METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK"

Transkripsi

1 METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Anisa Rizky Apriliana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya, Pekanbaru ABSTRACT This article discusses a new iterative method obtained by combination Cheby shev-halley method and Newton method. Analytically it is showed that the method at least sixth order convergence and its efficiency index is Computational results support the analytic results. Furthermore, computational results show that the method is faster in determining a root of the considered nonlinear equation compared with Newton, Chebyshev and Halley method. Keywords: Chebyshev-Halley method, iterative method, Newton method, order of convergence, efficiency index ABSTRAK Artikel ini membahas tentang metode iterasi dua langkah yang didapat dengan mengkombinasikan metode Chebyshev-Halley dan metode Newton. Secara analitik ditunjukkan bahwa metode iterasi ini memiliki orde konvergensi paling sedikit enam dan indeks efisiensinya adalah Hasil uji komputasi mendukung hasil kajian analitik. Selanjutnya, dari uji komputasi terlihat bahwa metode iterasi lebih cepat konvergen ke akar hampiran dibandingkan dengan metode Newton, Chebyshev dan Halley. Kata kunci: metode iterasi, metode Newton, metode Chebyshev-Halley, orde konvergensi, indeks efisiensi 1

2 1. PENDAHULUAN Salah satu persoalan matematika yang sering dijumpai adalah bagaimana menemukan solusi atau akar dari persamaan nonlinear f(x) = 0. Dalam menyelesaikan suatu persamaan nonlinear dapat diselesaikan dengan metode analitik dan metode numerik. Adakalanya persamaan nonlinear tidak dapat diselesaikan menggunakan metode analitik. Oleh karena itu, untuk penyelesaiannya dapat dilakukan dengan menggunakan metode numerik. Penyelesaian secara numerik hanya memperoleh akar pendekatan. Selisih antara akar pendekatan dengan akar sebenarnya dinamakan dengan kesalahan (error). Banyak metode numerik yang dapat digunakan untuk menemukan akar pedekatan dari persamaan nonlinear, beberapa diantaranya adalah metode Newton yang memiliki kekonvergenan orde dua [2], metode Chebyshev dan metode Halley yang sama-sama memiliki kekonvergenan orde tiga [4]. Pada arkitel ini dibahas metode baru yang diperoleh dengan mengkombinasikan metode Chebyshev-Halley dengan bentuk iterasi ( x n+1 = x n ) L f (x n ) f(xn ), α R, n = 0, 1, 2,..., 2 1 αl f (x n ) f (x n ) dengan L f (x n ) = f (x n )f(x n ) (f (x n )) 2, (1) dan metode Newton, sehingga diperoleh bentuk iterasi z n = ( ) x n L f (x n ) f(xn) 2 1 αl f (x n) f (x n) α R, x n+1 = z n f(z n) f (z n, n = 0, 1, 2,.... ) } (2) dengan L f (x n )= f (x n )f(x n ) (f (x n. )) 2 Pada artikel ini f (x n ) dan f (z n ) pada persamaan (2) ditaksir dengan menggunakan interpolasi polinomial Newton derajat tiga [3], sehingga menghasilkan metode iterasi tiga langkah baru yang merupakan bentuk dari Cheby shev-halley bebas turunan kedua, sebagaimana didiskusikan pada bagian kedua. Kemudian dilanjutkan di bagian tiga dengan melakukan uji komputasi terhadap tiga contoh persamaan nonlinear. 2. METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA Untuk menghilangkan pengaruh turunan kedua f (x n ) pada persamaan (2) Sharma [4] menaksir dengan menggunakan ekspansi Taylor [1]. Misalkan 2

