LKS I. Jumlah barsel suku yang terbentuk... yaitu barsel suku ke... Nilai salah satu suku konstanta adalah...

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "LKS I. Jumlah barsel suku yang terbentuk... yaitu barsel suku ke... Nilai salah satu suku konstanta adalah..."

Transkripsi

1 LKS I 1. Buat enam suku pertama dari masing-masing barisan dengan menggunakan rumus umum suku masing-masing. 2. Amati masing-masing barisan, jika barisan bukan barisan bilangan konstanta buatlah barisan selisih suku dari barisan sebelumnya dan hentikan saat mendapatkan barisan bilangan konstan. 3. Amati jumlah barisan selisih suku yang dibuat pada masing-masing barisan dengan derajad polinom rumus sukunya. Apa hubungannya. 4. Amati barisan selisih suku yang berupa barisan konstanta pada masing-masing barisan dengan koefisien suku yang pangkatnya paling tinggi pada rumus suku masing-masing. Bagaimana hubungannya? U n = 5 + n maka enam suku pertama adalah... Nilai salah satu suku konstanta adalah... U n = 5n + n 2 maka enam suku pertama adalah... Nilai salah satu suku konstanta adalah... Barisan (3) U n = 8-2n + n 3 maka enam suku pertama adalah... Nilai salah satu suku konstanta adalah... Barisan (4) U n = 10-2n 3 + n 4 maka enam suku pertama adalah... Nilai salah satu suku barisan konstanta adalah...

2 Barisan (5) U n = n 4 n 2 5 maka enam suku pertama adalah... Nilai salah satu suku barisan konstanta adalah... Rekap Data Penelitihan Barisan (1) (2) (3) (4) (5) Pangkat Jumlah barsel suku Koefisien pangkat Barsel suku ke... Nilai salah satu suku konstanta Kesimpulan: a. Hubungan antara jumlah selisih suku yang terbentuk dengan derajad rumus umum barisan adalah b. Hubungan antara nilai salah satu suku barisan konstanta dengan koefisien pangkat pada U n adalah

3 LKS II Pada masing-masing barisan cari rumus suku ke n yang mungkin dengan mencari semua bagian polinom yang menyusun rumus suku tersebet dengan langkah-langkah berikut: 1. Cari bagian polinom yang berpangkat dari barisan. 2. Hapus bagian polinom itu dengan mengurangi nilai suku barisan menggunakan nilai suku bagian polinom yang dihapus pada masing-masing suku. 3. Jika barisan yang dihasilkan langkah 2 bukan barisan konstanta maka ulangi langkah 1 diikuti Jumlahkan semua bagian polinom yang telah dihapus dengan salah satu barisan konstanta paling akhir. Chek pada masing-masing suku, benarkah itu salah satu kemungkinan rumus polinomnya? -5, -2, 1, 4, 7, 10,... mempunyai bagian polinom... -3, 2, 15, 36, 65, 102,... mempunyai bagian polinom ,...,...,...,...,...,... _ Barisan (3) -12, -14, -10, 6, 40, 98,... mempunyai bagian polinom...

4 Barisan (4) 0, 0, 0, 6, 24, 60,... mempunyai bagian polinom... Barisan (5) -19, -64, -99, -64, 125, 576,... mempunyai bagian polinom...

