LKS I. Jumlah barsel suku yang terbentuk... yaitu barsel suku ke... Nilai salah satu suku konstanta adalah...
|
|
- Benny Sugiarto
- 1 tahun lalu
- Tontonan:
Transkripsi
1 LKS I 1. Buat enam suku pertama dari masing-masing barisan dengan menggunakan rumus umum suku masing-masing. 2. Amati masing-masing barisan, jika barisan bukan barisan bilangan konstanta buatlah barisan selisih suku dari barisan sebelumnya dan hentikan saat mendapatkan barisan bilangan konstan. 3. Amati jumlah barisan selisih suku yang dibuat pada masing-masing barisan dengan derajad polinom rumus sukunya. Apa hubungannya. 4. Amati barisan selisih suku yang berupa barisan konstanta pada masing-masing barisan dengan koefisien suku yang pangkatnya paling tinggi pada rumus suku masing-masing. Bagaimana hubungannya? U n = 5 + n maka enam suku pertama adalah... Nilai salah satu suku konstanta adalah... U n = 5n + n 2 maka enam suku pertama adalah... Nilai salah satu suku konstanta adalah... Barisan (3) U n = 8-2n + n 3 maka enam suku pertama adalah... Nilai salah satu suku konstanta adalah... Barisan (4) U n = 10-2n 3 + n 4 maka enam suku pertama adalah... Nilai salah satu suku barisan konstanta adalah...
2 Barisan (5) U n = n 4 n 2 5 maka enam suku pertama adalah... Nilai salah satu suku barisan konstanta adalah... Rekap Data Penelitihan Barisan (1) (2) (3) (4) (5) Pangkat Jumlah barsel suku Koefisien pangkat Barsel suku ke... Nilai salah satu suku konstanta Kesimpulan: a. Hubungan antara jumlah selisih suku yang terbentuk dengan derajad rumus umum barisan adalah b. Hubungan antara nilai salah satu suku barisan konstanta dengan koefisien pangkat pada U n adalah
3 LKS II Pada masing-masing barisan cari rumus suku ke n yang mungkin dengan mencari semua bagian polinom yang menyusun rumus suku tersebet dengan langkah-langkah berikut: 1. Cari bagian polinom yang berpangkat dari barisan. 2. Hapus bagian polinom itu dengan mengurangi nilai suku barisan menggunakan nilai suku bagian polinom yang dihapus pada masing-masing suku. 3. Jika barisan yang dihasilkan langkah 2 bukan barisan konstanta maka ulangi langkah 1 diikuti Jumlahkan semua bagian polinom yang telah dihapus dengan salah satu barisan konstanta paling akhir. Chek pada masing-masing suku, benarkah itu salah satu kemungkinan rumus polinomnya? -5, -2, 1, 4, 7, 10,... mempunyai bagian polinom... -3, 2, 15, 36, 65, 102,... mempunyai bagian polinom ,...,...,...,...,...,... _ Barisan (3) -12, -14, -10, 6, 40, 98,... mempunyai bagian polinom...
4 Barisan (4) 0, 0, 0, 6, 24, 60,... mempunyai bagian polinom... Barisan (5) -19, -64, -99, -64, 125, 576,... mempunyai bagian polinom...