3 metode Newton dinyatakan dengan bentuk y n = x n f(x n) f (x n ), (3) selanjutnya ekspansikan f(y n ) di sekitar x n sampai orde dua dan mengabaikan orde yang lebih tinggi, sehingga dapat diperoleh bentuk turunan kedua f (x n ) yaitu f (x n ) 2f(y n)(f (x n )) 2 (f(x n )) 2. (4) Persamaan (4) disubstitusikan ke persamaan (1), sehingga diperoleh L f (x n ) = 2f(y n) f(x n ). (5) Kemudian disubstitusikan persamaan (5) ke dalam persamaan (2), diperoleh bentuk z n sebagai berikut z n = x n ( 1 + f(y n ) ) f(x n ), α R. (6) f(x n ) 2αf(y n ) f (x n ) Selanjutnya Sharma [4] menaksirkan turunan pertama f (z n ) yang terdapat pada persamaan (2) dengan menggunakan interpolasi polinomial Newton sampai orde tiga melalui pendekatan z n, y n dan x n, sehingga diperoleh P 3 (x) = f(z n ) + f[z n, y n ](x z n ) + f[z n, y n, x n ](x z n )(x y n ) + f[z n, y n, x n, x n ](x z n )(x y n )(x x n ), (7) dengan menggunakan beda terbagi, diperoleh dan f[z n, y n ] = f(z n) f(y n ) z n y n, f[z n, y n, x n ] = f[z n, x n ] f[y n, x n ] z n y n f[z n, y n, x n, x n ] = f[z n, x n, x n ] f[y n, x n, x n ] z n y n f[z n, x n, x n ] = f[z n, x n ]f (x n ) z n x n f[y n, x n, x n ] = f[y n, x n ]f (x n ) y n x n. Kemudian turunkan persamaan (7) terhadap x dan dievaluasi x = z n 3

4 sehingga diperoleh P 3(z n ) = f[z n, y n ]+f[z n, y n, x n ](z n y n )+f[z n, y n, x n, x n ](z n y n )(z n x n ). (8) Selanjutnya f (z n ) diaproksimasikan menggunakan persamaan (8) menjadi f (z n ) f[z n, y n ] + f[z n, y n, x n ](z n y n ) + f[z n, y n, x n, x n ](z n y n )(z n x n ). (9) Substitusikan persamaan (9) ke dalam persamaan (2) diperoleh f(z n ) x n+1 = z n f[z n, y n ] + f[z n, y n, x n ](z n y n ) + f[z n, y n, x n, x n ](z n y n )(z n x n ). (10) Menggunakan persamaan (3), (6) dan (10) maka diperoleh metode iterasi tiga langkah baru yang merupakan bentuk dari metode Chebyshev-Halley bebas turunan kedua dengan parameter α atau disingkat MCH α, yaitu, f (x n ) y n = x n f(x n) ( z n = x n 1 + x n+1 = z n ) f(y n) f(xn), f(x n) 2αf(y n) f (x n) f(z n ). f[z n,y n ]+f[z n,y n,x n ](z n y n )+f[z n,y n,x n,x n ](z n y n )(z n x n ) (11) Metode Chebyshev-Halley bebas turunan kedua dengan parameter α pada persamaan (11) melakukan empat kali evaluasi fungsi periterasinya, yaitu f(x n ), f(y n ), f(z n ) dan f (x n ). Selanjutnya akan ditunjukkan kekonvergenan orde dari metode Chebyshev- Halley bebas turunan kedua dengan parameter α. Teorema 1 Misalkan α I adalah akar sederhana dari fungsi terdiferensial secukupnya f : I R R untuk interval terbuka I. Jika x 0 adalah tebakan awal yang cukup dekat dengan x, maka metode iterasi pada persamaan (11) memiliki kekonvergenan orde paling sedikit enam. Jika α = 1 maka metode memiliki kekonvergenan orde delapan. Bukti. Misalkan x adalah akar sederhana dari persamaan nonlinear f(x) = 0, maka f(x ) = 0 dan f (x ) 0. Kemudian menyatakan e n = x n x. Menggunakan ekspansikan f(x n ) di sekitar x sampai orde delapan dan mengabaikan orde 4

5 yang lebih tinggi, maka diperoleh f(x n ) = f(x ) + f (x )(x n x ) + 1 2! f (x )(x n x ) ! f (3) (x )(x n x ) ! f (4) (x )(x n x ) ! f (5) (x )(x n x ) ! f (6) (x )(x n x ) ! f (7) (x )(x n x ) ! f (8) (x )(x n x ) 8 + O(x n x ) 9. (12) Karena f(x ) = 0 dan e n = x n x, maka persamaan (12) akan menjadi f(x n ) = f (x )(e n ) + 1 2! f (x )e 2 n + 1 3! f (3) (x )e 3 n + 1 4! f (4) (x )e 4 n + 1 5! f (5) (x )e 5 n + 1 6! f (6) (x )e 6 n + 1 7! f (7) (x )e 7 n + 1 8! f (8) (x )e 8 n + O(e 9 n)). Misalkan c k = f (k) (x ), k = 2, 3,..., maka k!f (x ) f(x n ) = f (x )(e n + c 2 e 2 n + c 3 e 3 n + c 4 e 4 n + c 5 e 5 n + c 6 e 6 n + c 7 e 7 n + c 8 e 8 n + O(e 9 n)). (13) Selanjutnya dengan cara yang sama, dengan mengekspansikan f (x n ) disekitar x sehingga setelah disederhanakan diperoleh f (x n ) = f (x )(1 + 2c 2 e n + 3c 3 e 2 n + 4c 4 e 3 n + 5c 5 e 4 n + 6c 6 e 5 n + 7c 7 e 6 n + 8c 8 e 7 n + 9c 9 e 8 n + O(e 9 n)). (14) Kemudian dari persamaan (13) dan (14), diperoleh f(x n ) f (x n ) = e n + c 2 e 2 n + + c 8 e 8 n + O(e 9 n) 1 + 2c 2 e n + 3c 3 e 2 n + + 9c 9 e 8 n + O(e 9 n). (15) Selanjutnya f(x n) dihitung menggunakan persamaan (13) dan persamaan f (x n ) (14), sehingga dengan menggunakan deret geometri diperoleh f(x n ) f (x n ) = e n + c 2 e 2 n ( 2c 3 + 2c 2 2)e 3 n ( 64c c 2 3c c 4 c 5 7c 8 44c 2 2c6 + 19c 2 c c 3 2c c 3 c 6 176c 4 2c c 3 3c c 3 c 4 c c 5 2c 3 118c 3 c 5 c 2 75c 2 3c 4 64c 2 4c 2 )e 8 n + O(e 9 n). (16) 5

6 Selanjutnya dengan mensubstitusikan persamaan (16) ke persamaan (11) dan x n = e n + x, diperoleh y n = x + c 2 e 2 n ( 2c 3 + 2c 2 2)e 3 n ( 64c c 2 3c c 4 c 5 7c 8 44c 2 2c c 2 c c 3 2c c 3 c 6 176c 4 2c c 3 3c c 3 c 4 c c 5 2c 3 118c 3 c 5 c 2 75c 2 3c 4 64c 2 4c 2 )e 8 n + O(e 9 n). (17) Kemudian dengan menggunakan persamaan (17) dilakukan ekspansi f(y n ) di sekitar x sampai orde delapan dan mengabaikan orde yang lebih tinggi, menjadi f(y n ) = f (x )(c 2 e 2 n + (2c 3 2c 2 2)e 3 n + + (7c 8 134c 3 2c c c 4 2c 4 455c 3 c 4 c c 3 c 5 c c 2 3c c 2 2c c 2 4c2 31c 4 c 5 19c 2 c 7 27c 3 c 6 147c 3 3c c 2 3c 4 552c 5 2c 3 )e 8 n + O(e 9 n)). (18) f(y Selanjutnya dihitung (1 + n) f(x n) 2αf(y n) ) dengan menggunakan persamaan (13) dan (18), kemudian dikalikan ke persamaan (16) dan disederhanakan, diperoleh ( ) f(y n ) f(xn ) 1 + f(x n ) 2αf(y n ) f (x n ) = e n + ( 2c αc 2 2)e 3 n + + ( 432c 2 3c 2 2 Kemudian persamaan (19) substitusikan (11) diperoleh 339c 3 2c c 3 c 4 c α 5 c α 5 c 5 2c 3 )e 8 n + O(e 9 n). (19) z n = x ( 2c αc 2 2)e 3 n + + ( 432c 2 3c c 3 2c c 3 c 4 c α 5 c α 5 c 5 2c 3 )e 8 n + O(e 9 n) (20) Selanjutnya ekspansi Taylor dilakukan terhadap f(z n ) di sekitar z n = α sampai orde delapan dan mengabaikan orde yang lebih tinggi, kemudian menggunakan persamaan (20) diperoleh f(z n ) = f (x )(2c 2 2 2αc 2 2)e 3 n + + (429c 3 3c c 3 2c c 3 c 4 c α 5 c α 5 c 5 2c 3 )e 8 n + O(e 9 n). (21) f(z n) Kemudian dihitung ( ) dengan f[z n,y n]+f[z n,y n,x n](z n y n)+f[z n,y n,x n,x n](z n y n)(z n x n) menggunakan persamaan (13), (17), (18), (20) dan (21), sehingga dengan 6

7 menggunakan beda terbagi diperoleh bentuk f(z n ) f[z n, y n ] + f[z n, y n, x n ](z n y n ) + f[z n, y n, x n, x n ](z n y n )(z n x n ) = (2c 2 2 2αc 2 2)e 3 n + + (512αc 3 c 5 c αc 3 c 4 c αc 4 2c 4 64α 6 c α 5 c 5 2c 3 )e 8 n + O(e 9 n). (22) Jika persamaan (20) dan (22) disubstitusikan ke dalam persamaan (11), maka menjadi x n+1 = x + ( 8αc α 2 c c 5 2)e 6 n + ( 36c αc α 2 c 4 2c α 3 c 6 2 2αc 3 2c 4 + 2c 3 2c c 4 2c 3 60αc 4 2c 3 72α 2 c 6 2)e 7 n + (23c 4 2c 4 304α 3 c c 3 2c 5 302c 5 2c 3 168αc 2 3c αc 3 c 4 c α 2 c 5 2c αc 5 2c α 2 c 4 c c 3 c 4 c α 3 c 5 2c α 2 c 2 3c c αc α 4 c αc 4 2c c 2 3c α 2 c 7 2 4αc 3 2c 5 )e 8 n + O(e 9 n). (23) Karena e n+1 = x n+1 x, maka persamaan (23) akan menjadi e n+1 =( 8αc α 2 c c 5 2)e 6 n + ( 36c αc α 2 c 4 2c α 3 c 6 2 2αc 3 2c 4 + 2c 3 2c c 4 2c 3 60αc 4 2c 3 72α 2 c 6 2)e 7 n + (23c 4 2c 4 304α 3 c c 3 2c 5 302c 5 2c 3 168αc 2 3c αc 3 c 4 c α 2 c 5 2c αc 5 2c α 2 c 4 c c 3 c 4 c α 3 c 5 2c α 2 c 2 3c c αc α 4 c αc 4 2c c 2 3c α 2 c 7 2 4αc 3 2c 5 )e 8 n + O(e 9 n). (24) Persamaan (24) adalah persamaan tingkat kesalahan metode Chebyshev - Halley bebas turunan kedua dengan parameter α. Jika α = 1 maka persamaan (24) akan menjadi e n+1 = (c 4 2c 4 + c 7 2 2c 5 2c 3 + c 2 3c 3 2 c 3 c 4 c 2 2)e 8 n + O(e 9 n). (25) Persamaan (25) merupakan persamaan tingkat kesalahan untuk metode Chebyshev - Halley bebas turunan kedua dengan parameter α = 1. Metode Chebyshev - Halley bebas turunan kedua dengan α = 1 (MCH 1.0 ) memiliki kekonvergenan orde delapan, dan indeks efisiensi metode ini adalah = UJI KOMPUTASI Selanjutnya akan dilakukan uji komputasi menggunakan beberapa contoh per- 7

8 samaan nonlinear dan nilai tebakan awal untuk membandingkan MCH α dengan metode iterasi MN (metode Newton), MC (metode Chebyshev), MH (metode Halley) [4]. f 1 (x) = e x sin(x)+log(x 2 + 1), x 0 = 1.0 f 2 (x) = e x2 +x+2 cos(x + 1) + x 3 + 1, x 0 = 2.0 f 3 (x) =log(x 2 + x + 1) x + 1, x 0 = 1.5. Hasil perbandingan komputasi dapat dilihat pada Tabel 1. Tabel 1: Perbandingan Hasil Komputasi untuk MN, MC, MH dan MCH α f i (x) Metode x 0 n x n f(x n ) x n x n 1 MN e e 243 MC e e 113 f 1 MH e e 153 MCH e e 203 MCH e e 103 MCH e e 123 MN e e 213 MC e e 113 f 2 MH e e 233 MCH e e 933 MCH e e 683 MCH e e 2283 MN e e 243 MC e e 143 f 3 MH e e 133 MCH e e 423 MCH e e 433 MCH e e 143 Secara umum berdasarkan Tabel 1 semua metode yang dibandingkan berhasil menemukan akar pendekatan yang diharapkan dari semua persamaan nonlinear yang diberikan. Pada semua contoh tampak bahwa MCH 1.0 memerlukan iterasi yang relatif lebih sedikit jika dibandingkan dengan MN, MC, MH, MHC 5.0 dan MCH 5.0. Metode ini juga memiliki indeks efisiensi lebih tinggi yaitu jika dibandingkan dengan metode pembanding. Sehingga untuk menemukan akar pendekatan pada persamaan nonlinear MCH 1.0 lebih efisien dibandingkan MN, MC, MH, MHC 5.0 dan MCH 5.0. Oleh karena itu, metode baru ini sangat layak digunakan untuk mencari akar pendekatan suatu persamaan nonlinear. 4. KESIMPULAN 8

9 Berdasarkan pembahasan yang telah dilakukan dapat disimpulkan bahwa metode Chebyshev-Halley bebas turunan kedua dengan parameter α diperoleh dengan mengkombinaksikan metode Chebyshev-Halley dengan metode Newton. Metode ini memuat turunan pertama dan turunan kedua. Turunan kedua ditaksirkan dengan menggunakan ekspansi Taylor, sedangkan untuk turunan pertama ditaksir dengan interpolasi polinomial Newton derajat tiga. Melalui analisa kekonvergenan, dapat dilihat bahwa metode Chebyshev- Halley bebas turunan kedua memiliki kekonvergenan paling sedikit enam dan memiliki indeks efisiensi = Indeks efisiensi ini lebih tinggi dari pada indeks efisiensi metode pembanding. Berdasarkan uji komputasi dapat diambil kesimpulan bahwa metode Cheby shev-halley bebas turunan kedua dengan parameter α memiliki iterasi relatif lebih sedikit jika dibandingkan dengan metode pembanding. sehingga sangat layak digunakan untuk mencari akar pendekatan suatu persamaan nonlinear. Ucapan terima kasih Penulis mengucapkan terimakasih kepada Bapak Supriadi Putra, M.Si. yang telah memberikan arahan dan bimbingan dalam penulisan artikel ini. DAFTAR PUSTAKA [1] R. G. Bartle dan R. D. Sherbert, Introduction to Real Analysis, Fourth Ed., Jhon Wiley and Sons, Inc., New York, [2] L. Dingfang, L. ping dan K. Jisheng, An improvement of Chebyshev-Halley methods free from second derivative, Applied Mathematics and Computation, 235 (2014), [3] J. H. Mathews, Numerical Method for Mathematics Science and Engineer, Third Ed, Prentice-Hall International, New Jersey, [4] J. R. Sharma, Improved Chebyshev-Halley with sixth and eight order convergence, Advances in Applied Mathematics and Computation, 256 (2015), [5] J. F. Traub, Iterative Methods for the Solution of Equations, Murray Hill, New Jersey,

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Ridho Alfarisy 1 ABSTRACT

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Ridho Alfarisy 1 ABSTRACT METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Ridho Alfarisy 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM. Siti Mariana 1 ABSTRACT ABSTRAK

VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM. Siti Mariana 1 ABSTRACT ABSTRAK VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM Siti Mariana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT Masnida Esra Elisabet Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL N.D. Monti 1, M. Imran, A. Karma 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT ABSTRAK

VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT ABSTRAK VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Julia Murni 1, Sigit Sugiarto 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan,

Lebih terperinci

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT Yenni May Sovia, Agusni 2 Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Helmi Putri Yanti 1, Rolan Pane 2 1 Mahasiswa Program Studi S1 Matematika 2 DosenJurusan Matematika Fakultas Matematika dan

Lebih terperinci

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,

Lebih terperinci

KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA ABSTRACT

KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA ABSTRACT KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA Dedi Mangampu Tua 1, Syamsudhuha 2, Asmara Karma 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. FAMILI DARI METODE NEWTON-LIKE DENGAN ORDE KONVERGENSI EMPAT Nurazmi, Supriadi Putra 2, Musraini M 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neng Ipa Patimatuzzaroh Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR. Nurul Khoiromi ABSTRACT

FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR. Nurul Khoiromi ABSTRACT FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR Nurul Khoiromi Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI Amelia Riski, Putra. Supriadi 2, Agusni 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Imaddudin Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear M. Nizam 1, Lendy Listia Nanda 2 1, 2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK Resdianti Marny 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1 METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neli Sulastri 1 ABSTRACT

BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neli Sulastri 1 ABSTRACT BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neli Sulastri 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR. Een Susilawati 1 ABSTRACT

KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR. Een Susilawati 1 ABSTRACT KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR Een Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Handico Z Desri 1, Syamsudhuha 2, Zulkarnain 2 1 Mahasiswa Program Studi S1

Lebih terperinci

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yolla Sarwenda 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Daimah 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Daimah 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE NEWTON BISECTRIX UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Daimah 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru

Lebih terperinci

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR Eka Ceria 1, Agusni, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR. Rio Kurniawan ABSTRACT

KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR. Rio Kurniawan ABSTRACT KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR Rio Kurniawan Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

METODE BERTIPE STEFFENSEN DENGAN ORDE KONVERGENSI OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE BERTIPE STEFFENSEN DENGAN ORDE KONVERGENSI OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE BERTIPE STEFFENSEN DENGAN ORDE KONVERGENSI OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Sarbaini, Asmara Karma Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

ANALISIS KEKONVERGENAN GLOBAL METODE ITERASI CHEBYSHEV ABSTRACT

ANALISIS KEKONVERGENAN GLOBAL METODE ITERASI CHEBYSHEV ABSTRACT ANALISIS KEKONVERGENAN GLOBAL METODE ITERASI CHEBYSHEV Poppy Hanggreny 1, M. Imran, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1.

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1. METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA Edo Nugraha Putra Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR Eka Parmila Sari 1, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM (1) 2017 UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PENERAPAN METODE NEWTON-COTES OPEN FORM 5 TITIK UNTUK MENYELESAIKAN SISTEM PERSAMAAN NONLINIER M Ziaul Arif, Yasmin

Lebih terperinci

ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA. Rini Christine Prastika Sitompul 1

ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA. Rini Christine Prastika Sitompul 1 ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA Rini Christine Prastika Sitompul 1 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Muliana 1, Syamsudhuha 2, Musraini 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

Lebih terperinci

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M.

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA

Lebih terperinci

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK Nurul Ain Farhana, Imran M Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA Kristiani Panjaitan 1, Syamsudhuha 2, Leli Deswita 2 1 Mahasiswi Program

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. Imran 2

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. Imran 2 BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA Zulkarnain 1, M. Imran 2 1.2 Laboratorium Matematika Terapan FMIPA Universitas Riau, Pekanbaru e-mail

Lebih terperinci

KELUARGA METODE ITERASI ORDE EMPAT UNTUK MENCARI AKAR GANDA PERSAMAAN NONLINEAR ABSTRACT

KELUARGA METODE ITERASI ORDE EMPAT UNTUK MENCARI AKAR GANDA PERSAMAAN NONLINEAR ABSTRACT KELUARGA METODE ITERASI ORDE EMPAT UNTUK MENCARI AKAR GANDA PERSAMAAN NONLINEAR Kiki Reski Ananda 1 Khozin Mu taar 2 12 Progra Studi S1 Mateatika Jurusan Mateatika Fakultas Mateatika dan Ilu Pengetahuan

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER ORDE-TINGGI UNTUK AKAR BERGANDA

PENYELESAIAN PERSAMAAN NONLINIER ORDE-TINGGI UNTUK AKAR BERGANDA PENYELESAIAN PERSAMAAN NONLINIER ORDE-TINGGI UNTUK AKAR BERGANDA Mohammad Jamhuri Jurusan Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang j4msh@gmail.com

Lebih terperinci

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL Siti Nurjanah 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

GENERALISASI RATA-RATA PANGKAT METODE NEWTON. Haikal Amrullah 1, Aziskhan 2 ABSTRACT

GENERALISASI RATA-RATA PANGKAT METODE NEWTON. Haikal Amrullah 1, Aziskhan 2 ABSTRACT GENERALISASI RATA-RATA PANGKAT METODE NEWTON Haikal Amrullah 1, Aziskhan 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

MODIFIKASI METODE JARRAT DENGAN VARIAN METODE NEWTON DAN RATA-RATA KONTRA HARMONIK TUGAS AKHIR. Oleh : KHARISMA JAKA ARFALD

MODIFIKASI METODE JARRAT DENGAN VARIAN METODE NEWTON DAN RATA-RATA KONTRA HARMONIK TUGAS AKHIR. Oleh : KHARISMA JAKA ARFALD MODIFIKASI METODE JARRAT DENGAN VARIAN METODE NEWTON DAN RATA-RATA KONTRA HARMONIK TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh : KHARISMA

Lebih terperinci

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA Irpan Riski M 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Sarimah. ABSTRACT

Sarimah. ABSTRACT PENDETEKSIAN OUTLIER PADA REGRESI LOGISTIK DENGAN MENGGUNAKAN TEKNIK TRIMMED MEANS Sarimah Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Adek Putri Syafriani, Syamsudhuha 2, Zulkarnain 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA Vanny Restu Aji 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN E-Jurnal Matematika Vol. 2, No.2, Mei 2013, 11-17 ISSN: 2303-1751 PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN NANDA NINGTYAS RAMADHANI UTAMI 1,

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING

Lebih terperinci

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace M. Nizam Muhaijir 1, Wartono 2 Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42 Jurnal Matematika Integratif ISSN 1412-6184 Volume 12 No 1, April 2016, pp 35 42 Perbandingan Tingkat Kecepatan Konvergensi dari Newton Raphson dan Secant Setelah Mengaplikasikan Aiken s dalam Perhitungan

Lebih terperinci

METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI ABSTRACT

METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI ABSTRACT METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI Siswanti, Syamsudhuha 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA Erpan Gusnawan 1, Arisman Adnan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR. Alhumaira Oryza Sativa 1 ABSTRACT ABSTRAK

METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR. Alhumaira Oryza Sativa 1 ABSTRACT ABSTRAK METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR Alhumaira Oryza Sativa 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN Lucy L. Batubara 1, Deswita. Leli 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 21 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER

Lebih terperinci

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS Efriani Widya 1, Syamsudhuha 2, Bustami 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan

Lebih terperinci

FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI

FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI Irvan Agus Etioko 1, Farikhin 2, Widowati 3 1,2,3 Program Studi Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H. Tembalang

