BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 5 BAB II LANDASAN TEORI 2.1 DASAR TEORI Metode Metode Pengeringan Metode dalam pengeringan pakaian saat ini di pasaran ada beberapa macam, diantaranya (a) Pengeringan menggunakan cahaya matahari, (b) Pengeringan menggunakan gaya sentrifugal, (c) Pengering pakaian dengan bantuan gas LPG, (d) Pengering dengan metode dehumidifikasi dan pemanasan udara. a. Pengeringan menggunakan cahaya matahari Cara pengeringan ini sudah dilakukan secara umum oleh masyarakat. Panas yang dihasilkan matahari dapat menguapkan air yang ada pada pakaian yang basah menjadi kering. Pengeringan dengan metode ini tidak dapat dihandalkan pada saat musim hujan, tetapi pengeringan dengan matahari masih banyak digunakan masyarakat. Keuntungan pengeringan menggunakan cahaya matahari adalah murah dan tersedia berlimpah, tidak memerlukan peralatan yang mahal, tidak perlu tenaga kerja yang mempunyai keahlian tertentu, kecepatan pengeringan yang sama untuk berapapun jumlah pakaian, kapasitas pengeringan yang tidak terbatas. Kerugian pengeringan menggunakan cahaya matahari adalah pengeringan tergantung dari cuaca, jumlah panas matahari tidak tetap, kenaikan suhu tidak dapat diatur, waktu pengeringan tidak dapat ditentukan dengan tepat, tidak dapat dilakukan setiap saat. b. Pengeringan menggunakan gaya sentrifugal

2 6 Prinsip kerja metode mengekstraksi uap lebih banyak, sehingga proses pengeringan lebih cepat dan tidak memerlukan tenaga pemerasan dengan tangan. Kerugian pengeringan menggunakan gaya sentrifugal adalah kinerja pengeringan akan menurun jika pakaian pada drum melebihi kapasitas dan tetap membutuhkan cahaya matahari karena kaos kaki tidak kering sempurna, perlu energi listrik, hasil pengeringan tidak siap untuk disetrika, bahan yang dikeringkan mudah rusak. c. Pengeringan menggunakan gas LPG Prinsip kerja metode pengering ini yaitu memanfaatkan panas yang dihasilkan pemanas baik dari heater atau gas LPG yang disirkulasikan ke lemari, yang bertujuan untuk mengeringkan pakaian yang ada di lemari pengering. Panas dari heater atau gas LPG disirkulasikan ke dalam lemari pengering menggunakan bantuan kipas, sehingga menghasilkan udara yang bersuhu tinggi yang dapat menguapkan air yang terkandung di dalam pakaian yang basah. Keuntungan pengeringan menggunakan gas LPG adalah hasil pengeringan lebih cepat dan daya listrik menjadi hemat. Kerugian pengeringan menggunakan gas LPG adalah suhu pengeringan yang tinggi, sehingga cepat merusak bahan yang dikeringkan, tidak ramah lingkungan, gas hasil pembakaran menempel pada bahan yang dikeringkan, tidak praktis, dapat menimbulkan bahaya ledakan, saat beroperasi sebaiknya perlu dijaga. d. Pengeringan dengan metode dehumidifikasi Pengering pakaian jenis ini menggunakan metode dehumidifikasi, yang bekerja dengan memanfaatkan proses dehumidifikasi dan proses pemanasan udara yang disirkulasikan ke lemari pengering. Udara diturunkan kelembaban spesifiknya dan dipanaskan, kemudian disirkulasikan ke lemari. Akibat dari udara kering dan bersuhu tinggi pada ruangan, menimbulkan air dalam pakaian menguap. Selanjutnya udara lembab ini disirkulasikan kembali ke alat penurun kelembaban. Mesin pengering tersebut disebut dengan dehumidifier. Keuntungan pengeringan dengan metode dehumidifikasi adalah suhu kerja rendah sehingga tidak merusak bahan yang akan dikeringkan, ramah lingkungan, tidak ada gas buang seperti dengan LPG, praktis, aman saat beroperasi, tidak tergantung keadaan cuaca, dapat

3 7 dilakukan kapan saja. Kerugian pengeringan dengan metode dehumidifikasi adalah mesin dehumidifier membutuhkan energi listrik yang banyak. 2.2 KOMPONEN UTAMA POMPA KALOR SIKLUS KOMPRESI UAP Kompresor Pada sistem mesin refrigerasi, kompresor berfungsi seperti jantung. Kompresor berfungsi untuk mensirkulasikan refrigeran dan menaikan tekanan refrigerant agar dapat mengembun di kondensor pada temperatur di atas temperatur udara sekeliling.(www: Google/Komponen Utama Siklus Kompresi Uap). Berdasarkan cara kerjanya, kompresor yang biasa dipa kai pada sistem refrigerasi dapat dibagi menjadi: 1. Kompresor perpindahan (positive displacement ) Kompresor yang memerangkap refrigeran dalam suatu ruangan yang terpisah dari saluran masuk dan kelu arnya, kemudian dimampatkan. Kompresor ini dapat dibagi lagi menjadi: a. Bolak-balik (reciprocating ) kompresor torak. b. Putar ( rotary ) c. Kompresor sudu luncur ( rotary vane atau sliding vane ) d. Kompresor ulir ( screw) e. Kompresor gulung (Scroll) 2. Analisa Sliding Vane Compressor Disebut juga rotary vane compressor atau kompresor sudu luncur. Teridiri atas sebuah rotor yang dipasang secara eksentris pada slinder yang sedikit lebih besar daripada rotor. Baling-baling bergerak maju mundur secara radial dalam slot rotor mengikuti kontur dinding silinder saat rotor berputar. Sudu didorong oleh gaya sentrifugal yang timbul saat rotor berputar sehingga selalu rapat dengan dinding silinder. Untuk menjamin kerapatan antara sudu dengan dinding silinder dipasang pegas pada slot rotor. Untuk menjaga agar sudu tidak cepat aus, maka biasanya diujung sudu yang bersinggungan dengan casing digunakan logam lain. Kapasitas kompresor untuk ukuran rotor dan casing yang sama adalah fungsi jumlah sudu. Semakin banyak sudunya, makin besar kapasitasnya, tetapi perbandingan kompresinya lebih rendah dan volume vane lebih besar.

4 8 Tabel 2.1 Penggunaan refigrant Temperatur dan tekanan evaporasi yang biasa menggunakan kompresor sentrifugal adalah C sampai 100C dan 14 kpa sampai 700 kpa. Sementara tekana n kondensasi bisa mencapai 2000 kpa. Kecepatan putar motor untuk kompresor sentrifugal adalah 1800 samapai rpm dan kapasitas refrigerasi bervariasi antara 300 kw sampai kw. (Ambarita, 2012) Gambar 2.1 Assembling dari sliding vane compressor

5 9 Gambar 2.2. Bentuk roller dari sliding vane compressor Kondensor Kondensor berfungsi melakukan perpindahan kalor melalui permukaannya dari uap refrigeran ke media pendingin kondensor. Kondensor adalah APK (Alat Penukar Kalor) yang berfungsi mengubah fasa refrigeran dari kondisi superheat menjadi cair, bahkan terkadang sampai pada kondisi subcooled. Medium pendingin yang biasa digunakan untuk melakukan tugas ini adalah udara lingkungan, air, atau gabungan keduanya Katup Ekspansi Komponen utama yang lain untuk mesin refrigerasi adalah katup ekspansi. Katup ekspansi ini dipergunakan untuk menurunkan tekanan dan untuk mengekspansikan secara adiabatik cairan yang bertekan dan bertemperatur tinggi sampai mencapai tingkat tekanan dan temperatur rendah, atau mengekspansikan refrigeran cair dari tekanan kondensasi ke tekanan evaporasi, refrigeran cair diinjeksikan keluar melalui oriffice, refrigeran segera berubah menjadi kabut yang tekanan dan temperaturnya rendah. Selain itu, katup ekspansi juga sebagai alat kontrol refrigerasi yang berfungsi sebagai : a. Mengatur jumlah refrigeran yang mengalir dari pipa cair menuju evaporator sesuai dengan laju penguapan pada evaporator. b. Mempertahankan perbedaan tekanan an tara kondensor dan evaporator agar penguapan pada evaporator berlangsung pada tekanan kerjanya. Pipa kapiler adalah salah satu alat ekspansi. Alat ekspansi ini mempunyai dua kegunaan yaitu untuk menurunkan tekanan refrigeran cair dan untuk mengatur aliran

6 10 refrigeran ke evaporator. Cairan refrigeran memasuki pipa kapiler tersebut dan mengalir sehingga tekanannya berkurang akibat dari gesekan dan percepatan refrigeran. Pipa kapiler hampir melayani semua sistem refrigerasi yang berukuran kecil, dan penggunaannya meluas hingga pada kapasitas regrigerasi 10 kw. Pipa kapiler mempunyai ukuran panjang 1 hingga 6 meter, dengan diameter dalam 0,5 sampai 2 mm (Stoecker, 1996). Diameter dan panjang pipa kapiler ditetapkan berdasarkan kapasitas pendinginan, kondisi operasi dan jumlah refrigeran dari mesin refrigerasi yang bersangkutan. Konstruksi pipa kapiler sangat sederhana, sehingga jarang terjadi gangguan. Pada waktu kompresor berhenti bekerja, pipa kapiler menghubungkan bagian tekanan tinggi dengan bagian tekanan rendah, sehingga menyamakan tekanannya dan memudahkan start berikutnya Evaporator Evaporatpr berfungsi melakukan perpindahan kalor dari ruangan yang didinginkan ke refrigerant yang mengalir di dalamnya melalui permukaan dindingnya. Pada diagaram P h dari siklus kompresi uap sederhana, evaporator mempunyai tugas merealisasikan garis 1 4. Setelah refrigeran turun dari kondensor melalui katup ekspansi masuk ke evaporator dan di uapkan, kemudian dikirim ke kompresor. Pada prinsipnya evaporator hampir sama dengan kondensor, yaitu sama sama APK yang fungsinya mengubah fasa refrigeran. Bedanya, jika pada kondensor refrigeran berubah dari uap menjadi cair, maka pada evaporator berubah dari cair menjadi uap Refrigrant Refrigerant adalah fluida kerja utama pada suatu siklus refrigerasi yang bertugas menyerap panas pada temperatur dan tekanan rendah dan membuang panas pada temperatur dan tekanan tinggi. Umumnya refrigerant mengalami perubahan fasa dalam satu siklus. 1. Pengelompokan Refrigrant Refrigerant dirancang untuk ditempatkan didalam siklus tertutup atau tidak bercampur dengan udara luar. Tetapi, jika ada kebocoran karena sesuatu hal yang tidak diinginkan, maka refrigerant akan keluar dari system dan bisa saja terhirup manusia. Untuk menghindari hal-hal yang tidak diinginkan maka refrigerant harus dikategorikan aman atau tidak aman. Ada dua faktor yang digunakan untuk

7 11 mengklasifikasikan refrigerant berdasarkan keamanan, yaitu bersifat racun (toxicity ) dan bersifat mudah terbakar ( flammability). Berdasarkan toxicity, refrigerant dapat dibagi dua kelas, yaitu kelas A bersifat tidak beracun pada konsentrasi yang ditetapkan dan kelas B jika bersifat racun. Batas yang digunakan untuk mendefinisikan sifat racun atau tidak adalah sebagai berikut. Refrigerant dikategorikan tipe A jika pekerja tidak mengalami gejala keracunan meskipun bekerja lebih dari 8 jam/hari (40 jam/minggu) di lingkungan yang mengandung konsentrasi refrigerant sama atau kurang dari 400 ppm (part per million by mass ). Sementara kategori B adalah sebaliknya. Berdasarkan flammability, refrigerant dibagi atas 3 kelas, kelas 1, kelas 2, dan kelas 3. Yang disebut kelas 1 jika tidak terbakar jika diuji pada tekanan 1 atm (101 kpa) temperature 18,3 C. Kelas 2 jika menunjukkan keterbakaran yang rendah saat konsentrasinya lebih dari 0,1 kg/m3 pada 1 atm 21.1 C atau kalor pembakarannya kurang dari 19 MJ/kg. Kelas 3 sangat mudah terbakar. Refrigerant ini akan terbakar jika konsentrasinya kurang dari 0,1 kg kg/m3 atau kalor pembakarannya lebih dari 19 MJ/kg. Berdasarkan defenisi ini, sesuai standard , refrigerants dikl assifikasikan menjadi 6 kategori, yaitu: (Stoecker,2012). 1. A1: Sifat racun rendah dan tidak terbakar 2. A2: Sifat racun rendah dan sifat terbakar rendah 3. A3: Sifat racun rendah dan mudah terbakar 4. B1: Sifat racun lebih tinggi dan tidak terbakar 5. B2: Sifat racun lebih tinggi dan sifat terbakar rendah 6. B3: Sifat racun lebih tinggi dan mudah terbakar

8 12 Tabel 2.2 Pembagian refrigerant berdasarkan keamanan 2.3 HUMIDIFIER DAN DEHUMIDIFIER Terdapat beberapa jenis proses dasar pengkondisian udara, seperti proses pemanasan sensibel, yaitu proses pemanasan aliran udara yang meningkatkan temperatur udara tetapi tidak merubah kelembabannya. Apabila kelembaban udara perlu dinaikkan maka proses pemanasan dibarengi dengan penambahan kelembaban atau humidifier. Pada proses pendinginan, apabila penurunan temperatur perlu dibarengi dengan pengurangan kelembaban maka prosesnya dinamakan dehumidifier. Pada masingmasing proses tersebut, tentu saja sifat-sifat udara berubah-ubah sesuai dengan kondisi temperatur, tekanan, maupun kelembabannya. Dehumidifier merupakan suatu alat pengering udara yang berguna untuk menurunkan kelembaban udara dengan cara menyerap udara yang lembab dan memprosesnya menjadi air yang akan ditampung dalam suatu wadah. Ada dua

9 13 macam dehumidifier yang ada di pasaran saat ini refrigerant dehumidifier dan desiccant dehumidifier. Refrigerant dehumidifier Cara kerja dehumidifier ini adalah dengan sistem kompresi uap. Udara luar masuk melewati evaporator kemudian evaporator menyerap uap air yang ada di udara. Udara kemudian dilewatkan kondensor agar udara menjadi panas dan kering. Evaporator memiliki tugas untuk menurunkan suhu udara ke titik dimana kondensasi terjadi. Kondensasi terjadi pada evaporator, kemudian air didalam udara menetes dan tertampung pada wadah. Sedangkan kondensor bertugas untuk menaikkan suhu udara agar udara semakin kering. Gambar 2.3 Skema pompa kalor Parameter Dehumidifier Untuk memahami proses dehumidifikasi ada beberapa parameter yang harus dipahami atau dimengerti antara lain (a) Kelembaban, (b) Kelembaban spesifik, (c) Suhu udara, (d) Aliran udara, (e) Entalpi, (f) Volume spesifik. a. Kelembaban Kelembaban merupakan jumlah kandungan air dalam udara. Udara bisa dikatakan mempunyai kelembaban yang tinggi apabila uap air yang dikandungnya tinggi, begitu juga sebaliknya. Udara yang kurang mengandung uap air dikatakan udara kering, sedangkan udara yang mengandung banyak uap air dikatakan udara basah. Kelembaban udara dapat dinyatakan sebagai kelembaban udara mutlak dan kelembaban relatif. Kelembaban mutlak adalah banyaknya air yang dapat terkandung di dalam 1 kg udara. Kelembaban relatif merupakan persentase

10 14 perbandingan jumlah air yang terkandung dalam 1 kg udara dengan jumlah air maksimal yang terkandung dalam 1 kg udara dengan jumlah air maksimal yang dapat terkandung dalam 1 kg udara tersebut. Kelembaban relatif menentukan kemampuan udara pengering untuk menampung kadar air kaos kaki yang telah diuapkan. Semakin rendah kelembaban relatif maka semakin banyak uap air yang dapat diserap. Alat untuk mengukur kelembaban relatif adalah hygrometer, sedangkan alat untuk mengukur suhu udara kering dan suhu udara basah adalah termometer bola kering dan termometer bola basah. Untuk mengetahui tingkat kelembaban relatif dapat menggunakan hygrometer atau dengan menggunakan termometer bola basah dan termometer bola kering. Untuk mengetahui kelembaban relatif dapat menggunakan dua buah termometer. Termometer pertama dipergunakan untuk mengukur suhu udara kering dan termometer kedua untuk mengukur suhu udara basah. Pada termometer bola kering, tabung air raksa pada termometer dibiarkan kering sehingga akan mengukur suhu udara aktual. Sedangkan pada termometer bola basah, tabung air raksa akan diberi kain yang dibasahi dengan air agar suhu yang terukur adalah suhu saturasi atau titik jenuh, yaitu suhu yang diperlukan agar uap air dapat terkondensasi. b. Kelembaban Spesifik Kelembaban spesifik adalah jumlah kandungan uap air di udara dalam setiap kilogram udara kering atau perbandingan antara massa uap air dengan massa udara kering. Kelembaban spesifik umumnya dinyatakan dengan gram per kilogram dari udara kering (gr/kg) atau (kg/kg). Dalam sistem dehumidifier semakin besar perbandingan kelembaban spesifik setelah keluar dari mesin pengering (wh) dengan kelembaban spesifik dalam mesin pengering (wf), maka semakin banyak massa air yang berhasil diuapkan. Massa air yang berhasil diuapkan (Δw) dapat dihitung dengan Persamaan : Δ w = (w H w F ) (2.1) Pada Persamaan (2.1) : Δ w w H w F c. Suhu Udara : Massa air yang berhasil diuapkan persatuan massa udara, kg/kg : Kelembaban spesifik setelah keluar dari mesin pengering, kg/kg : Kelembaban spesifik dalam mesin pengering, kg/kg

11 15 Suhu udara merupakan panas atau dinginnya udara disuatu tempat. Suhu udara dikatakan panas jika suhu udara pada tempat dan waktu tertentu melebihi suhu lingkungan disekitarnya dan begitu juga sebaliknya untuk suhu udara dingin. Suhu udara sangat mempengaruhi laju pengeringan. Semakin besar perbedaan antara suhu udara pengering dan suhu kaos kaki maka kemampuan perpindahan kalor semakin besar, maka proses penguapan air juga meningkat.agar bahan yang dikeringkan tidak sampai rusak, suhu udara harus diatur atau dikontrol terus menerus. Suhu udara dibagi menjadi 2, yaitu : Suhu udara basah dan Suhu udara kering. Suhu udara kering adalah suhu yang ditunjukkan dengan termometer bulb biasa dengan bulb dalam keadaan kering. Satuan untuk suhu ini biasaya dalam Celcius, Kelvin, Fahrenheit. Seperti yang diketahui bahwa termometer menggunakan prinsip pemuaian zat cair dalam termometer. Jika kita ingin mengukur suhu udara dengan termometer biasa maka terjadi perpindahan kalor dari udara ke bulb termometer. Karena mendapatkan kalor maka zat cair (misalkan: air raksa) yang ada di dalam termometer mengalami pemuaian sehingga tinggi air raksa tersebut naik. Kenaikan ketinggian cairan ini yang di konversikan dengan satuan suhu (celcius, Fahrenheit, dll). Suhu udara basah adalah suhu bola basah. Sesuai dengan namanya wet bulb, suhu ini diukur dengan menggunakan termometer yang bulbnya (bagian bawah termometer) dilapisi dengan kain yang telah dibasahi dengan air kemudian dialiri udara yang ingin diukur suhunya. Perpindahan kalor terjadi dari udara ke kain basah tersebut. Kalor dari udara akan digunakan untuk menguapkan air pada kain basah tersebut, setelah itu baru digunakan untuk memuaikan cairan yang ada dalam termometer. d. Aliran udara Aliran udara pada proses pengeringan memiliki fungsi membawa udara panas untuk menguapkan kadar air pakaian serta mengeluarkan uap air hasil penguapan tersebut. Uap air hasil penguapan harus segera dikeluarkan agar tidak membuat udara jenuh udara pada ruangan, yang dapat mengganggu proses pengeringan. Semakin besar laju aliran massa udara panas yang mengalir maka akan semakin besar kemmapuannya menguapkan kadar air dari pakaian, namun berbanding terbalik dengan suhu udra yang semakin menurun. Untuk memperbesar debit aliran udara (Qudara) dapat dengan memperbesar luas

12 16 penampang (A) ataupun kecepatan aliran udara. Untuk menghitung debit aliran dapat digunakan Persamaan : Q udara = A. v, m 3 /s (2.2) Pada Persamaan Q udara : Debit aliran udara, m 3 /s A : Luas penampang,m 2 v : Kecepatan udara, m/s Untuk menghitung laju aliran massa udara pada saluran masuk ruang pengering dapat digunakan Persamaan : m udara = Q udara. ρu dara, kg udara /s (2.3) Pada persamaan ṁ udara Q udara ρ udara : Laju aliran massa udara, kgudara/s : Debit aliran udara, m3/s : Densitas udara, kg/m3 Menentukan kemampuan mengeringkan massa air dapat dihitung dengan Persamaan : M 2 = m udara. Δw. 3600, kg air /jam (2.4) Pada Persamaan (2.4) : M 2 m udara Δw e. Entalpi : Kemampuan mengeringkan massa air, kg/jam : Laju aliran massa udara, kg udara/s : Massa air yang berhasil diuapkan, kgair/kg udara Entalpi menyatakan jumlah energi internal dari suatu sistem termodinamika ditambah energi yang digunakan untuk melakukan kerja. Entalpi (H) adalah jumlah energi yang dimiliki sistem pada tekanan tetap. Entalpi (H) dirumuskan sebagai jumlah energi yang terkandung dalam sistem (E) dan kerja (W). f. Volume spesifik Volume spesifik merupakan volume udara campuran dengan satuan meter kubik per kilogram udara kering, dapat juga dikatakan sebagai meter kubik udara kering atau meter kubik campuran per kilogram udara kering Psychrometric Chart

13 17 Psychrometric chart adalah grafik yang digunakan untuk menentukan propertiproperti dari udara pada suatu tekanan tertentu. Skematis Psychrometric chart dapat dilihat pada Gambar 2.8 dimana masing-masing kurva/garis akan menunjukkan nilai properti yang konstan. Untuk mengetahui nilai dari propertiproperti (h, RH, W, SpV, Twb, Tdb, dan Tdp) bisa dilakukan apabila minimal dua buah diantara properti tersebut sudah diketahui. Proses-proses yang terjadi pada udara dalam psychrometric chart. Gambar 2.4 Psychrometric Chart ( 2.4 POMPA KALOR Pompa kalor (heat pump) adalah suatu perangkat yang mendistribusikan panas dari media suhu rendah ke suhu tinggi. Pompa kalor merupakan perangkat yang sama dengan mesin pendingin (refrigerator), perbedaannya hanya pada tujuan akhir. Mesin pendingin bertujuan menjaga ruangan pada suhu rendah (dingin) dengan membuang panas dari ruangan. Sedangkan pompa kalor bertujuan menjaga ruangan berada pada suhu yang tinggi (panas).

14 18 Pompa kalor memanfaatkan sifat fisik dari penguapan dan pengembunan dari suatu fluida yang disebut dengan refrigerant. Pada aplikasi sistem pemanas, ventilasi dan pendingin ruangan, pompa kalor merujuk pada alat pendinginan kompresi-uap yang mencakup saluran pembalik dan penukar panas sehingga arah aliran panas dapat dibalik. Secara umum, pompa kalor mengambil panas dari udara atau dari permukaan. Beberapa jenis pompa kalor mengambil panas udara tidak bekerja dengan baik setelah temperatur jatuh di bawah -50C (230F) Siklus Kompresi Uap Sistem kompresi uap merupakan dasar sistem refrigerasi yang terbanyak di gunakan, dengan komponen utama nya adalah kompresor, evaporator, alat ekspansi (Throttling Device), dan kondensor. Keempat komponen tersebut melakukan proses yang saling berhubungan dan membentuk siklus refrigerasi kompresi uap. Gambar 2.5 Siklus kompresi uap Pada diagram P-h, siklus kompresi uap dapat digambarkan pada gambar 2.2 sebagai berikut:

15 19 Gambar 2.6 Diagram T-S dan P-h Proses yang terjadi pada Sikl us Refrigerasi Kompresi Uap adalah sebagai berikut: a. Proses Kompresi (1 2) Proses ini berlangsung di kompresor secara isentropik adiabatik. Kondisi awal refrigeran pada saat mas uk di kompresor adalah uap jenuh bertekanan rendah, setelah di kompresi refrigeran menjadi uap bertekanan tinggi. Oleh karena proses ini di anggap isentropik, maka temperatur keluar kompresor pun muningkat. Besarnya kerja kompresi per satuan massa refrigeran bisa di hitung dengan rumus : Gambar 2.7 Proses kerja kompresi W = m q w = m (h2 h1) (2.5) (Teknik Pendingin & Pengkondisian Udara, Dr. Eng. Himsar Amabarita, 2012,hal : 5) Dimana : q w h 1 h 2 ᵐ = besarnya kerja kompresi yang di lakukan (kj/kg = entalpi refrigeran saat masuk kompresor (kj/kg) = entalpi refrigeran saat keluar kompresor (kj/kg) = laju aliran refrigeran pada sistem (kg/s)

16 20 Dalam pengujian besarnya daya kompresor untuk melakukan kerja dapat juga ditentukan dengan rumus: P = V x I x Cos ⱷ (2.6) Dimana P = daya listrik kompresor (Watt) V = tegangan listrik (Volt) I = kuat arus listrik (Ampere) Cos ⱷ = 0,6 0,8 b. Proses Kondensasi (2 3) Proses ini berlangsung di kondensor, refrigeran yang bertekanan dan temperatur tinggi keluar dari kompresor membuang kalor sehingga fasanya berubah menjadi cair. Hal ini berarti bahwa di kondensor terjadi penukaran kalor antara refrigeran dengan udara, sehingga pa nas berpindah dari refrigeran ke udara pendingin dan akhirnya refrig eran mengembun menjadi cair. Besarnya kalor per satuan massa refrigerant yang di lepaskan di kondensor dinyatakan sebagai: Gambar 2.8 Proses kerja kondensasi Qk = m.q k = m (h2 h1) (2.7) (Teknik Pendingin & Pengkondisian Udara,Dr. Eng. Himsar Ambarita, 2012,hal :5) Dimana : q = besarnya kalor dile pas di kondensor (kj/kg) h 2 h 3 = entalpi refrigeran saat masuk kondensor (kj/kg) = entalpi refrigeran saat keluar kondensor (kj/kg) c. Proses Ekspansi (3 4) Proses ini berlangsung secara isoentalpi, hal ini berarti tidak terjadi penambahanentalpi tetapi terjadi drop tekanan dan penurunan temperatur. Proses

17 21 penurunan tekanan terjadi pada katup eksp ansi yang berbentuk pipa kapiler atau orifice yang berfungsi mengatur laju aliran refrigerant dan menurunkan tekanan. h 3 = h 4 (2.8) (Teknik Pendingin & Pengkondisian Udara,Dr. Eng. Himsar Ambarita, 2012, hal :5) Dimana : h 3 h 4 = entalpi refrigeran saat keluar kondensor (kj/kg) = harga entalpi masuk ke evaporator (kj/kg) d. Proses Evaporasi (4 1) Proses ini berlangsung di evaporator secara isobar isotermal. Refrigerant dalam wujud cair bertekanan rendah menyerap kalor dari lingkungan / media yang di dinginkan sehingga wujudnya beruba h menjadi gas bertekanan rendah. Besarnya kalor yang diserap evaporator adalah : Gambar 2.9 Proses kerja evaporasi Q ev = m.q ev = (h 1 h 4 ) (2.9) (Teknik Pendingin & Pengkondisian Udara,Dr. Eng. Himsar Ambarita, 2012, hal :6) Selanjutnya refrigeran kembali masuk ke kompresor dan bersirkulasi kembali, begitu seterusnya sampai kondisi yang diinginkan tercapai PERHITUNGAN TEKNIS 1. Menghitung Temperatur dan laju aliran massa udara pada saluran masuk ruang pengering (ṁ udara ) tiap variasi. Laju aliran massa udara pada saluran masuk ruang pengering (ṁ udara ) adalah debit udara (Q udara ) dikali densitas udara (ρ udara ) sebesar 1,2 kg/m Atau Menggunakan Anemometer.

18 22 2. Mencari Temperatur dan kelembaban spesifik udara setelah melewati kondensor (w F ), dan mencari kelembaban spesifik setelah keluar dari mesin pengering (w H ) menggunakan psychrometric chart. 3. Mencari tekanan refigran dan Mencari suhu kerja kondensor dan evaporator dangan menggunakan P h diagram. Untuk dapat menggunakan P h diagram, tekanan refrigeran P1 (Sebelum memasuki Kondensor) dan P2 (Setelah keluar kondensor) harus dikonversikan dari satuan Psig ke Mpa. 4. Kinerja dari pompa kalor dinyatakan dalam coefficient of performance (COP), yang didefenisikan sebagai perbandingan antara kalor yang dilepaskan oleh kondensor dengan kerja (energi) yang dibutuhkan untuk menggerakkan kompresor. = (2.10) Dimana : Q cd W c = adalah kalor yang dilepaskan oleh kondensor (kw) = adalah kerja (energi) yang masuk dalam kompresor (kw) Kalor yang dilepaskan oleh kondensor dihitung dengan persamaan: Q cd = m ud C p,ud (T out,ud T in,ud ) (2.11) Dimana: m ud = adalah laju aliran massa udara (kg/s) C p,ud = adalah panas spesifik udara ( ) T out,ud = adalah suhu rata-rata udara keluar kondensor (K) T in,ud = adalah suhu rata-rata udara masuk kondensor (K) Kerja yang masuk ke dalam sistem (kerja kompresor) di hitung dengan persamaan: W c = m ref (h 2 h 1 ) (2.12) Dimana: m ref h1 h2 = adalah laju aliran massa refrigeran (kg/s) = diperoleh dari tekanan pada saluran keluar evaporator = diperoleh dari tekanan pada saluran keluar kompresor Sebuah Sistem kompresi uap dengan memanfaatkan evaporator dan kondensor sekaligus disebut dengan sistem kompresi uap hibrid. Kinerja dari sebuah sistem

19 23 kompresi uap hibrid dinyatakan dengan Total Performance (TP) yang menyatakan jumlah beban maksimum pada ruang pendinginan dan ruang pengeringan dibandingkan dengan daya kompresi, yang dirumuskan dengan: = (2.13) Dimana: Qev = adalah kalor yang diserap oleh evaporator (kw) Qcd = adalah kalor yang dilepaskan oleh kondensor (kw) Wc = adalah kerja Kompresor (kw) h h : = (h1 h4) (2.14) 5. Perhitungan efisiensi pengeringan Perhitungan efisiensi pengeringan dapat dilakukan dengan menggunakan persamaan = 100% (2.15) Dimana: Qp = adalah energi yang digunakan untuk pengeringan (kj) Q = adalah energi untuk memanaskan udara pengering (kj) 6. h h ( ). Massa air yang berhasil diuapkan ( w) adalah kelembaban spesifik setelah keluar dari mesin pengering (wh) dikurangi kelembaban spesifik setelah melewati kondensor (wf) dan Laju pengeringan (drying rate; kg/jam), dihitung dengan menggunakan persamaan : = (2.16) Dimana : W O = adalah berat pakaian sebelum pengeringan (kg) W F = adalah berat pakain setelah pengeringan (kg) t = adalah waktu pengeringan (jam)

20 24 7. Untuk memudahkan pembahasan, hasil hasil perhitungan proses pengeringan, maka digambarkan dalam grafik. Pembahasan dilakukan terhadap grafik yang dihasilkan, dengan mengacu pada tujuan penelitian dan hasil penelitian orang lain.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Pengeringan Pengeringan adalah proses perpindahan panas dan uap air secara simultan yang memerlukan energi panas uantuk menguapkan kandungan air yang dipindahkan dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori. 2.1 AC Split

BAB II DASAR TEORI. BAB II Dasar Teori. 2.1 AC Split BAB II DASAR TEORI 2.1 AC Split Split Air Conditioner adalah seperangkat alat yang mampu mengkondisikan suhu ruangan sesuai dengan yang kita inginkan, terutama untuk mengkondisikan suhu ruangan agar lebih

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah... DAFTAR ISI KATA PENGANTAR... i ABSTRAK... iii ABSTRACT... iv DAFTAR ISI... v DAFTAR GAMBAR... viii DAFTAR TABEL... x DAFTAR NOTASI... xi BAB I PENDAHULUAN... 1 1.1. Latar Belakang... 1 1.2. Rumusan Masalah...

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA.1 Teori Pengujian Sistem pengkondisian udara (Air Condition) pada mobil atau kendaraan secara umum adalah untuk mengatur kondisi suhu pada ruangan didalam mobil. Kondisi suhu yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Arif Kurniawan Jurusan Teknik Mesin Institut Teknologi Nasional (ITN) Malang E-mail : arifqyu@gmail.com Abstrak. Pada bagian mesin pendingin

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori

BAB II DASAR TEORI. BAB II Dasar Teori BAB II DASAR TEORI 2.1 Pengertian Air Conditioner Air Conditioner (AC) digunakan untuk mengatur temperatur, sirkulasi, kelembaban, dan kebersihan udara didalam ruangan. Selain itu, air conditioner juga

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Air Conditioner Split Air Conditioner (AC) split merupakan sebuah alat yang digunakan untuk mengkondikan udara didalam ruangan sesuai dengan yang diinginkan oleh penghuni.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Latar Belakang Pengkondisian udaraa pada kendaraan mengatur mengenai kelembaban, pemanasan dan pendinginan udara dalam ruangan. Pengkondisian ini bertujuan bukan saja sebagai penyejuk

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump BAB II DASAR TEORI 2.1 Pengertian Sistem Heat pump Heat pump adalah pengkondisi udara paket atau unit paket dengan katup pengubah arah (reversing valve) atau pengatur ubahan lainnya. Heat pump memiliki

Lebih terperinci

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM : LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC Nama Praktikan : Utari Handayani NPM : 140310110032 Nama Partner : Gita Maya Luciana NPM : 140310110045 Hari/Tgl Percobaan

Lebih terperinci

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda BAB II DASAR TEORI 2.1 Benih Kedelai Penyimpanan benih dimaksudkan untuk mendapatkan benih berkualitas. Kualitas benih yang dapat mempengaruhi kualitas bibit yang dihubungkan dengan aspek penyimpanan adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Refrigerasi Refrigerasi merupakan suatu kebutuhan dalam kehidupan saat ini terutama bagi masyarakat perkotaan. Refrigerasi dapat berupa lemari es pada rumah tangga, mesin

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

Jurnal Ilmiah Widya Teknik Volume 15 Nomor ISSN INOVASI MESIN PENGERING PAKAIAN YANG PRAKTIS, AMAN DAN RAMAH LINGKUNGAN

Jurnal Ilmiah Widya Teknik Volume 15 Nomor ISSN INOVASI MESIN PENGERING PAKAIAN YANG PRAKTIS, AMAN DAN RAMAH LINGKUNGAN Jurnal Ilmiah Widya Teknik Volume 15 Nomor 2 2016 ISSN 1412-7350 INOVASI MESIN PENGERING PAKAIAN YANG PRAKTIS, AMAN DAN RAMAH LINGKUNGAN PK Purwadi*, Wibowo Kusbandono** Teknik Mesin Fakultas Sains dan

Lebih terperinci

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR Arif Kurniawan Institut Teknologi Nasional (ITN) Malang; Jl.Raya Karanglo KM. 2 Malang 1 Jurusan Teknik Mesin, FTI-Teknik Mesin

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Air Conditioning (AC) atau alat pengkondisian udara merupakan modifikasi pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk mengkondisikan

Lebih terperinci

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin Galuh Renggani Wilis, ST.,MT ABSTRAKSI Pengkondisian udara disebut juga system refrigerasi yang mengatur temperature & kelembaban udara. Dalam beroperasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Rangkaian proses pengeringan secara garis besar merupakan metoda penguapan yang dapat dilakukan untuk melepas air dalam fasa uapnya dari dalam objek yang dikeringkan.

Lebih terperinci

BAB II LANDASAN TEORI. tropis dengan kondisi temperatur udara yang relatif tinggi/panas.

BAB II LANDASAN TEORI. tropis dengan kondisi temperatur udara yang relatif tinggi/panas. BAB II LANDASAN TEORI 2.1 Pengertian Sistem Pendingin Sistem pendingin merupakan sebuah sistem yang bekerja dan digunakan untuk pengkondisian udara di dalam ruangan, salah satunya berada di mobil yaitu

Lebih terperinci

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Oleh : Robbin Sanjaya 2106.030.060 Pembimbing : Ir. Denny M.E. Soedjono,M.T PENDAHULUAN 1. Latar Belakang

Lebih terperinci

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12 Suroso, I Wayan Sukania, dan Ian Mariano Jl. Let. Jend. S. Parman No. 1 Jakarta 11440 Telp. (021) 5672548

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

MESIN PENGERING PAKAIAN ENERGI LISTRIK DENGAN MEMPERGUNAKAN SIKLUS KOMPRESI UAP

MESIN PENGERING PAKAIAN ENERGI LISTRIK DENGAN MEMPERGUNAKAN SIKLUS KOMPRESI UAP Banjarmasin, 7-8 Oktober 215 MESIN PENGERING PAKAIAN ENERGI LISTRIK DENGAN MEMPERGUNAKAN SIKLUS KOMPRESI UAP PK Purwadi 1,a*, Wibowo Kusbandono 2,b 1, 2 Teknik Mesin Fakultas Sains dan Teknologi Universitas

Lebih terperinci

Jurnal Ilmiah Widya Teknik Volume 16 Nomor ISSN

Jurnal Ilmiah Widya Teknik Volume 16 Nomor ISSN MESIN PENGERING KAPASITAS LIMAPULUH BAJU SISTEM TERTUTUP Jurnal Ilmiah Widya Teknik Volume 16 Nomor 2 2017 ISSN 1412-7350 PK Purwadi 1* 1 Teknik Mesin, Fakultas Sains dan Teknologi, Universitas Sanata

Lebih terperinci

BAB II DASAR TEORI. pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk

BAB II DASAR TEORI. pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk BAB II DASAR TEORI 2.1 Pengertian Umum Air Conditioning (AC) atau alat pengkondisi udara merupakan modifikasi pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk memberikan udara

Lebih terperinci

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3 BAB II DASAR TEORI 2.1 Pengering Udara Pengering udara adalah suatu alat yang berfungsi untuk menghilangkan kandungan air pada udara terkompresi (compressed air). Sistem ini menjadi satu kesatuan proses

Lebih terperinci

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada Siklus Kompresi Uap Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3

Lebih terperinci

RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK

RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK Zakaria Bernando 1, Himsar Ambarita 1, Departemen Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Penyimpanan Energi Termal Es merupakan dasar dari sistem penyimpanan energi termal di mana telah menarik banyak perhatian selama beberapa dekade terakhir. Alasan terutama dari penggunaan

Lebih terperinci

MESIN PENGERING HANDUK DENGAN ENERGI LISTRIK

MESIN PENGERING HANDUK DENGAN ENERGI LISTRIK Volume Nomor September MESIN PENGERING HANDUK DENGAN ENERGI LISTRIK Kurniandy Wijaya PK Purwadi Teknik Mesin Fakultas Sains dan Teknologi Universitas Sanata Dharma Yogyakarta Indonesia Email : kurniandywijaya@gmail.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini BAB II TINJAUAN PUSTAKA 21 Mesin Refrigerasi Secara umum bidang refrigerasi mencakup kisaran temperatur sampai 123 K Sedangkan proses-proses dan aplikasi teknik yang beroperasi pada kisaran temperatur

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet BAB II DASAR TEORI 2.1 Blood Bank Cabinet Darah merupakan suatu cairan yang sangat penting bagi manusia karena berfungsi sebagai alat transportasi serta memiliki banyak kegunaan lainnya untuk menunjang

Lebih terperinci

PENGERING KAOS KAKI DENGAN MENGGUNAKAN MESIN SIKLUS KOMPRESI UAP SKRIPSI

PENGERING KAOS KAKI DENGAN MENGGUNAKAN MESIN SIKLUS KOMPRESI UAP SKRIPSI PENGERING KAOS KAKI DENGAN MENGGUNAKAN MESIN SIKLUS KOMPRESI UAP SKRIPSI Untuk memenuhi sebagian persyaratan mencapai derajat S-1 Teknik Mesin oleh : Laurentius Rio Aditya Kurniawan NIM :125214058 PROGRAM

Lebih terperinci

BAB II DASAR TEORI. Tugas Akhir Rancang Bangun Sistem Refrigerasi Kompresi Uap untuk Prototype AHU 4. Teknik Refrigerasi dan Tata Udara

BAB II DASAR TEORI. Tugas Akhir Rancang Bangun Sistem Refrigerasi Kompresi Uap untuk Prototype AHU 4. Teknik Refrigerasi dan Tata Udara BAB II DASAR TEORI 2.1 Sistem Refrigerasi Kompresi Uap Sistem Refrigerasi Kompresi Uap merupakan system yang digunakan untuk mengambil sejumlah panas dari suatu barang atau benda lainnya dengan memanfaatkan

Lebih terperinci

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN Kemas. Ridhuan 1), I Gede Angga J. 2) Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Metro Jl. Ki Hjar

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

Peningkatan Waktu Pengeringan dan Laju Pengeringan Pada Mesin Pengering Pakaian Energi Listrik

Peningkatan Waktu Pengeringan dan Laju Pengeringan Pada Mesin Pengering Pakaian Energi Listrik Peningkatan Waktu Pengeringan dan Laju Pengeringan Pada Mesin Pengering Pakaian Energi Listrik PK Purwadi 1, Wibowo Kusbandono 2 T. Mesin Fakultas Sains dan Teknologi, Univ. Sanata Dharma 1, pur@mailcity.com

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Blast Chiller Blast Chiller adalah salah satu sistem refrigerasi yang berfungsi untuk mendinginkan suatu produk dengan cepat. Waktu pendinginan yang diperlukan untuk sistem Blast

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem refrigerasi kompresi uap Sistem refrigerasi yang umum dan mudah dijumpai pada aplikasi sehari-hari, baik untuk keperluan rumah tangga, komersial dan industri adalah sistem

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1. Prinsip Kerja Mesin Pendingin Penemuan siklus refrigerasi dan perkembangan mesin refrigerasi merintis jalan bagi pembuatan dan penggunaan mesin penyegaran udara. Komponen utama

Lebih terperinci

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN 1 Amrullah, 2 Zuryati Djafar, 3 Wahyu H. Piarah 1 Program Studi Perawatan dan Perbaikan Mesin, Politeknik Bosowa, Makassar 90245,Indonesia

Lebih terperinci

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng MULTIREFRIGERASI SISTEM Oleh: Ega T. Berman, S.Pd., M,Eng SIKLUS REFRIGERASI Sistem refrigerasi dengan siklus kompresi uap Proses 1 2 : Kompresi isentropik Proses 2 2 : Desuperheating Proses 2 3 : Kondensasi

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

Jurusan Teknik Refrigerasi dan Tata Udara

Jurusan Teknik Refrigerasi dan Tata Udara BAB II DASAR TEORI 2.1 Sejarah Tabung Vortex Tabung vortex ditemukan oleh G.J. Ranque pada tahun 1931 dan kemudian dikembangkan lebih lanjut oleh Prog. Hilsch pada tahun 1947. Tabung vortex menghasilkan

Lebih terperinci

UNJUK KERJA PENGKONDISIAN UDARA MENGGUNAKAN HEAT PIPE PADA DUCTING DENGAN VARIASI LAJU ALIRAN MASSA UDARA

UNJUK KERJA PENGKONDISIAN UDARA MENGGUNAKAN HEAT PIPE PADA DUCTING DENGAN VARIASI LAJU ALIRAN MASSA UDARA UNJUK KERJA PENGKONDISIAN UDARA MENGGUNAKAN HEAT PIPE PADA DUCTING DENGAN VARIASI LAJU ALIRAN MASSA UDARA Sidra Ahmed Muntaha (0906605340) Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Prinsip Pengeringan Pengeringan (drying) merupakan proses perpindahan panas dan uap air secara secara simultan yang memerlukan energi panas untuk menguapkan kandungan air yang

Lebih terperinci

BAB II DASAR TEORI LAPORAN TUGAS AKHIR. 2.1 Blast Chiller

BAB II DASAR TEORI LAPORAN TUGAS AKHIR. 2.1 Blast Chiller BAB II DASAR TEORI 2.1 Blast Chiller Blast Chiller adalah salah satu sistem refrigerasi yang berfungsi untuk mendinginkan suatu produk dengan cepat. Cara pendinginan produk pada Blast Chiller ini dilakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Refrigeran merupakan media pendingin yang bersirkulasi di dalam sistem refrigerasi kompresi uap. ASHRAE 2005 mendefinisikan refrigeran sebagai fluida kerja

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut. BAB II DASAR TEORI 2.1 Sistem Refrigerasi Refrigerasi adalah suatu proses penarikan kalor dari suatu ruang/benda ke ruang/benda yang lain untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Mesin Pendingin Untuk pertama kali siklus refrigerasi dikembangkan oleh N.L.S. Carnot pada tahun 1824. Sebelumnya pada tahun 1823, Cagniard de la Tour (Perancis),

Lebih terperinci

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W PERBANDINGAN UNJUK KERJA FREON R-2 DAN R-34a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W Ridwan Jurusan Teknik Mesin Fakultas Teknologi Industri Universitas Gunadarma e-mail: ridwan@staff.gunadarma.ac.id

Lebih terperinci

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1) BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Teori Pengeringan Pengeringan adalah proses perpindahan panas dan uap air secara simultan yang memerlukan energi panas uantuk menguapkan kandungan air yang dipindahkan dari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Perencanaan pengkondisian udara dalam suatu gedung diperlukan suatu perhitungan beban kalor dan kebutuhan ventilasi udara, perhitungan kalor ini tidak lepas dari prinsip perpindahan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Cooling Tunnel

BAB II DASAR TEORI. 2.1 Cooling Tunnel BAB II DASAR TEORI 2.1 Cooling Tunnel Cooling Tunnel atau terowongan pendingin merupakan sistem refrigerasi yang banyak digunakan di industri, baik industri pengolahan makanan, minuman dan farmasi. Cooling

Lebih terperinci

MESIN PENGERING SEPATU DENGAN UDARA BUANG YANG DIMANFAATKAN UNTUK PENGERING SEPATU SKRIPSI

MESIN PENGERING SEPATU DENGAN UDARA BUANG YANG DIMANFAATKAN UNTUK PENGERING SEPATU SKRIPSI MESIN PENGERING SEPATU DENGAN UDARA BUANG YANG DIMANFAATKAN UNTUK PENGERING SEPATU SKRIPSI Untuk Memenuhi Sebagian Persyaratan Memperoleh Gelar Sarjana Teknik Mesin S-1 Disusun Oleh : WILLIAM INDRA KUSUSMA

Lebih terperinci

BAB II DASAR TEORI. 2.1 Sejarah Tabung Vortex

BAB II DASAR TEORI. 2.1 Sejarah Tabung Vortex BAB II DASAR TEORI 2.1 Sejarah Tabung Vortex Tabung vortex ditemukan oleh G.J. Ranque pada tahun 1931 dan kemudian dikembangkan lebih lanjut oleh Prof. Hilsch. Tabung vortex menghasilkan separasi udara

Lebih terperinci

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING Marwan Effendy, Pengaruh Kecepatan Udara Pendingin Kondensor Terhadap Kooefisien Prestasi PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING Marwan Effendy Jurusan

Lebih terperinci

ANALISA TERMODINAMIKA LAJU PERPINDAHAN PANAS DAN PENGERINGAN PADA MESIN PENGERING BERBAHAN BAKAR GAS DENGAN VARIABEL TEMPERATUR LINGKUNGAN

ANALISA TERMODINAMIKA LAJU PERPINDAHAN PANAS DAN PENGERINGAN PADA MESIN PENGERING BERBAHAN BAKAR GAS DENGAN VARIABEL TEMPERATUR LINGKUNGAN Flywheel: Jurnal Teknik Mesin Untirta Vol. IV, No., April 208, hal. 34-38 FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA Homepagejurnal: http://jurnal.untirta.ac.id/index.php/jwl ANALISA TERMODINAMIKA LAJU PERPINDAHAN

Lebih terperinci

benar kering. Kandungan uap air dalam udara pada untuk suatu keperluan harus dibuang atau malah ditambahkan. Pada bagan psikometrik ada dua hal yang p

benar kering. Kandungan uap air dalam udara pada untuk suatu keperluan harus dibuang atau malah ditambahkan. Pada bagan psikometrik ada dua hal yang p BAB II TINJAUAN PUSTAKA 2.1. Pengertian Alat Pendingin Central Alat pendingin central merupakan alat yang digunakan untuk mengkondisikan udara ruangan, dimana udara dingin dari alat tersebut dialirkan

Lebih terperinci

BAB II LANDASAN TEORI. Suatu mesin refrigerasi akan mempunyai tiga sistem terpisah, yaitu:

BAB II LANDASAN TEORI. Suatu mesin refrigerasi akan mempunyai tiga sistem terpisah, yaitu: BAB II LANDASAN TEORI 2.1 Pendahuluan Refrigerasi adalah proses pengambilan kalor atau panas dari suatu benda atau ruang tertutup untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk dari energi,

Lebih terperinci

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER No. Vol. Thn.XVII April ISSN : 85-87 KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER Iskandar R. Laboratorium Konversi Energi Jurusan Teknik

Lebih terperinci

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban TINJAUAN PUSTAKA Mekanisme Pengeringan Udara panas dihembuskan pada permukaan bahan yang basah, panas akan berpindah ke permukaan bahan, dan panas laten penguapan akan menyebabkan kandungan air bahan teruapkan.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Teori Dasar Perpindahan Kalor 2.1.1. Umum Penukaran Kalor sering dipergunakan dalam kehidupan sehari hari dan juga di gedung dan industri. Contoh kegiatan penukaran kalor dalam

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 diagram blok siklus Sistem Refrigerasi Kompresi Uap

BAB II DASAR TEORI. Gambar 2.1 diagram blok siklus Sistem Refrigerasi Kompresi Uap BAB II DASAR TEORI 2.1 Sistem Refrigerasi Kompresi Uap Sistem refrigerasi kompresi uap merupakan suatu sistem yang menggunakan kompresor sebagai alat kompresi refrigeran, yang dalam keadaan bertekanan

Lebih terperinci

PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER. MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI

PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER. MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI Diajukan Untuk Melengkapi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Oleh : TRI

Lebih terperinci

BAB V PEMILIHAN KOMPONEN MESIN PENDINGIN

BAB V PEMILIHAN KOMPONEN MESIN PENDINGIN BAB V PEMILIHAN KOMPONEN MESIN PENDINGIN 5.1 Pemilihan Kompresor Kompresor berfungsi menaikkan tekanan fluida dalam hal ini uap refrigeran dengan temperatur dan tekanan rendah yang keluar dari evaporator

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sejarah Hawlader, M.N.A., Chou, S.K., Ullah, M.Z. ( 2001 ) melakukan penelitian tentang prestasi dari sistem solar assisted heat pump water heater. Pada evaporator ditambahkan

Lebih terperinci

SISTEM REFRIGERASI. Gambar 1. Freezer

SISTEM REFRIGERASI. Gambar 1. Freezer SISTEM REFRIGERASI Sistem refrigerasi sangat menunjang peningkatan kualitas hidup manusia. Kemajuan dalam bidang refrigerasi akhir-akhir ini adalah akibat dari perkembangan sistem kontrol yang menunjang

Lebih terperinci

BAB III METODOLOGI PENELITIAN Bahan Penelitian Pada penelitian ini refrigeran yang digunakan adalah Yescool TM R-134a.

BAB III METODOLOGI PENELITIAN Bahan Penelitian Pada penelitian ini refrigeran yang digunakan adalah Yescool TM R-134a. 3.1. Lokasi Penelitian BAB III METODOLOGI PENELITIAN Penelitian ini dilakukan di Laboratorium Motor Bakar Jurusan Teknik Mesin Universitas Sebelas Maret Surakarta. 3.2. Bahan Penelitian Pada penelitian

Lebih terperinci

RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK SKRIPSI

RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK SKRIPSI RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ZAKARIA

Lebih terperinci

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage Sugiyono 1, Ir Sumpena, MM 2 1. Mahasiswa Elektro, 2. Dosen

Lebih terperinci

3.2 Pembuatan Pipa Pipa aliran air dan coolant dari heater menuju pipa yang sebelumnya menggunakan pipa bahan polimer akan digantikan dengan menggunak

3.2 Pembuatan Pipa Pipa aliran air dan coolant dari heater menuju pipa yang sebelumnya menggunakan pipa bahan polimer akan digantikan dengan menggunak BAB III METODE PENELITIAN 3.1 Pendekatan Penelitian Pendekatan penelitian adalah metode yang digunakan untuk mendekatkan permasalahan alahan yang diteliti, sehingga dapat menjelaskan dan membahas permasalahan

Lebih terperinci

ANALISA WAKTU SIMPAN AIR PADA TABUNG WATER HEATER TERHADAP KINERJA AC SPLIT 1 PK

ANALISA WAKTU SIMPAN AIR PADA TABUNG WATER HEATER TERHADAP KINERJA AC SPLIT 1 PK ANALISA WAKTU SIMPAN AIR PADA TABUNG WATER HEATER TERHADAP KINERJA AC SPLIT PK Imron Rosadi, Agus Wibowo, Ahmad Farid. Mahasiswa Teknik Mesin, Universitas Pancasakti, Tegal,. Dosen Teknik Mesin, Universitas

Lebih terperinci

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap Azridjal Aziz 1,a* dan Boby Hary Hartanto 2,b 1,2 Jurusan Teknik Mesin, Fakultas Teknik

Lebih terperinci

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

Laporan Tugas Akhir 2012 BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Definisi Vaksin Vaksin merupakan bahan antigenik yang digunakan untuk menghasilkan kekebalan aktif terhadap suatu penyakit sehingga dapat mencegah atau mengurangi pengaruh infeksi

Lebih terperinci

MESIN PENGERING HANDUK DENGAN SIKLUS KOMPRESI UAP DIBANTU DUA BUAH PENUKAR KALOR DAN SEPULUH LAMPU 25 WATT SKRIPSI

MESIN PENGERING HANDUK DENGAN SIKLUS KOMPRESI UAP DIBANTU DUA BUAH PENUKAR KALOR DAN SEPULUH LAMPU 25 WATT SKRIPSI MESIN PENGERING HANDUK DENGAN SIKLUS KOMPRESI UAP DIBANTU DUA BUAH PENUKAR KALOR DAN SEPULUH LAMPU 25 WATT SKRIPSI Untuk memenuhi sebagian persyaratan mencapai derajat sarjana S-1 Teknik Mesin Disusun

Lebih terperinci

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013 1.2.3 AC Central AC central sistem pendinginan ruangan yang dikontrol dari satu titik atau tempat dan didistribusikan secara terpusat ke seluruh isi gedung dengan kapasitas yang sesuai dengan ukuran ruangan

Lebih terperinci

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap 4 BAB II DASAR TEORI 2.1 Sistem Pengkondisian Udara Pengkondisian udara adalah proses untuk mengkondisikan temperature dan kelembapan udara agar memenuhi persyaratan tertentu. Selain itu kebersihan udara,

Lebih terperinci

Pengantar Sistem Tata Udara

Pengantar Sistem Tata Udara Pengantar Sistem Tata Udara Sistem tata udara adalah suatu proses mendinginkan/memanaskan udara sehingga dapat mencapai suhu dan kelembaban yang diinginkan/dipersyaratkan. Selain itu, mengatur aliran udara

Lebih terperinci

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin BELLA TANIA Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya May 9, 2013 Abstrak Mesin

Lebih terperinci

BAB II DASAR TEORI 2012

BAB II DASAR TEORI 2012 BAB II DASAR TEORI 2.1 Pengertian Sistem Brine Sistem Brine adalah salah satu sistem refrigerasi kompresi uap sederhana dengan proses pendinginan tidak langsung. Dalam proses ini koil tidak langsung mengambil

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem Refrigerasi Freezer Freezer merupakan salah satu mesin pendingin yang digunakan untuk penyimpanan suatu produk yang bertujuan untuk mendapatkan produk dengan kualitas yang

Lebih terperinci

BAB III ANALISA DAN PEMBAHASAN

BAB III ANALISA DAN PEMBAHASAN BAB III ANALISA DAN PEMBAHASAN 3.1. Waktu Dan Tempat Penelitian Pengambilan data pada kondensor disistem spray drying ini telah dilaksanakan pada bulan desember 2013 - maret 2014 di Laboratorium Teknik

Lebih terperinci

Laporan Tugas Akhir BAB II TEORI DASAR

Laporan Tugas Akhir BAB II TEORI DASAR BAB II TEORI DASAR 2.1 Sistem Tata Udara Secara umum pengkondisian udara adalah suatu proses untuk mengkondisikan udara pada suatu tempat sehingga tercapai kenyamanan bagi penghuninya. Tata udara meliputi

Lebih terperinci

BAB II TEORI DASAR. 2.1 Pengertian Sistem Tata Udara

BAB II TEORI DASAR. 2.1 Pengertian Sistem Tata Udara BAB II TEORI DASAR 2.1 Pengertian Sistem Tata Udara Sistem tata udara adalah suatu sistem yang digunakan untuk menciptakan suatu kondisi pada suatu ruang agar sesuai dengan keinginan. Sistem tata udara

Lebih terperinci

[LAPORAN TUGAS AKHIR]

[LAPORAN TUGAS AKHIR] BAB II DASAR TEORI 2.1 Udara 2.1.1 Komposisi Udara Udara yang mengandung uap air dinamakan udara lembab sedangkan udara yang tidak mengandung uap air dinamakan udara kering. Udara atmosfir terdiri dari

Lebih terperinci

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung (Indirect Cooling System) Sistem pendinginan tidak langsung (indirect Cooling system) adalah salah satu jenis proses pendinginan dimana digunakannya

Lebih terperinci

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008 TERMODINAMIKA II Semester Genap TA 007/008 Siklus Kompresi Uap Ideal (A Simple Vapor-Compression Refrigeration Cycle) Mempunyai komponen dan proses.. Compressor: mengkompresi uap menjadi uap bertekanan

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

Bab IV Analisa dan Pembahasan

Bab IV Analisa dan Pembahasan Bab IV Analisa dan Pembahasan 4.1. Gambaran Umum Tujuan dari pengujian ini adalah untuk mengetahui kinerja Ac split TCL 3/4 PK mengunakan refrigeran R-22 dan refrigeran MC-22. Pengujian kinerja Ac split

Lebih terperinci

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage BAB 5. HASIL DAN PEMBAHASAN Prinsip Kerja Instalasi Instalasi ini merupakan instalasi mesin pendingin kompresi uap hibrida yang berfungsi sebagai mesin pendingin pada lemari pendingin dan pompa kalor pada

Lebih terperinci