5 KUNCI LKS I U n = 5 + n maka enam suku pertama adalah ,...7.,...8,...9.,...10, enam suku pertama...1.,...1., , ,...1..,... barsel suku ke 1 Pangkat U n adalah 1 dengan koefisien 1 Jumlah barsel suku yang terbentuk 1 yaitu barsel suku ke 1 Nilai salah satu suku konstanta adalah 1 U n = 5n + n 2 maka enam suku pertama adalah ,...14.,...24.,...36.,...50., enam suku pertama...8.,...10.,...12.,...14.,...16.,... barsel suku ke ,....2.,...2.,...2.,...,... barsel suku ke 2 Pangkat U n adalah 2 dengan koefisien 1 Jumlah barsel suku yang terbentuk 2 yaitu barsel suku ke 1 dan 2 Nilai salah satu suku konstanta adalah 2 Barisan (3) U n = 8-2n + n 3 maka enam suku pertama adalah ,...12., ,..64..,...123,..212 enam suku pertama ,...17., ,..59..,...89.,... barsel suku ke ,...18., , ,...,... barsel suku ke , , ,...,...,... barsel suku ke 3 Pangkat U n adalah.3. dengan koefisien 1 Jumlah barsel suku yang terbentuk 3.. yaitu barsel suku ke 1, 2 dan 3. Nilai salah satu suku konstanta adalah 6 Barisan (4) U n = 10-2n 3 + n 4 maka enam suku pertama adalah ,...10., ,.138.,..385., enam suku pertama...1..,...27,..101.,.247., ,... barsel suku ke ,...74.,..146.,.242.,...,... barsel suku ke ,...72., ,...,...,... barsel suku ke ,..24.,...,...,...,... barsel suku ke 4 Pangkat U n adalah 4 dengan koefisien 1 Jumlah barsel suku yang terbentuk 4 yaitu barsel suku ke 1, 2, 3, dan 4. Nilai salah satu suku barisan konstanta adalah 24 Barisan (5) U n = 2n 4 20n maka enam suku pertama adalah , -998,-968, -758,-200, 922 enam suku pertama..-30,..30.,..210,.558,1122,... barsel suku ke , 180.,..348, 564.,...,... barsel suku ke 2.120, 168.,..216,...,...,... barsel suku ke ,..48.,...,...,...,... barsel suku ke 4 Pangkat U n adalah 4.. dengan koefisien.2 Jumlah barsel suku yang terbentuk.4. yaitu barsel suku ke 1, 2, 3 dan 4. Nilai salah satu suku barisan konstanta adalah 48

6 Rekap Data Penelitian Barisan Pangkat Jumlah barsel suku Koefisien pangkat Barsel suku ke... Nilai salah satu suku konstanta (1) (2) dan 2 2 (3) , 2, dan 3 6 (4) , 2, 3, dan 4 24 (5) , 2, 3, dan 4 48 Kesimpulan: 1. Hubungan antara jumlah barisan selisih suku yang terbentuk dengan derajad rumus umum barisan adalah sama. 2. Hubungan antara nilai salah satu suku barisan konstanta dengan koefisien pangkat pada U n adalah koefisien pangkat sama dengan suku konstanta dibagi perkalian n bilangan asli yang pertama. Kriteria Penilaian Kelompok 1. Nilai pengambilan data masing-masing mempunyai range Penarikan kesimpulan 1 mempunyai range Penarikan kesimpulan 3 mempunyai range 5-20

7 KUNCI LKS II -5, -2, 1, 4, 7, 10,... mempunyai bagian polinom 3n.....3n...3.,...6,...9.,..12,.15,..18,... _.-8.,..-8.,..-8.,...-8.,..-8,..-8.,.... Jadi U n = 3n - 8-3, 2, 15, 36, 65, 102,... mempunyai bagian polinom 4n 2.. 4n ,...16,..36,..64, 100, 144,... _..-7,..-14, -21, -28, -35, -42,... mempunyai bagian polinom -7n..-7n...-7,...-14, -21., -28., -35, -42,... _..0.,...0..,...0.,...0.,..0..,..0..,... Jadi U n = 4n 2 7n Barisan (3) -12, -14, -10, 6, 40, 98,... mempunyai bagian polinom n n ,...8,...27,.64, 125, 216,... _ -13, -22., -37,.-58, -85, -118,... mempunyai bagian polinom -3n n ,..-12., -27,.-48, -75, -108,... _ -10,.-10.,.-10, -10., -10, -10.,... Jadi U n = n 3 3n 2-10 Barisan (4) 0, 0, 0, 6, 24, 60,... mempunyai bagian polinom.n n 3..1.,...8.,..27,..64, 125, 216,... _.-1.,.-8..,.-27,.-58, -101,-156,... mempunyai bagian polinom -6n n 2.-6,..-24., -54, -96,-150,-216,... _..5.,...16,..27,.38,..49.,..60,... mempunyai bagian polinom..11n n. 11,...22,..33,.44,..55.,..66,... _ -6.,...-6.,...-6.,.-6,..-6..,...-6,... Jadi U n = n 3 6n n - 6 Barisan (5) -19, -64, -99, -64, 125, 576,... mempunyai bagian polinom n 4...n ,...16,..81, 256, 625,1296,... _ -20,.-80, -180, -320,-500, -720,... mempunyai bagian polinom -20n n 2-20,.-80, -180, -320,-500, -720,... _..0.,...0,...0,...0,...0,...0,... Jadi U n = n 4 20n 2 Kriteria Penilaian Kelompok Setiap soal mempunyai ring nilai 10-25

LEMBAR KERJA SISWA. Semester Ganjil STANDAR ISI KTSP. Nama :... Kelas :... Sekolah :...

LEMBAR KERJA SISWA. Semester Ganjil STANDAR ISI KTSP. Nama :... Kelas :... Sekolah :... LEMBAR KERJA SISWA Semester Ganjil Nama :... Kelas :... Sekolah :... STANDAR ISI KTSP Standar kompetensi : Memahami bentuk aljabar, persamaan dan pertidaksamaan linier dan satu variabel. Kompetensi dasar

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

MEMANFAATKAN KEISTIMEWAAN BARISAN POLINOM

MEMANFAATKAN KEISTIMEWAAN BARISAN POLINOM Materi Publikasi Karya Tulis MGMP Matematika Kabupaten Blitar Tahun 2014 MEMANFAATKAN KEISTIMEWAAN BARISAN POLINOM HALAMAN SAMPUL Oleh GUNAWAN SUSILO SMP NEGERI 1 GANDUSARI KABUPATEN BLITAR BLITAR PEBRUARI

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

BY : DRS. ABD. SALAM, MM

BY : DRS. ABD. SALAM, MM BY : DRS. ABD. SALAM, MM Page 1 of 26 KOMPETENSI DASAR Pola Barisan dan Deret Bilangan a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menunjukkan pola bilangan dari suatu barisan

Lebih terperinci

BARISAN DAN DERET ARITMETIKA

BARISAN DAN DERET ARITMETIKA BARISAN DAN DERET ARITMETIKA Barisan Aritmetika a. Pengertian Barisan Aritmetika Untuk memahami pengertian barisan aritmetika, perhatikan barisan bilangan pada penggaris yang dimiliki Amir berikut ini.

Lebih terperinci

Rangkuman Suku Banyak

Rangkuman Suku Banyak Rangkuman Suku Banyak Oleh: Novi Hartini Pengertian Suku banyak Perhatikan bentuk aljabar dibawah ini i. Suku banyak xx 2 + 4xx + 9 berderajat 2, sebab pangkat tertinggi peubah x adalah 2 ii. Suku banyak

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/2 Alokasi Waktu: 8 jam Pelajaran (4 Pertemuan) A. Standar Kompetensi Menggunakan aturan sukubanyak dalam penyelesaian

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom BAB 9 RING POLINOM Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

B. POLA BILANGAN 1. Pengertian pola bilangan Pola bilangan adalah aturan terbentuknya sebuah kelompok bilangan.

B. POLA BILANGAN 1. Pengertian pola bilangan Pola bilangan adalah aturan terbentuknya sebuah kelompok bilangan. A. PENGERTIAN BARISAN DAN DERET 1. Pengertian barisan bilangan Barisan bilangan adalah urutan suatu bilangan yang diurutkan menurut aturan tertentu. Contoh barisan bilangan genap : 2, 4, 6, 8,... 2. Pengertian

Lebih terperinci

KHAIRUL MUKMIN LUBIS

KHAIRUL MUKMIN LUBIS Barisan dan Deret Eni Sumarminingsih, SSi, MM Elizal A. Barisan Aritmetika Definisi Barisan aritmetik adalah suatu barisan bilangan yang selisih setiap dua suku berturutan selalu merupakan bilangan tetap

Lebih terperinci

PERTEMUAN 2-3 FUNGSI LINIER

PERTEMUAN 2-3 FUNGSI LINIER PERTEMUAN 2-3 FUNGSI LINIER Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lainnya. Unsur-unsur pembentuk

Lebih terperinci

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga, DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.

