KAJIAN KONSEP RUANG NORMA-2 DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA

Ukuran: px
Mulai penontonan dengan halaman:

Download "KAJIAN KONSEP RUANG NORMA-2 DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA"

Transkripsi

1 Jurnal Matematika Murni dan Teraan εsilon Vol. 07, No.01, 013), Hal KAJIAN KONSEP RUANG NORMA- DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA Wahidah 1 dan Moch. Idris 1, Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. A. Yani Km. 36 Banjarbaru, Kalimantan Selatan Reemyfasol@gmail.com Abstrak. Gagasan ruang norma- ada awalnya dikenalkan oleh Ghler ada tahun 1960an. Pada tahun 001, Gunawan dan Mashadi mengkaji mengenai ruang norma- dan mendefinisikan suatu norma baru. Norma- standar meruakan luas bidang ada ruang- yang dibangun oleh dua buah vektor. Luas bidang tersebut bernilai nol ketika vektor-vektor yang membangunnya saling bergantung linear. Dalam enelitian ini dikaji ekuivalensi antara ruang norma dengan ruang norma-. Kata Kunci : ruang norma, ruang norma-, ekuivalensi. Abstract. The concet of -normed sace was initially introduced by Gähler in 1960 s. In 001, Gunawan and Mashadi studied about -normed sace and define a new norm. A standard -normed sace is an area on -sace which is generated by two vectors. That area will be zero when the vectors are linearly deendent. In this research, we have studied equivalency between normed sace and -normed sace. Keywords : normed sace, -normed sace, equivalency. 1. Pendahuluan Konse ruang norma meruakan bagian dari embahasan analisis fungsional. Ruang norma ada embahasan analisis fungsional meruakan asangan ruang vektor dengan suatu norma yang terdefinisi dalam ruang vektor tersebut dan dinyatakan dengan X, ). Salah satu contoh norma yang akan digunakan dalam enelitian ini yaitu x = d x, x dan x = ξ i. Sedangkan ruang norma- dinyatakan 13

2 14 Jurnal Matematika Murni dan Teraan, Vol. VII, No ) Hal dengan X,, )) meruakan asangan ruang vektor dengan norma- yang terdefinisi dalam ruang vektor tersebut. Konse ruang norma- ada awalnya dierkenalkan oleh S. Ghler ada tahun 1960an. Setelah itu, banyak eneliti yang memelajari tentang ruang norma- dengan berbagai hasil yang dieroleh. Berikut ini akan diberikan definisi ruang norma- yang didefinisikan oleh Gunawan dan Mashadi. Misalkan X suatu ruang vektor dimensi d, dengan d <. Suatu norma- ada X meruakan emetaan, : X X R yang memenuhi emat sifat berikut ini: N1. x, y 0 untuk setia x, y X, x, y 0 jika dan hanya jika x dan y bergantung linear; N. x, y = y, x untuk setia x, y X; N3. x, αy = α x, y untuk setia α R dan x, y X; N4. x, y + z x, y + x, z untuk setia x, y, z X. Pasangan X,, ) disebut ruang norma-. Contoh ruang norma- standar yaitu R d yang dilengkai dengan norma- berikut ini: x x 1, x s := 1, x 1 x 1, x x, x 1 x, x 1) Berdasarkan norma- diatas diketahui bahwa: x 1, x s = x 1 x ) x 1, x 0 ) dan x 1, x + αx 1 = x 1, x untuk setia x 1, x X dan α R. Selain itu, jika x 1, x dan x 3 bebas linear maka x 1, x + x 3 = x 1, x + x 1, x 3 dan x 1, x x 3 = x 1, x + x 1, x 3 hal ini terjadi ketika d = ). Diberikan suatu ruang norma- X,, ), barisan x m ) dalam X dikatakan konvergen- ke x X, atau x dikatakan sebagai limit dari X, jika untuk setia ε > 0 terdaat Kε) N sedemikian hingga untuk setia m Kε) berlaku x m x, y ε untuk setia y X. Norma- X,, ) dikatakan ruang norma- lengka atau ruang Banach jika barisan Cauchy- ada X, yaitu untuk setia ε > 0 terdaat Kε) N sedemikian hingga untuk setia m, n N dan y X berlaku x m x n, y ε untuk setia m, n Kε), konvergen ke x ada X. Berdasarkan emaaran di atas, enelitian ini akan menunjukkan hubungan norma- standar dengan luas jajar genjang, membuktikan sifat barisan konvergen- dan barisan Cauchy- ada ruang norma- dan mengkonstruksi hubungan antara norma dengan norma-.

3 Wahidah, Idris dan Mahfuzh KAJIAN KONSEP RUANG NORMA Norma- ada R d. Hasil dan Pembahasan Pada kasus norma- standar, daat kita lihat hubungannya dengan kasus seerti gambar berikut, yaitu ada luasan jajar genjang. Gambar 1. Luas Jajar Genjang EFGH Misalkan EF = u, EG = v dan F A = t, maka berdasarkan gambar 1 daat diketahui bahwa luas jajar genjang yang dibangun oleh dua vektor EG dan EF yaitu: L EF GH = u v ) u v 3) Berdasarkan ersamaan ) dan ersamaan 3) daat dilihat hubungan antara norma- standar dengan luas jajar genjang yang dibangun oleh dua vektor ada R. Yaitu bahwa norma- standar, x, y s, daat dinyatakan sebagai luasan daerah yang dibangun oleh dua vektor x dan y. Selain sebagai luasan daerah jajar genjang norma- ada R d juga daat didefinisikan dengan emetaan yang lain, seerti ada lemma berikut ini Lemma.1. Diberikan x, y R d dengan x = ξ 1, ξ,..., ξ d ) dan y = η 1, η,..., η d ) serta ξ i, η i R untuk setia i = 1,..., d. Didefinisikan suatu emetaan yaitu: x, y := [ 1 abs ξ i j=1 maka R d, x, y ) meruakan ruang norma-. ξ j η i η j ) ] 1 4).. Barisan Konvergen- dan Barisan Cauchy- ada Ruang Norma- Pada bagian ini akan diberikan lemma yang memuat hubungan antara barisan konvergen- dengan barisan Cauchy- ada ruang norma-.

4 16 Jurnal Matematika Murni dan Teraan, Vol. VII, No ) Hal Lemma.. Dalam ruang norma- X,, ), setia barisan konvergen- adalah barisan Cauchy-. Bukti. Diberikan barisan x m ) ada ruang norma- X,, ) yang konvergen- ke x X, maka untuk setia ε > 0 terdaat Kε) N sedemikian hingga untuk setia m, n Kε) berlaku x m x, y < ε dan x n x, y < ε untuk setia y X. Oleh karena itu dieroleh: x m x n, y = x m x + x x n, y x m x, y + x x n, y < ε + ε = ε Jadi, barisan konvergen x m ) meruakan barisan Cauchy-. Aabila barisan Cauchy- ada ruang norma- meruakan barisan konvergen- maka ruang norma- tersebut dikatakan lengka-. Hal ini termuat dalam definisi berikut ini: Definisi.3. Ruang norma- X,, ) dikatakan lengka- jika setia barisan Cauchy- ada X adalah konvergen-. Salah satu contoh ruang norma lengka- yaitu ruang norma- R d,, ) ada ersamaan 4)..3. Ekuivalensi Norma- Ketika dua norma ekuivalen, maka semua sifat yang ada didalamnya akan sama untuk kedua norma itu. Berikut ini akan diberikan engertian mengenai dua norma- yang ekuivalen. Definisi.4. Suatu norma-, a ada ruang vektor X dikatakan ekuivalen dengan suatu norma-, b ada X jika terdaat bilangan riil ositif k 1 dan k sedemikian sehingga berlaku k 1, b, a k, b Berdasarkan definisi di atas, berikut ini diberikan suatu teorema yang menyatakan ekuivalensi antara dua norma- yang terdefinisi dalam ruang berdimensi hingga. Teorema.5. Dalam ruang norma- berdimensi hingga R d ), dua norma [ 1 x, y := abs ξ ) ] 1 i η i ξ j η j dan adalah equivalen. x, y q := [ 1 j=1 abs ξ i j=1 ξ j η i η j ) ] 1 q q

5 Wahidah, Idris dan Mahfuzh KAJIAN KONSEP RUANG NORMA- 17 Bukti. Berdasarkan dua definisi norma- dan norma-q maka akan dihasilkan: d d Jadi, x, y ekuivalen dengan x, y q. q, q, d d, q 5) Konsekuensi enting dari teorema di atas dinyatakan dalam akibat berikut ini: Akibat.6. Untuk ruang norma- R d,, ) dan ruang norma- R d,, q ) berlaku: A1. Barisan x m ) adalah barisan konvergen- ada R d,, ) jika dan hanya jika x m ) barisan konvergen- ada R d,, q ) A. Barisan x m ) adalah barisan Cauchy- ada R d,, ) jika dan hanya jika x m ) barisan Cauchy- ada R d,, q ).4. Hubungan Norma dengan Norma- ada R d Diketahui x adalah suatu norma dan x, y meruakan suatu norma-. Berikut ini diberikan suatu lemma yang menyatakan hubungan antara norma dan norma- tersebut. Lemma.7. Untuk setia x, y R d, berlaku x, y < 1 q x y. Bukti. Diketahui x, y := [ 1 berdasarkan definisi tersebut dihasilkan abs ξ i j=1 ξ j η i η j ) ] 1. x, y = 1 d ξ i η j ξ j η i ξ i η j ξ j η i 1 berdasarkan ketaksamaan segitiga berlaku ξ i η j ξ j η i ξ i η j + ξ j η i sehingga dihasilkan x, y 1 ξ i η j ξ i η j ξ j η i j=1 ξ j η i ξ i η j ξ j η i 1 j=1 berdasarkan ketaksamaan Hölder dihasilkan x, y 1 q x y 6)

