ABSTRAK DAN EXECUTIVE SUMMARY HIBAH DISERTASI DOKTOR

Ukuran: px
Mulai penontonan dengan halaman:

Download "ABSTRAK DAN EXECUTIVE SUMMARY HIBAH DISERTASI DOKTOR"

Transkripsi

1 ABSTRAK DAN EXECUTIVE SUMMARY HIBAH DISERTASI DOKTOR Judul: INTEGRAL HENSTOCK-KURZWEIL DI DALAM RUANG FUNGSI KONTINU C[a,b] Tim Peneliti Firdaus Ubaidillah, S.Si, M.Si NIDN UNIVERSITAS JEMBER Pebruari 2015

2 ABSTRAK Interal Henstock-Kurzweil di dalam Ruan Funsi Kontinu C[a, b] Peneliti : Firdaus Ubaidillah 1 Mahasiswa Terlibat : - Sumber Dana : DIPA Universitas Jember Kontak irdaus_u@yahoo.com 1 Jurusan Matematika Fakultas MIPA Universitas Jember C[a, b] menyatakan koleksi semua unsi kontinu bernilai real yan terdeinisi pada selan tertutup [a, b] R. Tujuan dalam penelitian ini adalah membahas siat-siat ruan unsi kontinu C[a, b], menkonstruksi interal Henstock-Kurzweil unsi bernilai C[a, b], membahas siat-siat unsi dan primiti unsi terinteral Henstock-Kurweil yan dijabarkan dalam teorema-teorema serta membahas suatu teorema kekonverenan. Dalam tulisan ini, dikonstruksi interal Henstock-Kurzweil unsi bernilai C[a, b] denan menunakan norma nilai mutlak yan bernilai C[a, b]. Selanjutnya dikembankan untuk menetahui siat-siat unsi terinteral Henstock-Kurzweil dan primiti unsi terinteral Henstock-Kurzweil. Siat-siat unsi terinteral Henstock-Kurzweil dijabarkan dalam bentuk teorema-teorema. Teorema kekonverenan monoton dan kekonverenan seraam yan berkenaan denan interal Henstock-Kurzweil bernilai C[a, b] jua dibahas dalam tulisan ini. Kata kunci: Funsi terinteral Henstock-Kurzweil, norma bernilai C[a, b], partisi δ-ine, primiti unsi terinteral Henstock-Kurzweil, unsi naik monoton

3 EXECUTIVE SUMMARY Peneliti : Firdaus Ubaidillah 1 Mahasiswa Terlibat : - Sumber Dana : DIPA Universitas Jember Kontak irdaus_u@yahoo.com 1 Jurusan Matematika Fakultas MIPA Universitas Jember A. LATAR BELAKANG DAN TUJUAN Perkembanan teori interal dalam matematika sebelum tahun 1950-an yan lampau sejalan denan tuntutan aplikati khususnya di bidan isika dan teknik. Namun dalam enam dekade terakhir ini, perkembanan teori interal boleh dibilan sanat pesat setelah Ralph Henstock dan Jaroslav Kuzweil pada tahun dapat menkonstruksi sebuah interal, selanjutnya interal yan disusunnya dikenal denan nama interal Henstock-Kurzweil, denan memodiikasi konstanta positi δ pada interal Riemann menjadi sebuah unsi positi δ. Dari hasil modikasi tersebut, interal Henstock-Kurzweil menjadi lebih luas pemakaiannya dibandin interal-interal yan lain. Sejalan denan perkembanan kebutuhan khususnya di bidan teknik dan isika, kini para ilmuwan tidak hanya bekerja pada ruan real saja namun merambah memasuki ruan vektor beraam dimana salah satunya adalah ruan unsi kontinu C[a, b]. Sebaai ilustrasi, jika dipandan interal F(x, y)da D dimana D adalah daerah tertutup di R 2 yan dibatas oleh suatu kurva yan mulus baian demi baian, maka dalam teknis menhitun interal diperoleh hubunan x=b y= F(x, y)da = F(x, y)dydx x=a y= D (1) Interal pertama dari interal rankap pada ruas kanan persamaan (1) adalah y= y= F(x, y)dy.

4 Interal F sebaai unsi dari y denan daerah asal peninterasian dari y = (x) ke y = (x). Oleh karena itu daerah asal peninterasian merupakan sebuah selan tertutup koleksi unsi kontinu denan nilai interalnya jua sebuah unsi kontinu. Tujuan dalam penelitian ini adalah memahami siat-siat ruan unsi kontinu C[a, b], menkonstruksi interal Henstock-Kurzweil unsi bernilai C[a, b], menetahui siat-siat unsi dan primiti unsi terinteral Henstock-Kurweil dan membahas teorema kekonverenan. B. METODE PENELITIAN Penelitian ini merupakan hasil kajian teoritis. Penelitian diawali denan memahami siat-siat ruan unsi kontinu C[a, b] yan dilenkapi denan relasi. Selanjutnya membentuk norma bernilai C[a, b], kemudian menenalkan partisi δ-ine pada selan tertutup, menkonstruksi interal Henstock-Kurzweil unsi bernilai C[a, b] pada selan tertutup, menembankan siat-siat unsi terinteral Henstock-Kurzweil dan membahas teorema kekonverenan. Siat-siat unsi teinteral Henstock-Kurzweil disajikan dalam beberapa teorema dan ditunjukkan buktinya. C. HASIL DAN PEMBAHASAN Dari hasil penelitian ini diperoleh beberapa hasil diantaranya: ruan C[a, b] denan dilenkapi urutan " " merupakan ruan terurut parsial, dan setiap himpunan baian terbatas dari C[a, b] belum menjamin mempunyai supremum atau inimum. Selain itu, hasil lain yan diperoleh adalah C[a, b] merupakan ruan Riesz. Untuk partisi δ-ine pada selan tertutup di dalam C[a, b], bahwa setiap unsi positip (aue) pada [, ] C[a, b] menjamin adanya partisi δ-ine pada [, ]. Selanjutnya dibentuk norma bernilai C[a, b] yan dideinisikan sebaai nilai mutlak bernilai C[a, b]. Suatu unsi F: [, ] C[a, b] dikatakan terinteral Henstock-Kurzweil, pada [, ] jika terdapat s C[a, b] sehina untuk setiap ε > 0 terdapat unsi positi (aue) δ pada [, ] sehina setiap D = {([u, v], t)} partisi δ-ine pada [, ] berlaku (D) F(t)(v u) s < εe.

5 Elemen s C[a, b] di atas dinamakan nilai interal Henstock-Kurzweil unsi F pada [, ]. Jika suatu unsi terinteral Henstock-Kurzweil pada suatu selan [, ] maka nilai interalnya tunal. Jika HK[, ] menyatakan koleksi semua unsi terinteral Henstock-Kurzweil pada [, ], maka HK[, ] merupakan ruan linear atas lapanan R. Funsi θ (unsi yan bernilai nol) kecuali pada himpunan yan berukuran nol adalah unsi yan terinteral Henstock-Kurzweil denan nilai interalnya θ. Hal ini berakibat jika ada dua unsi yan sama kecuali pada himpunan yan berukuran nol dan salah satunya terinteral Henstock- Kurzweil, maka unsi yan lain jua akan terinteral Henstock-Kurzweil. Suatu unsi yan terinteral Henstock-Kurzweil pada [, ] maka unsi tersebut jua terinteral Henstock- Kurzweil pada setiap selan baian dari [, ]. Jika F HK[, ], dideinisikan unsi F pada [, ] denan rumus F(h) = (HK) F untuk setiap h [, ] disebut primiti Henstock-Kurzweil unsi F pada [, ]. Primiti Henstock-Kurzweil F pada [, ] merupakan unsi kontinu pada [, ] dan dierensiabel hampir di mana-mana pada [, ]. Selanjutnya, denan menunakan lemma Henstock sebaai berikut: Jika F HK[, ] denan primiti Henstock-Kurzweil F yaitu untuk setiap bilanan ε > 0 terdapat aue pada [, ] sehina untuk setiap partisi δ-ine D = {([u, v], t)} pada [, ] berlaku (D) (F(t)(v u) F(u, v)) < εe, diperoleh sebuah teorema kekonverenan monoton seperti berikut: Jika syarat-syarat berikut terpenuhi (i) (ii) F n (h) F(h) untuk setiap h [, ] bilamana n denan F n HK[, ] untuk setiap n; F 1 (h) F 2 (h) F 3 (h), untuk setiap h [, ]; (iii) F n (, ) = (HK) F n maka F HK[, ] denan denan {F n (, )} konveren ke s C[a, b], (HK) F = s.

6 Lebih jauh, diperoleh sebuah teorema kekonverenan seraam berikut. Diberikan {F n } HK[, ]. Jika {F n } konveren seraam ke F pada [, ], maka F HK[, ] dan lim (HK) F n n = (HK) F. Kata Kunci :Funsi terinteral Henstock-Kurzweil, norma bernilai C[a, b], partisi δ-ine, primiti unsi terinteral Henstock-Kurzweil, unsi naik monoton

BAB 1. FUNGSI DUA PEUBAH

BAB 1. FUNGSI DUA PEUBAH BAB. FUNGSI DUA PEUBAH. PENDAHUUAN Pada baian ini akan dibahas perluasan konsep pada unsi satu peubah ke unsi dua peubah atau lebih. Setelah mempelajari bab ini anda seharusna dapat: - Menentukan domain

Lebih terperinci

FUNGSI DAN GRAFIK KED

FUNGSI DAN GRAFIK KED FUNGSI DAN GRAFIK 1.1 Pendahuluan Deinisi unsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan

Lebih terperinci

Pengertian Fungsi. Kalkulus Dasar 2

Pengertian Fungsi. Kalkulus Dasar 2 Funsi Penertian Funsi Relasi : aturan an menawankan himpunan Funsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu unsi jika setiap elemen di dalam A dihubunkan denan tepat satu elemen

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

Kalkulus I. Fungsi Dan Grafik Fungsi. Dr. Eko Pujiyanto, S.Si., M.T eko.staff.uns.ac.id/kalkulus1

Kalkulus I. Fungsi Dan Grafik Fungsi. Dr. Eko Pujiyanto, S.Si., M.T eko.staff.uns.ac.id/kalkulus1 Kalkulus I Funsi Dan Graik Funsi Dr. Eko Pujiyanto, S.Si., M.T. eko@uns.ac.id 081 2278 3991 eko.sta.uns.ac.id/kalkulus1 Materi Funsi ( Daerah deinisi, daerah asal dan daerah hasil ) Funsi Surjekti, Injekti,

Lebih terperinci

Oleh : K a r y a t i Jurusan Pendidikan Matematika FMIPA, Universitas Negeri Yogyakarta Abstract

Oleh : K a r y a t i Jurusan Pendidikan Matematika FMIPA, Universitas Negeri Yogyakarta   Abstract Siat Pasanan Adjoin Relati Terhadap Bentuk Bilinear Oleh : K a r y a t i Jurusan Pendidikan Matematika FMIPA, Universitas Neeri Yoyakarta Email: yatiuny@yahoocom Abstract Let X and Y be vector spaces over

Lebih terperinci

FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi

FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi FUNGSI DAN GRAFIK Deinisi Funsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan nilai ya diperoleh

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

Sifat Pasangan Adjoin Relatif Terhadap Bentuk Bilinear 1

Sifat Pasangan Adjoin Relatif Terhadap Bentuk Bilinear 1 Siat Pasanan Adjoin Relati Terhadap entuk ilinear 1 K a r y a t i Jurusan Pendidikan Matematika FMIPA, Universitas Neeri Yoyakarta Email: yatiuny@yahoo.com Abstract Let X and Y be vector spaces over a

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II KALKULUS MULTIVARIABEL II Integral Garis Medan Vektor dan (Minggu ke-8) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia 1 Integral Garis Medan Vektor 2 Terkait Lintasan Teorema Fundamental untuk

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan Ilmu pengetahuan merupakan hal yang mengalami perkembangan secara terus-menerus. Diantaranya teori integral yaitu ilmu bidang matematika analisis yang

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 3

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 3 a home base to ecellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 3 a home base to ecellence TIU : Mahasiswa dapat memahami turunan unsi dan aplikasinya TIK : Mahasiswa mampu

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai konsep dasar masalah. penjadwalan kuliah, algoritma memetika serta komponen algoritma

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai konsep dasar masalah. penjadwalan kuliah, algoritma memetika serta komponen algoritma BAB II LANDASAN TEORI Pada bab ini akan dibahas menenai konsep dasar masalah penjadwalan kuliah, aloritma memetika serta komponen aloritma memetika. Aoritma memetika diilhami dari proses evolusi makhluk

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakan Masalah Modul merupakan struktur aljabar yan diperoleh dari perumuman struktur ruan vektor denan memperumum ruan skalarnya menjadi rin denan elemen satuan. Modul atas

Lebih terperinci

4. TURUNAN. MA1114 Kalkulus I 1

4. TURUNAN. MA1114 Kalkulus I 1 4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Sinun Kemirinan tali busur PQ adala : m PQ Jika à, maka tali busur PQ akan beruba menjadi

Lebih terperinci

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1 An-2 1. PENDAHULUAN Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS Abstrak Tujuan dari tulisan ini adalah membahas tentang integral Lebesgue

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

OPERATOR PADA RUANG BARISAN TERBATAS

OPERATOR PADA RUANG BARISAN TERBATAS OPERATOR PADA RUANG BARISAN TERBATAS Muslim Ansori *,Tiryono 2, Suharsono S 2,Dorrah Azis 2 Jurusan Matematika FMIPA Universitas Lampung,2 Jln. Soemantri Brodjonegoro No Bandar Lampung email: ansomath@yahoo.com

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

INTEGRAL RIEMANN-LEBESGUE

INTEGRAL RIEMANN-LEBESGUE INTEGRAL RIEMANN-LEBESGUE Ikram Hamid Program Studi Pendidikan Matematika Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam FKIP Universitas Khairun ABSTRACT In this paper, we discuss a Riemann-type

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

1 Posisi, kecepatan, dan percepatan

1 Posisi, kecepatan, dan percepatan 1 Posisi, kecepatan, dan percepatan Posisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada

Lebih terperinci

Gambar II.1. Skema Sistem Produksi

Gambar II.1. Skema Sistem Produksi Bab II Tinjauan Pustaka II.1 Sistem Produksi Sistem produksi minyak merupakan jarinan pipa yan berunsi untuk menalirkan luida (minyak) dari reservoir ke separator. Reservoir terletak di bawah permukaan

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

BAB II FUNGSI DAN GRAFIK FUNGSI

BAB II FUNGSI DAN GRAFIK FUNGSI BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai aplikasi, korespondensi/hubunan antara dua himpunan serin terjadi. Sebaai contoh, volume bola

Lebih terperinci

RANGKAIAN LISTRIK. Kuliah 5 ( Analisa Rangkaian )

RANGKAIAN LISTRIK. Kuliah 5 ( Analisa Rangkaian ) ANGKAIAN ISTIK Kuliah 5 ( Analisa ankaian ) ANAISA ANGKAIAN Pada baian ini akan dibahas penyelesaian persoalan yan muncul pada ankaian istrik denan menunakan suatu teorema tertentu. Ada beberapa teorema

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH Y.D. Sumanto Jurusan Matematika FMIPA UNDIP Abstrak Integral McShane fungsi-fungsi bernilai real

Lebih terperinci

A-8 LUAS DAERAH DI R2 DENGAN MEMANFAATKAN GARIS SINGGUNG KURVA

A-8 LUAS DAERAH DI R2 DENGAN MEMANFAATKAN GARIS SINGGUNG KURVA A-8 LUAS DAERAH DI R2 DENGAN MEMANFAATKAN GARIS SINGGUNG KURVA Moh. Affaf, S.Si 1 1 Institut Teknologi Bandung, affafs.teorema@yahoo.com PENDAHULUAN Luas daerah di R 2, dibawah kurva f dan di atas sumbu-x

Lebih terperinci

1 Posisi, kecepatan, dan percepatan

1 Posisi, kecepatan, dan percepatan 1 osisi, kecepatan, dan percepatan osisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada

Lebih terperinci

Similaritas Uniter Matriks Repesentasi Grup Berhingga

Similaritas Uniter Matriks Repesentasi Grup Berhingga Similaritas Uniter Matriks Repesentasi Grup Berhina Oleh: Musthofa Jurusan Pendidikan Matematika FMIPA UNY Abstrak Misalkan G sembaran rup berhina dan GLm(C himpunan semua matriks nonsinular berukuran

Lebih terperinci

PELABELAN PADA GRAPH ( ), DENGAN

PELABELAN PADA GRAPH ( ), DENGAN PELABELAN PADA GRAPH, DENGAN Yuliarti 1) Purwanto 2) FMIPA Universitas Neeri Malan E-mail : yulia.anwar91@yahoo.com ABSTRAK: Pelabelan raph adalah pemetaan yan memetakan elemen elemen raph (titik atau

Lebih terperinci

Bab 2 Fungsi Analitik

Bab 2 Fungsi Analitik Bab 2 Fungsi Analitik Bab 2 ini direncanakan akan disampaikan dalam 4 kali pertemuan, dengan perincian sebagai berikut: () Pertemuan I: Fungsi Kompleks dan Pemetaan. (2) Pertemuan II: Limit Fungsi, Kekontiuan,

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

Pertemuan : 7 Materi : Integral Garis dan Teorema Dasar Integral Garis Bab III. Integral Kalkulus Dari Vektor

Pertemuan : 7 Materi : Integral Garis dan Teorema Dasar Integral Garis Bab III. Integral Kalkulus Dari Vektor Pertemuan : 7 Materi : Integral Garis dan Teorema Dasar Integral Garis Bab III. Integral Kalkulus Dari Vektor Standar Kompetensi : 1. Memahami Integral Kalkulus dari Vektor. 2. Memahami Integral Garis,

Lebih terperinci

PENYELESAIAN INTEGRAL DIMENSI-n DENGAN MENGGUNAKAN TEOREMA FUBINI

PENYELESAIAN INTEGRAL DIMENSI-n DENGAN MENGGUNAKAN TEOREMA FUBINI PENYELESAIAN INTEGRAL DIMENSI-n DENGAN MENGGUNAKAN TEOREMA FUBINI SKRIPSI Diajukan untuk Memenuhi Sebagian dari Syarat untuk Memperoleh Gelar Sarjana Pendidikan S-1 Program Studi Pendidikan Matematika

Lebih terperinci

Oleh: Tjandra Satria Gunawan

Oleh: Tjandra Satria Gunawan Soal dan Solusi (S 2 ) untuk: Olimpiade Sains Nasional Bidan Matematika SMA/MA Seleksi Tinkat Kota/Kabupaten Tahun 2010 Tanal: 14-29 April 2010 Oleh: Tjandra Satria Gunawan 1. Diketahui bahwa ada yepat

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

BAB II TEOREMA NILAI RATA-RATA (TNR)

BAB II TEOREMA NILAI RATA-RATA (TNR) BAB II TEOREMA NILAI RATA-RATA (TNR) Teorema nilai rata-rata menghubungkan nilai suatu fungsi dengan nilai derivatifnya (turunannya), dimana TNR merupakan salah satu bagian penting dalam kuliah analisis

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [, ] Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, 50275

KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [, ] Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, 50275 KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [,] Abdul Aziz 1, YD. Sumanto 2 1,2 Departemen Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro Jl. Prof. H. Soedarto, S.H., Tembalang,

Lebih terperinci

Jawaban OSK v ~ F (m/l) v = F a m b l c (nilai 2) [L][T] -1 = [M] a [L] a [T] -2a [M] b [L] c. Dari dimensi M: 0 = a + b a = -b

Jawaban OSK v ~ F (m/l) v = F a m b l c (nilai 2) [L][T] -1 = [M] a [L] a [T] -2a [M] b [L] c. Dari dimensi M: 0 = a + b a = -b Jawaban OSK 01 Fisika B 1- (nilai 6) Jawaban menunakan konsep dimensi v ~ F (m/l) v = F a m b l c (nilai ) [L][T] -1 = [M] a [L] a [T] -a [M] b [L] c Dari dimensi M: 0 = a + b a = -b Dari dimensi L: 1

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA II TINJUN USTK ompa adalah suatu alat yan diunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain denan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut diunakan

Lebih terperinci

Fungsi Analitik (Bagian Pertama)

Fungsi Analitik (Bagian Pertama) Fungsi Analitik (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IV) Outline 1 Fungsi Variabel Kompleks 2 Pemetaan/Transformasi/Mappings

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan menenai teori teori yan berhubunan denan penelitian sehina dapat dijadikan sebaai landasan berfikir dalam melakukan penelitian dan akan mempermudah dalam

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

II. TINJAUAN PUSTAKA. dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass,

II. TINJAUAN PUSTAKA. dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi Integral Atas dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass, serta teorema-teorema yang mendukung

Lebih terperinci

10/11/2014. CIG4E3 / Pengolahan Citra Digital BAB 8. Image Segmentation (Edge Detection) Definisi Egde. Cara Kerja Spatial Filter [1]

10/11/2014. CIG4E3 / Pengolahan Citra Digital BAB 8. Image Segmentation (Edge Detection) Definisi Egde. Cara Kerja Spatial Filter [1] CI4E3 / Penolahan Citra Diital BAB 8. Imae Sementation Ede Detection Intellient Computin and Multimedia ICM Deinisi Ede Ede adalah batas antara dua daerah denan nilai ra-level an relati berbeda atau denan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Ruan Linkup Ruan linkup keiatan dalam penulisan tuas akhir ini adalah PT. Tembaa Mulia Semanan Tbk. (Divisi Aluminium) yan berlokasi di Jalan Daan Moot KM. 16, Semanan,

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis merupakan salah satu cabang matematika yang mempelajari antara lain barisan, limit, deret, kekontinuan, kekonvergenan, integral, dan yang lainnya.

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

J. Pijar MIPA, Vol. X No.2, September 2015: ISSN (Cetak) ISSN (Online)

J. Pijar MIPA, Vol. X No.2, September 2015: ISSN (Cetak) ISSN (Online) J. Pijar MIPA, Vol. X No.2, September 215: 76-79 ISSN 197-1744 (Cetak) ISSN 241-15 (Online) PERUMUMAN LEMMA SNAKE DAN LEMMA LIMA Sripatmi 1, Yunita Septriana Anwar 2 1 Proram Studi Pendidikan Matematika

Lebih terperinci

SYARAT PERLU EXTREMAL FUNGSIONAL DENGAN WAKTU AKHIR BEBAS TITIK AKHIR TETAP 1. Oleh: Muhammad Fauzan

SYARAT PERLU EXTREMAL FUNGSIONAL DENGAN WAKTU AKHIR BEBAS TITIK AKHIR TETAP 1. Oleh: Muhammad Fauzan Ke Makalah M-8 SYARAT PERLU EXTREMAL FUNGSIONAL DENGAN WAKTU AKHIR BEBAS TITIK AKHIR TETAP 1 Oleh: Muhamma Fauzan Absrak Dalam ulisan ini akan iunakan Terema Funamenal alculus Variains an Lemma Funamenal

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral tipe Stieltjes merupakan salah satu topik yang banyak dipelajari dalam matematika analisis. Beberapa di antaranya adalah integral Riemann-Stieltjes,

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM LIMIT & KEKONTINUAN IRA PRASETYANINGRUM Bilangan Tidak Tertentu Nol = Bilangan yang menyatakan banyaknya elemen himpunan kosong Misal : A={Orang yang Istrinya } Terdapat bilangan mendekati dari kiri/bawah/negati

Lebih terperinci

Dengan substitusi persamaan (1.2) ke dalam persamaan (1.3) maka kedudukan x partikel sebagai fungsi waktu dapat diperoleh melalui integral pers (1.

Dengan substitusi persamaan (1.2) ke dalam persamaan (1.3) maka kedudukan x partikel sebagai fungsi waktu dapat diperoleh melalui integral pers (1. GERAK PADA BIDANG DATAR 1. Gerak denan Percepatan Tetap C Gb. 1 Grafik kecepatan-waktu untuk erak lurus denan percepatan tetap Pada ambar 1, kemirinan tali busur antara titik A dan B sama denan kemirinan

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

Gerak Dua Dimensi Gerak dua dimensi merupakan gerak dalam bidang datar Contoh gerak dua dimensi : Gerak peluru Gerak melingkar Gerak relatif

Gerak Dua Dimensi Gerak dua dimensi merupakan gerak dalam bidang datar Contoh gerak dua dimensi : Gerak peluru Gerak melingkar Gerak relatif Gerak Dua Dimensi Gerak dua dimensi merupakan erak dalam bidan datar Contoh erak dua dimensi : Gerak peluru Gerak melinkar Gerak relatif Posisi, Kecepatan, Percepatan r i = vektor posisi partikel di A

Lebih terperinci

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi

Lebih terperinci

Integral Baire-1 Stieltjes, Henstock-Stieltjes dan Riemann-Stieltjes. The Stieltjes Integrals of Baire-1, Henstock and Riemann

Integral Baire-1 Stieltjes, Henstock-Stieltjes dan Riemann-Stieltjes. The Stieltjes Integrals of Baire-1, Henstock and Riemann Integral Baire-1 Stieltjes, Henstock-Stieltjes dan Riemann-Stieltjes Kalfin D Muchtar 1, Jullia Titaley 2, Mans L Mananohas 3 1 Program Studi Matematika, FMIPA, UNSRAT Manado, kalfin_muchtar@yahoocom 2

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

2 H g. mv ' A, x. R= 2 5 m R2 ' A. = 1 2 m 2. v' A, x 2

2 H g. mv ' A, x. R= 2 5 m R2 ' A. = 1 2 m 2. v' A, x 2 SOLUSI. A. Waktu bola untuk jatuh diberikan oleh : t A= H B. Jarak d yan dibutuhkan adalah d=v 0 t A =v H 0 i. Karena bola tidak slip sama sekali dan tumbukan lentin sempurna maka eneri mekanik sistem

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

Beberapa Pertidaksamaan Tipe Ostrowski

Beberapa Pertidaksamaan Tipe Ostrowski Beberapa Pertidaksamaan Tipe Ostrowski Rani Fransiska Departemen Marematika, FMIPA UI, Kampus UI Depok 1644 ranifransiska@uiacid Abstrak Pertidaksamaan Ostrowski adalah suatu pertidaksamaan integral untuk

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

PENYELESAIAN INTEGRAL DIMENSI-n MENGGUNAKAN TEOREMA TONELLI

PENYELESAIAN INTEGRAL DIMENSI-n MENGGUNAKAN TEOREMA TONELLI PENYELESAIAN INTEGRAL DIMENSI-n MENGGUNAKAN TEOREMA TONELLI SKRIPSI Diajukan untuk Memenuhi Sebagian Syarat Mencapai Gelar Sarjana S-1 Oleh : NURWIYATI 0901060149 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS

Lebih terperinci

BARISAN BILANGAN REAL

BARISAN BILANGAN REAL BAB 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut pola tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

BAB II FUNGSI DAN GRAFIK FUNGSI

BAB II FUNGSI DAN GRAFIK FUNGSI BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai alikasi koresondensi/hubunan antara dua himunan serin terjadi. Sebaai 4 contoh volume bola denan

Lebih terperinci

ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI

ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 07, No. 1 (2018), hal 41-46. ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI Analisis kompleks salah satu cabang matematika

Lebih terperinci

( ) terdapat sedemikian sehingga

( ) terdapat sedemikian sehingga LATIHAN.. Misalan A R, : A R, c R adala titi cluster dari A (c, ). Maa pernyataan beriut equivalen : a. lim b. Barisan ( ) yan onveren e c seina dan >., maa barisan ( ) onveren e. Buti : lim ( ) Berarti

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Pada awalnya deret Fourier diperkenalkan oleh Joseph Fourier pada tahun 1807 untuk memecahkan model masalah persamaan panas pada suatu lempeng logam (Fourier, 1878).

Lebih terperinci

TINJAUAN PUSTAKA. i dari yang terkecil ke yang terbesar. Tebaran titik-titik yang membentuk garis lurus menunjukkan kesesuaian pola

TINJAUAN PUSTAKA. i dari yang terkecil ke yang terbesar. Tebaran titik-titik yang membentuk garis lurus menunjukkan kesesuaian pola TINJAUAN PUSTAKA Analisis Diskriminan Analisis diskriminan (Discriminant Analysis) adalah salah satu metode analisis multivariat yan bertujuan untuk memisahkan beberapa kelompok data yan sudah terkelompokkan

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

Sistem Bilangan Real. Apa yang dimaksud dengan bilangan real, rasional dan bilangan irasional?

Sistem Bilangan Real. Apa yang dimaksud dengan bilangan real, rasional dan bilangan irasional? Oleh: Endang Ded Sistem Bilangan Real Apa ang dimaksud dengan bilangan real, rasional dan bilangan irasional? Bilangan Real adalah bilangan-bilangan ang merupakan gabungan dari bilangan rasional dan bilangan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

a. Tentukan bentuk akhir dari tiga persamaan di atas yang menampilkan secara eksplisit

a. Tentukan bentuk akhir dari tiga persamaan di atas yang menampilkan secara eksplisit Contact Person : 0896-5985-681 OSK Fisika 018 Number 1 BESARAN PLANCK Pada tahun 1899 Max Planck memperkenalkan suatu sistem satuan iniversal sehina besaran-besaran fisika dapat dinyatakan dalam tia satuan

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai

Lebih terperinci