5 KUNCI LKS I U n = 5 + n maka enam suku pertama adalah ,...7.,...8,...9.,...10, enam suku pertama...1.,...1., , ,...1..,... barsel suku ke 1 Pangkat U n adalah 1 dengan koefisien 1 Jumlah barsel suku yang terbentuk 1 yaitu barsel suku ke 1 Nilai salah satu suku konstanta adalah 1 U n = 5n + n 2 maka enam suku pertama adalah ,...14.,...24.,...36.,...50., enam suku pertama...8.,...10.,...12.,...14.,...16.,... barsel suku ke ,....2.,...2.,...2.,...,... barsel suku ke 2 Pangkat U n adalah 2 dengan koefisien 1 Jumlah barsel suku yang terbentuk 2 yaitu barsel suku ke 1 dan 2 Nilai salah satu suku konstanta adalah 2 Barisan (3) U n = 8-2n + n 3 maka enam suku pertama adalah ,...12., ,..64..,...123,..212 enam suku pertama ,...17., ,..59..,...89.,... barsel suku ke ,...18., , ,...,... barsel suku ke , , ,...,...,... barsel suku ke 3 Pangkat U n adalah.3. dengan koefisien 1 Jumlah barsel suku yang terbentuk 3.. yaitu barsel suku ke 1, 2 dan 3. Nilai salah satu suku konstanta adalah 6 Barisan (4) U n = 10-2n 3 + n 4 maka enam suku pertama adalah ,...10., ,.138.,..385., enam suku pertama...1..,...27,..101.,.247., ,... barsel suku ke ,...74.,..146.,.242.,...,... barsel suku ke ,...72., ,...,...,... barsel suku ke ,..24.,...,...,...,... barsel suku ke 4 Pangkat U n adalah 4 dengan koefisien 1 Jumlah barsel suku yang terbentuk 4 yaitu barsel suku ke 1, 2, 3, dan 4. Nilai salah satu suku barisan konstanta adalah 24 Barisan (5) U n = 2n 4 20n maka enam suku pertama adalah , -998,-968, -758,-200, 922 enam suku pertama..-30,..30.,..210,.558,1122,... barsel suku ke , 180.,..348, 564.,...,... barsel suku ke 2.120, 168.,..216,...,...,... barsel suku ke ,..48.,...,...,...,... barsel suku ke 4 Pangkat U n adalah 4.. dengan koefisien.2 Jumlah barsel suku yang terbentuk.4. yaitu barsel suku ke 1, 2, 3 dan 4. Nilai salah satu suku barisan konstanta adalah 48
6 Rekap Data Penelitian Barisan Pangkat Jumlah barsel suku Koefisien pangkat Barsel suku ke... Nilai salah satu suku konstanta (1) (2) dan 2 2 (3) , 2, dan 3 6 (4) , 2, 3, dan 4 24 (5) , 2, 3, dan 4 48 Kesimpulan: 1. Hubungan antara jumlah barisan selisih suku yang terbentuk dengan derajad rumus umum barisan adalah sama. 2. Hubungan antara nilai salah satu suku barisan konstanta dengan koefisien pangkat pada U n adalah koefisien pangkat sama dengan suku konstanta dibagi perkalian n bilangan asli yang pertama. Kriteria Penilaian Kelompok 1. Nilai pengambilan data masing-masing mempunyai range Penarikan kesimpulan 1 mempunyai range Penarikan kesimpulan 3 mempunyai range 5-20
7 KUNCI LKS II -5, -2, 1, 4, 7, 10,... mempunyai bagian polinom 3n.....3n...3.,...6,...9.,..12,.15,..18,... _.-8.,..-8.,..-8.,...-8.,..-8,..-8.,.... Jadi U n = 3n - 8-3, 2, 15, 36, 65, 102,... mempunyai bagian polinom 4n 2.. 4n ,...16,..36,..64, 100, 144,... _..-7,..-14, -21, -28, -35, -42,... mempunyai bagian polinom -7n..-7n...-7,...-14, -21., -28., -35, -42,... _..0.,...0..,...0.,...0.,..0..,..0..,... Jadi U n = 4n 2 7n Barisan (3) -12, -14, -10, 6, 40, 98,... mempunyai bagian polinom n n ,...8,...27,.64, 125, 216,... _ -13, -22., -37,.-58, -85, -118,... mempunyai bagian polinom -3n n ,..-12., -27,.-48, -75, -108,... _ -10,.-10.,.-10, -10., -10, -10.,... Jadi U n = n 3 3n 2-10 Barisan (4) 0, 0, 0, 6, 24, 60,... mempunyai bagian polinom.n n 3..1.,...8.,..27,..64, 125, 216,... _.-1.,.-8..,.-27,.-58, -101,-156,... mempunyai bagian polinom -6n n 2.-6,..-24., -54, -96,-150,-216,... _..5.,...16,..27,.38,..49.,..60,... mempunyai bagian polinom..11n n. 11,...22,..33,.44,..55.,..66,... _ -6.,...-6.,...-6.,.-6,..-6..,...-6,... Jadi U n = n 3 6n n - 6 Barisan (5) -19, -64, -99, -64, 125, 576,... mempunyai bagian polinom n 4...n ,...16,..81, 256, 625,1296,... _ -20,.-80, -180, -320,-500, -720,... mempunyai bagian polinom -20n n 2-20,.-80, -180, -320,-500, -720,... _..0.,...0,...0,...0,...0,...0,... Jadi U n = n 4 20n 2 Kriteria Penilaian Kelompok Setiap soal mempunyai ring nilai 10-25
LEMBAR KERJA SISWA. Semester Ganjil STANDAR ISI KTSP. Nama :... Kelas :... Sekolah :...
LEMBAR KERJA SISWA Semester Ganjil Nama :... Kelas :... Sekolah :... STANDAR ISI KTSP Standar kompetensi : Memahami bentuk aljabar, persamaan dan pertidaksamaan linier dan satu variabel. Kompetensi dasar
POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.
POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa
MEMANFAATKAN KEISTIMEWAAN BARISAN POLINOM
Materi Publikasi Karya Tulis MGMP Matematika Kabupaten Blitar Tahun 2014 MEMANFAATKAN KEISTIMEWAAN BARISAN POLINOM HALAMAN SAMPUL Oleh GUNAWAN SUSILO SMP NEGERI 1 GANDUSARI KABUPATEN BLITAR BLITAR PEBRUARI
LIMIT KED. Perhatikan fungsi di bawah ini:
LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat
BY : DRS. ABD. SALAM, MM
BY : DRS. ABD. SALAM, MM Page 1 of 26 KOMPETENSI DASAR Pola Barisan dan Deret Bilangan a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menunjukkan pola bilangan dari suatu barisan
BARISAN DAN DERET ARITMETIKA
BARISAN DAN DERET ARITMETIKA Barisan Aritmetika a. Pengertian Barisan Aritmetika Untuk memahami pengertian barisan aritmetika, perhatikan barisan bilangan pada penggaris yang dimiliki Amir berikut ini.
Rangkuman Suku Banyak
Rangkuman Suku Banyak Oleh: Novi Hartini Pengertian Suku banyak Perhatikan bentuk aljabar dibawah ini i. Suku banyak xx 2 + 4xx + 9 berderajat 2, sebab pangkat tertinggi peubah x adalah 2 ii. Suku banyak
RENCANA PELAKSANAAN PEMBELAJARAN
RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/2 Alokasi Waktu: 8 jam Pelajaran (4 Pertemuan) A. Standar Kompetensi Menggunakan aturan sukubanyak dalam penyelesaian
II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )
II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan
NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits
NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan
1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku
NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan
Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom
BAB 9 RING POLINOM Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom Tujuan Instruksional Khusus : Setelah diberikan
B. POLA BILANGAN 1. Pengertian pola bilangan Pola bilangan adalah aturan terbentuknya sebuah kelompok bilangan.
A. PENGERTIAN BARISAN DAN DERET 1. Pengertian barisan bilangan Barisan bilangan adalah urutan suatu bilangan yang diurutkan menurut aturan tertentu. Contoh barisan bilangan genap : 2, 4, 6, 8,... 2. Pengertian
KHAIRUL MUKMIN LUBIS
Barisan dan Deret Eni Sumarminingsih, SSi, MM Elizal A. Barisan Aritmetika Definisi Barisan aritmetik adalah suatu barisan bilangan yang selisih setiap dua suku berturutan selalu merupakan bilangan tetap
PERTEMUAN 2-3 FUNGSI LINIER
PERTEMUAN 2-3 FUNGSI LINIER Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lainnya. Unsur-unsur pembentuk
DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,
DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.
BARISAN DAN DERET. A. Pola Bilangan
BARISAN DAN DERET A. Pola Bilangan Perhatikan deretan bilangan-bilangan berikut: a. 1 2 3... b. 4 9 16... c. 31 40 21 30 16... Deretan bilangan di atas mempunyai pola tertentu. Dapatkah anda menentukan
6/28/2016 al muiz
6/28/2016 al muiz 2013 1 Unsur-unsur dalam model matematis Varia bel Kons tanta Para meter Unsur model matematis 6/28/2016 al muiz 2013 2 Variabel adalah sesuatu yang besarnya dapat berubah, misalnya sesuatu
JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n
Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.
Barisan dan Deret Aritmetika. U 1, U 2, U 3,...,U n-1, U n. 1. Barisan Bilangan
Barisan dan Deret Aritmetika 1 Barisan Bilangan Untuk memahami pengertian suatu barisan bilangan, perhatikan contoh urutan bilangan berikut ini :, 4, 6, 8, 10, Urutan bilangan di atas mempunyai aturan
FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan
FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan
SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut:
SUKU BANYAK A. Pengertian Suku Banyak Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: Dinamakan suku banyak (polinom) dalam yang berderajat dengan bilangan cacah
Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO
Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.
LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)
LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah
BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah
BILANGAN BERPANGKAT Jika a bilangan real dan n bilangan bulat positif, maka a n adalah perkalian a sebanyak n faktor. Bilangan berpangkat, a disebut bilangan pokok dan n disebut pangkat atau eksponen.
Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan
4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan
Antiremed Kelas 09 Matematika
Antiremed Kelas 09 Matematika Deret Bilangan - Latihan Soal Doc. Name: AR09MAT0613 Version: 2013-10 halaman 1 01a Berapakah nilai deret aritmatika di bawah (A) 1 + 2 + 3 + 4 + + 100 01b Berapakah nilai
FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2
APA ITU FUNGSI? FUNGSI Imajinasi : bermain golf f f : / =f() TEP FTP UB Sebuah fungsi adalah transformasi dari input pada output = f(). f : =f() =f()= DOMAIN, KODOMAIN, RANGE Fungsi adalah hubungan antara
APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf
FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan
Materi W6b BARISAN DAN DERET. Kelas X, Semester 2. B. Barisan dan Deret Aritmatika.
Materi W6b BARISAN DAN DERET Kelas X, Semester 2 B. Barisan dan Deret Aritmatika www.yudarwi.com B. Barisan dan Deret Aritmatika Barisan adalah kumpulan objek-objek yang disusun menurut pola tertentu U
Modul Matematika MINGGU 4. g. Titik Potong fungsi linier
MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran
TEOREMA SISA 1. Nilai Sukubanyak Tugas 1
TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk
Relasi Rekursi. Matematika Informatika 4. Onggo
Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Dasar 1 Kode / SKS : IT012314 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 & 2 HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan
II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui
II. TINJAUAN PUSTAKA Untuk menuju ketahap pembahasan mengenai keberadaan dan ketunggalan dari iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui beberapa bagian dari persamaaan
Institut Manajemen Telkom
Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2
a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2
Kunci Jawaban Uji Kompetensi 1.1 1. a. {, 1,0,1,,3,4} BAB I Bilangan Riil Uji Kompetensi 1. 1. a. asosiatif b. memiliki elemen penting 3. 10 Uji Kompetensi 1.3 1. a. 1 4 e. 1 35 15 c. 1 8 1 1 c. 1 4 5.
MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari
MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi
Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar
Bab Sumber: Science Encylopedia, 997 Faktorisasi Aljabar Masih ingatkah kamu tentang pelajaran Aljabar? Di Kelas VII, kamu telah mengenal bentuk aljabar dan juga telah mempelajari operasi hitung pada bentuk
Department of Mathematics FMIPAUNS
Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan
BAB II PERSAMAAN DIFERENSIAL BIASA
BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan
Sri Purwaningsih. Modul ke: Fakultas EKONOMI BISNIS. Program Studi Manajemen dan Akuntansi.
Modul ke: Fakultas EKONOMI BISNIS MATEMATIKA BISNIS Sesi 2 ini akan membahasteori Deret Hiutung dan Deret Ukur pada Matematika Bisnis sehingga Mahasiswa mempunyai dasar yang kuat untuk melakukan pengukuran
Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir
Relasi Rekursi *recurrence rekurens rekursi perulangan. Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir menuliskan definisi dari
MATEMATIKA EKONOMI Program Studi Agribisnis
MATEMATIKA EKONOMI Program Studi Agribisnis Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website: http://almasdi.unri.ac.id HUBUNGAN FUNGSIONAL Pengertian dan unsur-unsur
Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1)
Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 07 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 07/02/2017 1 / 8 Pemeran-pemeran
3.2 Teorema-Teorema Limit Fungsi