6 18 Jurnal Matematika Murni dan Teraan, Vol. VII, No ) Hal Berdasarkan ketaksamaan 6) daat dilihat bahwa sifat-sifat norma ada R d juga berlaku ada norma-. Hal ini dinyatakan dalam akibat berikut ini: Akibat.8. Untuk ruang norma- R d,, ) dan ruang norma R d, ) berlaku: V1. Barisan x m ) adalah barisan konvergen ada R d, ) jika dan hanya jika x m ) barisan konvergen- ada R d,, ) V. Barisan x m ) adalah barisan Cauchy ada R d, ) jika dan hanya jika x m ) barisan Cauchy- ada R d,, ) Setelah memahami konse dan beberaa sifat dari ruang norma dan ruang norma-, maka daat dibangun suatu norma yang didefinisikan secara khusus dari norma-. Hal ini dinyatakan dalam teorema berikut ini: Teorema.9. Misalkan x, z 1, z R d dengan x = ξ 1, ξ,..., ξ d ), z 1 = η 1, η,..., η d ) dan z = ϕ 1, ϕ,..., ϕ d ), dengan z 1 dan z vektor-vektor yang bebas linear, maka daat ditunjukkan bahwa emetaan berikut ini: meruakan suatu norma. x O := x, z 1 + x, z 7) Bukti. P1. Berdasarkan definisi ruang norma-, diketahui x, z 1 0 sehingga x, z 1 0, begitu ula x, z 0. Akibatnya dihasilkan x O 0. P. a) Diketahui x = 0 maka ξ j = 0 untuk j = 1,..., d. Oleh karena itu dihasilkan x, z 1 = 0 dan x, z = 0, sehingga x, z 1 + x, z kata lain x O = 0. = 0. Dengan b) Diketahui x, z 1 + x, z = 0 sehingga x, z 1 = 0 dan x, z = 0. Berdasarkan definisi ruang norma-, x dan z 1 bergantung linear, begitu ula x dan z bergantung linear sehingga x = k 1 z 1 dan x = k z. Oleh karena itu dihasilkan k 1 z 1 k z = 0. Karena z 1 dan z bebas linear, maka k 1 = k = 0 akibatnya x = 0. P3. Diketahui x O = x, z 1 + x, z αx O = αx, z 1 + αx, z, misalkan terdaat α R maka. Berdasarkan definisi ruang norma- berlaku: αx, z1 + αx, z ) 1 = α ) x, z 1 + x, z 1 = α x O.

7 Wahidah, Idris dan Mahfuzh KAJIAN KONSEP RUANG NORMA- 19 P4. Diketahui x O = x, z ) i 1. Daat dibuktikan bahwa x O memenuhi sifat ke-4 ada ruang norma, yaitu sebagai berikut: x + y, zi ) x, zi x + y, z i 1 berdasarkan ketaksamaan Hölder dieroleh: x + y, z 1 + x + y, z ) x, z 1 + x, z ) + y, z i x + y, z i 1. + y, z 1 + y, z berdasarkan embuktian [P1.] samai dengan [P4.] terbukti bahwa x O adalah suatu norma dan R d, x O ) meruakan ruang norma. Berikut ini dibangun suatu teorema yang akan menunjukkan bahwa sifat-sifat ada ruang norma- berlaku ada ruang norma. Teorema.10. Misalkan e m = 0, 0,..., 1 m,..., 0, 0) dan e n = 0, 0,..., 1 n,..., 0, 0), dengan e m, e n X untuk m n, maka berlaku x x, e m + x, e n. 8) Bukti. Diketahui x, e m 1 = abs ξ i e mi ) dengan e m = 0, 0,..., 1 m, 0, 0), sehingga dihasilkan: x, e m = 1 ξ i + = ξ i j=1 ξ j ) ξ i dengan i = 1,..., d dan i m. Sejalan dengan x, e m, untuk x, e n dihasilkan x, e n = d ξ i. Dengan demikian dihasilkan: x x, e m + x, e n. e mj. Setelah memahami beberaa konse yang berkaitan dengan norma dan norma-, berikut ini dibangun ekuivalensi antara norma dan norma-. Teorema.11. Diketahui x suatu norma ada R d dan didefinisikan x O = x, e m + x, e n dengan x R d, maka norma x ekuivalen dengan norma x O.

8 0 Jurnal Matematika Murni dan Teraan, Vol. VII, No ) Hal Bukti. Diketahui x daat dihasilkan: x, e m + x, e n. Berdasarkan teorema sebelumnya, x O = x, e m + x, e n [ 1 x em + e n )] 1 = x berdasarkan yang diketahui x x O dan dihasilkan x O x, sehingga daat dikatakan bahwa x x O x. Dengan kata lain x ekuivalen dengan x O. Berdasarkan teorema-teorema dan lemma-lemma serta akibat yang dikaji, daat dilihat bahwa sifat-sifat ada norma- berlaku ada norma- lainnya. Disisi lain juga diketahui bahwa sifat-sifat yang berlaku ada norma akan berlaku ada norma- dan berlaku sebaliknya. Oleh karena itu, aabila ruang norma R d, ) lengka, maka akan mengakibatkan ruang norma- R d,, ) lengka-. Dengan kata lain, jika R d ) adalah ruang Banach maka R) d meruakan ruang Banach. Begitu juga sebaliknya. 3. Kesimulan Berdasarkan hasil enelitian daat diketahui bahwa norma- ada kasus standar, s ) meruakan luas jajar genjang. Selain itu juga diketahui bahwa norma-, ) ekuivalen dengan, q ) dan ) ekuivalen dengan, ) ada R) d. Hal ini menunjukkan bahwa, ada R) d, sifat-sifat yang berlaku ada norma- juga akan berlaku ada norma- lainnya, begituula sifat-sifat yang berlaku ada norma akan berlaku ada norma- dan sebaliknya. Dengan kata lain R) d adalah ruang Banach jika dan hanya jika R) d ruang Banach-. Daftar Pustaka [1] Anton, H Aljabar Linear Elementer. Edisi ke-5. Erlangga. Jakarta. [] Bartle, R. G., H., dan D. R. SHelbert Introduction to Real Analysis. Edisi ke-3. John Wiley and Sons. Inc. New York. [3] Gunawan, H., dan M. Mashadi Soochow Journal of Mathematics. On finite dimensional -normed sace. 7: [4] Kreyszig, E Introduction Functional Alaysis with Alication. John Wiley and Sons. Inc. New York.

Teorema Titik Tetap di Ruang Norm-2 Standar

Teorema Titik Tetap di Ruang Norm-2 Standar Teorema Titik Tetap di Ruang Norm- Standar Muh. Nur Universitas Hasanuddin Abstract Pada tulisan ini, akan dipelajari ruang norm- standar, yakni ruang hasil kali dalam yang dilengkapi dengan norm- standar.

Lebih terperinci

Ruang Norm-n Berdimensi Hingga

Ruang Norm-n Berdimensi Hingga Jurnal Matematika Integratif. Vol. 3, No. 2 (207), pp. 95 04. p-issn:42-684, e-issn:2549-903 doi:0.2498/jmi.v3.n2.986.95-04 Ruang Norm-n Berdimensi Hingga Moh. Januar Ismail Burhan Jurusan Matematika dan

Lebih terperinci

REPRESENTASI FUNGSIONAL-2 DI l p. Yosafat Eka Prasetya Pangalela Institut Teknologi Bandung

REPRESENTASI FUNGSIONAL-2 DI l p. Yosafat Eka Prasetya Pangalela Institut Teknologi Bandung JMP : Volume 4 Nomor, Juni 202, hal. 23-29 REPRESENTASI FUNGSIONAL-2 DI l Yosafat Eka Prasetya Pangalela Institut Teknologi Bandung matrix_ye@yahoo.co.id Hendra Gunawan Institut Teknologi Bandung ABSTRACT.

Lebih terperinci

Hasil Kali Dalam Berbobot pada Ruang L p (X)

Hasil Kali Dalam Berbobot pada Ruang L p (X) Hasil Kali Dalam Berbobot ada Ruang L () Muhammad Jakfar, Hendra Gunawan, Mochammad Idris 3 Universitas Negeri Surabaya, muhammadjakfar@unesa.ac.id Institut Teknologi Bandung, hgunawan@math.itb.ac.id 3

Lebih terperinci

Kelengkapan Ruang l pada Ruang Norm-n

Kelengkapan Ruang l pada Ruang Norm-n Jurnal Matematika, Statistika,& Komputasi Vol.... No... 20... Kelengkapan Ruang l pada Ruang Norm-n Meriam, Naimah Aris 2, Muh Nur 3 Abstrak Rumusan norm-n pada l merupakan perumuman dari rumusan norm-n

Lebih terperinci

Ruang Norm-2 dan Ruang Hasil Kali Dalam-2

Ruang Norm-2 dan Ruang Hasil Kali Dalam-2 Jurnal Matematika Integratif ISSN 4-684 Volume 0 No, Oktober 04, pp 39-45 Ruang Norm- dan Ruang Hasil Kali Dalam- J.Manuhutu, Y.A.Lesnussa, H. Batkunde JurusanMatematika Fakultas MIPA UniversitasPattimura

Lebih terperinci

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T BAB I PENDAHULUAN. Latar Belakang dan Permasalahan Bidang ilmu analisis meruakan salah satu cabang ilmu matematika yang di dalamnya banyak membicarakan konse, aksioma, teorema, lemma disertai embuktian

Lebih terperinci

BAB V KESIMPULAN. Berdasarkan uraian pada Bab III dan Bab IV maka dapat disimpulkan sebagai

BAB V KESIMPULAN. Berdasarkan uraian pada Bab III dan Bab IV maka dapat disimpulkan sebagai BAB V KESIMPULAN Berdasarkan uraian ada Bab III dan Bab IV maka daat disimulkan sebagai berikut 1. Keluarga emetaan K C,δ (R, R) dan L C,δ (R, R) adalah beberaa bentuk keluarga emetaan demi linear dari

Lebih terperinci

SIFAT-SIFAT HIMPUNAN PROXIMINAL

SIFAT-SIFAT HIMPUNAN PROXIMINAL Prima: Jurnal Pendidikan Matematika Vol. 2, No. 1, Januari 2018, hal. 49-56 P-ISSN: 2579-9827, E-ISSN: 2580-2216 SIFAT-SIFAT HIMPUNAN PROXIMINAL Arta Ekayanti Universitas Muhammadiyah Ponorogo, Jl. Budi

Lebih terperinci

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah

Lebih terperinci

KEKONVERGENAN LEMAH PADA RUANG HILBERT

KEKONVERGENAN LEMAH PADA RUANG HILBERT KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: ramadhan.101110176@gmail.com ABSTRAK.

Lebih terperinci

BAB 2 RUANG BERNORM. 2.1 Norm dan Ruang `p. De nisi 2.1 Misalkan V ruang vektor atas R, Sebuah fungsi k:k : V! R yang memenuhi sifat-sifat berikut :

BAB 2 RUANG BERNORM. 2.1 Norm dan Ruang `p. De nisi 2.1 Misalkan V ruang vektor atas R, Sebuah fungsi k:k : V! R yang memenuhi sifat-sifat berikut : BAB 2 RUANG BERNORM 2. Norm dan Ruang ` De nisi 2. Misalkan V ruang vektor atas R, Sebuah fungsi kk V! R yang memenuhi sifat-sifat berikut [N] kxk 0 jika dan hanya jika x 0 [N2] kxk jj kxk untuk setia

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI-

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1 TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- Hajar Grestika Murti, Erna Apriliani, Sunarsini Jurusan Matematika, Fakultas Matematika dan

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

ORTOGONALITAS-P DI RUANG NORM-n

ORTOGONALITAS-P DI RUANG NORM-n ORTOGONALITAS-P DI RUANG NORM-n Mohammad Mahfuzh Shiddiq Program Studi Matematika FMIPA Universitas Lambung Mangkurat mmahfuzhs@gmail.com ABSTRAK Konsep ortogonalitas di ruang norm mempunyai banyak definisi

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR. Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB

TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR. Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB JMP : Volume 4 Nomor, Juni 0, hal. 69-77 TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB shelvi_ekariani@students.itb.ac.id Hendra Gunawan KK Analisis dan

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

Konvergensi Barisan dan Teorema Titik Tetap

Konvergensi Barisan dan Teorema Titik Tetap JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

FUNGSIONAL LINEAR-2 DALAM RUANG NORM-2 2-LINEAR FUNCTIONALS IN 2-NORMED SPACE

FUNGSIONAL LINEAR-2 DALAM RUANG NORM-2 2-LINEAR FUNCTIONALS IN 2-NORMED SPACE Jurnal Ilmu Matematika dan Terapan Maret 016 Volume 10 Nomor 1 Hal. 1 7 FUNGSIONAL LINEAR- DALAM RUANG NORM- Harmanus Batkunde 1, Meilin I. Tilukay dan F. Y. Rumlawang 3 1,,3 Jurusan Matematika FMIPA Universitas

Lebih terperinci

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung e-mail: e.sumiaty@yahoo.com Abstrak Diketahui ruang fungsi klasik L (, ). Melalui oerator T ada ruang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini akan dibahas mengenai latar belakang masalah, perumusan masalah, batasan masalah, maksud dan tujuan penulisan, tinjauan pustaka serta sistematika penulisan skirpsi ini. 1.1.

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

JURNAL FOURIER April 2017, Vol. 6, No. 1, ISSN X; E-ISSN

JURNAL FOURIER April 2017, Vol. 6, No. 1, ISSN X; E-ISSN JURNAL FOURIER Aril 7, Vol. 6, No., -6 ISSN 5-763X; E-ISSN 54-539 Kaitan Antara Ruang W m, () Sobolev dan Ruang L () Lebesgue Piit Pratii Rahayu Program Studi Matematika Fakultas Sains dan Teknologi, UIN

Lebih terperinci

KESTABILAN PERSAMAAN FUNGSIONAL JENSEN.

KESTABILAN PERSAMAAN FUNGSIONAL JENSEN. KESTABILAN PERSAMAAN FUNGSIONAL JENSEN Hilwin Nisa, Hairur Rahman, 3 Imam Sujarwo Jurusan Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang jurusan Matematika, Universitas Islam Negeri

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

TRANSFORMASI AFFIN PADA BIDANG

TRANSFORMASI AFFIN PADA BIDANG Jurnal Matematika Vol. No. November 03 [ : 8 ] TRANSFORMASI AFFIN PADA BIDANG Gani Gunawan dan Suwanda Program Studi Matematika, Fakultas MIPA, Universitas Islam Bandung Prgram Studi Statistika, Fakultas

Lebih terperinci

Ekuivalensi Norm-n dalam Ruang R d

Ekuivalensi Norm-n dalam Ruang R d Jurnal Matematika Statistika & Komputasi 1 Vol No 201 Ekuivalensi Norm-n dalam Ruang R d Taufik Akbar Muh Zakir uh Nur Abstrak Sebuah ruang vektor dapat dilengkapi lebih dari satu buah norm Hal yang sama

Lebih terperinci

II. TINJAUAN PUSATAKA

II. TINJAUAN PUSATAKA 4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm

Lebih terperinci

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2009 2 DAFTAR ISI DAFTAR ISI 2 1 Sistem Bilangan Kompleks (C) 1 1 Pendahuluan...............................

Lebih terperinci

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY Joko Sungkono* Abstrak : Tujuan yang ingin dicapai pada tulisan ini adalah mengetahui kekuatan konvergensi dalam probabilitas dan konvergensi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Badrulfalah 1,Khafsah Joebaedi 2 1 Departemen Matematika FMIPA Universitas Padjadjaran badrulfalah@gmail.com 2 Departemen Matematika

Lebih terperinci

Kekontraktifan Pemetaan pada Ruang Metrik Kerucut

Kekontraktifan Pemetaan pada Ruang Metrik Kerucut Jurnal Matematika Integratif ISSN 1412-6184 Vol 9 No 2, Oktober 2013 pp 53-57 Kekontraktifan Pemetaan pada Ruang Metrik Kerucut Badrulfalah dan Iin Irianingsih Jurusan Matematika, Fakultas MIPA, Universitas

Lebih terperinci

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Hendy Fergus A. Hura 1, Nora Hariadi 2, Suarsih Utama 3 1 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424,

Lebih terperinci

Karakteristik Operator Positif Pada Ruang Hilbert

Karakteristik Operator Positif Pada Ruang Hilbert SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

TOPOLOGI RUANG LINEAR

TOPOLOGI RUANG LINEAR TOPOLOGI RUANG LINEAR Nila Kurniasih Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Jalan KHA. Dahlan 3 Purworejo e-mail: kurniasih.nila@yahoo.co.id Abstrak Tulisan ini bertujuan

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 Abstract. In this paper was discussed about Nadlr fixed

Lebih terperinci

SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER. Yulia Romadiastri

SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER. Yulia Romadiastri Jurnal Matematika Murni dan Terapan εpsilon Vol. 07, No.01, 013, Hal. 1 1 SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER Yulia Romadiastri Program Studi Tadris Matematika Fakultas Tarbiyah

Lebih terperinci

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta FOURIER Oktober 014, Vol. 3 No., 146 166 KONSEP DASAR RUANG METRIK CONE A. Rifqi Bahtiar 1, Muchammad Abrori, Malahayati 3 1,, 3 Program Studi Matematika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga

Lebih terperinci

Edisi Juni 2011 Volume V No. 1-2 ISSN SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS

Edisi Juni 2011 Volume V No. 1-2 ISSN SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS Sri Maryani Program Studi Matematika, Fakultas Sains dan Teknik Universitas Jenderal Soedirman, Purwokerto Email : sri.maryani@unsoed.ac.id Abstract Inner

Lebih terperinci

BIMODUL-C* HILBERT. Oleh: Raden Muhammad Hadi. Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia

BIMODUL-C* HILBERT. Oleh: Raden Muhammad Hadi. Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia BIMODUL-C* HILBERT Oleh: Raden Muhammad Hadi hadimaster65555@gmail.com Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia Agustus 2015 Dosen Pembimbing : Rizky Rosjanuardi dan Isnie Yusnitha

Lebih terperinci

KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE

KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 42 51 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE DEBI OKTIA HARYENI

Lebih terperinci

KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK

KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 1-6 1 KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK Fikri Firdaus, Sunarsini, Sadjidon Jurusan Matematika, Fakultas Matematika Ilmu Pengetahuan Alam,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu cabang ilmu yang berperan penting dalam berbagai bidang. Salah satu cabang ilmu matematika yang banyak diperbincangkan

Lebih terperinci

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak SIFAT-SIFAT TOPOLOGI RUANG LINEAR Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo Abstrak Penulisan ini bertujuan menyelidiki sifat-sifat yang berlaku di dalam topologi

Lebih terperinci

ALTERNATIIF LAIN MENENTUKAN PANJANG GARIS SINGGUNG DI LUAR PARABOLA

ALTERNATIIF LAIN MENENTUKAN PANJANG GARIS SINGGUNG DI LUAR PARABOLA Jurnal Matematika Vol. 6 No. November 07 ISSN: -5056 / 598-8980 htt://ejournal.unisba.ac.id/ Diterima: 8/07/07 Disetujui: //07 Publikasi Online: 8//07 ALTERNATIIF LAIN MENENTUKAN PANJANG GARIS SINGGUNG

Lebih terperinci

OPERATOR PADA RUANG BARISAN TERBATAS

OPERATOR PADA RUANG BARISAN TERBATAS OPERATOR PADA RUANG BARISAN TERBATAS Muslim Ansori *,Tiryono 2, Suharsono S 2,Dorrah Azis 2 Jurusan Matematika FMIPA Universitas Lampung,2 Jln. Soemantri Brodjonegoro No Bandar Lampung email: ansomath@yahoo.com

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

BEBERAPA KONSEP ORTOGONALITAS DI RUANG NORM

BEBERAPA KONSEP ORTOGONALITAS DI RUANG NORM Final Draft 1 Desember 2005 BEBERAPA KONSEP ORTOGONALITAS DI RUANG NORM Hendra Gunawan, Nursupiamin, dan Eder Kikianty Ortogonalitas merupakan salah satu konsep penting di ruang hasilkali dalam. Dalam

Lebih terperinci

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real Lina urhayati, Universitas Sanggabuana nurhayati_lina@yahoo.co.id Abstrak Misalkan P suatu operator superposisi terbatas dan T adalah

Lebih terperinci

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ RUANG LIPSCHITZ Muhammad Rifqi Agustian 1), Rizky Rosjanuardi 2), Endang Cahya 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: Muhammadrifqyagustian@yahoo.co.id ABSTRAK. Diberikan ruang

Lebih terperinci

ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI

ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI 34 Jurnal Matematika Vol 6 No 1 Tahun 2017 ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI THE CONVERGENCE ANALYZE ON THE SEQUENCE OF FUNCTION Oleh: Restu Puji Setiyawan 1), Dr. Hartono 2) Program Studi Matematika,

Lebih terperinci

TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n

TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n Anwar Mutaqin dan Indiana Marethi Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Sultan Ageng Tirtayasa

Lebih terperinci

Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku. Hendra Gunawan

Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku. Hendra Gunawan Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku Hendra Gunawan Departemen Matematika, ITB, Bandung 40132 hgunawan@dns.math.itb.ac.id 1 Abstrak Beberapa

Lebih terperinci

JMP : Volume 1 Nomor 1, April 2009 KETAKSAMAAN CAUCHY SCHWARZ PADA RUANG HASIL KALI DALAM-2

JMP : Volume 1 Nomor 1, April 2009 KETAKSAMAAN CAUCHY SCHWARZ PADA RUANG HASIL KALI DALAM-2 JMP : Volume Nomor April 009 KETAKSAMAAN CAUCHY SCHWARZ PADA RUANG HASIL KALI DALAM- Sri Marani Program Studi Matematika Fakultas Sains dan Tekink Universitas Jenderal Soedirman Purwokerto Email : srimar_math_97@ahoo.com

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

PERTEMUAN Logika Matematika

PERTEMUAN Logika Matematika 3-1 PERTEMUAN 3 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengamu : Dr. Suarman E-mail : matdis@netcourrier.com HP : 0813801198 Judul Pokok Bahasan Tujuan Pembelajaran : 3. Logika Matematika

Lebih terperinci

EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR

EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR Elma Rahayu Manuharawati Jurusan Matematika Fakultas Matematika Ilmu Pengetahuan Alam Universitas Negeri Surabaya 603 Jurusan Matematika Fakultas

Lebih terperinci

Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass

Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass Vol. 11, No. 2, 139-148, Januari 2015 Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass NaimahAris 1, Jusmawati M 2,Islamiyah Abbas 3, Abstrak Dalam tulisan ini dibahas pembuktian teorema

Lebih terperinci

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n Nama : Yogi Sindy Prakoso NRP : 106 100 015 Jurusan : Matematika FMIPA-ITS Pembimbing : Drs. Suhud Wahyudi, M.Si Dra. Titik Mudiati, M.Si Abstrak Grah adalah

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG ULTRAMETRIK DISKRIT

TEOREMA TITIK TETAP PADA RUANG ULTRAMETRIK DISKRIT JURNAL SAINS DAN SENI POMITS Vol 2, No1, (2014) 2337-3520 (2301-928X Print) 1 TEOREMA TITIK TETAP PADA RUANG ULTRAMETRIK DISKRIT Wihdatul Ummah, Sunarsini dan Sadjidon Jurusan Matematika, Fakultas Matematika

Lebih terperinci

ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF

ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF Agung Anggoro, Siti Fatimah 1, Encum Sumiaty 2 Departemen Pendidikan Matematika FPMIPA UPI *Surel: agung.anggoro@student.upi.edu ABSTRAK. Misalkan

Lebih terperinci

REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT

REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT Page 1 of 33 REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT SUZYANNA NRP.1208 201 002 July 13, 2010 ABSTRAK Page 2 of 33 Konsep frame di ruang hasil kali dalam dapat dipandang

Lebih terperinci

PROYEKSI ORTHOGONAL PADA RUANG HILBERT. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara

PROYEKSI ORTHOGONAL PADA RUANG HILBERT. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara PROYEKSI ORTHOGONAL PADA RUANG HILBERT ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara Pendahuluan Pada umumnya suatu teorema mempunyai ruang lingkup

Lebih terperinci

Teorema Titik Tetap Pada Ruang Ultrametrik Diskrit

Teorema Titik Tetap Pada Ruang Ultrametrik Diskrit JURNAL SAINS DAN SENI POMITS Vol 3, No2, (2014) 2337-3520 (2301-928X Print) A-58 Teorema Titik Tetap Pada Ruang Ultrametrik Diskrit Wihdatul Ummah, Sunarsini dan Sadjidon Jurusan Matematika, Fakultas Matematika

Lebih terperinci

SYARAT SYARAT FUNGSI DI RUANG METRIK AGAR RUANG METRIKNYA MEMILIKI ATSUJI COMPLETION

SYARAT SYARAT FUNGSI DI RUANG METRIK AGAR RUANG METRIKNYA MEMILIKI ATSUJI COMPLETION SYARAT SYARAT FUNGSI DI RUANG METRIK AGAR RUANG METRIKNYA MEMILIKI ATSUJI COMPLETION Azki Nuril Ilmiyah Departemen Matematika, FMIPA UI, Kampus UI Depok 16424 azki.nuril@ui.ac.id ABSTRAK Nama Program Studi

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

Parameterisasi Pengontrol yang Menstabilkan Melalui Pendekatan Faktorisasi

Parameterisasi Pengontrol yang Menstabilkan Melalui Pendekatan Faktorisasi Vol 7, No2, 92-97, Januari 2011 Parameterisasi Pengontrol yang Menstabilkan Melalui Pendekatan Faktorisasi Nur Erawati Abstrak Suatu sistem linear yang matriks transfernya berupa matriks rasional proper,

Lebih terperinci

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak.

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak. BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF Oleh: Rindang Kasih Program Studi Pendidikan Matematika FKIP UNIVET Sukoharjo Jl. Letjend Sujono Humardani No.1 Kampus Jombor Sukoharjo, e-mail: Rindang_k@yahoo.com

Lebih terperinci

Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jurnal Matematika Murni dan Terapan Epsilon Juni 2014 Vol. 8 No. 1 JUMLAH ANTI IDEAL FUZZY DARI NEAR-RING Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend.

Lebih terperinci

Sifat-sifat Ruang Banach

Sifat-sifat Ruang Banach Vol. 11, No. 2, 115-121, Januari 2015 Sifat-sifat Ruang Banach Muhammad Zakir Abstrak Tulisan ini membahas tentang himpunan operator (pemetaan) linier dari ruang vektor ke ruang vektor yang dilambangkan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 2.2 Sistem Bilangan Real sebagai Lapangan Terurut Operasi Aritmetika. Sifat-sifat dasar urutan dan aritmetika dari Sistem Bilangan

Lebih terperinci

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

PROSIDING SEMINAR NASIONAL STATISTIKA UNIVERSITAS DIPONEGORO 2013 ISBN: DUA TIPE PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE

PROSIDING SEMINAR NASIONAL STATISTIKA UNIVERSITAS DIPONEGORO 2013 ISBN: DUA TIPE PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE DUA TIPE PEMETAAN KONTRAKTIF PADA RUANG METRIK CONE Mohammad Mahfuzh Shiddiq 1 1) Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Abstract Meir and Keeler introduced type of contraction

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 2. Konstruksi Bilangan Real 2.1 Barisan Cauchy Motivasi & Definisi 2.2 Sistem Bilangan Real sbg Lapangan Terurut Aritmetika pada bilangan

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jurnal Matematika Murni dan Terapan psilon Vol. 07, No.02, Hal 20-25 KONPLEMEN IDEAL FUZZY DARI NEAR-RING Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Pemetaan merupakan konsep yang tidak pernah terlepas dari bahasan matematika analisis. Pengaitan setiap anggota dari suatu himpunan dengan tepat satu

Lebih terperinci

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak Kajian mengenai Konstruksi Aljabar Simetris Kiri Menggunakan Fungsi Linier Sofwah Ahmad Departemen Matematika FMIPA UI Kampus UI Depok 16424 sofwahahmad@sciuiacid Abstrak Aljabar merupakan suatu ruang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pemetaan linear merupakan salah satu jenis pemetaan yang dikenal dalam bidang matematika, khususnya dalam bidang matematika analisis. Diberikan ruang vektor

Lebih terperinci

BAB 3 RUANG BERNORM-2

BAB 3 RUANG BERNORM-2 BAB RUANG BERNORM-. Norm- dan Ruang ` De nisi. Misalan V ruang vetor atas R berdimensi d (dalam hal ini d boleh ta hingga). Sebuah fungsi ; V V! R yang memenuhi sifat-sifat beriut;. x; y 0 ia dan hanya

Lebih terperinci

Menentukan Rumus Umum Suku ke-n dari Barisan Bilangan dalam BentukPenjumlahan Polinom Melalui Sistim Persamaan Linier. OLEH WARMAN, S.Pd.

Menentukan Rumus Umum Suku ke-n dari Barisan Bilangan dalam BentukPenjumlahan Polinom Melalui Sistim Persamaan Linier. OLEH WARMAN, S.Pd. Menentukan Rumus Umum Suku ke-n dari Barisan Bilangan dalam BentukPenjumlahan Polinom Melalui Sistim Persamaan Linier OLEH WARMAN, S.Pd. DINAS PENDIDIKAN KABUPATEN BLITAR SMP NEGERI 1 GANDUSARI Agustus

Lebih terperinci

ISSN: X 35 SEMI HASIL KALI DALAM ATAS DAN BAWAH

ISSN: X 35 SEMI HASIL KALI DALAM ATAS DAN BAWAH ISSN: 2088-687X 35 SEMI HASIL KALI DALAM ATAS DAN BAWAH Febi Sanjaya Program Studi Pendidikan Matematika FKIP USD Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta, febi@usdacid ABSTRAK Konsep hasil kali

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas Matematika Persamaan dan Fungsi Kuadrat - Persamaan Kuadrat - Soal Uraian Do Name: ARMAT Version : - halaman. Nyatakan ersamaan-ersamaan berikut ke dalam bentuk baku kemudian tentukan nilai

Lebih terperinci

Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass

Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass Jurnal Matematika, Statistika & Komputasi 1 Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass Islamiyah Abbas 1, Naimah Aris 2, Jusmawati M 3. Abstrak Dalam skripsi ini dibahas pembuktian

Lebih terperinci

KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL

KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL Dita Apriliani, Akhmad Yusuf, M. Mahfuzh Shiddiq Program Studi Matematika Fakultas MIPA Universitas Lambung

Lebih terperinci