Pengaruh Variasi Pembebanan Pada Poros Utama Turbin Angin Terhadap Putaran, Daya Listrik, dan Kinerja Turbin Angin Golden Blade

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengaruh Variasi Pembebanan Pada Poros Utama Turbin Angin Terhadap Putaran, Daya Listrik, dan Kinerja Turbin Angin Golden Blade"

Transkripsi

1 Pengaruh Variasi Pembebanan Pada Poros Utama Turbin Angin Terhadap Putaran, Daya Listrik, dan Kinerja Turbin Angin Golden Blade Bella Rukmana *, Sapto Wiratno Satoto, Wowo Rossbandrio Batam Polytechnics Mechanical Engineering study Program Batam Center, Jl. Ahmad Yani, Batam, Kepulauan Riau Abstrak Pemberian variasi beban berpengaruh pada output putaran, daya listrik, dan kinerja turbin angin. Putaran turbin angin dipengaruhi oleh massa rotor. Semakin besar massa rotor, maka semakin besar pula kecepatan angin yang dibutuhkan untuk memutarkan rotor tersebut. Untuk mengetahui output dari variasi beban pada rotor, maka dilakukanlah penelitian dengan memberikan variasi beban pada poros utama turbin angin. Output yang dianalisa berupa putaran poros turbin angin dan daya turbin angin. Hasil daya turbin angin dibandingkan dengan daya angin sehingga didapati nilai kinerja turbin angin. Prinsip kerja dari penelitian ini yaitu angin bersumber dari aliran angin pantai dengan kecepatan angin yang bervariasi 2-3 m/s. Pengukuran putaran poros turbin angin diukur dengan tachometer dan daya output diukur dengan multimeter. Massa yang diberikan pada poros berupa puli dengan massa 0 kg, 1 kg, 2 kg dan 3 kg. Hasil penelitian disajikan dalam tabel dan grafik dengan perbandingan beban terhadap putaran dan daya turbin angin. Output maksimal dihasilkan turbin angin tanpa beban (0 kg) dengan kecepatan angin 2.55 m/s menghasilkan putaran poros turbin angin rpm, daya output 2.25 watt dan kinerja turbin angin 6.80 %. Jadi, semakin besar massa beban pada poros turbin angin maka semakin kecil putaran poros turbin angin, daya ouput dan kinerja turbin angin yang dihasilkan. Kata kunci: turbin angin, poros, rpm, daya listrik, kinerja Abstract Giving the variation of load affect shaft rotation, power, and performance of wind turbines. Wind turbine rotation is influenced by the mass of the rotor. The greater the mass of the rotor, the greater the wind speed required to rotate the rotor. To determine the output of load variation on the rotor, we conducted this study to provide load variations on the main axis wind turbines. The output shaft speed and power of wind turbine is analyzed. Results of wind turbine power compared with wind power thus found to value the performance of the wind turbine. The working principle of this study, the wind comes from the flow of wind beach with the wind speed varies 2-3 m / s. Measurement of shaft rotation is measured by a tachometer and power output is measured with a multimeter. Massa is given to the shaft in the form of pulleys with mass 0 kg, 1 kg, 2 kg and 3 kg. The results of the study are presented in tables and graphs with a load ratio of the rotation and power wind turbines. Maximum output is produced by wind turbine no-load (0 kg) with the wind velocity is 2.55 m/s, produce rotation axis wind turbine is rpm, power output is 2.25 watt and performance of the wind turbine is 6.80%. Thus, the greater the mass of the load on the wind turbine shaft, the smaller rotation axis wind turbines, power output and performance of wind turbines produced. Keywords : wind turbine, shaft, rpm, power, performance 1 Pendahuluan Dalam beberapa dekade terakhir ini, penurunan ketersediaan energi fosil menumbuhkan kekhawatiran bagi masyarakat, sehingga mendorong pengembangan dan penggunaan alat konversi energi yaitu turbin angin. Alat konversi energi ini tentunya dapat digunakan secara meluas dalam memenuhi dan

2 mengakomodasikan kebutuhan listrik masyarakat [1]. Ihwah dan Sota (2010:133) mengatakan energi angin dapat dikonversi ke dalam bentuk energi listrik atau mekanik dengan menggunakan kincir atau turbin angin. Kincir atau turbin angin dikenal sebagai Sistem Konversi Energi Angin (SKEA). Turbin angin mengkonversi tenaga mekanik dari putaran rotor menjadi energi listrik dengan induksi magnetik. Salah satu komponen utama turbin angin adalah rotor. Rotor menangkap energi mekanik angin yang kemudian diubah menjadi energi kinetik putar. Pada rotor terdapat poros, poros merupakan bagian terpenting pada rotor guna mentransmisikan daya dan torsi. Titik tumpu beban rotor berada pada poros. Pada turbin angin golden blade digunakan rasio gear 3:1. Putaran poros generator berputar 3 kali lipat dari putaran poros utama turbin angin. Daya angin yang ada tidak semuanya dapat dikonversi menjadi energi mekanik oleh turbin angin. Daya maksimum yang bisa diperoleh dari energi angin adalah 0,593 yang artinya hanya sekitar 60% saja daya angin yang dapat dikonversi menjadi daya mekanik. Angka 16/27 disebut dengan batas bets (Betz limit, diambil dari ilmuan Jerman Albert Betz). Faktor Betz menunjukkan nilai maksimum semua alat konversi energi angin, dengan asumsi ideal, dimana aliran dianggap tanpa gesekan dan daya keluaran dihitung dengan tanpa mempertimbangkan jenis turbin yang digunakan [2]: 16 1 P a Av (1) Dimana: P a = Daya angin (Watt) = Kerapatan udara (1,225 Kg/m 3 ) A = Area penangkapan angin (m 2 ) V = Kecepatan angin (m/s) Persamaan tersebut merupakan sebuah persamaan untuk kecepatan angin pada turbin angin yang ideal, dengan anggapan bahwa energi angin dapat dimanfaatkan seluruhnya oleh turbin angin menjadi energi listrik [3]. Tenaga total aliran angin berbanding lurus terhadap massa jenis angin, luas rotor, dan pangkat tiga kecepatan angin [4]. Daya poros dan daya angin merupakan parameter penting dalam mengetahui kinerja turbin angin. Daya poros merupakan daya output hasil dari putaran pada poros turbin. Sedangkan daya angin adalah daya input angin yang masuk kedalam turbin. Dimana: V = Tegangan listrik (V) I = Arus listrik (A) P ta VI (2) Jadi, kinerja turbin angin merupakan perbandingan antara daya output turbin angin dan daya input angin, dapat di tulis dengan persamaan : Dimana: K ta = Kinerja turbin angin (%) P a = Daya angin (Watt) = Daya turbin angin (Watt) P ta Pta Kta 100% (3) P Didasari oleh latar belakang dan permasalahan yang ada, maka penelitian ini bertujuan untuk mengetahui pengaruh variasi beban terhadap putaran poros turbin angin dan daya turbin angin. Dengan demikian dapat diperoleh kinerja maksimum turbin angin pada pembebanan yang bervariasi dengan kecepatan angin 2-3 m/s. 2 Metodologi Metode yang dilakukan dalam penelitian ini adalah metode eksperimental. Pengambilan data sebanyak 5 kali per masing-masing variasi beban. Kegiatan yang dilakukan meliputi pembuatan alat penelitian tambahan, pengambilan data, pengolahan dan analisa data. Penelitian dilakukan di Pantai Nongsa, Batam. Penelitian dilaksanakan pada tanggal 05 Mei Peralatan yang digunakan dalam penelitian ini, antara lain: a. Timbangan b. Anemometer (HT-81 LCD Pocket Digital Anemometer) c. Tachometer (Ecotach Optical Tachometer) d. Multimeter (CD800A Sanwa Digital Multimeter) e. Clampmeter (Fluke 375 True RMS AC/DC Clamp Meter) Bahan-bahan yang digunakan dalam penelitian ini, antara lain: a. Puli b. Dudukan puli (terbuat dari aluminium) Spesifikasi turbin angin golden blade sebagai berikut : Jenis Jumlah Blade Diameter Rotor Tinggi Turbin Generator a : Horizontal : 3 buah : 2640 mm : 2790 mm : 20 Volt / 400 Watt Langkah awal yang dilakukan yaitu mempersiapan alat dan bahan. Pada penelitian, digunakan empat variasi beban, yaitu 0 kg (tanpa beban), 1 kg, 2 kg, dan 3 kg. Puli difungsikan sebagai beban. Puli diletakkan pada bagian tengah poros utama turbin angin. Penelitian dilakukan dari beban yang kecil hingga beban yang besar. Pengambilan data putaran dan daya turbin angin dilakukan sebanyak 5 kali per masing-masing beban, dan kemudian mengambil nilai rata-rata dari data yang didapatkan, sehingga tidak mengurangi kevalidan data yang didapat.