Lebih terperinci

BARISAN DAN DERET. A. Pola Bilangan

BARISAN DAN DERET. A. Pola Bilangan BARISAN DAN DERET A. Pola Bilangan Perhatikan deretan bilangan-bilangan berikut: a. 1 2 3... b. 4 9 16... c. 31 40 21 30 16... Deretan bilangan di atas mempunyai pola tertentu. Dapatkah anda menentukan

Lebih terperinci

6/28/2016 al muiz

6/28/2016 al muiz 6/28/2016 al muiz 2013 1 Unsur-unsur dalam model matematis Varia bel Kons tanta Para meter Unsur model matematis 6/28/2016 al muiz 2013 2 Variabel adalah sesuatu yang besarnya dapat berubah, misalnya sesuatu

Lebih terperinci

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

Barisan dan Deret Aritmetika. U 1, U 2, U 3,...,U n-1, U n. 1. Barisan Bilangan

Barisan dan Deret Aritmetika. U 1, U 2, U 3,...,U n-1, U n. 1. Barisan Bilangan Barisan dan Deret Aritmetika 1 Barisan Bilangan Untuk memahami pengertian suatu barisan bilangan, perhatikan contoh urutan bilangan berikut ini :, 4, 6, 8, 10, Urutan bilangan di atas mempunyai aturan

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut:

SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: SUKU BANYAK A. Pengertian Suku Banyak Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: Dinamakan suku banyak (polinom) dalam yang berderajat dengan bilangan cacah

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah

BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah BILANGAN BERPANGKAT Jika a bilangan real dan n bilangan bulat positif, maka a n adalah perkalian a sebanyak n faktor. Bilangan berpangkat, a disebut bilangan pokok dan n disebut pangkat atau eksponen.

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

Antiremed Kelas 09 Matematika

Antiremed Kelas 09 Matematika Antiremed Kelas 09 Matematika Deret Bilangan - Latihan Soal Doc. Name: AR09MAT0613 Version: 2013-10 halaman 1 01a Berapakah nilai deret aritmatika di bawah (A) 1 + 2 + 3 + 4 + + 100 01b Berapakah nilai

Lebih terperinci

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2 APA ITU FUNGSI? FUNGSI Imajinasi : bermain golf f f : / =f() TEP FTP UB Sebuah fungsi adalah transformasi dari input pada output = f(). f : =f() =f()= DOMAIN, KODOMAIN, RANGE Fungsi adalah hubungan antara

Lebih terperinci

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan

Lebih terperinci

Materi W6b BARISAN DAN DERET. Kelas X, Semester 2. B. Barisan dan Deret Aritmatika.

Materi W6b BARISAN DAN DERET. Kelas X, Semester 2. B. Barisan dan Deret Aritmatika. Materi W6b BARISAN DAN DERET Kelas X, Semester 2 B. Barisan dan Deret Aritmatika www.yudarwi.com B. Barisan dan Deret Aritmatika Barisan adalah kumpulan objek-objek yang disusun menurut pola tertentu U

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

Relasi Rekursi. Matematika Informatika 4. Onggo

Relasi Rekursi. Matematika Informatika 4. Onggo Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Dasar 1 Kode / SKS : IT012314 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 & 2 HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan

Lebih terperinci

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui II. TINJAUAN PUSTAKA Untuk menuju ketahap pembahasan mengenai keberadaan dan ketunggalan dari iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui beberapa bagian dari persamaaan

Lebih terperinci

Institut Manajemen Telkom

Institut Manajemen Telkom Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2

Lebih terperinci

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2 Kunci Jawaban Uji Kompetensi 1.1 1. a. {, 1,0,1,,3,4} BAB I Bilangan Riil Uji Kompetensi 1. 1. a. asosiatif b. memiliki elemen penting 3. 10 Uji Kompetensi 1.3 1. a. 1 4 e. 1 35 15 c. 1 8 1 1 c. 1 4 5.

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar Bab Sumber: Science Encylopedia, 997 Faktorisasi Aljabar Masih ingatkah kamu tentang pelajaran Aljabar? Di Kelas VII, kamu telah mengenal bentuk aljabar dan juga telah mempelajari operasi hitung pada bentuk

Lebih terperinci

Department of Mathematics FMIPAUNS

Department of Mathematics FMIPAUNS Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

Sri Purwaningsih. Modul ke: Fakultas EKONOMI BISNIS. Program Studi Manajemen dan Akuntansi.

Sri Purwaningsih. Modul ke: Fakultas EKONOMI BISNIS. Program Studi Manajemen dan Akuntansi. Modul ke: Fakultas EKONOMI BISNIS MATEMATIKA BISNIS Sesi 2 ini akan membahasteori Deret Hiutung dan Deret Ukur pada Matematika Bisnis sehingga Mahasiswa mempunyai dasar yang kuat untuk melakukan pengukuran

Lebih terperinci

Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir

Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir Relasi Rekursi *recurrence rekurens rekursi perulangan. Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir menuliskan definisi dari

Lebih terperinci

MATEMATIKA EKONOMI Program Studi Agribisnis

MATEMATIKA EKONOMI Program Studi Agribisnis MATEMATIKA EKONOMI Program Studi Agribisnis Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website: http://almasdi.unri.ac.id HUBUNGAN FUNGSIONAL Pengertian dan unsur-unsur

Lebih terperinci

Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1)

Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 07 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 07/02/2017 1 / 8 Pemeran-pemeran

Lebih terperinci

3.2 Teorema-Teorema Limit Fungsi

3.2 Teorema-Teorema Limit Fungsi . Teorema-Teorema Limit Fungsi Menghitung it fungsi di suatu titik dengan menggunakan definisi dan pembuktian seperti ang telah diuraikan di atas adalah pekerjaan rumit. Semakin rumit bentuk fungsina,

Lebih terperinci

LAMPIRAN A. A1. Analisis kurikulum. A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar

LAMPIRAN A. A1. Analisis kurikulum. A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar 86 LAMPIRAN A A1. Analisis kurikulum A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar A. Materi, contoh soal dan soal latihan permainan materi operasi aljabar 87 ANALISIS KURIKULUM

Lebih terperinci

Matematika Dasar FUNGSI DAN GRAFIK

Matematika Dasar FUNGSI DAN GRAFIK FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

Single Linked List (2)

Single Linked List (2) Praktikum 6 Single Linked List (2) A. TUJUAN PEMBELAJARAN Setelah mempelajari materi dalam bab ini, mahasiswa diharapkan mampu: 1. Memahami konsep membangun single linked list 2. Memahami konsep operasi

Lebih terperinci

Nama:... Kelas/Kelompok :... Tanggal:... Pola Bilangan Genap dan Bilangan Ganjil

Nama:... Kelas/Kelompok :... Tanggal:... Pola Bilangan Genap dan Bilangan Ganjil 6.1 61 Nama:... Kelas/Kelompok :... Tanggal:... Pola Bilangan Genap dan Bilangan Ganjil 1. Sebelum kita belajar lebih jauh, untuk mendalami pola bilangan lakukan kegiatan berikut ini. Bahan : Satu lembar

Lebih terperinci

A. TUJUAN PEMBELAJARAN

A. TUJUAN PEMBELAJARAN Praktikum 8 Double Linked List (2) A. TUJUAN PEMBELAJARAN Setelah mempelajari materi dalam bab ini, mahasiswa diharapkan mampu: 1. Memahami konsep operasi menyisipkan sebelum simpul tertentu 2. Memahami

Lebih terperinci

PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017

PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017 PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017 Jenis Sekolah : SMP Waktu : 90 menit Mata Pelajaran : Matematika Banyak soal : 25/5 Kelas : VII Pembuat Soal : Tim Kurikulum : KTSP Bentuk Soal

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH

Lebih terperinci

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN

MATRIKS SATUAN ACARA PERKULIAHAN MATRIKS SATUAN ACARA PERKULIAHAN Mata Kuliah Jurusan SKS Kode M. Kuliah : Kalkulus IA : Teknik Elektro : 2 SKS : KD-0420 Minggu ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya

Lebih terperinci

KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN

KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN Diskripsi Mata Kuliah Tujuan : Memberikan gambaran dan dasardasar pengertian serta pola pikir yang logis. Barisan dan deret : Bilangan yang tersusun secara

Lebih terperinci

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b =

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b = BAB II TEORI DASAR 2.1. Group Misalkan operasi biner didefinisikan untuk elemen-elemen dari himpunan G. Maka G adalah grup dengan operasi * jika kondisi di bawah ini terpenuhi : 1. G tertutup terhadap.

Lebih terperinci

YAYASAN PRAWITAMA SMK WIKRAMA BOGOR

YAYASAN PRAWITAMA SMK WIKRAMA BOGOR Telp. 051-84411, email: prohumasi@smkwikrama.net, FUNGSI KOMPOSISI DAN INVERS Pembahasan : 1. Pengertian ungsi, daerah asal daerah hasil Fungsi merupakan Daerah Asal : Suatu ungsi : A B, dengan daerah

Lebih terperinci

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Tanggal Ujian: 31 Mei 2011 1. Jika 6(3 40 ) ( 2 log a) + 3 41 ( 2 log a) = 3 43, maka nilai a adalah... A. B. C. 4 D.

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

SMPIT AT TAQWA Beraqidah, Berakhlaq, Berprestasi

SMPIT AT TAQWA Beraqidah, Berakhlaq, Berprestasi KISI-KISI SOAL UJIAN AKHIR SEMESTER (UAS) GENAP TAHUN PELAJARAN 2015/2016 BIDANG STUDI : Matematika KELAS : 7 ( Tujuh) STANDAR KOMPETENSI / KOMPETENSI INTI : 1. Memahami sifat-sifat operasi hitung bilangan

Lebih terperinci

PELATIHAN INSTRUKTUR/PENGEMBANG SMU 28 JULI s.d. 12 AGUSTUS 2003 MATRIKS. Oleh: Drs. M. Danuri, M. Pd.

PELATIHAN INSTRUKTUR/PENGEMBANG SMU 28 JULI s.d. 12 AGUSTUS 2003 MATRIKS. Oleh: Drs. M. Danuri, M. Pd. PELATIHAN INSTRUKTUR/PENGEMBANG SMU JULI s.d. AGUSTUS MATRIKS Oleh: Drs. M. Danuri, M. Pd. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN PENATARAN

Lebih terperinci

MATERI POLA BILANGAN Disusun Untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu : Koryna Aviory, S.Si., M.Pd

MATERI POLA BILANGAN Disusun Untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu : Koryna Aviory, S.Si., M.Pd MATERI POLA BILANGAN Disusun Untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu : Koryna Aviory, S.Si., M.Pd Disusun Oleh : Kelas III A4 14144100140 Rina Andriyani PROGRAM STUDI PENDIDIKAN

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN

BAB III HASIL DAN PEMBAHASAN BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan hal-hal yang berhubungan dengan masalah dan bagaimana mengeksplorasinya dengan logaritma diskret pada menggunakan algoritme Exhaustive Search Baby-Step

Lebih terperinci

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc Matematika: Persamaan Kuadrat //0 MATA KULIAH : MATEMATIKA KODE MATA KULIAH : UNM0.0 SKS : (-) ) PERSAMAAN KUADRAT Oleh Syawaludin A. Harahap, MSc UNIVERSITAS PADJADJARAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG MATEMATIKA DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG BARISAN VS DERET BARISAN (Sequences) Himpunan besaran u 1, u, u 3, yang

Lebih terperinci

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014 Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 3 KOMBINATORIAL Tujuan 1.Mahasiswa

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 2014

KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 2014 LKS SMK 214 Bidang : Matematika Teknologi KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 214 1 Memecahkan masalah berkaitan dengan konsep aljabar memaham, mengaplikasikan, menganalisai

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun ajaran 2011-2012 bertempat di Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Antiremed Kelas 09 Matematika

Antiremed Kelas 09 Matematika Antiremed Kelas 09 Matematika Latihan Ulangan Barisan dan Deret Bilangan Doc. Name: AR09MAT0698 Version: 03- halaman 0. Suku ke-40 dari barisan 7, 5, 3,, adalah (UAN 003) -69 (B) -7 (C) -73 (D) -75 0a

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Pengertian BARIS DAN DERET Baris dapat didefinisikan sebagai suatu fungsi yang wilayahnya merupakan himpunan bilangan alam. Setiap bilangan yang merupakan anggota suatu banjar

Lebih terperinci

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.

Lebih terperinci

BAB III PERLUASAN INTEGRAL

BAB III PERLUASAN INTEGRAL BAB III PERLUASAN INTEGRAL Pembahasan pada bab ini termuat pada ruang lingkup perluasan uniter atas suatu ring komutatif. Jika adalah suatu ring, maka yang dimaksud adalah suatu ring yang komutatif dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret

Lebih terperinci

BARISAN DAN DERET 1. A. Barisan dan Deret Aritmatika 11/13/2015. Peta Konsep. A. Barisan dan Deret Aritmatika

BARISAN DAN DERET 1. A. Barisan dan Deret Aritmatika 11/13/2015. Peta Konsep. A. Barisan dan Deret Aritmatika Jurnal Peta Konsep Daftar Hadir MateriA SoalLatihan Materi Umum BARISAN DAN DERET 1 Kelas X, Semester A. Barisan dan Deret Aritmatika Barisan dan Deret Aritmatika Barisan dan Deret Soal Aplikasi dalam

Lebih terperinci

BAB II. Landasan Teori

BAB II. Landasan Teori BAB II Landasan Teori. Model Matematika Menurut Wirodikromo (998, p77) model matematika adalah suatu rumusan matematika (dapat berbentuk persamaan, pertidaksamaan / fungsi) yang diperoleh dari hasil penafsiran

Lebih terperinci

RENCANA PELAKSANAN PEMBELAJARAN ( R P P ke - 1)

RENCANA PELAKSANAN PEMBELAJARAN ( R P P ke - 1) RENCANA PELAKSANAN PEMBELAJARAN ( R P P ke - ) A. Identitas Sekolah : SMP Negeri Gerokgak Mata Pelajaran : Matematika Kelas / Semester : VIII (delapan ) / Ganjil Standar Kompetensi :. Memahami bentuk aljabar,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 6 II. TINJAUAN PUSTAKA Dalam bab ini diberikan beberapa definisi dan istilah yang digunakan dalam penelitian ini. Definisi 2.1 (Turunan) Turunan merupakan pengukuran terhadap bagaimana fungsi berubah.

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMA/Sederajat tahun 2012

Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMA/Sederajat tahun 2012 Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMA/Sederajat tahun 202 Bagian Kedua. Soal Semifinal OMITS 2 tingkat SMA/Sederajat Bagian Kedua terdiri dari 20 Soal Isian Singkat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

FAKTORISASI SUKU ALJABAR

FAKTORISASI SUKU ALJABAR 1 FAKTORISASI SUKU ALJABAR Pernahkah kalian berbelanja di supermarket? Sebelum berbelanja, kalian pasti memperkirakan barang apa saja yang akan dibeli dan berapa jumlah uang yang harus dibayar. Kalian

Lebih terperinci

Permutasi & Kombinasi

Permutasi & Kombinasi Permutasi & Kombinasi 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat????? abcdef

Lebih terperinci

Bab 3 Gelanggang Polinom Miring

Bab 3 Gelanggang Polinom Miring Bab 3 Gelanggang Polinom Miring Dalam bab ini akan dibahas mengenai Gelanggang Poliom Miring mulai dengan bentuk yang sederhana (satu variabel) sampai ke bentuk yang lebih kompleks (banyak variabel) berikut

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

CONTOH SOAL UAN BARIS DAN DERET

CONTOH SOAL UAN BARIS DAN DERET CONTOH SOAL UAN BARIS DAN DERET 1. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah. a. 840 b. 660 c. 640

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci