LAPORAN PRAKTIKUM FISIKA DASAR I PENGUKURAN KONSTANTA PEGAS DENGAN METODE PEGAS DINAMIK

Ukuran: px
Mulai penontonan dengan halaman:

Download "LAPORAN PRAKTIKUM FISIKA DASAR I PENGUKURAN KONSTANTA PEGAS DENGAN METODE PEGAS DINAMIK"

Transkripsi

1 LAPORAN PRAKTIKUM FISIKA DASAR I PENGUKURAN KONSTANTA PEGAS DENGAN METODE PEGAS DINAMIK Nama : Ayu Zuraida NIM : Dosen Asisten Dosen : Drs. Ida Bagus Alit Paramarta,M.Si. : 1. Gusti Ayu Putu Cyntia Dewi 2. Ida Ayu Gede Kusuma Dewi JURUSAN BIOLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 2013

2 I. TUJUAN 1. Menentukan konstanta pegas dengan metode pegas dinamik II. DASAR TEORI Bila suatu benda dikenai sebuah gaya dan kemudian gaya tersebut dihilangkan, maka benda akan kembali ke bentuk semula, berarti benda itu adalah benda elastis. Namun pada umumnya benda bila dikenai gaya tidak dapat kembali ke bentuk semula walaupun gaya yang bekerja sudah hilang. Benda seperti ini disebut benda plastis. Contoh benda elastis adalah karet ataupun pegas. Bila pegas ditarik melebihi batasan tertentu maka benda itu tidak akan elastis lagi. Karena besarnya gaya pemulih sebanding besarnya pertambahan panjang, maka dapat dirumuskan bahwa: Keterangan : F p = gaya pemulihan ( N ) k = konstanta pegas ( N/m ) x = pertambahan panjang pegas ( m ) Tanda negatif (-) dalam persamaan menunjukkan berarti gaya pemulih berlawanan arah dengan perpanjangan. jika gaya tarik tidak melampaui batas elastis pegas, pertambahan panjang pegas berbanding lurus (sebanding) dengan gaya tariknya.

3 Pernyataan ini dikemukakan oleh Robert Hooke, oleh karena itu, pernyataan di atas dikenal sebagai Hukum Hooke.Untuk menyelidiki berlakunya hukum hooke, kita bisa melakukan percobaan pada pegas. Sebelum digantungikan beban Setelah digantungkan beban Seperti kita menyelidiki sifat elastisitas bahan, kita juga mengukur pertambahan panjang pegas dan besarnya gaya yang diberikan.dalam hal ini,gaya yang diberikan sama dengan berat benda = massa x percepatan gravitasi. Pegas ada disusun tunggal, ada juga yang disusun seri ataupun paralel. Untuk pegas yang disusun seri, pertambahan panjang total sama dengan jumlah masing-masing pertambahan panjang pegas sehingga pertambahan total x adalah: x = x 1 + x 2

4 Sedangkan untuk pegas yang disusun paralel,pertambahan panjang masing-masing pegas sama (kita misalkan kedua pegas identik), yaitu : x 1 = x 2 = x dengan demikian : k p = k 1 + k 2 Perlu selalu di ingat bahwa hukum Hooke hanya berlaku untuk daerah elastik, tidak berlaku untuk daerah plastik maupun benda-benda plastik. Menurut Hooke, regangan sebanding dengan tegangannya, dimana yang dimaksud dengan regangan adalah persentase perubahan dimensi. Tegangan adalah gaya yang menegangkan per satuan luas penampang yang dikenainya. 1.Tegangan Tegangan didefinisikan sebagai hasil bagi antara gaya tarik F yang dialami kawat dengan luas penampang (A). Tegangan adalah besaran skalar dan memiliki satuan Nm -2 atau Pascal (Pa).Berdasarkan arah gaya dan pertambahan panjangnya (perubahan

5 bentuk),tegangan dibedakan menjadi 3 macam,yaitu tegangan rentang,tegangan mampat,dan tegangan geser. 2.Regangan Regangan didefinisikan sebagai hasil bagi antara pertambahan panjang ΔL dengan panjang awalnya L. Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi). Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jadi, modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan. 3.Modulus Elastik Ketika sebuah gaya diberikan pada sebuah benda,maka ada kemungkinan bentuk sebuah benda berubah.secara umum,reaksi benda terhadap gaya yang diberikan dicirikan oleh suatu besaran yang disebut modulus elastik.

6 Biasanya,modulus elastik untuk tegangan dan regangan ini disebut modulus young. Dengan demikian,modulus Young merupakan ukuran ketahanan suatu zat terhadap perubahan panjangnya ketika suatu gaya (beberapa gaya)diberikan pada benda. Jadi, modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan. A. Hukum Hooke untuk Benda non-pegas Hukum hooke ternyata berlaku juga untuk semua benda padat, tetapi hanya sampai pada batas-batas tertentu. Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini. Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula, benda tersebut akan berubah bentuk secara tetap. Jika

7 pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah. Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (ΔL) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (misalnya besi), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Energi Potensial pada Pegas Untuk menghitung energi potensial pada pegas, terlebih dahulu kita hitungkerja alias usaha yang dibutuhkan untuk meregangkan pegas. Persamaan Usaha adalah W = F x s, di mana F adalah gaya dan s adalah perpindahan. Pada pegas, perpindahan adalah simpangan x. Ketika kita menekan atau meregangkan pegas sejauh x, dibutuhkan gaya Fa yang berbanding lurus dengan x. Secara matematis ditulis F a = kx. Ketika ditekan atau diregangkan, pegas memberikan gaya dengan arah berlawanan (F b ) yang besarnya adalah F b = -kx. Untuk menghitung energi potensial dari pegas yang tertekan atau teregang, terlebih dahulu kita hitung usaha atau kerja yang dibutuhkan untuk merentangkannya. Kita tidak bisa menggunakan persamaan usaha W = Fx, karena gaya F a baik ketika pegas diregangkan maupun ditekan selalu berubah-ubah sepanjang x. (amati gambar di atas). Oleh karena itu kita menggunakan gaya rata-

8 rata. Gaya F a berubah dari 0 ketika x = 0 sampai bernilai kx ketika pegas diregangkan atau ditekan sejauh x. Gaya rata-rata =.. x adalah jarak maksimum pegas yang diregangkan atau ditekan. Usaha alias kerja yang dilakukan adalah : Dengan demikian, nilai Energi Potensial elastis adalah : Energi Kinetik pada Pegas Perlu anda ketahui bahwa Energi Potensial tidak mempunyai suatu persamaan umum yang mewakili semua jenis gerakan. Untuk EP elastis telah kita turunkan pada pembahasan di atas. Berbeda dengan EP, persamaan EK bersifat umum untuk semua jenis gerakan. Energi Kinetik dimiliki benda ketika bergerak. Besar energi kinetik adalah : m adalah massa benda dan v adalah kecepatan gerak benda. Jumlah total Energi Kinetik dan Energi Potensial dari pegas adalah Energi Mekanik. Energi tersebut bernilai tetap alias kekal. Secara matematis ditulis : EM = EP + EK Sekarang, mari kita tinjau lebih mendalam hukum kekekalan energi mekanik pada pegas. Getaran pegas terdiri dari dua jenis, yakni getaran pegas yang diletakan secara horisontal dan getaran pegas yang digantungkan secara vertikal. Pegas yang diletakan vertikal Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang

9 bekerja pada benda (gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal). Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x 0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang. Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total samadengan 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F 0 = -kx 0 ) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak. Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang. Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Ketika benda kita diamkan sesaat (belum dilepaskan), EP benda bernilai maksimum sedangkan EK = 0. EP maksimum karena benda berada pada simpangan sejauh x. EK = 0 karena benda masih diam. Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. Ketika mencapai titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks). Pada posisi ini, EK bernilai maksimum, sedangkan EP = 0. EK maksimum karena v maks, sedangkan EP = 0, karena benda berada pada titik setimbang (x = 0).

10 Karena pada posisi setimbang kecepatan gerak benda maksimum, maka benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun akibat adanya gaya berat yang menarik benda ke bawah, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Ketika benda berada pada simpangan sejauh -x, EP bernilai maksimum sedangkan EK = 0. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Selama benda bergerak, selalu terjadi perubahan energi antara EP dan EK. Energi Mekanik bernilai tetap. Ketika benda berada pada titik kesetimbangan (x = 0), EM = EK. Ketika benda berada pada simpangan sejauh -x atau +x, EM = EP. Energi Potensial sebuah pegas dengan konstanta gaya k yang teregang sejauh x dari kesetimbangannya dinyatakan dengan persamaan : Energi Kinetik sebuah benda bermassa m yang bergerak dengan kelajuan v ialah : Energi Total (Energi Mekanik) adalah jumlah Energi Potensial dan Energi Kinetik : Ketika benda berada pada simpangan maksimum, x = A (A = Amplitudo), kecepatan benda = 0, sehingga Energi Mekanik benda : Persamaan ini memberikan sifat umum penting yang dimiliki Gerak Harmonik Sederhana (GHS) : Energi total pada Gerak Harmonik Sederhana berbanding lurus dengan kuadrat amplitudo. III. PERALATAN 1. Pegas

11 2. Mistar 3. Statif dan penjepitnya 4. Stopwatch 5. Beban IV. PROSEDUR PERCOBAAN 1. Pegas digantung pada tempat yang the dipersiapkan 2. Beban m ditempatkan pada pegas dan dimulai pada massa beban yang paling kecil 3. Beban disimpangkan dari posisi setimbangnya dan dilepaskan, maka sistem massa pegas akan berosilasi. Lalu waktu untuk 15 kali osilasi dicatat dan percobaan diulangi 3 kali. 4. Langkah ( 3 ) dilakukan lagi untuk beban yang berbeda Contoh rangkaian alat : V. DATA PERCOBAAN Percobaan I Tabel 5.1 Panjang Pegas Percobaan ( cm ) Massa Beban ( gr ) Waktu untuk 15 kali berosilasi ( s ) 1 25 cm 20 gr 5,28 s 2 5,13 s

12 3 5,35 s 4 5,28 s 5 5,25 s Rata Rata 5,258 s Percobaan II Tabel 5.2 Panjang Pegas Percobaan ( cm ) 1 Massa Beban ( gr ) Waktu untuk 15 kali berosilasi ( s ) 6,15 s 2 6,06 s 3 26 cm 50 gr 6,25 s 4 6,26 s 5 6,10 s Rata Rata 6,164 s Percobaan III Tabel 5.3 Panjang Pegas Percobaan ( cm ) 1 Massa Beban ( gr ) Waktu untuk 15 kali berosilasi ( s ) 7,01 s 2 7,23 s 3 28 cm 100 gr 7,00 s 4 7,18 s 5 7,18 s Rata Rata 7,120 s

13 VI. PERHITUNGAN Percobaan I Untuk beban dengan massa 20 gr dan pertambahan panjang pegas 25,5 cm Diketahui : m = 20 gr = 0,02 kg = 3,14 waktu untuk 15 kali berosilasi = 5,28 s maka periode untuk satu kali berosilasi : Ditanya : k.? Jawab :

14 Dengan cara perhitungan yang sama diperoleh data sebagai berikut : Tabel 6.1 Percobaan m ( kg ) T ( s ) T 2 ( s 2 ) k ( N/m ) 1 0,35 s 0,122 s 2 6,467 N/m 2 0,34 s 0,115 s 2 6,860 N/m 3 0,02 kg 0,35 s 0,122 s 2 6,467 N/m 4 0,35 s 0,122 s 2 6,467 N/m 5 0,35 s 0,122 s 2 6,467 N/m N/m Percobaan II Untuk beban dengan massa 50 gr dan pertambahan panjang pegas 27 cm Diketahui : m = 50 gr = 0,05 kg = 3,14 waktu untuk 15 kali berosilasi = 6,15 s maka periode untuk satu kali berosilasi : Ditanya : k.?

15 Jawab : Dengan cara perhitungan yang sama diperoleh data sebagai berikut : Tabel 6.2 Percobaan m ( kg ) T ( s ) T 2 ( s 2 ) k ( N/m ) 1 0,41 s 0,168 s 2 11,7 N/m 2 0,40 s 0,160 s 2 12,3 N/m 3 0,05 kg 0,41 s 0,168 s 2 11,7 N/m 4 0,41 s 0,168 s 2 11,7 N/m 5 0,40 s 0,160 s 2 12,3 N/m N/m Percobaan III Untuk beban dengan massa 70 gr dan pertambahan panjang pegas 27,5 cm Diketahui :

16 m = 100 gr = 0,1 kg = 3,14 waktu untuk 15 kali berosilasi = 7,01 s maka periode untuk satu kali berosilasi : Ditanya : k.? Jawab : Dengan cara perhitungan yang sama diperoleh data sebagai berikut : Tabel 6.3 Percobaan m ( kg ) T ( s ) T 2 ( s 2 ) k ( N/m ) 1 0,1 0,46 s 0,21 s 2 18,76 N/m

17 2 0,48 s 0,23 s 2 17,13 N/m 3 0,46 s 0,21 s 2 18,76 N/m 4 0,47 s 0,22 s 2 17,90 N/m 5 0,47 s 0,22 s 2 17,90 N/m N/m VII. GRAFIK Berikut grafik mengenai massa beban ( g ), periode rata rata ( s 2 ) dan konstanta pegas : Tabel 7.1 Percobaan Massa Beban ( g ) Periode Rata Rata ( s 2 ) Konstanta Pegas Rata Rata ( N/m ) 1 20 g 0,121 s 2 6,55 N/m 2 50 gr 0,696 s 2 11,94 N/m gr 0,218 s 2 18,09 N/m Grafik 7.1

18 VIII. RALAT Percobaan I Untuk beban dengan massa 20 gr Tabel 8.1 No T ( s ) ( s 2 ) ( s ) ( s ) 1 0,35 s 0,121 s 2 0,229 s 0,052 s 2 2 0,34 s 0,121 s 2 0,219 s 0,047 s 2 3 0,35 s 0,121 s 2 0,229 s 0,052 s 2 4 0,35 s 0,121 s 2 0,229 s 0,052 s 2 5 0,35 s 0,121 s 2 0,229 s 0,052 s 2 0,225 s 2

19 Ralat nisbi: Kebenaran praktikum : Percobaan II Untuk beban dengan massa 50 gr Tabel 8.2 No T ( s ) ( s 2 ) ( s ) ( s ) 1 0,41 s 0,696s 2 0,286 s 0,081 s 2 2 0,40 s 0,696 s 2 0,296 s 0,087 s 2 3 0,41 s 0,696 s 2 0,286 s 0,081 s 2 4 0,41 s 0,696 s 2 0,286 s 0,081 s 2 5 0,40 s 0,696 s 2 0,296 s 0,087 s 2 0,417 s 2

20 Ralat nisbi: Kebenaran praktikum : Percobaan III Untuk beban dengan massa 100 gr Tabel 8.3 No T ( s ) ( s 2 ) ( s ) ( s ) 1 0,46 s 0,218s 2 0,242 s 0,058 s 2 2 0,48 s 0,218 s 2 0,262 s 0,068 s 2 3 0,46 s 0,218 s 2 0,242 s 0,058 s 2 4 0,47 s 0,218 s 2 0,252 s 0,063 s 2 5 0,47 s 0,218 s 2 0,252 s 0,063 s 2 0,062 s 2

21 Ralat nisbi: Kebenaran praktikum : PEMBAHASAN Pada praktikum kali ini saya melakukan pengukuran waktu yang dibutuhkan benda dalam melakukan osilasi terhadap pegas yang digantungkan pada statif. Dari hasil yang saya peroleh cepat atau lambatnya waktu yang dibutuhkan tergantung pada massa beban yang digantungkan. Semakin berat maka waktunya akan semakin lambat. Saya melakukan percobaan ini sebanyak 3 kali dengan masing masing pengambilan data sebanyak 5 kali. Dan beban yang digunakan mulai dari 20 gram, kemudian bertambah menjadi 50 gram dan terakhir 70 gram. Setelah itu saya pun menghitung berapa periode dari pegas tersebut dengan membandingkan lamanya waktu berosilasi dengan banyaknya osilasi. Dari percobaan ini didapatkan data yang bervariasi sebab dilakukan beberapa kali. Dari data itu kami melakukan perhitungan serta mencari ralat keraguan untuk mengetahui apakah percobaan yang kami lakukan adalah benda. Dalam percobaan ini gaya pemulihan terjadi. Yaitu gaya dimana jika pegas yang diberi simpangan sejauh y dari posisi keseimbangannya akan bergerak

22 bolak balik melalui titik keseimbangan tersebut ketika akan dilepaskan. Gerakan ini disebabkan oleh gaya pemulih yang bekerja pada pegas. Gaya pemulih ini berusaha untuk mengembalikan posisi benda ke posisi keseimbangannya. Besar gaya pemulih berbanding lurus dengan besar simpangan dan arahnya berlawanan dengan arah simpangan. Dalam percobaan ini juga terjadi Hukum Hooke yang berbunyi jika gaya tarik tidak melampaui batas elastis pegas, pertambahan panjang pegas berbanding lurus ( sebanding ) dengan gaya tariknya.

23 V. KESIMPULAN Dari percobaan di atas dapat ditarik kesimuplan : 1. Konstanta pegas dapat ditentukan dengan rumus 2. Pada pegas terjadi gaya pemulihan dan Hukum Hooke

24 DAFTAR PUSTAKA Tim Dosen Fisika Dasar, Panduan Praktikum Fisika Dasar I. Jimbaran: Universitas Udayana. Tipler, Fisika untuk Sains dan Teknik, Jilid I, penerbit Erlangga Jakarta. Kanginan, Marthen, dkk Fisika. Jilid 2. Jakarta: Erlangga Soetrisno Fisika Dasar. Bandung : Penerbit ITB Bresnick, Stephen Intisari Fisika. Jakrta : Hipokrates.

BAB 11 ELASTISITAS DAN HUKUM HOOKE

BAB 11 ELASTISITAS DAN HUKUM HOOKE BAB ELASTISITAS DAN HUKUM HOOKE TEGANGAN (STRESS) Adalah hasil bagi antara gaya tarik F yang dialami kawat dengan luas penampang A. Tegangan F A REGANGAN (STRAIN) Adalah hasil bagi antara pertambahan panjang

Lebih terperinci

Makalah Fisika Bandul (Gerak Harmonik Sederhana)

Makalah Fisika Bandul (Gerak Harmonik Sederhana) Makalah Fisika Bandul (Gerak Harmonik Sederhana) BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari kita tidak terlepas dari ilmu fisika, dimulai dari yang ada dari diri kita sendiri seperti

Lebih terperinci

LAPORAN PRAKTIKUM MENGHITUNG KONSTANTA PEGAS. A. TUJUAN Tujuan diadakannya percobaan ini adalah menentukan konstanta pegas.

LAPORAN PRAKTIKUM MENGHITUNG KONSTANTA PEGAS. A. TUJUAN Tujuan diadakannya percobaan ini adalah menentukan konstanta pegas. LAPORAN PRAKTIKUM MENGHITUNG KONSTANTA PEGAS A. TUJUAN Tujuan diadakannya percobaan ini adalah menentukan konstanta pegas. B. LANDASAN TEORI Jika sebuah pegas ditarik dengan gaya tertentu, maka panjangnya

Lebih terperinci

Bab III Elastisitas. Sumber : Fisika SMA/MA XI

Bab III Elastisitas. Sumber :  Fisika SMA/MA XI Bab III Elastisitas Sumber : www.lib.ui.ac Baja yang digunakan dalam jembatan mempunyai elastisitas agar tidak patah apabila dilewati kendaraan. Agar tidak melebihi kemampuan elastisitas, harus ada pembatasan

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

Menguasai Konsep Elastisitas Bahan. 1. Konsep massa jenis, berat jenis dideskripsikan dan dirumuskan ke dalam bentuk persamaan matematis.

Menguasai Konsep Elastisitas Bahan. 1. Konsep massa jenis, berat jenis dideskripsikan dan dirumuskan ke dalam bentuk persamaan matematis. SIFAT ELASTIS BAHAN Menguasai Konsep Elastisitas Bahan Indikator : 1. Konsep massa jenis, berat jenis dideskripsikan dan dirumuskan ke dalam bentuk persamaan matematis. Hal.: 2 Menguasai Konsep Elastisitas

Lebih terperinci

BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI

BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI Analisis gerak pada roller coaster Energi kinetik Energi yang dipengaruhi oleh gerakan benda. Energi potensial Energi yang

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI 2. Sistem Osilasi Pegas A. Tujuan 1. Menentukan besar konstanta gaya pegas tunggal 2. Menentukan besar percepatan gravitasi bumi dengan sistem pegas 3. Menentukan konstanta gaya pegas gabungan (specnya)

Lebih terperinci

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI 2. Sistem Osilasi Pegas A. Tujuan 1. Menentukan besar konstanta gaya pegas tunggal 2. Menentukan besar percepatan gravitasi bumi dengan sistem pegas 3. Menentukan konstanta gaya pegas gabungan (specnya)

Lebih terperinci

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana MODUL PERKULIAHAN OSILASI Bagian- Fakultas Program Studi atap Muka Kode MK Disusun Oleh eknik eknik Elektro 3 MK4008, S. M Abstract Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik

Lebih terperinci

Kalian sudah mengetahui usaha yang dilakukan untuk memindahkan sebuah benda ke arah horisontal, tetapi bagaimanakah besarnya usaha yang dilakukan

Kalian sudah mengetahui usaha yang dilakukan untuk memindahkan sebuah benda ke arah horisontal, tetapi bagaimanakah besarnya usaha yang dilakukan Kalian sudah mengetahui usaha yang dilakukan untuk memindahkan sebuah benda ke arah horisontal, tetapi bagaimanakah besarnya usaha yang dilakukan untuk memindahkan sebuah benda ke arah vertikal? Memindahkan

Lebih terperinci

1. PERUBAHAN BENTUK 1.1. Regangan :

1. PERUBAHAN BENTUK 1.1. Regangan : Elastisitas merupakan kemampuan suatu benda untuk kembali kebentuk awalnya segera setelah gaya luar yang diberikan kepadanya dihilangkan (dibebaskan). Misalnya karet, pegas dari logam, pelat logam dan

Lebih terperinci

Hukum Kekekalan Energi Mekanik

Hukum Kekekalan Energi Mekanik Hukum Kekekalan Energi Mekanik Konsep Hukum Kekekalan Energi Dalam kehidupan kita sehari-hari terdapat banyak jenis energi. Selain energi potensial dan energi kinetik pada benda-benda biasa (skala makroskopis),

Lebih terperinci

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG ELASTISITAS DAN HUKUM HOOKE (Pegas)

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG ELASTISITAS DAN HUKUM HOOKE (Pegas) 1. EBTANAS-02-08 Grafik berikut menunjukkan hubungan F (gaya) terhadap x (pertambahan panjang) suatu pegas. Jika pegas disimpangkan 8 cm, maka energi potensial pegas tersebut adalah A. 1,6 10-5 joule B.

Lebih terperinci

Bab III Elastisitas. Sumber : Fisika SMA/MA XI

Bab III Elastisitas. Sumber :  Fisika SMA/MA XI Bab III Elastisitas Sumber : www.lib.ui.ac Baja yang digunakan dalam jembatan mempunyai elastisitas agar tidak patah apabila dilewati kendaraan. Agar tidak melebihi kemampuan elastisitas, harus ada pembatasan

Lebih terperinci

Energi didefinisikan sebagai kemampuan untuk melakukan usaha. Suatu benda dikatakan memiliki energi jika benda tersebut dapat melakukan usaha.

Energi didefinisikan sebagai kemampuan untuk melakukan usaha. Suatu benda dikatakan memiliki energi jika benda tersebut dapat melakukan usaha. Energi didefinisikan sebagai kemampuan untuk melakukan usaha. Suatu benda dikatakan memiliki energi jika benda tersebut dapat melakukan usaha. Misalnya kendaraan dapat mengangkat barang karena memiliki

Lebih terperinci

GERAK OSILASI. Penuntun Praktikum Fisika Dasar : Perc.3

GERAK OSILASI. Penuntun Praktikum Fisika Dasar : Perc.3 GERAK OSILASI I. Tujuan Umum Percobaan Mahasiswa akan dapat memahami dinamika sistem yang bersifat bolak-balik khususnya sistem yang bergetar secara selaras. II Tujuan Khusus Percobaan 1. Mengungkapkan

Lebih terperinci

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG GETARAN

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG GETARAN Mata Pelajaran : Fisika Guru : Arnel Hendri, SPd., M.Si Nama Siswa :... Kelas :... EBTANAS-06-24 Pada getaran selaras... A. pada titik terjauh percepatannya maksimum dan kecepatan minimum B. pada titik

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 4 MODULUS ELASTISITAS

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 4 MODULUS ELASTISITAS LAPORAN PRAKTIKUM FISIKA DASAR MODUL 4 MODULUS ELASTISITAS Nama : Nova Nurfauziawati NPM : 240210100003 Tanggal / jam : 21 Oktober 2010 / 13.00-15.00 WIB Asisten : Dicky Maulana JURUSAN TEKNOLOGI INDUSTRI

Lebih terperinci

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI 2. Sistem Osilasi Pegas 1. Tujuan 2. Menentukan besar konstanta gaya pegas tunggal 3. Menentukan besar percepatan gravitasi bumi dengan sistem pegas 4. Menentukan konstanta gaya pegas gabungan 2. Alat

Lebih terperinci

Materi Pendalaman 01:

Materi Pendalaman 01: Materi Pendalaman 01: GETARAN & GERAK HARMONIK SEDERHANA 1 L T (1.) f g Contoh lain getaran harmonik sederhana adalah gerakan pegas. Getaran harmonik sederhana adalah gerak bolak balik yang selalu melewati

Lebih terperinci

TKS-4101: Fisika MENERAPKAN KONSEP USAHA DAN ENERGI J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika MENERAPKAN KONSEP USAHA DAN ENERGI J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika MENERAPKAN KONSEP USAHA DAN ENERGI Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Indikator : 1. Konsep usaha sebagai hasil

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB IV MODULUS YOUNG Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Teori & Soal GGB Getaran - Set 08

Teori & Soal GGB Getaran - Set 08 Xpedia Fisika Teori & Soal GGB Getaran - Set 08 Doc Name : XPFIS0108 Version : 2013-02 halaman 1 01. Menurut Hukum Hooke untuk getaran suatu benda bermassa pada pegas ideal, panjang peregangan yang dijadikan

Lebih terperinci

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga ENERGI POTENSIAL 1. Pendahuluan Energi potensial merupakan suatu bentuk energi yang tersimpan, yang dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga potensial tidak dapat dikaitkan

Lebih terperinci

KARAKTERISTIK GERAK HARMONIK SEDERHANA

KARAKTERISTIK GERAK HARMONIK SEDERHANA KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter

Lebih terperinci

Kompetensi Dasar: 3.6 Menganalisis sifat elastisitas bahan dalam kehidupan sehari-hari. Tujuan Pembelajaran:

Kompetensi Dasar: 3.6 Menganalisis sifat elastisitas bahan dalam kehidupan sehari-hari. Tujuan Pembelajaran: ELASTISITAS Kalian pasti sudah mengenal alat-alat sebagai berikut. Plastisin, pegas pada sepeda, motor dan lain-lainnya, benda-benda tersebut dinamakan bahan elastisitas. Bahkan kalian juga pernah meregangkan

Lebih terperinci

Bahan Ajar USAHA, ENERGI, DAN DAYA NURUL MUSFIRAH 15B08055 PROGRAM PASCA SARJANA UNIVERSITAS NEGERI MAKASSAR PROGRAM STUDI PEDIDIKAN FISIKA

Bahan Ajar USAHA, ENERGI, DAN DAYA NURUL MUSFIRAH 15B08055 PROGRAM PASCA SARJANA UNIVERSITAS NEGERI MAKASSAR PROGRAM STUDI PEDIDIKAN FISIKA Bahan Ajar USAHA, ENERGI, DAN DAYA NURUL MUSFIRAH 15B08055 PROGRAM PASCA SARJANA UNIVERSITAS NEGERI MAKASSAR Bahan Ajar PROGRAM STUDI PEDIDIKAN FISIKA BAB IV Usaha, Energi, dan Daya 1. Usaha Pada saat

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

PENENTUAN KONSTANTA PEGAS DENGAN CARA STATIS DAN DINAMIS. Oleh:

PENENTUAN KONSTANTA PEGAS DENGAN CARA STATIS DAN DINAMIS. Oleh: PENENTUAN KONSTANTA PEGAS DENGAN CARA STATIS DAN DINAMIS Oleh: Elisa 1 dan Yenni Claudya 2 2) 1) Mahasiswa Studi Pendidikan Fisika FKIP Universitas Syiah Kuala Staf Pengajar Program Studi Pendidikan Fisika

Lebih terperinci

K13 Antiremed Kelas 10 Fisika

K13 Antiremed Kelas 10 Fisika K3 Antiremed Kelas 0 Fisika Persiapan UTS Semester Genap Halaman 0. Sebuah pegas disusun paralel dengan masingmasing konstanta sebesar k = 300 N/m dan k 2 = 600 N/m. Jika pada pegas tersebut diberikan

Lebih terperinci

TUJUAN PERCOBAAN II. DASAR TEORI

TUJUAN PERCOBAAN II. DASAR TEORI I. TUJUAN PERCOBAAN 1. Menentukan momen inersia batang. 2. Mempelajari sifat sifat osilasi pada batang. 3. Mempelajari sistem osilasi. 4. Menentukan periode osilasi dengan panjang tali dan jarak antara

Lebih terperinci

JURNAL FISIKA DASAR. Edisi Desember 2015 TETAPAN PEGAS. Abstrak

JURNAL FISIKA DASAR. Edisi Desember 2015 TETAPAN PEGAS.   Abstrak JURNAL FISIKA DASAR Edisi Desember 2015 TETAPAN PEGAS Vivi Eka Oktavia 1) Miftachul Khoiriah 1) Putri Ayu Rachmawati 1) 1) Prodi Pendidikan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

GETARAN PEGAS SERI-PARALEL

GETARAN PEGAS SERI-PARALEL 1 GETARAN PEGAS SERI-PARALEL I. Tujuan Percobaan 1. Menentukan konstanta pegas seri, paralel dan seri-paralel (gabungan). 2. Mebuktikan Huku Hooke. 3. Mengetahui hubungan antara periode pegas dan assa

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Dalam mempelajari masalah gerak pada gelombang atau gerak harmonik, kita mengenal yang namanya PERIODE, FREKUENSI DAN

Lebih terperinci

Getaran, Gelombang dan Bunyi

Getaran, Gelombang dan Bunyi Getaran, Gelombang dan Bunyi Getaran 01. EBTANAS-06- Pada getaran selaras... A. pada titik terjauh percepatannya maksimum dan kecepatan minimum B. pada titik setimbang kecepatan dan percepatannya maksimum

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas 11 FISIKA Gerak Harmonis - Soal Doc Name: K1AR11FIS0401 Version : 014-09 halaman 1 01. Dalam getaran harmonik, percepatan getaran (A) selalu sebanding dengan simpangannya tidak bergantung

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

FIsika USAHA DAN ENERGI

FIsika USAHA DAN ENERGI KTSP & K-3 FIsika K e l a s XI USAHA DAN ENERGI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami konsep usaha dan energi.. Menjelaskan hubungan

Lebih terperinci

LAMPIRAN B2. KISI-KISI SOAL TES KETERAMPILAN PROSES SAINS : Sekolah Mengengah Atas

LAMPIRAN B2. KISI-KISI SOAL TES KETERAMPILAN PROSES SAINS : Sekolah Mengengah Atas LAMPIRAN B2 Sekolah Mata Pelajaran Kelas/Semester Sub Materi Pokok KISI-KISI SOAL TES KETERAMPILAN PROSES SAINS : Sekolah Mengengah Atas : Fisika : X/Ganjil : Elastisitas Bahan Kompetensi Dasar dan Indikator

Lebih terperinci

GETARAN, GELOMBANG DAN BUNYI

GETARAN, GELOMBANG DAN BUNYI GETARAN, GELOMBANG DAN BUNYI Getaran, Gelombang dan Bunyi Getaran 01. EBTANAS-06-24 Pada getaran selaras... A. pada titik terjauh percepatannya maksimum dan kecepatan minimum B. pada titik setimbang kecepatan

Lebih terperinci

BAB 9 T U M B U K A N

BAB 9 T U M B U K A N BAB 9 T U M B U K A N 9.1. Pendahuluan Dalam kehidupan sehari-hari, kita biasa menyaksikan bendabenda saling bertumbukan. Banyak kecelakaan yang terjadi di jalan raya sebagiannya disebabkan karena tabrakan

Lebih terperinci

K13 Revisi Antiremed Kelas 10 FISIKA

K13 Revisi Antiremed Kelas 10 FISIKA K Revisi Antiremed Kelas 0 FISIKA Getaran Harmonis - Soal Doc Name: RKAR0FIS00 Version : 06-0 halaman 0. Dalam getaran harmonik, percepatan getaran (A) selalu sebanding dengan simpangannya tidak bergantung

Lebih terperinci

BAB USAHA DAN ENERGI

BAB USAHA DAN ENERGI BAB USAHA DAN ENERGI. Seorang anak mengangkat sebuah kopor dengan gaya 60 N. Hitunglah usaha yang telah dilakukan anak tersebut ketika: (a anak tersebut diam di tempat sambail menyangga kopor di atas kepalanya.

Lebih terperinci

Susana Endah Sri Hartati, 2016 Penerapan Model Pembelajaran Learning Cycle 5E Dengan Menyisipkan Predict-Observe-Explain (POE) Pada Tahap Explore

Susana Endah Sri Hartati, 2016 Penerapan Model Pembelajaran Learning Cycle 5E Dengan Menyisipkan Predict-Observe-Explain (POE) Pada Tahap Explore Susana Endah Sri Hartati, 06 Penerapan Model Pembelajaran Learning Cycle 5E Dengan Menyisipkan Predict-Observe-Explain (POE) Pada Tahap Explore Terhadap 88 Kisi-Kisi Instrumen Tes Elastisitas No. (C)Mengingat

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

Materi dan Soal : USAHA DAN ENERGI

Materi dan Soal : USAHA DAN ENERGI Materi dan Soal : USAHA DAN ENERGI Energi didefinisikan sebagai besaran yang selalu kekal. Energi tidak dapat diciptakan dan dimusnahkan. Energi hanya dapat berubah dari satu bentuk ke bentuk lainnya.

Lebih terperinci

KERJA DAN ENERGI. 4.1 Pendahuluan

KERJA DAN ENERGI. 4.1 Pendahuluan IV KERJA DAN ENERGI Kompetensi yang ingin dicapai setelah mempelajari bab ini adalah kemampuan memahami, menganalisis dan mengaplikasikan konsep-konsep kerja dan energi pada kehidupan sehari-hari ataupun

Lebih terperinci

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. Dinamika Page 1/11 Gaya Termasuk Vektor DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. GAYA TERMASUK VEKTOR, penjumlahan gaya = penjumlahan

Lebih terperinci

SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA

SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA J A Y A R A Y A PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA Jalan Bhakti IV/1 Komp. Pajak Kemanggisan Telp. 5327115/5482914 Website

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR Modulus Young

LAPORAN PRAKTIKUM FISIKA DASAR Modulus Young LAPORAN PRAKTIKUM FISIKA DASAR Modulus Young Nama : Sajidin NPM : 240110120082 Kelompok : 4 Shift : TMIP-B1 Hari/Tanggal : Rabu, 3 Oktober 2012 Waktu : 08.00-10.00 Asisten : Annisa Oktaviani LABORATORIUM

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Nama sekolah : SMA... Mata Pelajaran : Fisika Kelas/Semester : XI/1 per Semester: 72 jam pelajaran Standar : 1. Menganalisis gejala alam dan keteraturannya dalam cakupan a benda titik

Lebih terperinci

Kegiatan Belajar 7 MATERI POKOK : USAHA DAN ENERGI

Kegiatan Belajar 7 MATERI POKOK : USAHA DAN ENERGI Kegiatan Belajar 7 MATERI POKOK : USAHA DAN ENERGI A. URAIAN MATERI: 1. Usaha/Kerja (Work) Dalam ilmu fisika, usaha mempunyai arti jika sebuah benda berpindah tempat sejauh d karena pengaruh yang searah

Lebih terperinci

Uraian Materi. W = F d. A. Pengertian Usaha

Uraian Materi. W = F d. A. Pengertian Usaha Salah satu tempat seluncuran air yang popular adalah di taman hiburan Canada. Anda dapat merasakan meluncur dari ketinggian tertentu dan turun dengan kecepatan tertentu. Energy potensial dikonversikan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar. Senar gitar yang sering anda main atau dimainkan oleh gitaris grup band musik terkenal yang kadang

Lebih terperinci

menganalisis suatu gerak periodik tertentu

menganalisis suatu gerak periodik tertentu Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak

Lebih terperinci

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA GELOMBAG : Gerak Harmonik Sederhana M. Ishaq Pendahuluan Gerak harmonik adalah sebuah kajian yang penting terutama jika anda bergelut dalam bidang teknik, elektronika, geofisika dan lain-lain. Banyak gejala

Lebih terperinci

BAB 4 USAHA DAN ENERGI

BAB 4 USAHA DAN ENERGI 113 BAB 4 USAHA DAN ENERGI Sumber: Serway dan Jewett, Physics for Scientists and Engineers, 6 th edition, 2004 Energi merupakan konsep yang sangat penting, dan pemahaman terhadap energi merupakan salah

Lebih terperinci

DR. Ibnu Mas ud (drim)

DR. Ibnu Mas ud (drim) DR. Ibnu Mas ud (drim) Guru Fisika SMK Negeri 8 Malang Jl. Kurma No. 05 Kampung Mandar Sapeken Hp. 0856 4970 2765 0852 3440 0737 KATA PENGANTAR Syukur dan alhamdulillah selalu dipanjatkan oleh penulis

Lebih terperinci

DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS NEGERI SURABAYA FAKULTAS ILMU PENDIDIKAN LABORATORIUM IPA S-1 PGSD

DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS NEGERI SURABAYA FAKULTAS ILMU PENDIDIKAN LABORATORIUM IPA S-1 PGSD DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS NEGERI SURABAYA FAKULTAS ILMU PENDIDIKAN LABORATORIUM IPA S-1 PGSD Kampus UNESA Lidah Wetan Surabaya Tepl. (031) Nama : EVIKA MINARISKAWATI Kode Percobaan : 7

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

ANTIREMED KELAS 10 FISIKA

ANTIREMED KELAS 10 FISIKA ANTIREMED KELAS 10 FISIKA Persiapan UTS Doc. Name: AR10FIS0UTS Doc. Version: 014-10 halaman 1 01. Grafik di bawah ini melukiskan hubungan antara gaya F yang bekerja pada kawat dan pertambahan panjang /

Lebih terperinci

HUKUM - HUKUM NEWTON TENTANG GERAK.

HUKUM - HUKUM NEWTON TENTANG GERAK. DINAMIKA GERAK HUKUM - HUKUM NEWTON TENTANG GERAK. GERAK DAN GAYA. Gaya : ialah suatu tarikan atau dorongan yang dapat menimbulkan perubahan gerak. Dengan demikian jika benda ditarik/didorong dan sebagainya

Lebih terperinci

Hukum gravitasi yang ada di jagad raya ini dijelaskan oleh Newton dengan persamaan sebagai berikut :

Hukum gravitasi yang ada di jagad raya ini dijelaskan oleh Newton dengan persamaan sebagai berikut : PENDAHULUAN Hukum gravitasi yang ada di jagad raya ini dijelaskan oleh Newton dengan persamaan sebagai berikut : F = G Dimana : F = Gaya tarikan menarik antara massa m 1 dan m 2, arahnya menurut garispenghubung

Lebih terperinci

Laporan Praktikum Fisika

Laporan Praktikum Fisika Laporan Praktikum Fisika A. Judul Hukum Kekekalan Energi Mekanik. B. Tujuan Praktikum Dengan dilakukannya percobaan ini, diharapkan mahasiswa dapat memverifikasi membuktikan kebenaran dari hukum kekekalan

Lebih terperinci

PENDAHULUAN. berkaitan dengan Modulus Young adalah elastisitas. tersebut berubah.untuk pegas dan karet, yang dimaksudkan dengan perubahan

PENDAHULUAN. berkaitan dengan Modulus Young adalah elastisitas. tersebut berubah.untuk pegas dan karet, yang dimaksudkan dengan perubahan 1 PENDAHULUAN Latar Belakang Penggunaan bahan-bahan teknik secara tepat dan efisien membutuhkan pengetahuan yang luas akan sifat-sifat mekanisnya. Diantara sifat ini yang berkaitan dengan Modulus Young

Lebih terperinci

Konsep Dasar Getaran dan Gelombang Kasus: Pegas. Powerpoint presentation by Muchammad Chusnan Aprianto

Konsep Dasar Getaran dan Gelombang Kasus: Pegas. Powerpoint presentation by Muchammad Chusnan Aprianto Konsep Dasar Getaran dan Gelombang Kasus: Pegas Powerpoint presentation by Muchammad Chusnan Aprianto Definisi Gerak periodik adalah gerakan maju dan mundur atau melingkar pada lintasan yang sama untuk

Lebih terperinci

PENGGUNAAN LOGGER PRO UNTUK ANALISIS GERAK HARMONIK SEDERHANA PADA SISTEM PEGAS MASSA

PENGGUNAAN LOGGER PRO UNTUK ANALISIS GERAK HARMONIK SEDERHANA PADA SISTEM PEGAS MASSA PENGGUNAAN LOGGER PRO UNTUK ANALISIS GERAK HARMONIK SEDERHANA PADA SISTEM PEGAS MASSA DANDAN LUHUR SARASWATI dandanluhur09@gmail.com Program Studi Pendidikan Fisika Fakultas Teknik, Matematika dan Ilmu

Lebih terperinci

BAB GETARAN HARMONIK

BAB GETARAN HARMONIK BAB GETARAN HARMONIK Tujuan Pembelajaran Setelah mempelajari materi pada bab ini, diharapkan Anda mampu menganalisis, menginterpretasikan dan menyelesaikan permasalahan yang terkait dengan konsep hubungan

Lebih terperinci

ANTIREMED KELAS 11 FISIKA

ANTIREMED KELAS 11 FISIKA ANTIRMD KLAS 11 FISIKA Persiapan UAS 1 Fisika Doc. Name: AR11FIS01UAS Version : 016-08 halaman 1 01. Jika sebuah partikel bergerak dengan persamaan posisi r = 5t + 1, maka kecepatan rata-rata antara t

Lebih terperinci

BAB VI Usaha dan Energi

BAB VI Usaha dan Energi BAB VI Usaha dan Energi 6.. Usaha Pengertian usaha dalam kehidupan sehari-hari adalah mengerahkan kemampuan yang dimilikinya untuk mencapai. Dalam fisika usaha adalah apa yang dihasilkan gaya ketika gaya

Lebih terperinci

HANDOUT PEGAS SUSUNAN SERI DAN PARALEL

HANDOUT PEGAS SUSUNAN SERI DAN PARALEL HANDOUT PEGAS SUSUNAN SERI DAN PARALEL Sekolah Mata Pelajaran Kelas/Semester Materi Pokok Alokasi Waktu : SMA : Fisika : X/II : Susunan Pegas : 1 x Pertemuan F. Kompetensi Inti KI 1 : Menghayati ajaran

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 Revisi Antiremed Kelas 10 Fisika Persiapan Penilaian Akhir Semester (PAS) Genap Halaman 1 01. Dalam getaran harmonik, percepatan getaran... (A) selalu sebanding dengan simpangannya (B) tidak bergantung

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

SOAL UN FISIKA DAN PENYELESAIANNYA 2005 2. 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

TES STANDARISASI MUTU KELAS XI

TES STANDARISASI MUTU KELAS XI TES STANDARISASI MUTU KELAS XI. Sebuah partikel bergerak lurus dari keadaan diam dengan persamaan x = t t + ; x dalam meter dan t dalam sekon. Kecepatan partikel pada t = 5 sekon adalah ms -. A. 6 B. 55

Lebih terperinci

Membahas mengenai gerak dari suatu benda dalam ruang 3 dimensi tanpa

Membahas mengenai gerak dari suatu benda dalam ruang 3 dimensi tanpa Kinematika, Dinamika Gaya, & Usaha-Energi Kinematika Membahas mengenai gerak dari suatu benda dalam ruang 3 dimensi tanpa memperhitungkan gaya yang menyebabkannya. Pembahasan meliputi : posisi, kecepatan

Lebih terperinci

SILABUS. Mata Pelajaran : Fisika 2 Standar Kompetensi : 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik

SILABUS. Mata Pelajaran : Fisika 2 Standar Kompetensi : 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik SILABUS Mata Pelajaran : Fisika 2 Standar Kompetensi : 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik Kompetensi Dasar Kegiatan Indikator Penilaian Alokasi 1.1 Menganalisis

Lebih terperinci

BAB 6 SIFAT MEKANIK BAHAN

BAB 6 SIFAT MEKANIK BAHAN 143 BAB 6 SIFAT MEKANIK BAHAN Bahan-bahan terdapat disekitar kita dan telah menjadi bagian dari kebudayaan dan pola berfikir manusia. Bahan telah menyatu dengan peradaban manusia, sehingga manusia mengenal

Lebih terperinci

Gerak Harmonis. Sederhana SUB- BAB. A. Gaya Pemulih

Gerak Harmonis. Sederhana SUB- BAB. A. Gaya Pemulih SUB- BAB Gerak Harmonis A. Gaya Pemulih Sederhana B. Persamaan Simpangan, Kecepatan dan Percepatan Getaran C. Periode Getaran D. Hukum Hooke E. Manfaat Pegas Sebagai Produk Perkembangan Konsep dan Keahlian

Lebih terperinci

FIS-3.2/4.2/3/2-2 ELASTISITAS. a. Nama Mata Pelajaran : Fisika b. Semester : 3 c. Kompetensi Dasar :

FIS-3.2/4.2/3/2-2 ELASTISITAS. a. Nama Mata Pelajaran : Fisika b. Semester : 3 c. Kompetensi Dasar : FIS-3.2/4.2/3/2-2 ELASTISITAS 1. IDENTITAS a. Nama Mata Pelajaran : Fisika b. Semester : 3 c. Kompetensi Dasar : 3.2 Menganalisis sifat elastisitas bahan dalam kehidupan sehari-hari 4.2 Melakukan percobaan

Lebih terperinci

BAB V USAHA DAN ENERGI

BAB V USAHA DAN ENERGI BAB V USAHA DAN ENERGI Usaha Dengan Gaya Konstan Usaha atau kerja (work) dalam fisika sedikit berbeda dengan pengertian dengan pemahaman sehari-hari kita. Kita bisa beranggapan bahwa kita melakukan kerja

Lebih terperinci

Usaha dan Energi. Edisi Kedua. Untuk SMA kelas XI. (Telah disesuaikan dengan KTSP)

Usaha dan Energi. Edisi Kedua. Untuk SMA kelas XI. (Telah disesuaikan dengan KTSP) Usaha dan Energi Edisi Kedua Untuk SMA kelas XI (Telah disesuaikan dengan KTSP) Lisensi Dokumen : Copyright 2008 2009 GuruMuda.Com Seluruh dokumen di GuruMuda.Com dapat digunakan dan disebarkan secara

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

BAB 4 USAHA DAN ENERGI

BAB 4 USAHA DAN ENERGI BAB 4 USAHA DAN ENERGI 113 BAB 4 USAHA DAN ENERGI Sumber: Serway dan Jewett, Physics for Scientists and Engineers, 6th edition, 2004 Energi merupakan konsep yang sangat penting, dan pemahaman terhadap

Lebih terperinci

BUKU AJAR UNTUK SMA/MA

BUKU AJAR UNTUK SMA/MA BUKU AJAR UNTUK SMA/MA A. ELASTISITAS BAHAN PETUNJUK BELAJAR 1. PETUNJUK SISWA Berdoa sebelum memulai pembelajaran. Bacalah KI, KD dan Indikator pada bahan ajar ini. Bacalah materi dan pahami. Buatlah

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

Latihan Soal UAS Fisika Panas dan Gelombang

Latihan Soal UAS Fisika Panas dan Gelombang Latihan Soal UAS Fisika Panas dan Gelombang 1. Grafik antara tekanan gas y yang massanya tertentu pada volume tetap sebagai fungsi dari suhu mutlak x adalah... a. d. b. e. c. Menurut Hukum Gay Lussac menyatakan

Lebih terperinci

GERAK HARMONIK Gerak Harmonik terdiri atas : 1. Gerak Harmonik Sederhana (GHS) 2. Gerak Harmonik Teredam

GERAK HARMONIK Gerak Harmonik terdiri atas : 1. Gerak Harmonik Sederhana (GHS) 2. Gerak Harmonik Teredam GERAK OSILASI adalah variasi periodik - umumnya terhadap waktu - dari suatu hasil pengukuran, contohnya pada ayunan bandul. Istilah vibrasi sering digunakan sebagai sinonim osilasi, walaupun sebenarnya

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Satuan Pendidikan : SMA Islam Sudirman Ambarawa Mata Pelajaran : Fisika Kelas / Prog / Semester : XI / IPA / 1 Materi Pokok : Hukum Hooke untuk Susunan Seri Pegas Alokasi

Lebih terperinci

PENDIDIKAN FISIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SARJANAWIYATA TAMANSISWA YOGYAKARTA 2014

PENDIDIKAN FISIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SARJANAWIYATA TAMANSISWA YOGYAKARTA 2014 http://materi4fisika.blogspot.co.id/2015/05/laporan-praktikum-percobaanmelde.html LAPORAN PRAKTIKUM FISIKA DASAR II PERCOBAAN MELDE Dosen Pengampu : A. Latar Belakang PENDIDIKAN FISIKA FAKULTAS KEGURUAN

Lebih terperinci

PENUTUP. Berdasarkan hasil analisis deskriptif dan pembahasan dapat disimpulkan

PENUTUP. Berdasarkan hasil analisis deskriptif dan pembahasan dapat disimpulkan BAB V PENUTUP A. Kesimpulan Berdasarkan hasil analisis deskriptif dan pembahasan dapat disimpulkan bahwa secara umum penerapan Pendekatan Kontekstual materi pokok Elastisistas pada peserta didik kelas

Lebih terperinci

BAB III USAHA ENERGI DAN DAYA

BAB III USAHA ENERGI DAN DAYA BAB III USAHA ENERGI DAN DAYA A. USAHA 1. Pengantar Usaha adalah proses suatu perubahan energi atau gaya dikali dengan jarak perpindahan. Usaha termasuk besaran skalar. Di dalam sisi mks usaha dinyatakan

Lebih terperinci

Mahasiswa memahami konsep tentang usaha energi, jenis energi, prinsi usaha dan energi serta daya

Mahasiswa memahami konsep tentang usaha energi, jenis energi, prinsi usaha dan energi serta daya BAB 4 USAHA DAN ENERGI A. Tujuan Umum Mahasiswa memahami konsep tentang usaha energi, jenis energi, prinsi usaha dan energi serta daya B. Tujuan Khusus Mahasiswa dapat memahami tentang energi, dapat menyebutkan

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR. Modulus Elastisitas. Disusun Oleh :

LAPORAN PRAKTIKUM FISIKA DASAR. Modulus Elastisitas. Disusun Oleh : LAPORAN PRAKTIKUM FISIKA DASAR Modulus Elastisitas Disusun Oleh : Nama : Rosaria Puspasari NPM : 240210120119 Kelompok/Shift : 4/B2 Hari/tanggal praktikum : Kamis/11 Oktober 2012 Waktu : 15.00-17.00 Asisten

Lebih terperinci

BAHAN AJAR. Hubungan Usaha dengan Energi Potensial

BAHAN AJAR. Hubungan Usaha dengan Energi Potensial BAHAN AJAR Hubungan Usaha dengan Energi Potensial Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: Treefy Education PEMBAHASAN LATIHAN 1 1.a) Bayangkan bola berada di puncak pipa. Ketika diberikan sedikit dorongan, bola akan bergerak dan menabrak tanah dengan kecepatan. Gerakan tersebut merupakan proses

Lebih terperinci