3 Kecepatan angin konstan hanya bertahan selama 5 7 detik. Kecepatan angin yang tidak konstan tersebut mengakibatkan daya angin yang diperolehpun berbeda-beda. Gambar 1. Metodologi Penelitian Pengukuran kecepatan angin menggunakan alat ukur anemometer dengan satuan m/s. Untuk pengambilan data output putaran poros turbin angin menggunakan alat ukur tachometer. Turbin yang berputar akan menghasilkan daya dan output tersebut diukur dengan menggunakan 2 buah multimeter. Multimeter 1 digunakan untuk mengukur tegangan listrik (V) dan multimeter 2 untuk mengukur arus listrik (I). Hasil dari multimeter tersebut dikalikan sehingga didapatkan hasil daya listrik turbin angin. Sistem pengukuran daya yaitu dengan beban lampu dan tanpa melewati baterai, sehingga pengukuran daya secara langsung dari output generator. Skema pengambilan tegangan listrik dan arus listrik terlihat pada gambar berikut. Alat pembangkit listrik atau dikenal sebagai generator digunakan untuk mengubah energi kinetik atau energi gerak menjadi energi listrik dengan menggunaka induksi elektromagnetik. Yang dihasilkan dari generator berupa tegangan dan arus listrik. Arus listrik yang dihasilkan yaitu AC (alternating current) atau arus bolak balik. Sifatnya yaitu besarnya arus bervariasi terhadap waktu. Semakin besar kecepatan angin, maka daya angin semakin besar. Turbin angin yang diberi variasi beban akan menghasilkan jumlah putaran poros yang berbeda pula. Hubungan antara jumlah putaran poros dan beban yaitu berbanding terbalik, artinya semakin besar beban yang diberikan, maka akan semakin pelan putaran poros yang dihasilkan turbin angin dan sebaliknya, semakin kecil beban yang diberikan pada poros, maka semakin cepat putaran poros yang dihasilkan turbin angin. Hal ini terjadi karena adanya pengereman pada poros akibat pemberian beban. Berikut adalah hasil pengujian dengan mengambil 5 data dan kemudian nilai tersebut dirata-ratakan. Tabel 1. output turbin angin tanpa beban X = Gambar 2. Skema pengambilan tegangan dan arus listrik Untuk mengetahui kinerja turbin angin, maka harus diketahui niali daya angin yang mampu dimanfaatkan turbin angin dengan menghitung persamaan 1. Hasil daya angin yang telah didapat dibandingkan dengan daya output turbin angin, sehingga kinerja turbin angin akan didapatkan. Dari pengambilan data diperoleh hubungan antara putaran turbin angin (rpm) dan output daya turbin angin (w) terhadap kecepatan angin dan variasi beban pada poros turbin angin. 3 Analisa dan Pembahasan Pada tabel 1, nilai kecepatan putaran poros semakin meningkat seiring dengan bertambahnya nilai kecepatan angin. Hal ini juga berbanding lurus dengan nilai tegangan listrik yang dihasilkan generator. Semakin besar kecepatan angin, poros turbin angin akan berputar lebih cepat, sehingga generator menghasilkan output yang lebih besar pula. Pada kecepatan rata-rata angin 2.55 m/s, putaran poros yang dihasilkan rpm dengan daya 8.86 volt dan kuat arus 0.25 ampere. Nilai kinerja turbin angin didapatkan dari perbandingan daya output dan daya maksimum angin yang mampu dikonversi turbin angin, kemudian dikalikan dengan 100%. Pada kecepatan angin 2.55 m/s dengan daya output 2.25 watt, daya maksimum angin watt, menghasilkan kinerja turbin angin sebesar 6.80 %. Penelitian dilaksanakan di Pantai Nongsa pada tanggal 05 Mei 2016 pada pukul s/d WIB. Angin bersumber dari angin pantai. Kecepatan angin yang digunakan dalam pengambilan data berkisar 2-3 m/s.

4 Tabel 2. Nilai daya dan kinerja turbin angin tanpa beban X = Pada pengujian turbin angin dengan beban 1 kg menghasilkan nilai putaran poros, tegangan dan arus listrik yang berbeda-beda terhadap besarnya nilai kecepatan angin. Pada tabel di bawah terlihat bahwa semakin meningkat nilai kecepatan angin, maka mengingkat pula nilai putaran poros dan tegangan yang dihasilkan turbin angin. Nilai putaran, teganga dan kuat arus rata-rata pada kecepatan angin rata-rata 2.61 m/s adalah rpm, 7.88 volt, dan 0.23 ampere. Tabel 3. Output turbin angin dengan beban 1 kg X = Tabel 4 adalah nilai daya output turbin angin dan daya maksimum angin yang mampu dikonversi turbin angin pada pembebanan 1 kg. Dari kedua data tersebut dapat dihitung nilai kinerja turbin angin dengan menghitung persentasenya. Hasil rata-rata daya output turbin angin yaitu 1.85 watt dan daya angin yaitu watt. Maka, nilai rata-rata kinerja turbin angin pada kecepatan agin 2.61 m/s adalah 5.23%. Tabel 4. Nilai daya dan kinerja turbin angin dengan beban 1 kg X = Pada pengujian dengan beban 2 kg, didapatkan nilai rata-rata kecepatan angin yaitu 2.55 m.s dengan putaran poros rata-rata rpm, tegangan yang dihasilkan turbin generator 6.44 volt dan kuat arus 0,26 ampere. Pada kecepatan angin 2.06 m/s, putaran poros yang dihasilkan rpm dan tegangan 4.80 volt. Dapat disimpulkan bahwa akan semakin meningkat nilai output turbin angin jika kecepatan angin semakin besar. Tabel 5. Hasil pengujian dengan beban 2 kg X = Pada tabel 6, terlihat nilai rata-rata daya output turbin angin sebesar 1.70 watt dan nilai rata-rata daya angin maksimum yaitu watt. Dari data tersebut, didapatkan nilai kinerja turbin angin sebesar 5.18%. Tabel 6. Nilai daya dan kinerja turbin angin dengan beban 2 kg X = Pada pengujian dengan beban 3 kg, nilai rata-rata kecepatan angin yaitu 2.44 m/s dengan putaran poros rata-rata 128,.8 rpm, tegangan 5,88 volt dan kuat arus 0.24 ampere. Pada tabel tersebut diketahui bahwa peningkatan nilai kecepatan angin akan mempengaruhi nilai putaran poros dan tegangan yang dihasilkan oleh turbin angin. Tabel 7. Output turbin angin dengan beban 3 kg X = Tabel 8. Nilai daya dan kinerja turbin angin dengan beban 3 kg X = Nilai daya output dan daya maksimum angin mempengaruhi nilai kinerja turbin angin. Semakin besar nilai kecepatan angin, maka daya angin yang mampu dikonversi oleh turbin angin tentu semakin besar. Nilai kinerja turbin angin rata-rata pada

5 pembebanan 3 kg yaitu 4.76% dengan daya output 1.37 watt dan daya angin watt. Dengan: V a = Kecepatan angin (m/s) B = Massa beban pada poros (kg) N = Jumlah putaran poros turbin angin (rpm) V = Tegangan listrik (volt) I = Arus listrik (ampere) P a = Daya angin (watt) P ta = Daya turbin angin (watt) K ta = Kinerja turbin angin (%) Poros merupakan komponen utama turbin angin untuk mentransmisikan putaran turbin angin menuju generator dengan bantuan sproket dan rantai. Putaran rata-rata poros yang dihasilkan oleh kecepatan rata-rata angin disajikan pada tabel dan grafik berikut. Dari data tersebut, terjadi penurunan nilai putaran poros turbin angin jika beban yang diberikan semakin besar. Nilai putaran poros terbesar yaitu pada turbin angin tanpa diberi beban (0 kg). Terbukti bahwa, semakin ringan massa rotor maka kemampuan poros untuk berputar akan semakin cepat. Tabel 10. Hasil rata-rata daya output dan kinerja turbin angin No B (kg) V ar (m/s) P tar (watt) P ar (watt) K tar (%) Tabel 9. Hasil rata-rata putaran turbin angin terhadap kecepatan angin dan variasi beban No. B (kg) V a (m/s) N (rpm) Gambar 4. Grafik daya output dan kinerja turbin angin terhadap variasi beban pada poros turbin angin Gambar 3. Grafik hubungan putaran poros terhadap variasi beban pada poros turbin angin Pada gambar 3 terlihat bahwa pembebanan sangat berpengaruh pada putaran poros turbin angin. Pada kecepatan angin 2.55 m/s dengan kondisi turbin tidak diberi beban, putaran poros yang dihasilkan yaitu rpm. Kecepatan angin rata-rata yang didapatkan pada masing-masing beban tidak besar perbedaan nilainya. Pada pembebanan 1 kg dengan kecepatan angin rata-rata 2.61 m/s didapatkan putaran poros rpm. Pada pembebanan 2 kg dengan kecepatan angin 2.55 m.s, didapatkan putaran poros rpm. Pada pembebanan 3 kg dengan kecepatan angin 2.44 m/s, didapatkan putaran poros rpm. Pada gambar 4 menunjukkan nilai rata-rata daya output turbin angin (Pta) dan nilai kinerja turbin angin (Kta). Terjadi penurunan nilai daya output turbin angin dan nilai kinerja turbin angin seiring dengan pemberian beban yang semakin meningkat. Turbin angin tanpa pemberian beban menghasilkan daya output sebesar 2.25 watt dan dengan persentase kinerja turbin angin yaitu sebesar 6.80%. Pada pembebanan 1 kg, terjadi penurunan nilai daya output yaitu 1.84 watt dengan kinerja turbin 5.23%. Penurunan kinerja turbin tanpa beban dan dengan beban 1 kg sebesar 1.57% dengan perbedaan kecepatan angin 0,06 m/s. Pada beban 2 kg, daya output yang dihasilkan yaitu 1.70 watt dan kinerja turbin angin 5.18%. Pada beban 3 kg, daya output yang dihasilkan yaitu 1.37 watt dan kinerja turbin angin 4.76%. Dari perbedaan nilai tersebut, terlihat bahwa semakin besar beban yang diberikan pada poros turbin angin, maka nilai daya output (Pta) dan kinerja turbin angin (Kta) akan semakin kecil. Nilai ini dipengaruhi oleh putaran poros turbin angin yang kemudian ditransmisikan ke generator untuk menghasilkan daya output turbin angin. Sehingga daya output turbin yang tertinggi yaitu pada turbin angin tanpa diberi beban (0 kg). Nilai daya yang dihasilkan yaitu 2.25 watt dengan nilai kinerja turbin

6 angin yaitu 6.80%. Terjadi penurunan nilai daya output pada pemberian beban yang semakin besar. Nilai daya output yang dihasilkan turbin juga berpengaruh pada nilai persentase kinerja turbin angin. Nilai persentase kinerja turbin angin merupakan nilai daya output turbin angin dibandingkan dengan nilai daya maksimum angin yang mampu dikonversi oleh turbin angin. Semakin besar nilai daya yang dihasilkan, maka akan semakin besar juga nilai persentase kinerja turbin angin. 4 Kesimpulan Salah satu faktor yang mempengaruhi kemampuan turbin angin untuk berputar adalah massa rotor turbin angin itu sendiri. Semakin besar massa turbin angin, maka putaran poros yang dihasilkan akan semakin kecil. Begitu juga sebaliknya, semakin kecil massa turbin angin, maka putaran poros yang dihasilkan akan semakin besar. Hasil putaran poros tentunya mempengaruhi daya output dan kinerja turbin angin. Hal tersebut saling berhubungan dan berbanding lurus, artinya semakin besar putaran poros maka semakin besar pula daya output turbin angin. Dari penelitian ini didapatkan bahwa putaran poros, daya dan kinerja turbin angin yang maksimal yaitu turbin angin tanpa menggunakan beban dengan massa 0 kg. Pada kecepatan angin rata-rata 2.55 m/s, nilai rata-rata putaran poros turbin angin adalah rpm dengan output daya 2.25 watt serta kinerja turbin angin 6.80%. Daftar Pustaka [1] Ikhsan, Ikhwanul dan Hipi, M. Akbar. Analisis Pengaruh Pembebanan Terhadap Kinerja Kincir Angin Tipe Propeller Pada Wind Tunnel Sederhana. Universitas Hasanuddin. Makasar [2] Prasetya, Ricky Octavianus, dkk. Kincir Angin Sumbu Horisontal Bersudu Banyak Skripsi Sarjana Teknik Mesin. Yogyakarta [3] Centraltrykkeri, Jydsk. Guidelines For Design Of Wind Turbines. Det Norske Veritas & Riso National Laboratory. Denmark [4] Ramakrishnan. Simulation Study Of Wind Energy Conversion System. Bharath University. Chennai [5] Pudjanarso, Adi dan Nursuhud, Djati. Mesin Konversi Energi. C.V. Andi. Yogyakarta

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK Ahmad Farid 1, Mustaqim 2, Hadi Wibowo 3 1,2,3 Dosen Teknik Mesin Fakultas Teknik Universitas Pancasakti Tegal Abstrak Kota Tegal dikenal

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan Agus Sifa a, Casiman S b, Habib Rizqon H c a Jurusan Teknik Mesin,Politeknik Indramayu,Indramayu

Lebih terperinci

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3.

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3. 29 BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN 3.1 Konsep Perancangan Sistem Adapun blok diagram secara keseluruhan dari sistem keseluruhan yang penulis rancang ditunjukkan pada gambar 3.1.

Lebih terperinci

OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU

OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU Optimasi Daya Turbin Angin Savonius dengan Variasi Celah (Farid) OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU Ahmad Farid Prodi. Teknik Mesin, Universitas Pancasakti

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1. Proses Pengambilan dan Pengolahan Data Berdasarkan pembelajaran mengenai pembangkit energi tenaga angin yang telah ada maka berdasar dengan fungsi dan kegunaan maka dapat

Lebih terperinci

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

Turbin angin poros vertikal tipe Savonius bertingkat dengan variasi posisi sudut

Turbin angin poros vertikal tipe Savonius bertingkat dengan variasi posisi sudut Dinamika Teknik Mesin 6 (2016) 107-112 Turbin angin poros vertikal tipe Savonius bertingkat dengan variasi posisi sudut I.B. Alit*, Nurchayati, S.H. Pamuji Teknik Mesin, Fakultas Teknik, Universitas Mataram,

Lebih terperinci

KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF

KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF Miftahur Rahmat 1,Kaidir 1,Edi Septe S 1 1 Jurusan Teknik

Lebih terperinci

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU Muhammad Suprapto Program Studi Teknik Mesin, Universitas Islam Kalimantan MAB Jl. Adhyaksa No.2 Kayutangi Banjarmasin Email : Muhammadsuprapto13@gmail.com

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL

ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL Yeni Yusuf Tonglolangi Fakultas Teknik, Program Studi Teknik Mesin, UKI Toraja email: yeni.y.tonglolangi@gmail.com Abstrak Pola

Lebih terperinci

UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI

UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh : YASIR DENHAS NIM.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. : Airfoil Clark Y Flat Bottom. : Bolam lampu 360 Watt

BAB IV HASIL DAN PEMBAHASAN. : Airfoil Clark Y Flat Bottom. : Bolam lampu 360 Watt BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi kincir angin Jenis kincir angin Kapasitas generator Jumlah blade Jenis blade Diameter kincir angin Tinggi tiang kincir angin Variasi sudut blade Beban Spesifikasi

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012

STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012 STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012 Nur Aklis, H mim Syafi i, Yunika Cahyo Prastiko, Bima Mega Sukmana Teknik Mesin, Universitas Muhammadiyah

Lebih terperinci

PENGARUH JUMLAH BLADE DAN VARIASI PANJANG CHORD TERHADAP PERFORMANSI TURBIN ANGIN SUMBU HORIZONTAL (TASH)

PENGARUH JUMLAH BLADE DAN VARIASI PANJANG CHORD TERHADAP PERFORMANSI TURBIN ANGIN SUMBU HORIZONTAL (TASH) Dinamika Teknik Mesin, Volume No. Juli 01 Kade Wiratama, Mara, Edsona: Pengaruh PENGARUH JUMLAH BLADE DAN VARIASI PANJANG CHORD TERHADAP PERFORMANSI TURBIN ANGIN SUMBU HORIZONTAL (TASH) I Kade Wiratama,

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN UJI EKSPERIMENTAL PENGARUH PROFIL DAN JUMLAH SUDU PADA VARIASI KECEPATAN ANGIN TERHADAP DAYA DAN PUTARAN TURBIN ANGIN SAVONIUS MENGGUNAKAN SUDU PENGARAH DENGAN LUAS SAPUAN ROTOR 0,90 M 2 SKRIPSI Skripsi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi Kincir Angin BAB IV HASIL DAN PEMBAHASAN Jenis kincir angin Kapasitas generator Jumlah blade Jenis blade Diameter kincir angin Tinggi tiang kincir angin Variasi sudut blade Beban Spesifikasi

Lebih terperinci

Desain Turbin Angin Sumbu Horizontal

Desain Turbin Angin Sumbu Horizontal Desain Turbin Angin Sumbu Horizontal A. Pendahuluan Angin merupakan sumberdaya alam yang tidak akan habis.berbeda dengan sumber daya alam yang berasal dari fosil seperti gas dan minyak. Indonesia merupakan

Lebih terperinci

UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L

UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L SNTMUT - 1 ISBN: 97--71-- UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L Syamsul Bahri W 1), Taufan Arif Adlie 1), Hamdani ) 1) Jurusan Teknik Mesin Fakultas Teknik Universitas Samudra

Lebih terperinci

STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE

STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE (VAWT) SKALA KECIL ( Citra Resmi, Ir.Sarwono, MM, Ridho Hantoro, ST, MT) Jurusan Teknik Fisika FTI ITS Surabaya Kampus ITS

Lebih terperinci

PEMBANGKIT LISRIK TENAGA ANGIN. Nama : M. Beny Djaufani ( ) Ardhians A. W. ( Benny Kurnia ( Iqbally M.

PEMBANGKIT LISRIK TENAGA ANGIN. Nama : M. Beny Djaufani ( ) Ardhians A. W. ( Benny Kurnia ( Iqbally M. PEMBANGKIT LISRIK TENAGA ANGIN Nama : M. Beny Djaufani (11-2009-035) Ardhians A. W. (11-2009-0 Benny Kurnia (11-2009-0 Iqbally M. (11-2009-0 Pengertian PLTB Pembangkit Listrik Tenaga Angin atau sering

Lebih terperinci

KONVERSI ENERGI ANGIN MENJADI ENERGI LISTRIK DALAM SKALA LABORATORIUM

KONVERSI ENERGI ANGIN MENJADI ENERGI LISTRIK DALAM SKALA LABORATORIUM KONVERSI ENERGI ANGIN MENJADI ENERGI LISTRIK DALAM SKALA LABORATORIUM Febrielviyanti*, Maksi Ginting, Zulkarnain Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus Bina

Lebih terperinci

PEMBUATAN DAN PENGUJIAN KINCIR ANGIN SAVONIUS TIPE L SEBAGAI SUMBER ENERGI TERBARUKAN

PEMBUATAN DAN PENGUJIAN KINCIR ANGIN SAVONIUS TIPE L SEBAGAI SUMBER ENERGI TERBARUKAN PEMBUATAN DAN PENGUJIAN KINCIR ANGIN SAVONIUS TIPE L SEBAGAI SUMBER ENERGI TERBARUKAN Fachri Ramadhan (1), Iman Satria (2), Suryadimal (3) Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas

Lebih terperinci

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : soebyakto@gmail.com ABSTRAK Tenaga angin sering disebut sebagai

Lebih terperinci

Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan Returning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin

Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan Returning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) B-635 Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan turning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin

Lebih terperinci

BAB III PELAKSANAAN PENELITIAN

BAB III PELAKSANAAN PENELITIAN digilib.uns.ac.id BAB III PELAKSANAAN PENELITIAN 3.1 Tempat Penelitian Penelitian dilakukan di Laboratorium Perpindahan Panas Jurusan Teknik Mesin Fakultas Teknik Universitas Sebelas Maret Surakarta. 3.2

Lebih terperinci

ANALISA PERUBAHAN SUDU TERHADAP DAYA TURBIN ANGIN TIPE HORIZONTAL DI LABORATORIUM TEKNIK LISTRIK POLITEKNIK NEGERI SRIWIJAYA

ANALISA PERUBAHAN SUDU TERHADAP DAYA TURBIN ANGIN TIPE HORIZONTAL DI LABORATORIUM TEKNIK LISTRIK POLITEKNIK NEGERI SRIWIJAYA ANALISA PERUBAHAN SUDU TERHADAP DAYA TURBIN ANGIN TIPE HORIZONTAL DI LABORATORIUM TEKNIK LISTRIK POLITEKNIK NEGERI SRIWIJAYA LAPORAN AKHIR Disusun Sebagai Salah Satu Syarat Menyelesaian Pendidikan Diploma

Lebih terperinci

KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN

KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN Bono Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. H. Sudarto,

Lebih terperinci

PENGEMBANGAN METODE PENENTUAN KARAKTERISTIK RANCANGAN AWAL ROTOR TURBIN ANGIN

PENGEMBANGAN METODE PENENTUAN KARAKTERISTIK RANCANGAN AWAL ROTOR TURBIN ANGIN PENGEMBANGAN METODE PENENTUAN KARAKTERISTIK RANCANGAN AWAL ROTOR TURBIN ANGIN Sulistyo Atmadi Ahmad Jamaludln Fltroh Peneliti Pusat Teknologi Dirgantara Terapan, LAPAN ABSTRACT A method for determining

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Desain Penelitian Penelitian yang dilakukan oleh penulis meggunakan metode eksperimental dengan pendekatan kuantitatif yaitu melakukan pengamatan untuk mencari data penelitian

Lebih terperinci

PENGARUH SUDUT BLADE TERHADAP KINERJA TURBIN ANGIN SUMBU HORIZONTAL SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna

PENGARUH SUDUT BLADE TERHADAP KINERJA TURBIN ANGIN SUMBU HORIZONTAL SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna PENGARUH SUDUT BLADE TERHADAP KINERJA TURBIN ANGIN SUMBU HORIZONTAL SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Teknik (S.T) Pada Jurusan TEKNIK MESN OLEH : DWI CAHYONO

Lebih terperinci

RANCANGAN MODEL TURBIN SAVONIUS SEBAGAI SUMBER ENERGI LISTRIK. Daniel Parenden, Ferdi H. Sumbung ;

RANCANGAN MODEL TURBIN SAVONIUS SEBAGAI SUMBER ENERGI LISTRIK. Daniel Parenden, Ferdi H. Sumbung ; RANCANGAN MODEL TURBIN SAVONIUS SEBAGAI SUMBER ENERGI LISTRIK Daniel Parenden, Ferdi H. Sumbung dparenden@yahoo.com ; frederik_hs@yahoo.com Jurusan Teknik Mesin Fakultas Teknik Universitas Musamus ABSTRAK.

Lebih terperinci

PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT

PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT Novi Caroko 1,a, Wahyudi 1,b, Aditya Ivanda 1,c Universitas

Lebih terperinci

DAFTAR GAMBAR Gambar 1.1 Konsumsi tenaga listrik Indonesia... 1 Gambar 2.1 Klasifikasi aliran fluida... 6 Gambar 2.2 Daerah aliran inviscid dan aliran viscous... 7 Gambar 2.3 Roda air kuno... 10 Gambar

Lebih terperinci

DESAIN DAN UJI UNJUK KERJA KINCIR ANGIN ABSTRACT

DESAIN DAN UJI UNJUK KERJA KINCIR ANGIN ABSTRACT JURNAL AUSTENIT VOLUME 3, NOMOR 2, OKTOBER 2011 DESAIN DAN UJI UNJUK KERJA KINCIR ANGIN Dalom Staf Edukatif Jurusan Teknik Mesin Politeknik Negeri Sriwijaya Jl.Srijaya Negara Bukit Besar Palembang 30139

Lebih terperinci

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ALVI SYUKRI 090421064 PROGRAM PENDIDIKAN

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang

Lebih terperinci

PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP PERFORMANCE TURBIN ANGIN SAVONIUS TIPE L

PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP PERFORMANCE TURBIN ANGIN SAVONIUS TIPE L PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP PERFORMANCE TURBIN ANGIN SAVONIUS TIPE L Dedy Nataniel Ully *1, Bernadus Wuwur 2, Purnawarman Ginting 3 JurusanTeknik Mesin PNK,

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN ANGIN VERTIKAL MULTIBLADE TIPE SUDU CURVED PLATE PROFILE DILENGKAPI RUMAH ROTOR DAN EKOR SEBAGAI PENGARAH ANGIN

KAJI EKSPERIMENTAL KINERJA TURBIN ANGIN VERTIKAL MULTIBLADE TIPE SUDU CURVED PLATE PROFILE DILENGKAPI RUMAH ROTOR DAN EKOR SEBAGAI PENGARAH ANGIN B.. Kaji eksperimental kinerja turbin angin vertikal multiblade tipe... (Yusuf D. Herlambang ) KAJI EKSPERIMENTAL KINERJA TURBIN ANGIN VERTIKAL MULTIBLADE TIPE SUDU CURVED PLATE PROFILE DILENGKAPI RUMAH

Lebih terperinci

Pengujian Karakteristik Turbin Angin Propeler Tiga Sudu Sebagai Energi Alternatif Di Kecamatan Linggo SariBaganti Kab.

Pengujian Karakteristik Turbin Angin Propeler Tiga Sudu Sebagai Energi Alternatif Di Kecamatan Linggo SariBaganti Kab. Vol. 21 No. 2Juli 214 ISSN : 854-8471 Pengujian Karakteristik Turbin Angin Propeler Tiga Sudu Sebagai Energi Alternatif Di Kecamatan Linggo SariBaganti Kab. Pesisir Selatan Fandhi X Vananda 1), Iskandar

Lebih terperinci

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA).

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA). BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB 4 PENGUJIAN, DATA DAN ANALISIS BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN KECEPATAN ANGIN TERHADAP EFISIENSI DAYA & PUTARAN KRITIS PADA MINI WIND CATCHER

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN KECEPATAN ANGIN TERHADAP EFISIENSI DAYA & PUTARAN KRITIS PADA MINI WIND CATCHER STUDI EKSPERIMENTAL PENGARUH PERUBAHAN KECEPATAN ANGIN TERHADAP EFISIENSI DAYA & PUTARAN KRITIS PADA MINI WIND CATCHER Oleh : Bernadie Ridwan 2105100081 Dosen Pembimbing : Prof. Ir. I Nyoman Sutantra,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi

Lebih terperinci

PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR ANGIN 300 Watt

PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR ANGIN 300 Watt Dinamika Teknik Mesin, Volume 4 No. 2 Juli 2014 jumlah Blade Sayoga, Wiratama, Mara, Agus Dwi Catur: Pengaruh Variasi PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR

Lebih terperinci

Prestasi Kincir Angin Savonius dengan Penambahan Buffle

Prestasi Kincir Angin Savonius dengan Penambahan Buffle Prestasi Kincir Angin Savonius dengan Penambahan Buffle Halim Widya Kusuma 1,*, Rengga Dwi Cahya Hidayat 1, Muh Hamdani 1, 1 1 Teknik Mesin S1, Fakultas Teknologi Industri, Institut Teknologi Nasional

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013 UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 4415 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

Analisa Peletakan Multi Horisontal Turbin Secara Bertingkat

Analisa Peletakan Multi Horisontal Turbin Secara Bertingkat JURNAL TEKNIK ITS Vol. 4, No., (05) ISSN: 337-3539 (30-97 Print) G-0 Analisa Peletakan Multi Horisontal Turbin Secara Bertingkat Agus Suhartoko, Tony Bambang Musriyadi, Irfan Syarif Arief Jurusan Teknik

Lebih terperinci

Jurnal Dinamis Vol.II,No.14, Januari 2014 ISSN

Jurnal Dinamis Vol.II,No.14, Januari 2014 ISSN UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH Farel H. Napitupulu 1, Ekawira K. Napitupulu

Lebih terperinci

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º NASKAH PUBLIKASI TUGAS AKHIR Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º Disusun Sebagai Syarat Untuk Mencapai Gelar

Lebih terperinci

Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar

Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar Slamet Wahyudi, Dhimas Nur Cahyadi, Purnami Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya Jl. MT. Haryono 167, Malang

Lebih terperinci

Pengaruh Pemasangan Sudu Pengarah dan Variasi Jumlah Sudu Rotor terhadap Performance Turbin Angin Savonius

Pengaruh Pemasangan Sudu Pengarah dan Variasi Jumlah Sudu Rotor terhadap Performance Turbin Angin Savonius Pengaruh Pemasangan Sudu Pengarah dan Variasi Jumlah Sudu Rotor terhadap Performance Turbin Angin Savonius Dedy Nataniel Ully, Sudjito Soeparman, Nurkholis Hamidi Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Bambang Arip Dwiyantoro*, Vivien Suphandani dan Rahman Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut

Lebih terperinci

ANALISIS EKSPERIMENTAL PENGARUH RASIO OVERLAP SUDU TERHADAP UNJUK KERJA SAVONIUS HORIZONTAL AXIS WATER TURBINE SKRIPSI

ANALISIS EKSPERIMENTAL PENGARUH RASIO OVERLAP SUDU TERHADAP UNJUK KERJA SAVONIUS HORIZONTAL AXIS WATER TURBINE SKRIPSI ANALISIS EKSPERIMENTAL PENGARUH RASIO OVERLAP SUDU TERHADAP UNJUK KERJA SAVONIUS HORIZONTAL AXIS WATER TURBINE SKRIPSI Diajukan sebagai salah satu syarat Untuk memperoleh gelar Sarjana Teknik Disusun Oleh

Lebih terperinci

Tabel 4.1. Hasil pengujian alat dengan variasi besar beban. Beban (kg)

Tabel 4.1. Hasil pengujian alat dengan variasi besar beban. Beban (kg) BAB IV HASIL DAN PEMBAHASAN 4.1. Data Hasil Pengujian Pengujian dilakukan untuk mendapatkan nilai tegangan dan arus listrik. Pengujian dilakukan dengan prosedur sebagai berikut: Menentukan beban yang akan

Lebih terperinci

TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR

TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR Slamet Riyadi, Mustaqim, Ahmad Farid Progdi Teknik Mesin Fakultas Universitas Pancasakti Tegal Email: mesinftups@gmail.com ABSTRAK Angin merupakan

Lebih terperinci

PENGARUH VARIASI SUDUT BLADE ALUMINIUM TIPE FALCON TERHADAP UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbines (HAWT) DENGAN KAPASITAS 500 WATT

PENGARUH VARIASI SUDUT BLADE ALUMINIUM TIPE FALCON TERHADAP UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbines (HAWT) DENGAN KAPASITAS 500 WATT ENGARUH ARIASI SUDUT BLADE ALUMINIUM TIE FALCON TERHADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbines (HAWT) DENGAN KAASITAS 500 WATT Erwin ratama 1,a,Novi Caroko 1,b, Wahyudi 1,c, Universitas

Lebih terperinci

PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP UNJUK KERJA TURBIN ANGIN SAVONIUS

PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP UNJUK KERJA TURBIN ANGIN SAVONIUS PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP UNJUK KERJA TURBIN ANGIN SAVONIUS Yunus Fallo1, Bruno B. A. Liu2, Dedy N. Ully3 Abstrak : Pemasangan sudu pengarah di depan sudu

Lebih terperinci

STUDI EKSPERIMENTAL EFEK JUMLAH SUDU PADA TURBIN AIR BERSUMBU HORISONTAL TIPE DRAG TERHADAP PEMBANGKITAN TENAGA PADA ALIRAN AIR DALAM PIPA

STUDI EKSPERIMENTAL EFEK JUMLAH SUDU PADA TURBIN AIR BERSUMBU HORISONTAL TIPE DRAG TERHADAP PEMBANGKITAN TENAGA PADA ALIRAN AIR DALAM PIPA STUDI EKSPERIMENTAL EFEK JUMLAH SUDU PADA TURBIN AIR BERSUMBU HORISONTAL TIPE DRAG TERHADAP PEMBANGKITAN TENAGA PADA ALIRAN AIR DALAM PIPA HALAMAN JUDUL SKRIPSI Diajukan sebagai salah satu syarat untuk

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

2. Tinjauan Pustaka. konversi dari energi kinetik angin. Turbin angin awalnya dibuat untuk

2. Tinjauan Pustaka. konversi dari energi kinetik angin. Turbin angin awalnya dibuat untuk 2. Tinjauan Pustaka 2.1 Turbin Angin Turbin angin adalah elemen utama dari sebuah pembangkit listrik tenaga angin dan digunakan untuk memproduksi energi listrik yang merupakan hasil konversi dari energi

Lebih terperinci

Seminar Nasional Fisika 2012 Jakarta, 9 Juni Puji S 1*), Satwiko S 2), Taufik 3) 1. Pendahuluan

Seminar Nasional Fisika 2012 Jakarta, 9 Juni Puji S 1*), Satwiko S 2), Taufik 3) 1. Pendahuluan STUDI AWAL PENGARUH JUMLAH SUDU TERHADAP DAYA KELUARAN TURBIN ANGIN TIPE HORIZONTAL BERDIAMETER 1,6 METER SEBAGAI SUMBER PENYEDIA LISTRIK PADA PROYEK RUMAH DC DI FMIPA UNJ Puji S 1*), Satwiko S 2), Taufik

Lebih terperinci

RANCANG BANGUN ALAT PEMBANGKIT LISTRIK TENAGA ANGIN SUMBU VERTIKAL DI DESA KLIRONG KLATEN Oleh Bayu Amudra NIM:

RANCANG BANGUN ALAT PEMBANGKIT LISTRIK TENAGA ANGIN SUMBU VERTIKAL DI DESA KLIRONG KLATEN Oleh Bayu Amudra NIM: RANCANG BANGUN ALAT PEMBANGKIT LISTRIK TENAGA ANGIN SUMBU VERTIKAL DI DESA KLIRONG KLATEN Oleh Bayu Amudra NIM: 612008032 Skripsi Untuk melengkapi salah satu syarat memperoleh Gelar Sarjana Teknik Program

Lebih terperinci

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB)

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Fithri Muliawati 1, Taufiq Ramadhan 2 1 Dosen Tetap Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun

Lebih terperinci

RANCANG BANGUN TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS UNTUK SISTEM PENERANGAN PERAHU NELAYAN

RANCANG BANGUN TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS UNTUK SISTEM PENERANGAN PERAHU NELAYAN Abstrak RANCANG BANGUN TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS UNTUK SISTEM PENERANGAN PERAHU NELAYAN Putri Chairany, Sugiyanto Diploma Teknik Mesin, Sekolah Vokasi, U G M putri.chairany@gmail.com, putri.chairany@ugm.ac.id

Lebih terperinci

PEMBUATAN PROGRAM PERANCANGAN TURBIN SAVONIUS TIPE-U UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN

PEMBUATAN PROGRAM PERANCANGAN TURBIN SAVONIUS TIPE-U UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN PEMBUATAN PROGRAM PERANCANGAN TURBIN SAVONIUS TIPE-U UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN Novri Tanti, Arnetto Alditihan Teknik Mesin, Fakultas Teknik Universitas Lampung Gedung H Fakultas Teknik, Jl.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengujian Turbin Cross Flow Tanpa Sudu Pengarah Pengujian turbin angin tanpa sudu pengarah dijadikan sebagai dasar untuk membandingkan efisiensi

Lebih terperinci

PENGUJIAN TURBIN ANGIN SAVONIUS TIPE U TIGA SUDU DI LOKASI PANTAI AIR TAWAR PADANG

PENGUJIAN TURBIN ANGIN SAVONIUS TIPE U TIGA SUDU DI LOKASI PANTAI AIR TAWAR PADANG PENGUJIAN TURBIN ANGIN SAVONIUS TIPE U TIGA SUDU DI LOKASI PANTAI AIR TAWAR PADANG Ruzita Sumiati (1) (1) Staf Pengajar Jurusan Teknik Mesin Politeknik Negeri Padang ABSTRACT Sumber energy terbesar yang

Lebih terperinci

ANALISA GENERATOR 3 PHASA TIPE MAGNET PERMANEN DENGAN PENGGERAK MULA TURBIN ANGIN PROPELLER 3 BLADE UNTUK PLTB

ANALISA GENERATOR 3 PHASA TIPE MAGNET PERMANEN DENGAN PENGGERAK MULA TURBIN ANGIN PROPELLER 3 BLADE UNTUK PLTB EKSERGI Jurnal Teknik Energi Vo. 11 No.1 Januari 2015, 12-17 ANALISA GENERATOR 3 PHASA TIPE MAGNET PERMANEN DENGAN PENGGERAK MULA TURBIN ANGIN PROPELLER 3 BLADE UNTUK PLTB Kusuma A. 1), Supriyo 2) 1) Mahasiswa

Lebih terperinci

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L Oleh Hendriansyah 23410220 Pembimbing : Dr. Ridwan, MT. Latar Belakang Energi angin merupakan salah satu energi

Lebih terperinci

ANALISIS EFISIENSI JUMLAH BLADE PADA PROTOTYPE TURBIN ANGIN VENTURI

ANALISIS EFISIENSI JUMLAH BLADE PADA PROTOTYPE TURBIN ANGIN VENTURI ANALISIS EFISIENSI JUMLAH BLADE PADA PROTOTYPE TURBIN ANGIN VENTURI Yosef John Kenedi Silalahi 1, Iwan Kurniawan 2 Laboratorium Perawatan dan Perbaikan, Jurusan Teknik Mesin, Fakultas Teknik Universitas

Lebih terperinci

BAB I PENDAHULUAN. Bab I Pendahuluan

BAB I PENDAHULUAN. Bab I Pendahuluan BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan energi di Indonesia khususnya dan di dunia pada umumnya terus meningkat karena pertambahan penduduk, pertumbuhan ekonomi dan pola konsumsi energi itu sendiri

Lebih terperinci

KARAKTERISTIK MODEL TURBIN ANGIN UNTWISTED BLADE DENGAN MENGGUNAKAN TIPE AIRFOIL NREL S833 PADA KECEPATAN ANGIN RENDAH

KARAKTERISTIK MODEL TURBIN ANGIN UNTWISTED BLADE DENGAN MENGGUNAKAN TIPE AIRFOIL NREL S833 PADA KECEPATAN ANGIN RENDAH KARAKTERISTIK MODEL TURBIN ANGIN UNTWISTED BLADE DENGAN MENGGUNAKAN TIPE AIRFOIL NREL S833 PADA KECEPATAN ANGIN RENDAH SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini energi angin merupakan salah satu energi terbarukan yang mungkin akan terus dikembangkan di Indonesia. Hal ini disebabkan energi fosil yang mengalami keterbatasan

Lebih terperinci

Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik.

Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit ini dapat mengkonversikan energi angin menjadi

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan data Pengambilan data dilakukan pada tanggal 11 Desember 212 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan angin (v) = 3

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI UNJUK KERJA KINCIR ANGIN PROPELER DUA SUDU MENGERUCUT BERBAHAN DASAR TRIPLEK DENGAN PERLAKUAN VARIASI LAPISAN PERMUKAAN SUDU BERLAPIS SENG, BERLAPIS ANYAMAN BAMBU DAN TANPA LAPISAN SKRIPSI Untuk memenuhi

Lebih terperinci

Gambar 1. Skema pembagian elemen pada BEM [1]

Gambar 1. Skema pembagian elemen pada BEM [1] STRESS ANALYSIS PADA HORIZONTAL AXIS WIND TURBINE BLADE Achmad Rachmad Tullah 1), Made K. Dhiputra 2) dan Soeharsono 3) 1) Program Studi Teknik Mesin, Fakultas Teknik Universitas Tarumanagara, Jakarta

Lebih terperinci

BAB 2 DASAR TEORI 2.1 Energi Angin

BAB 2 DASAR TEORI 2.1 Energi Angin BAB DASAR TEORI.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis energi.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya konsumsi bahan bakar khususnya bahan bakar fosil sangat mempengaruhi peningkatan harga jual bahan bakar tersebut. Sehingga pemerintah berupaya mencari

Lebih terperinci

Moch. Arif Afifuddin Ir. Sarwono, MM. Ridho Hantoro, ST., MT. Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember 2010

Moch. Arif Afifuddin Ir. Sarwono, MM. Ridho Hantoro, ST., MT. Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember 2010 STUDI EKSPERIMENTAL PERFORMANSI VERTICAL AXIS WIND TURBINE (VAWT) DENGAN VARIASI DESAIN TURBIN Moch. Arif Afifuddin Ir. Sarwono, MM. Ridho Hantoro, ST., MT. Teknik Fisika Fakultas Teknologi Industri Institut

Lebih terperinci

Studi dan Simulasi Getaran pada Turbin Vertikal Aksis Arus Sungai

Studi dan Simulasi Getaran pada Turbin Vertikal Aksis Arus Sungai JURNAL TEKNIK POMITS Vol, No, () -6 Studi dan Simulasi Getaran pada Turbin Vertikal Aksis Arus Sungai Anas Khoir, Yerri Susatio, Ridho Hantoro Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi

Lebih terperinci

Rancang Bangun Vertical Wind Axis Turbin (VWAT) Dua Tingkat

Rancang Bangun Vertical Wind Axis Turbin (VWAT) Dua Tingkat Rancang Bangun Vertical Wind Axis Turbin (VWAT) Dua Tingkat Jefri Lianda 1, Zulkifli 2 Politeknik Negeri Bengkalis Jl. Bathin Alam, (0766)7008877 e-mail:, jefri@polbeng.ac.id, zulkifli@polbeng.ac.id Abstrak

Lebih terperinci

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III ISSN: X Yogyakarta, 3 November 2012

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III ISSN: X Yogyakarta, 3 November 2012 DESAIN PROTOTIPE PEMBANGKIT LISTRIK TENAGA ANGIN DENGAN TURBIN HORISONTAL DAN GENERATOR MAGNET PERMANEN TIPE AXIAL KECEPATAN RENDAH Hasyim Asy ari 1, Aris Budiman 2, Wahyu Setiyawan 3 1,2,3) Jurusan Teknik

Lebih terperinci

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H DISUSUN OLEH : Yos Hefianto Agung Prastyo 41311010005 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA

Lebih terperinci

Karakterisasi Turbin Angin Poros Horizontal Dengan Variasi Bingkai Sudu Flat Untuk Pembangkit Listrik Tenaga Angin

Karakterisasi Turbin Angin Poros Horizontal Dengan Variasi Bingkai Sudu Flat Untuk Pembangkit Listrik Tenaga Angin Karakterisasi Turbin Angin Poros Horizontal Dengan Variasi Bingkai Sudu Flat Untuk Pembangkit Listrik Tenaga Angin Bono, Gatot Suwoto, Margana, Sunarwo Jurusan Teknik Mesin Politeknik Negeri Semarang Jl.

Lebih terperinci

METAL: Jurnal Sistem Mekanik dan Termal

METAL: Jurnal Sistem Mekanik dan Termal METAL: JURNAL SISTEM MEKANIK DAN TERMAL - VOL. 1 NO. 1 (217) 9-19 Terbit online pada laman web jurnal : http://metal.ft.unand.ac.id METAL: Jurnal Sistem Mekanik dan Termal ISSN (Print) 2477-385 ISSN (Online)

Lebih terperinci

Studi Eksperimen Pengaruh Silinder Pengganggu Di Depan Returning Blade Turbin Angin Savonius Terhadap Performa Turbin

Studi Eksperimen Pengaruh Silinder Pengganggu Di Depan Returning Blade Turbin Angin Savonius Terhadap Performa Turbin JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) B-599 Studi Eksperimen Pengaruh Silinder Pengganggu Di Depan Returning Blade Turbin Angin Savonius Terhadap Performa Turbin Studi

Lebih terperinci

PENGARUH KECEPATAN ANGIN DAN VARIASI JUMLAH SUDU TERHADAP UNJUK KERJA TURBIN ANGIN POROS HORIZONTAL

PENGARUH KECEPATAN ANGIN DAN VARIASI JUMLAH SUDU TERHADAP UNJUK KERJA TURBIN ANGIN POROS HORIZONTAL PENGARUH KECEPATAN ANGIN DAN VARIASI JUMLAH SUDU TERHADAP UNJUK KERJA TURBIN ANGIN POROS HORIZONTAL Firman Aryanto, I Made Mara, Made Nuarsa Jurusan Teknik Mesin Fakultas Teknik Universitas Mataram Jln.

Lebih terperinci

NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM

NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM Disusun untuk Melengkapi Tugas Akhir dan Memenuhi Syarat-syarat untuk Mencapai

Lebih terperinci

Pembangkit Listrik Tenaga Angin dengan Memanfaatkan Kecepatan Angin Rendah

Pembangkit Listrik Tenaga Angin dengan Memanfaatkan Kecepatan Angin Rendah Pembangkit Listrik Tenaga Angin dengan Memanfaatkan Kecepatan Angin Rendah Ayub Subandi Jurusan Teknik Komputer, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia * ayub.subandi@email.unikom.ac.id

Lebih terperinci

Maximum Power Point Tracking (MPPT) Pada Variable Speed Wind Turbine (VSWT) Dengan Permanent Magnet Synchronous Generator

Maximum Power Point Tracking (MPPT) Pada Variable Speed Wind Turbine (VSWT) Dengan Permanent Magnet Synchronous Generator Maximum Power Point Tracking (MPPT) Pada Variable Speed Wind Turbine (VSWT) Dengan Permanent Magnet Synchronous Generator (PMSG) menggunakan Switch Mode Rectifier (SMR) Armaditya T.M.S. 2210 105 019 Dosen

Lebih terperinci

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS 5 PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS Muhammad Irsyad Jurusan Teknik Mesin Universitas Lampung Keywords : Turbin Angin Savonius Sudu Elliptik

Lebih terperinci