. Teorema-Teorema Limit Fungsi Menghitung it fungsi di suatu titik dengan menggunakan definisi dan pembuktian seperti ang telah diuraikan di atas adalah pekerjaan rumit. Semakin rumit bentuk fungsina,
LAMPIRAN A. A1. Analisis kurikulum. A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar
86 LAMPIRAN A A1. Analisis kurikulum A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar A. Materi, contoh soal dan soal latihan permainan materi operasi aljabar 87 ANALISIS KURIKULUM
Matematika Dasar FUNGSI DAN GRAFIK
FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan
Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada
5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal
Single Linked List (2)
Praktikum 6 Single Linked List (2) A. TUJUAN PEMBELAJARAN Setelah mempelajari materi dalam bab ini, mahasiswa diharapkan mampu: 1. Memahami konsep membangun single linked list 2. Memahami konsep operasi
Nama:... Kelas/Kelompok :... Tanggal:... Pola Bilangan Genap dan Bilangan Ganjil
6.1 61 Nama:... Kelas/Kelompok :... Tanggal:... Pola Bilangan Genap dan Bilangan Ganjil 1. Sebelum kita belajar lebih jauh, untuk mendalami pola bilangan lakukan kegiatan berikut ini. Bahan : Satu lembar
A. TUJUAN PEMBELAJARAN
Praktikum 8 Double Linked List (2) A. TUJUAN PEMBELAJARAN Setelah mempelajari materi dalam bab ini, mahasiswa diharapkan mampu: 1. Memahami konsep operasi menyisipkan sebelum simpul tertentu 2. Memahami
PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017
PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017 Jenis Sekolah : SMP Waktu : 90 menit Mata Pelajaran : Matematika Banyak soal : 25/5 Kelas : VII Pembuat Soal : Tim Kurikulum : KTSP Bentuk Soal
BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar
Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian
Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap
BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif
LEMBAR AKTIVITAS SISWA MATRIKS
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel
PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH
MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen
MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut
Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1
Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w
MATRIKS SATUAN ACARA PERKULIAHAN
MATRIKS SATUAN ACARA PERKULIAHAN Mata Kuliah Jurusan SKS Kode M. Kuliah : Kalkulus IA : Teknik Elektro : 2 SKS : KD-0420 Minggu ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada
5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya
KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN
KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN Diskripsi Mata Kuliah Tujuan : Memberikan gambaran dan dasardasar pengertian serta pola pikir yang logis. Barisan dan deret : Bilangan yang tersusun secara
BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b =
BAB II TEORI DASAR 2.1. Group Misalkan operasi biner didefinisikan untuk elemen-elemen dari himpunan G. Maka G adalah grup dengan operasi * jika kondisi di bawah ini terpenuhi : 1. G tertutup terhadap.
YAYASAN PRAWITAMA SMK WIKRAMA BOGOR
Telp. 051-84411, email: prohumasi@smkwikrama.net, FUNGSI KOMPOSISI DAN INVERS Pembahasan : 1. Pengertian ungsi, daerah asal daerah hasil Fungsi merupakan Daerah Asal : Suatu ungsi : A B, dengan daerah
Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011
Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Tanggal Ujian: 31 Mei 2011 1. Jika 6(3 40 ) ( 2 log a) + 3 41 ( 2 log a) = 3 43, maka nilai a adalah... A. B. C. 4 D.
BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN
BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب
SMPIT AT TAQWA Beraqidah, Berakhlaq, Berprestasi
KISI-KISI SOAL UJIAN AKHIR SEMESTER (UAS) GENAP TAHUN PELAJARAN 2015/2016 BIDANG STUDI : Matematika KELAS : 7 ( Tujuh) STANDAR KOMPETENSI / KOMPETENSI INTI : 1. Memahami sifat-sifat operasi hitung bilangan
PELATIHAN INSTRUKTUR/PENGEMBANG SMU 28 JULI s.d. 12 AGUSTUS 2003 MATRIKS. Oleh: Drs. M. Danuri, M. Pd.
PELATIHAN INSTRUKTUR/PENGEMBANG SMU JULI s.d. AGUSTUS MATRIKS Oleh: Drs. M. Danuri, M. Pd. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN PENATARAN
MATERI POLA BILANGAN Disusun Untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu : Koryna Aviory, S.Si., M.Pd
MATERI POLA BILANGAN Disusun Untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu : Koryna Aviory, S.Si., M.Pd Disusun Oleh : Kelas III A4 14144100140 Rina Andriyani PROGRAM STUDI PENDIDIKAN
BAB III HASIL DAN PEMBAHASAN
BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan hal-hal yang berhubungan dengan masalah dan bagaimana mengeksplorasinya dengan logaritma diskret pada menggunakan algoritme Exhaustive Search Baby-Step
Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc
Matematika: Persamaan Kuadrat //0 MATA KULIAH : MATEMATIKA KODE MATA KULIAH : UNM0.0 SKS : (-) ) PERSAMAAN KUADRAT Oleh Syawaludin A. Harahap, MSc UNIVERSITAS PADJADJARAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN
FUNGSI KOMPOSISI DAN FUNGSI INVERS
FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap
MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG
MATEMATIKA DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG BARISAN VS DERET BARISAN (Sequences) Himpunan besaran u 1, u, u 3, yang
8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 3 KOMBINATORIAL Tujuan 1.Mahasiswa
URAIAN POKOK-POKOK PERKULIAHAN
Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan
KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 2014
LKS SMK 214 Bidang : Matematika Teknologi KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 214 1 Memecahkan masalah berkaitan dengan konsep aljabar memaham, mengaplikasikan, menganalisai
Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka
Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil
kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi
Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel
METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di
III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun ajaran 2011-2012 bertempat di Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam
Antiremed Kelas 09 Matematika
Antiremed Kelas 09 Matematika Latihan Ulangan Barisan dan Deret Bilangan Doc. Name: AR09MAT0698 Version: 03- halaman 0. Suku ke-40 dari barisan 7, 5, 3,, adalah (UAN 003) -69 (B) -7 (C) -73 (D) -75 0a
MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT
MATEMATIKA EKONOMI DAN BISNIS Pengertian BARIS DAN DERET Baris dapat didefinisikan sebagai suatu fungsi yang wilayahnya merupakan himpunan bilangan alam. Setiap bilangan yang merupakan anggota suatu banjar
F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI
F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.
BAB III PERLUASAN INTEGRAL
BAB III PERLUASAN INTEGRAL Pembahasan pada bab ini termuat pada ruang lingkup perluasan uniter atas suatu ring komutatif. Jika adalah suatu ring, maka yang dimaksud adalah suatu ring yang komutatif dan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret
BARISAN DAN DERET 1. A. Barisan dan Deret Aritmatika 11/13/2015. Peta Konsep. A. Barisan dan Deret Aritmatika
Jurnal Peta Konsep Daftar Hadir MateriA SoalLatihan Materi Umum BARISAN DAN DERET 1 Kelas X, Semester A. Barisan dan Deret Aritmatika Barisan dan Deret Aritmatika Barisan dan Deret Soal Aplikasi dalam
BAB II. Landasan Teori
BAB II Landasan Teori. Model Matematika Menurut Wirodikromo (998, p77) model matematika adalah suatu rumusan matematika (dapat berbentuk persamaan, pertidaksamaan / fungsi) yang diperoleh dari hasil penafsiran
RENCANA PELAKSANAN PEMBELAJARAN ( R P P ke - 1)
RENCANA PELAKSANAN PEMBELAJARAN ( R P P ke - ) A. Identitas Sekolah : SMP Negeri Gerokgak Mata Pelajaran : Matematika Kelas / Semester : VIII (delapan ) / Ganjil Standar Kompetensi :. Memahami bentuk aljabar,
II. TINJAUAN PUSTAKA
6 II. TINJAUAN PUSTAKA Dalam bab ini diberikan beberapa definisi dan istilah yang digunakan dalam penelitian ini. Definisi 2.1 (Turunan) Turunan merupakan pengukuran terhadap bagaimana fungsi berubah.
Ringkasan Kalkulus 2, Untuk dipakai di ITB 1
Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan
Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMA/Sederajat tahun 2012
Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMA/Sederajat tahun 202 Bagian Kedua. Soal Semifinal OMITS 2 tingkat SMA/Sederajat Bagian Kedua terdiri dari 20 Soal Isian Singkat
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin
MA1201 KALKULUS 2A Do maths and you see the world
Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis
FAKTORISASI SUKU ALJABAR
1 FAKTORISASI SUKU ALJABAR Pernahkah kalian berbelanja di supermarket? Sebelum berbelanja, kalian pasti memperkirakan barang apa saja yang akan dibeli dan berapa jumlah uang yang harus dibayar. Kalian
Permutasi & Kombinasi
Permutasi & Kombinasi 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat????? abcdef
Bab 3 Gelanggang Polinom Miring
Bab 3 Gelanggang Polinom Miring Dalam bab ini akan dibahas mengenai Gelanggang Poliom Miring mulai dengan bentuk yang sederhana (satu variabel) sampai ke bentuk yang lebih kompleks (banyak variabel) berikut
FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya
FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah
CONTOH SOAL UAN BARIS DAN DERET
CONTOH SOAL UAN BARIS DAN DERET 1. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah. a. 840 b. 660 c. 640
II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga
II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan
Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.
4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan