teknik Material III. Modul B Teori Laminat Klasik. oleh : Laporan Praktikum Laboratorium Teknik Material III Modul B Teori Laminat Klasik oleh : Kelompok : 5 Anggota (NIM) : Afina Hasna G. T. (13712021) Karel Adipria (13712035) Reyza Prasetyo (13712050) Iskandar

Lebih terperinci

MECHANICAL FAILURE (KERUSAKAN MEKANIS)

MECHANICAL FAILURE (KERUSAKAN MEKANIS) 1 MECHANICAL FAILURE (KERUSAKAN MEKANIS) TIN107 Material Teknik Jenis Perpatahan (Fracture) 2 Perpatahan sederhana adalah pemisahan material menjadi dua atau lebih sebagai reaksi terhadap tegangan statis

Lebih terperinci

PENGARUH PROSES HARDENING PADA BAJA HQ 7 AISI 4140 DENGAN MEDIA OLI DAN AIR TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO

PENGARUH PROSES HARDENING PADA BAJA HQ 7 AISI 4140 DENGAN MEDIA OLI DAN AIR TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO PENGARUH PROSES HARDENING PADA BAJA HQ 7 AISI 4140 DENGAN MEDIA OLI DAN AIR TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO Cahya Sutowo 1.,ST.MT., Bayu Agung Susilo 2 Lecture 1,College student 2,Departement

Lebih terperinci

PENGARUH PERLAKUAN PANAS BAJA AISI 1029 DENGAN METODA QUENCHING DAN MEDIA PENDINGIN TERHADAP SIFAT MEKANIK DAN MAKRO STRUKTUR

PENGARUH PERLAKUAN PANAS BAJA AISI 1029 DENGAN METODA QUENCHING DAN MEDIA PENDINGIN TERHADAP SIFAT MEKANIK DAN MAKRO STRUKTUR PENGARUH PERLAKUAN PANAS BAJA AISI 1029 DENGAN METODA QUENCHING DAN MEDIA PENDINGIN TERHADAP SIFAT MEKANIK DAN MAKRO STRUKTUR Oleh : Nofriady. H 1 dan Sudarisman 2 Jurusan Teknik Mesin 1 - Mahasiswa Teknik

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 4 MODULUS ELASTISITAS

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 4 MODULUS ELASTISITAS LAPORAN PRAKTIKUM FISIKA DASAR MODUL 4 MODULUS ELASTISITAS Nama : Nova Nurfauziawati NPM : 240210100003 Tanggal / jam : 21 Oktober 2010 / 13.00-15.00 WIB Asisten : Dicky Maulana JURUSAN TEKNOLOGI INDUSTRI

Lebih terperinci

KARAKTERISTIK MEKANIK LOGAM

KARAKTERISTIK MEKANIK LOGAM KARAKTERISTIK MEKANIK LOGAM Materi - 4 Dr. Eko Pujiyanto, S.Si., M.T. Homepage : eko.staff.uns.ac.id/3-material-teknik Isi Pendahuluan Konsep tegangan dan regangan Uji tarik, Uji tekan, Regangan Geser

Lebih terperinci

BAB III OPTIMASI KETEBALAN TABUNG COPV

BAB III OPTIMASI KETEBALAN TABUNG COPV BAB III OPTIMASI KETEBALAN TABUNG COPV 3.1 Metodologi Optimasi Desain Tabung COPV Pada tahap proses mengoptimasi desain tabung COPV kita perlu mengidentifikasi masalah terlebih dahulu, setelah itu melakukan

Lebih terperinci

STUDI PENGARUH PERLAKUAN PANAS PADA HASIL PENGELASAN BAJA ST 37 DITINJAU DARI KEKUATAN TARIK BAHAN

STUDI PENGARUH PERLAKUAN PANAS PADA HASIL PENGELASAN BAJA ST 37 DITINJAU DARI KEKUATAN TARIK BAHAN STUDI PENGARUH PERLAKUAN PANAS PADA HASIL PENGELASAN BAJA ST 37 DITINJAU DARI KEKUATAN TARIK BAHAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik IMBARKO NIM. 050401073

Lebih terperinci

Studi Experimental Pengaruh Fraksi Massa dan Orientasi Serat Terhadap Kekuatan Tarik Komposit Berbahan Serat Nanas

Studi Experimental Pengaruh Fraksi Massa dan Orientasi Serat Terhadap Kekuatan Tarik Komposit Berbahan Serat Nanas Studi Experimental Pengaruh Fraksi Massa dan Orientasi Serat Terhadap Kekuatan Tarik Komposit Berbahan Serat Nanas Andi Saidah, Helmi Wijanarko Program Studi Teknik Mesin,Fakultas Teknik, Universitas 17

Lebih terperinci

ANALISIS KEKUATAN KAWAT LISTRIK DITINJAU DARI SIFAT-SIFAT MEKANIK

ANALISIS KEKUATAN KAWAT LISTRIK DITINJAU DARI SIFAT-SIFAT MEKANIK ANALISIS KEKUATAN KAWAT LISTRIK DITINJAU DARI SIFAT-SIFAT MEKANIK Charles Pangaribuan Program Studi Teknik Elektro Universitas Balikpapan Email : pangaribuan_charles@yahoo.com ABSTRACT Electrical cables

Lebih terperinci

Jurnal Teknika Atw 1

Jurnal Teknika Atw 1 PENGARUH BENTUK PENAMPANG BATANG STRUKTUR TERHADAP TEGANGAN DAN DEFLEKSI OLEH BEBAN BENDING Agung Supriyanto, Joko Yunianto P Program Studi Teknik Mesin,Akademi Teknologi Warga Surakarta ABSTRAK Dalam

Lebih terperinci

III. METODOLOGI PENELITIAN. waktu pada bulan Oktober hingga bulan Maret Peralatan dan bahan yang digunakan dalam penelitian ini :

III. METODOLOGI PENELITIAN. waktu pada bulan Oktober hingga bulan Maret Peralatan dan bahan yang digunakan dalam penelitian ini : III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian ini dilakukan di Laboratorium Terpadu Jurusan Teknik Mesin Universitas Lampung. Sedangkan waktu penelitian dilaksanakan pada rentang waktu pada

Lebih terperinci

PENGARUH PROSES EQUAL CHANNEL ANGULAR PRESSING (ECAP) TERHADAP FORMABILITY ALUMINIUM

PENGARUH PROSES EQUAL CHANNEL ANGULAR PRESSING (ECAP) TERHADAP FORMABILITY ALUMINIUM PENGARUH PROSES EQUAL CHANNEL ANGULAR PRESSING (ECAP) TERHADAP FORMABILITY ALUMINIUM *Wisnu Tri Erlangga 1, Rusnaldy 2, Norman Iskandar 2 1 Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

Analisis Kegagalan pada Shaft Gearbox Mesin Palletizer di PT Holcim Tbk Tuban

Analisis Kegagalan pada Shaft Gearbox Mesin Palletizer di PT Holcim Tbk Tuban F68 Analisis Kegagalan pada Shaft Gearbox Mesin Palletizer di PT Holcim Tbk Tuban Asia, Lukman Noerochim, dan Rochman Rochiem Departemen Teknik Material dan Metalurgi FTI-ITS, Kampus ITS-Keputih Sukolilo,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 28 BAB II TINJAUAN PUSTAKA II.1 Material Beton II.1.1 Definisi Material Beton Beton adalah suatu campuran antara semen, air, agregat halus seperti pasir dan agregat kasar seperti batu pecah dan kerikil.

Lebih terperinci

BAB III METODE PENELITIAN. Mulai. Kajian Pustaka. Bahan Aluminium 5xxx

BAB III METODE PENELITIAN. Mulai. Kajian Pustaka. Bahan Aluminium 5xxx BAB III METODE PENELITIAN 3.1. Diagram Alir Penelitian Langkah-langkah utama dalam proses pengelasan dengan metode FSW dapat dilihat pada Gambar 3.1. Mulai Kajian Pustaka Persiapan Alat 1. Modifikasi tool

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan di Laboratorium Mekanika Struktur Jurusan Teknik Mesin Universitas Lampung. Penelitian ini dilaksanakan mulai dari bulan

Lebih terperinci

1. Tegangan (Stress) Tegangan menunjukkan kekuatan gaya yang menyebabkan perubahan bentuk benda. Perhatikan gambar berikut

1. Tegangan (Stress) Tegangan menunjukkan kekuatan gaya yang menyebabkan perubahan bentuk benda. Perhatikan gambar berikut ELASTISITAS Kebanyakan dari kita tentu pernah bermain dengan karet gelang. Pada saat Anda menarik sebuah karet gelang, dengan jelas Anda dapat melihat karet tersebut akan mengalami perubahan bentuk dan

Lebih terperinci

RANCANG ULANG PUNCH-DIES UNTUK PEMBUATAN OUTLET PIPE I DI PT. IONUDA SURABAYA

RANCANG ULANG PUNCH-DIES UNTUK PEMBUATAN OUTLET PIPE I DI PT. IONUDA SURABAYA RANCANG ULANG PUNCH-DIES UNTUK PEMBUATAN OUTLET PIPE I DI PT. IONUDA SURABAYA Pandri Pandiatmi Teknik Mesin, Universitas Mataram Jl. Majapahit No. 62 Mataram Tlp: 0370-636087 E-mail : pandri_pandiatmi@yahoo.com

Lebih terperinci

STUDI EKSPERIMENTAL HUBUNGAN BALOK-KOLOM GLULAM DENGAN PENGHUBUNG BATANG BAJA BERULIR

STUDI EKSPERIMENTAL HUBUNGAN BALOK-KOLOM GLULAM DENGAN PENGHUBUNG BATANG BAJA BERULIR STUDI EKSPERIMENTAL HUBUNGAN BALOK-KOLOM GLULAM DENGAN PENGHUBUNG BATANG BAJA BERULIR Rizfan Hermanto 1* 1 Mahasiswa / Program Magister / Jurusan Teknik Sipil / Fakultas Teknik Universitas Katolik Parahyangan

Lebih terperinci

BAB 1 PENDAHULUAN. 1. Perencanaan Interior 2. Perencanaan Gedung 3. Perencanaan Kapal

BAB 1 PENDAHULUAN. 1. Perencanaan Interior 2. Perencanaan Gedung 3. Perencanaan Kapal BAB 1 PENDAHULUAN Perencanaan Merencana, berarti merumuskan suatu rancangan dalam memenuhi kebutuhan manusia. Pada mulanya, suatu kebutuhan tertentu mungkin dengan mudah dapat diutarakan secara jelas,

Lebih terperinci

I. PENDAHULUAN. A. Latar Belakang

I. PENDAHULUAN. A. Latar Belakang 1 I. PENDAHULUAN A. Latar Belakang Seiring dengan berkembangnya teknologi semakin banyak dilakukan penelitian untuk menemukan teknologi baru yang layak digunakan oleh manusia sehingga mempermudah pekerjaan

Lebih terperinci

RPKPS (RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER)

RPKPS (RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER) RPKPS (RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER) 1. Nama Mata Kuliah : Bahan Teknik I 2. Kode/SKS : DTM 1105, 2 SKS, 32 jam 3. Prasyarat : - 4. Status Matakuliah : Pilihan / Wajib (coret yang

Lebih terperinci

BAB 2 STUDI PUSTAKA. 2.1 Jenis-Jenis Material Baja Yang Ada di Pasaran. Jenis material baja yang ada di pasaran saat ini terdiri dari Hot Rolled Steel

BAB 2 STUDI PUSTAKA. 2.1 Jenis-Jenis Material Baja Yang Ada di Pasaran. Jenis material baja yang ada di pasaran saat ini terdiri dari Hot Rolled Steel BAB 2 STUDI PUSTAKA 2.1 Jenis-Jenis Material Baja Yang Ada di Pasaran Jenis material baja yang ada di pasaran saat ini terdiri dari Hot Rolled Steel dan Cold Formed Steel/ Baja Ringan. 1. Hot Rolled Steel/

Lebih terperinci

PENGUJIAN KUAT TARIK DAN MODULUS ELASTISITAS TULANGAN BAJA (KAJIAN TERHADAP TULANGAN BAJA DENGAN SUDUT BENGKOK 45, 90, 135 )

PENGUJIAN KUAT TARIK DAN MODULUS ELASTISITAS TULANGAN BAJA (KAJIAN TERHADAP TULANGAN BAJA DENGAN SUDUT BENGKOK 45, 90, 135 ) PENGUJIAN KUAT TARIK DAN MODULUS ELASTISITAS TULANGAN BAJA (KAJIAN TERHADAP TULANGAN BAJA DENGAN SUDUT BENGKOK 45, 90, 135) Gatot Setya Budi 1) Abstrak Dalam beton bertulang komponen beton dan tulangan

Lebih terperinci

Analisis Struktur Mikro Baja Tulangan Karbon Sedang

Analisis Struktur Mikro Baja Tulangan Karbon Sedang Analisis Struktur Mikro Baja Tulangan Karbon Sedang Tio Gefien Imami Program Studi Teknik Metalurgi, Fakultas Teknik Pertambangan dan Perminyakan, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132,

Lebih terperinci