Lebih terperinci

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR Istawi Arwannur 1, Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. INTEGRASI NUMERIK TANPA ERROR UNTUK FUNGSI-FUNGSI TERTENTU Irma Silpia 1, Syamsudhuha, Musraini M. 1 Mahasiswi Jurusan Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR Jurnal Matematika UAD Vol. 5 o. 4 Hal. 8 ISS : 233 29 c Jurusan Matematika FMIPA UAD PEMBUKTIA BETUK TUTUP RUMUS BEDA MAJU BERDASARKA DERET TAYLOR ADE PUTRI, RADHIATUL HUSA Program Studi Matematika, Fakultas

Lebih terperinci

SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER ABSTRACT

SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER ABSTRACT SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER Marison Faisal Sitanggang, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas

Lebih terperinci

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN Juanita Adrika, Syamsudhuha 2, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR Merintan Afrina S Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

KONSEP METODE ITERASI VARIASIONAL ABSTRACT

KONSEP METODE ITERASI VARIASIONAL ABSTRACT KONSEP METODE ITERASI VARIASIONAL Yuliani 1, Leli Deswita 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 47 55 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING LIDYA PRATIWI, MAHDHIVAN SYAFWAN, RADHIATUL HUSNA

Lebih terperinci

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8 Supriadi Putra & M. Imran Laboratorium Komputasi Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

1 Penyelesaian Persamaan Nonlinear

1 Penyelesaian Persamaan Nonlinear 1 Penyelesaian Persamaan Nonlinear Diberikan fungsi kontinu f (x). Setiap bilangan c pada domain f yang memenuhi f (c) = 0 disebut akar persamaan f (x) = 0, atau disebut juga pembuat nol fungsi f. Dalam

Lebih terperinci

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY Jurnal Matematika UNAND Vol. VI No. 1 Hal. 97 104 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY YOSI ASMARA Program Studi Magister

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN Okmi Zerlan 1*, M. Natsir 2, Eng Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI Sandra Roza 1*, M. Natsir 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan

Lebih terperinci

GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT

GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS Anggy S. Mandasary 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR Jurnal Matematika UNAND Vol. VI No. Hal. 68 76 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR WIDIA ASTUTI Program Studi Matematika, Fakultas

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Andri Ramadhan 1, Syamsudhuha 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR Suci Dini Anggraini 1, Khozin Mu tamar 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks Dewi Erla Mahmudah 1, Ratna Dwi Christyanti 2, Moh. Khoridatul Huda 3,

Lebih terperinci

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON Haposan Sirait 1 dan Rustam Efendi 2 1,2 Dosen Program Studi Matematika FMIPA Universitas Riau. Abstrak: Makalah ini menyajikan tentang

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE EMPAT KUNTZMANN BERDASARKAN RATA-RATA GEOMETRI TUGAS AKHIR

MODIFIKASI METODE RUNGE-KUTTA ORDE EMPAT KUNTZMANN BERDASARKAN RATA-RATA GEOMETRI TUGAS AKHIR MODIFIKASI METODE RUNGE-KUTTA ORDE EMPAT KUNTZMANN BERDASARKAN RATA-RATA GEOMETRI TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh LYLY YULIARNI

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne Jurnal Matematika Integratif ISSN 1412-6184 Vol. 9 No. 2, Oktober 2013 pp. 23-30 Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne Elis Ratna Wulan, Fahmi

Lebih terperinci

METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN ABSTRACT

METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN ABSTRACT METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN Nurholilah Siagian, Samsudhuha, Khozin Mu tamar Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB I PENDAHULUAN Demografi merupakan ilmu yang mempelajari tentang penduduk, khususnya pada lima aspek yaitu ukuran, distribusi geografi, komposisi, komponen perubahan (kelahiran, kematian,

Lebih terperinci

Metode Numerik - Interpolasi WILLY KRISWARDHANA

Metode Numerik - Interpolasi WILLY KRISWARDHANA Metode Numerik - Interpolasi WILLY KRISWARDHANA Interpolasi Para rekayasawan dan ahli ilmu alam sering bekerja dengan sejumlah data diskrit (yang umumnya disajikan dalam bentuk tabel). Data di dalam tabel

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci