C. Tujuan Dengan memahami rumusan masalah yang ada di atas, mahasiswa dapat menggunakan dan mengaplikasikan kombinatorial dalam kehidupan nyata.

Ukuran: px
Mulai penontonan dengan halaman:

Download "C. Tujuan Dengan memahami rumusan masalah yang ada di atas, mahasiswa dapat menggunakan dan mengaplikasikan kombinatorial dalam kehidupan nyata."

Transkripsi

1 BAB I PENDAHULUAN A. Latar Belakang Misalkan nomor plat mobil di negara X terdiri atas 5 angka angka diikuti dengan 2 huruf. Angka pertama tidak boleh 0. Berapa banyak nomor plat mobil yang dapat dibuat? Cara yang paling sederhana untuk menyelesaikan persoalan di atas dengan cara mengenumerasi semua kemungkinan jawabannya. Mengenumerasi atau mencacah atau menghitung (count) satu persatu untuk setiap kemungkinan jawaban. Untuk persoalan dengan jumlah objek yang sedikit,mengenumerasi setiap objek masih dapat dilakukan, akan tetapi untuk persoalan dengan jumlah objek yang banyak, cara enumerasi mungkin tidak efisien dan efektif. Mungkin kita sudah lelah sebelum usaha untuk mengenumerasi semua kemungkinan nomor plat mobil selesai, karena nomor plat mobil yang dibentuk sangat banyak. Disinilah peran kombinatorial dapat digunakan untuk menjawab persoalan semacam ini. Hal ini dapat dilakukan karena dalam kombinatorial terdapat kaidah dasar menghitung, dengan kaidah ini, berbagai persoalan menghitung jumlah cara pengaturan objek dapat diselesaikan. Dalam penyelidikan banyaknya bilangan prima dalam yang tidak melebihi suatu bilangan bulat positif tertentu tentunya sangat tidak efektif jika kita mengenumerasi bilangan prima,oleh karena itu di dalam kombinatorial juga terdapat prinsip inklusi eksklusi yang dapat digunakan untuk menyelesaikan masalah ini. Dalam kombinatorial juga terdapat permutasi yang dapat digunakan untuk melakukan jumlah cara pengaturan objek-objek. B. Rumusan Masalah Dari latar belakang, dapat dirumuskan masalah yaitu : 1. Apa saja kaidah dasar menghitung? 2. Bagaimana Aplikasi prinsip inklusi-eksklusi? 3. Bagaimana Aplikasi prinsip permutasi? C. Tujuan Dengan memahami rumusan masalah yang ada di atas, mahasiswa dapat menggunakan dan mengaplikasikan kombinatorial dalam kehidupan nyata. 1

2 BAB II PEMBAHASAN A. Kaidah Dasar Menghitung. Di dalam kombinatorial, kita harus menghitung (counting) semua kemungkinan pengaturan objek. Dua kaidah dasar yang digunakan sebagai teknik menghitung dalam kobinatorial adalah Kaidah perkalian (rule of product) dan Kaidah penjumlahan (rule of sum). Kedua kaidah ini dapat digunakan untuk memecahkan banyak masalah persoalan menghitung (Munir,2010:227). 1. Kaidah perkalian (rule of product) Bila percobaan 1 mempunyai p hasil percobaan yang mungkin terjadi ( atau menghasilkan p kemungkinan jawaban), percobaan 2 mempunyai q hasil percobaan yang mungkin terjadi ( atau menghasilkan q kemungkinan jawaban), maka bila percobaan 1 dan percobaan 2 dilakukan maka terdapat p q hasil percobaan ( atau menghasilkan p q kemungkinan jawaban ). Misalkan, Percobaan 1: p hasil Percobaan 2: q hasil maka, Percobaan 1 dan percobaan 2: p q hasil 2. Kaidah penjumlahan (rule of sum) Bila percobaan 1 mempunyai p hasil percobaan yang mungkin terjadi ( atau menghasilkan p kemungkinan jawaban), percobaan 2 mempunyai q hasil percobaan yang mungkin terjadi ( atau menghasilkan q kemungkinan jawaban), maka bila hanya satu percobaan saja yang dilakukan (percobaan 1 atau percobaan 2), terdapat p + q kemungkinan hasil percobaan ( menghasilkan p + q kemungkinan jawaban) yang mungkin terjadi. Misalkan, Percobaan 1: p hasil Percobaan 2: q hasil maka, Percobaan 1 atau percobaan 2: p + q hasil 2

3 Contoh : 1. Sekelompok mahasiswa terdiri atas 4 orang pria dan 3 orang wanita. Berapa jumlah cara memilih satu orang pria dan satu orang wakil wanita? Penyelesaian: wakil wanita. Jika dua orang wakil harus dipilih, masing-masing 1 pria dan 1 wanita, maka jumlah kemungkinan perwakilan yang dapat dipilih adalah 4 3=12 2. Sekelompok mahasiswa terdiri atas 4 orang pria dan 3 orang wanita. Berapa jumlah cara memilih satu orang yang mewakili kelompok tersebut (tidak peduli pria atau wanita)? Penyelesaian : Ada 4 kemungkinan memilih satu wakil pria, dan 3 kemungkinan memilih satu wakil wanita. Jika hanya satu orang wakil yang harus dipilih (pria atau wanita), maka jumlah kemungkinan wakil yang dapat dipilih adalah 4+3=7 Perluasan Kaidah Dasar Menghitung Kaidah perkalian dan kaidah penjumlahan di atas dapat diperluas hingga mengandung lebih dari dua percobaan. Jika n buah percobaan masing-masing mempunyai p 1, p 2,.,p n, hail percobaan yang mungkin terjadi yang dalam hal ini setiap p tidak bergantung pada pilihan sebelumnya, mak jumlah hasil percobaan yang mungkin terjadi adalah : 1. Kaidah perkalian (rule of product) p 1 p 2 p n hasil 2. Kaidah penjumlahan (rule of sum) p 1 + p p n hasil Contoh: Sandi-lewat (password) sistem komputer panjangnya enam sampai delapan karakter. Tiap karakter boleh berupa huruf atau angka; huruf besar dan huruf kecil tidak dibedakan. Berapa banyak sandi-lewat yang dapat dibuat? 3

4 Penyelesaian: Banyaknya huruf alfabet adalah 26 (A-Z) dan banyak angka desimal adalah 10 (0-9), jadi seluruhnya 36 karakter. Untuk sandi-lewat dengan panjang 6 karakter, jumlah kemungkinan sandi-lewat adalah (36)(36)(36)(36)(36)(36) = 36 6 = untuk sandi-lewat dengan panjang 7 karakter, jumlah kemungkinan sandi-lewat adalah (36)(36)(36)(36)(36)(36)(36) = 36 7 = dan untuk sandi-lewat dengan panjang 8 karakter, jumlah kemungkinan sandi-lewat adalah (36)(36)(36)(36)(36)(36)(36)(36) = 36 8 = Jumlah seluruh sandi-lewat (kaidah penjumlahan) adalah = buah. B. Prinsip Inklusi Ekslusi Berapa banyak anggota di dalam dua buah himpunan A dan B?. Penggabungan dua buah himpunan menghasilkan himpunan baru yang elemennya berasal dari kedua himpunan tersebut. Himpunan A dan Himpunan B mungkin saja memiliki elemen-elemen yang sama. Banyaknya elemen bersama antara A dan B adalah A B. Setiap unsur yang sama itu telah dihitung dua kali sekali pada A dan sekali B pada,meskipun ia seharusnya dianggap sebagai satu buah elemen di dalam A B. Karena itu,jumlah elemen hasil penggabungan seharusnya adalah jumlah elemen di masing-masing himpunan dikurangi dengan jumlah elemen di dalam irisannya, atau A B A B A B Prinsip ini dikenal dengan nama Prinsip Inklusi dan Eksklusi 4

5 Contoh Dalam sebuah program studi pendidikan matematika yang terdiri atas 350 mahasiswa, terdapat 175 mahasiswa yang mengambil mata kuliah persamaan diferensial dan 225 mahasiswa yang mengambil mata kuliah analisis kompleks, dan 50 mahasiswa yang mengambil mata kuliah persamaan diferensial dan analisis kompleks. Ada berapa mahasiswa di dalam perkuliahan itu jika setiap mahasiswa mengambil mata kuliah persamaan diferensial, analisis kompleks, atau kedua-duanya? Misalkan : A = banyaknya mahasiswa yang mengambil mata kuliah persamaan diferensial B = banyaknya mahasiswa yang mengambil mata kuliah analisis kompleks. A B = himpunan mahasiswa yang mengambil kedua mata kuliah tersebut. Banyaknya mahasiswa di dalam kelas itu yang mengambil mata kuliah persamaan diferensial, analisis kompleks, atau kedua-duanya adalah A B A B A B Ini berarti, terdapat 350 mahasiswa di dalam kelas yang mengambil mata kuliah persamaan diferensial, analisis kompleks, atau kedua-duanya. Karena banyaknya siswa keseluruhan di dalam kelas tersebut adalah 350 mahasiswa, artinya tidak terdapat mahasiswa yang tidak memilih salah satu dari kedua konsentrasi itu. Perhatikan diilustrasi berikut. 5

6 . C. Permutasi Gambar. Diagram himpunan mahasiswa peserta kuliah Masalah penyusunan kepanitiaan yang terdiri dari Ketua, Sekretaris dan Bendahara dimana urutan dipertimbangkan merupakan salah satu contoh permutasi. Jika terdapat 3 orang (misalnya Amir, Budi dan Cindy) yang akan dipilih untuk menduduki posisi tersebut, maka dengan menggunakan Kaidah Perkalian kita dapat menentukan banyaknya susunan panitia yang mungkin, yaitu: ( Pertama menentukan Ketua, yang dapat dilakukan dalam 3 cara. Begitu Ketua ditentukan, Sekretaris dapat ditentukan dalam 2 cara. Setelah Ketua dan Sekretaris ditentukan, Bendahara dapat ditentukan dalam 1 cara. Sehingga banyaknya susunan panitia yang mungkin adalah = 6. Secara formal, permutasi dapat didefinisikan sebagai berikut : Definisi 1. Permutasi dari n unsur yang berbeda x 1,x 2,,,, x n adalah pengurutan dari n unsur tersebut. Contoh 1: Tentukan permutasi dari 3 huruf yang berbeda, misalnya ABC! Penyelesaian : Permutasi dari huruf ABC adalah ABC, ACB, BAC, BCA, CAB, CBA. Sehingga terdapat 6 permutasi dari huruf ABC. Teorema 1 6

7 Terdapat n! permutasi dari n unsur yang berbeda. Bukti. Asumsikan bahwa permutasi dari n unsur yang berbeda merupakan aktivitas yang terdiri dari n langkah yang berurutan. Langkah pertama adalah memilih unsur pertama yang bisa dilakukan dengan n cara. Langkah kedua adalah memilih unsur kedua yang bisa dilakukan dengan n - 1 cara karena unsur pertama sudah terpilih. Lanjutkan langkah tersebut sampai pada langkah ke-n yang bisa dilakukan dengan 1 cara. Berdasarkan Prinsip Perkalian, terdapat n(n - 1)(n - 2) = n! permutasi dari n unsur yang berbeda. Contoh 2 Berapa banyak permutasi dari huruf ABCDEF jika subuntai ABC harus selalu muncul bersama? Penyelesaian : Karena subuntai ABC harus selalu muncul bersama, maka subuntai ABC bisa dinyatakan sebagai satu unsur. Dengan demikian terdapat 4 unsur yang dipermutasikan, sehingga banyaknya permutasi adalah = 24. Definisi 2. Permutasi r dari n elemen adalah jumlah kemungkinan urutan r buah elemen yang dipilih dari n buah elemen, dengan r n, yang dalam hal ini, pada setiap kemungkinan urutan tidak ada elemen yang sama. Contoh 3 Tentukan permutasi-3 dari 5 huruf yang berbeda, misalnya ABCDE. Penyelesaian : Permutasi-3 dari huruf ABCDE adalah 2 ABC ABD ABE ACB ACD ACE ADB ADC ADE AEB AEC AED BAC BAD BAE BCA BCD BCE BDA BDC BDE BEA BEC BED 7

8 CAB CAD CAE CBA CBD CBE CDA CDB CDE CEA CEB CED DAB DAC DAE DBA DBC DBE DCA DCB DCE DEA DEB DEC EAB EAC EAD EBA EBC EBD ECA ECB ECD EDA EDB EDC Sehingga banyaknya permutasi-3 dari 5 huruf ABCDE adalah 60. Teorema 2 Banyaknya permutasi-r dari n unsur yang berbeda adalah ( ) ( ) Perlu diperhatikan bahwa jika r = n maka persamaan di atas menjadi n! n! P( n, r) n! 0! 1 Bukti. Dengan induksi matematika: Basis induksi Untuk n=0, P(0,0) adalah jumlah cara memilih 0 buah elemen dari himpunan kosong =0!/0!=1, yang jelas benar. Langkah induksi Asumsikan bahwa P(n) benar,yaitu mengasumsikan bahwa P (n,r)=n!/(n-r)! Untuk r = 0,1,.... Akan dibuktikan bahwa P(n+1,r)=(n+1)!/(n+1- r )! Benar. Untuk menunjukkan bahwa P(n+1) benar maka ada dua kasus yang harus dipertimbangkan : 8

9 Kasus 1 Jika r = 0, maka ada satu cara memilih 0 buah elemen dari himpunan (n+1) elemen dan disini P(n+1,0)=(n+1)!/(n+1-0)!=1, yang jelas benar Kasus 2 Jika r >0. Disini kita menghitung nilai P(n+1,r) dengan (i) menghitung jumlah cara memilih elemen pertama di dalam susunan yang di ambil, dan (ii) kemudian menghitung jumlah cara mengambil r-1 elemen dengan menggunakan hipotesis induksi. Ada (n+1) cara memilih untuk elemen pertama. Karema tinggal n buah elemen yang belum di ambil untuk mengisi r 1 posisi lainnya, maka ada P(n,r-1) cara melengkapi r-1 posisi itu. Dengan aturan perkalian maka (Munir,2010:240) P(n+ 1,r)=(n+ 1)P(n,r-1 ) n 1 n! n r 1 n 1! n 1 r!! Contoh 4 Gunakan Teorema diatas untuk menentukan permutasi-3 dari 5 huruf yang berbeda, misalnya ABCDE. Penyelesaian : Karena r = 3 dan n = 5 maka permutasi-3 dari 5 huruf ABCDE adalah 5! P(5,3) (5 3)! 5! 2! Jadi banyaknya permutasi-3 dari 5 huruf ABCDE adalah 60. Definisi 3 9

10 Permutasi melingkar dari n objek adalah penyusunan objek-objek yang mengelilingi sebuah lingkaran ( atau kurva tertutup sederhana ). Jumlah susunan objek yang mengelilingi lingkarab adalah (n-1)! (Munir,2010:243) Pembuktian jumlah susunan objek permutasi melingkar Misalkan objek pertama ditempatkan di mana saja pada lingkaran dengan 1 cara. Sisa n-1 objek lainnya dapat diatur searah jarum jam ( misalnya) dengan P(n-1,n-1)=(n-1)! Cara. BAB III PENUTUP Kesimpulan : Dari pembahasan di atas dapat disimpulkan kombinatorial mempunyai beberapa bagian diantaranya kaidah dasar menghitung, prinsip inklusi-eksklusi, dan permutasi. Dan masingmasing bagian memiliki fungsi masing-masing yang dapat diaplikasikan dalam menghitung jumlah cara pengaturan objek-objek. 10

11 DAFTAR PUSTAKA Munir, Rinaldi Matematika Diskrit. Bandung : Informatika diakses pada tanggal 8 November 2010 pukul WITA 11

Permutasi dan Kombinasi

Permutasi dan Kombinasi Permutasi dan Kombinasi Dalam kehidupan sehari-hari kita sering menghadapi masalah pengaturan suatu obyek yang terdiri dari beberapa unsur, baik yang disusun dengan mempertimbangkan urutan sesuai dengan

Lebih terperinci

Bab 3. Permutasi dan Kombinasi

Bab 3. Permutasi dan Kombinasi Bab 3. Permutasi dan Kombinasi Dalam kehidupan sehari-hari kita sering menghadapi masalah pengaturan suatu obyek yang terdiri dari beberapa unsur, baik yang disusun dengan mempertimbangkan urutan sesuai

Lebih terperinci

PTI15004 MatematikaKomputasi

PTI15004 MatematikaKomputasi PTI15004 MatematikaKomputasi PencacahanCounting Justanintermezzo Pengelola Pantai Hanakapiai, Hawaii memperingatkan pengunjung agar tidak mendekati kawasan air, dan menegaskan peringatan tersebut dengan

Lebih terperinci

Permutasi dan Kombinasi Peluang Diskrit

Permutasi dan Kombinasi Peluang Diskrit dan Kombinasi Peluang Diskrit Pengantar Permutasi -Faktorial Misalkan n adalah bilangan bulat positif. Besaran n faktorial (n!) didefinisikan sebagai hasil kali semua bilangan bulat antara n hingga 1.

Lebih terperinci

Pertemuan 4. Permutasi

Pertemuan 4. Permutasi Pertemuan 4 Permutasi Faktorial Faktorial dinotasikan atau dilambangkan dengan n! (dibaca n faktorial). n! adalah hasil perkalian semua bilangan asli dari 1 sampai n, sehingga didefinisikan sebagai berikut:

Lebih terperinci

Himpunan adalah kumpulan objek objek yang berbeda (Liu, 1986)

Himpunan adalah kumpulan objek objek yang berbeda (Liu, 1986) BAB I TEORI HIMPUNAN 1.1 Dasar dasar Teori Himpunan Definisi : Himpunan adalah kumpulan objek objek yang berbeda (Liu, 1986) Biasanya dinotasikan dengan huruf besar. Dan objek yang berada di dalamnya disebut

Lebih terperinci

KOMBINATORIK. Disampaikan dalam kegiatan: PEMBEKALAN OSN-2010 SMP STELA DUCE I YOGYAKARTA

KOMBINATORIK. Disampaikan dalam kegiatan: PEMBEKALAN OSN-2010 SMP STELA DUCE I YOGYAKARTA KOMBINATORIK Disampaikan dalam kegiatan: PEMBEKALAN OSN-2010 SMP STELA DUCE I YOGYAKARTA Oleh: Murdanu Dosen Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta SEKOLAH MENENGAH PERTAMA STELA

Lebih terperinci

TEKNIK MEMBILANG. b T U V W

TEKNIK MEMBILANG. b T U V W TEKNIK MEMBILANG Berikut ini teknik-teknik (cara-cara) membilang atau menghitung banyaknya anggota ruang sampel dari suatu eksperimen tanpa harus mendaftar seluruh anggota ruang sampel tersebut. A. Prinsip

Lebih terperinci

PELUANG. Jika seluruhnya ada banyak kegiatan, dan masing-masing berturut-turut dapat dilakukan dalam

PELUANG. Jika seluruhnya ada banyak kegiatan, dan masing-masing berturut-turut dapat dilakukan dalam PELUANG Prinsip Perkalian Bila suatu kegiatan dapat dilakukan dalam n 1 cara yang berbeda, dan kegiatan yang lain dapat dilakukan dalam n 2 cara yang berbeda, maka seluruh peristiwa tersebut dapat dikerjakan

Lebih terperinci

Combinatorics. Aturan Jumlah. Teknik Menghitung (Kombinatorik) Contoh

Combinatorics. Aturan Jumlah. Teknik Menghitung (Kombinatorik) Contoh Combinatorics Teknik Menghitung (Kombinatorik) Penjumlahan Perkalian Kombinasi Adalah cabang dari matematika diskrit tentang cara mengetahui ukuran himpunan terbatas tanpa harus melakukan perhitungan setiap

Lebih terperinci

Kombinatorial. Oleh: Panca Mudjirahardjo. Definisi dan tujuan. Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek

Kombinatorial. Oleh: Panca Mudjirahardjo. Definisi dan tujuan. Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek Kombinatorial Oleh: Panca Mudjirahardjo Definisi dan tujuan Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek Menentukan jumlah cara pengaturan objek tersebut 1 Ilustrasi 1

Lebih terperinci

PELUANG. P n,r, P r TEKNIK MENGHITUNG: PERKALIAN TEKNIK MENGHITUNG: PERMUTASI TEKNIK MENGHITUNG: PERKALIAN. P n,r =n n 1 n 2 n r 1 = n! n r!

PELUANG. P n,r, P r TEKNIK MENGHITUNG: PERKALIAN TEKNIK MENGHITUNG: PERMUTASI TEKNIK MENGHITUNG: PERKALIAN. P n,r =n n 1 n 2 n r 1 = n! n r! PELUANG TEKNIK MENGHITUNG: PERKALIAN Bab pembelajaran: 1. Teknik Menghitung a. Perkalian b. Permutasi c. Kombinasi 2. Peluang a. Dasar Peluang b. Peluang Bersyarat c. Kebebasan Oleh Ridha Ferdhiana, M.Sc

Lebih terperinci

KOMBINATORIAL. /Nurain Suryadinata, M.Pd

KOMBINATORIAL. /Nurain Suryadinata, M.Pd Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi

Lebih terperinci

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)

Lebih terperinci

5.Permutasi dan Kombinasi

5.Permutasi dan Kombinasi 5.Permutasi dan Kombinasi Prinsip Perkalian : Jika sebuah aktivitas bisa dibentuk dalam t langkah berurutan dan langkah 1 bisa dilakukan dalam n1 cara; langkah kedua bisa dilakukan dalam n2 cara;.; langkah

Lebih terperinci

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)

Lebih terperinci

PELUANG. A Aturan Pengisian Tempat. B Permutasi

PELUANG. A Aturan Pengisian Tempat. B Permutasi PELUANG KAIDAH PENCACAHAN kaidah pencacahan didefinisikan sebagai suatu cara atau aturan untuk menghitung semua kemungkinan yang dapat terjadi dalam suatu percobaan tertentu. Ada beberapa metode pencacahan,

Lebih terperinci

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB Kombinatorial Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika ITB 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa

Lebih terperinci

Kombinatorial. Matematika Diskrit Pertemuan ke - 4

Kombinatorial. Matematika Diskrit Pertemuan ke - 4 Kombinatorial Matematika Diskrit Pertemuan ke - 4 Pengertian Cabang matematika yang mempelajari pengaturan objek-objek Solusi yang diperoleh : jumlah cara pengaturan objek-objek tertentu dalam himpunan

Lebih terperinci

Contoh. Teknik Menghitungdan Kombinatorial. Contoh. Combinatorics

Contoh. Teknik Menghitungdan Kombinatorial. Contoh. Combinatorics Contoh Teknik Menghitungdan Kombinatorial Berapa banyak pelat nomor bisa dibuat dengan mengunakan 3 huruf dan 3 angka? Berapa banyak pelat nomor bisa dibuat dengan menggunakan 3 huruf dan 3 angka tapi

Lebih terperinci

Pertemuan 14. Kombinatorial

Pertemuan 14. Kombinatorial Pertemuan 14 Kombinatorial 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan kata-sandi yang dapat dibuat? abcdef

Lebih terperinci

KOMBINATORIAL STRUKTUR DISKRIT K-1. Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia.

KOMBINATORIAL STRUKTUR DISKRIT K-1. Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. STRUKTUR DISKRIT K-1 KOMBINATORIAL Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia Suryadi MT Struktur Diskrit 1 Pendahuluan Sebuah password panjangnya 6 sampai

Lebih terperinci

Modul ini adalah modul ke-9 dalam mata kuliah Matematika. Isi modul ini

Modul ini adalah modul ke-9 dalam mata kuliah Matematika. Isi modul ini PENDAHULUAN Modul ini adalah modul ke-9 dalam mata kuliah. Isi modul ini membahas tentang peluang. Modul ini terdiri dari 2 kegiatan belajar. Pada kegiatan belajar 1 akan dibahas mengenai peluang 1. Terakhir,

Lebih terperinci

KONSEP DASAR PROBABILITAS OLEH : RIANDY SYARIF

KONSEP DASAR PROBABILITAS OLEH : RIANDY SYARIF KONSEP DASAR PROBABILITAS OLEH : RIANDY SYARIF Definisi Probabilitas adalah suatu ukuran tentang kemungkinan suatu peristiwa (event) akan terjadi dimasa mendatang. Probabilitas dinyatakan antara 0 s/d

Lebih terperinci

Aplikasi Kombinatorial dan Peluang dalam Permainan Poker

Aplikasi Kombinatorial dan Peluang dalam Permainan Poker Aplikasi Kombinatorial dan Peluang dalam Permainan Poker Hably Robbi Wafiyya - 13507128 Program Studi Teknik Informatika ITB, Bandung, email : harowa_aja@yahoo.com Abstract Makalah ini membahas tentang

Lebih terperinci

SISTEM PENJADWALAN DOKTER JAGA MENGGUNAKAN ALGORITMA GREEDY DENGAN PERMUTASI (STUDI KASUS : RSUD ARIFIN ACHMAD PEKANBARU) TUGAS AKHIR.

SISTEM PENJADWALAN DOKTER JAGA MENGGUNAKAN ALGORITMA GREEDY DENGAN PERMUTASI (STUDI KASUS : RSUD ARIFIN ACHMAD PEKANBARU) TUGAS AKHIR. SISTEM PENJADWALAN DOKTER JAGA MENGGUNAKAN ALGORITMA GREEDY DENGAN PERMUTASI (STUDI KASUS : RSUD ARIFIN ACHMAD PEKANBARU) TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik

Lebih terperinci

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB Kombinatorial Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika ITB 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT PROVINSI 007 TIM OLIMPIADE MATEMATIKA INDONESIA 008 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika

Lebih terperinci

n objek berlainan 1

n objek berlainan  1 ilihatur dan Gabungan rinsip pendaraban Jika ada 2 jenis makanan (,Q) dan 3 jenis minuman (J,K,L), berapakah cara memilih 1 jenis makanan dan 1 jenis minuman? Jika memilih 2 benda, dan ada m cara memilih

Lebih terperinci

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Ruang Sampel Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Ruang Sampel (Sample Space) Ruang sampel: himpunan semua hasil (outcome) yang

Lebih terperinci

MAKALAH M A T E M A T I K A

MAKALAH M A T E M A T I K A MAKALAH M A T E M A T I K A PELUANG DISUSUN OLEH EDI MICHAEL ANTONIUS XII.TSM GURU PEMBIMBING LUNGGUH SOLIHIN, S.Pd SEKOLAH MENENGAH KEJURUAN SETIH SETIO 1 MUARA BUNGO T.A 2016/2017 0 KATA PENGANTAR Pertama

Lebih terperinci

Kombinatorial. Pendahuluan. Definisi. Kaidah Dasar Menghitung. Sesi 04-05

Kombinatorial. Pendahuluan. Definisi. Kaidah Dasar Menghitung. Sesi 04-05 Pendahuluan Kombinatorial Sesi 04-05 Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat? abcdef

Lebih terperinci

Pencacahan. Learning is not child's play, we cannot learn without pain. Aristotle. Matema(ka Komputasi - Pencacahan. Agi Putra Kharisma, ST., MT.

Pencacahan. Learning is not child's play, we cannot learn without pain. Aristotle. Matema(ka Komputasi - Pencacahan. Agi Putra Kharisma, ST., MT. Pencacahan Learning is not child's play, we cannot learn without pain. Aristotle 1 Berapakah jumlah bilangan bulat dari 5 sampai 12? Jawaban: 8 m n 5 6 7 8 9 10 11 12 m m+1 m+2 m+3 m+4 m+5 m+6 m+7 1 2

Lebih terperinci

Modul ke: STATISTIK Probabilitas atau Peluang. 05Teknik. Fakultas. Bethriza Hanum ST., MT. Program Studi Teknik Mesin

Modul ke: STATISTIK Probabilitas atau Peluang. 05Teknik. Fakultas. Bethriza Hanum ST., MT. Program Studi Teknik Mesin Modul ke: STATISTIK Probabilitas atau Peluang Fakultas 05Teknik Bethriza Hanum ST., MT Program Studi Teknik Mesin Pengertian dan Pendekatan Mempelajari probabilitas kejadian suatu peristiwa sangat bermanfaat

Lebih terperinci

Permutasi & Kombinasi

Permutasi & Kombinasi Permutasi & Kombinasi 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat????? abcdef

Lebih terperinci

Pendahuluan. abcdef aaaade a123fr. erhtgahn yutresik ????

Pendahuluan. abcdef aaaade a123fr. erhtgahn yutresik ???? Kombinatorial 1 Percobaan! Melampar dadu! Berapa saja angka yang muncul? Memilih 4 wakil dari kelas ini! Berapa kemungkinan perwakilan yang dapat dibentuk? Menyusun 5 huruf dari a,b,c,d,e, tidak boleh

Lebih terperinci

Konsep Dasar Peluang. Modul 1

Konsep Dasar Peluang. Modul 1 Modul Konsep Dasar Peluang Dra. Kusrini, M. Pd. M odul ini berisi 3 Kegiatan Belajar. Dalam Kegiatan Belajar Anda akan mempelajari Konsep Himpunan dan Pencacahan, dalam Kegiatan Belajar 2 Anda akan mempelajari

Lebih terperinci

Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed

Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Kombinatorial: cabang matematika yang mempelajari

Lebih terperinci

BEBERAPA PRINSIP-PRINSIP LOGIKA SMTS 1101 / 3SKS

BEBERAPA PRINSIP-PRINSIP LOGIKA SMTS 1101 / 3SKS BEBERAPA PRINSIP-PRINSIP LOGIKA SMTS 1101 / 3SKS LOGIKA MATEMATIKA Disusun Oleh : Dra. Noeryanti, M.Si 5 Dra. Noeryanti, M.Si DAFTAR ISI Cover pokok bahasan... 5 Daftar isi... 53 Judul Pokok Bahasan...

Lebih terperinci

BAB III INDUKSI MATEMATIK dan KOMBINATORIK

BAB III INDUKSI MATEMATIK dan KOMBINATORIK BAB III INDUKSI MATEMATIK dan KOMBINATORIK 1. Kata pengantar Kebenaran pernyataan matematika yang berkaitan dengan bilangan bulat perlu pembuktian salah satu metode pembuktian dapat menggunakan Induksi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN ( R P P ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/Semester : XI IPS/ 1 Alokasi waktu : 2 x 45 menit

RENCANA PELAKSANAAN PEMBELAJARAN ( R P P ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/Semester : XI IPS/ 1 Alokasi waktu : 2 x 45 menit RENCANA PELAKSANAAN PEMBELAJARAN ( R P P ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/Semester : XI IPS/ 1 Alokasi waktu : 2 x 45 menit I. Standar Kompetensi 1.1 Menggunakan aturan statistika,

Lebih terperinci

MAKALAH MATEMATIKA SEKOLAH 2 ATURAN PERKALIAN DAN PERMUTASI

MAKALAH MATEMATIKA SEKOLAH 2 ATURAN PERKALIAN DAN PERMUTASI MAKALAH MATEMATIKA SEKOLAH 2 ATURAN PERKALIAN DAN PERMUTASI Oleh: Anggota Kelompok 2 : 1. Alfia Anggraeni Putri (12030174021) 2. Lusi Rahmawati (12030 174208) 3. Rahma Anggraeni (12030 174226) 4. Raka

Lebih terperinci

Kombinatorial. Matematika Deskrit. Sirait, MT 1

Kombinatorial. Matematika Deskrit. Sirait, MT 1 Kombinatorial Matematika Deskrit By @Ir.Hasanuddin Sirait, MT 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan

Lebih terperinci

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain KOMBINATORIAL Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek objek Solusi yang ingin kita peroleh dari kombinatorial ini adalah jumlah cara pengaturan objek objek didalam kumpulanya

Lebih terperinci

LINGKARAN SMP KELAS VIII

LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII Oleh, Deddy Suharja Januari 2013 A. Pengertian Dan Unsur Unsur Lingkaran Lingkaran adalah tempat kedudukan ( locus ) titik titik yang berjarak sama terhadap

Lebih terperinci

LINGKARAN SMP KELAS VIII

LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII Oleh, Deddy Suharja Januari 2013 A. Pengertian Dan Unsur Unsur Lingkaran Lingkaran adalah tempat kedudukan ( locus ) titik titik yang berjarak sama terhadap suatu titik. Gambar

Lebih terperinci

MAT. 10. Irisan Kerucut

MAT. 10. Irisan Kerucut MAT. 0. Irisan Kerucut i Kode MAT.07 Peluang BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

BAB 3 Teori Probabilitas

BAB 3 Teori Probabilitas BAB 3 Teori Probabilitas A. HIMPUNAN a. Penulisan Hipunan Cara Pendaftaran Cara Pencirian 1) A = {a,i,u,e,o} 1) A = {X: x huruf vokal } 2) B = {1,2,3,4,5} menghasilkan data diskrit 2) B = {X: 1 x 2} menghasilkan

Lebih terperinci

I. PENDAHULUAN II. KOMBINATORIAL

I. PENDAHULUAN II. KOMBINATORIAL Aplikasi Hukum Mendel Sebagai Aplikasi dari Teori Kombinatorial Untuk Menentukan Kemungkinan Kemunculan Golongan Darah Dalam Sistem ABO Pada Sebuah Keluarga Chairuni Aulia Nusapati 13513054 Program Sarjana

Lebih terperinci

Penerapan Teori Kombinatorial dan Peluang Dalam Permainan Poker

Penerapan Teori Kombinatorial dan Peluang Dalam Permainan Poker Penerapan Teori Kombinatorial dan Peluang Dalam Permainan Poker Johan Sentosa - 13514026 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

TEORI DASAR COUNTING

TEORI DASAR COUNTING TEORI DASAR COUNTING ARGUMEN COUNTING Kombinatorial adalah cabang matematika yang mempelajari pengaturan obyek-obyek. Solusi yang ingin diperoleh dengan kombinatorial adalah jumlah pengaturan obyekobyek

Lebih terperinci

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Hendy - 13507011 Jurusan Teknik Informatika, ITB, Bandung 40116, email: if17011@students.if.itb.ac.id Abstract Makalah ini membahas

Lebih terperinci

HIMPUNAN Adri Priadana ilkomadri.com

HIMPUNAN Adri Priadana ilkomadri.com HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class

Lebih terperinci

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 01 Tingkat SMP Oleh Tutur Widodo I. Soal Pilihan Ganda (Cara Penilaian : Benar = 1 poin, Kosong = 0, Salah = 0.5 poin) 1. Terdapat berapa

Lebih terperinci

PELUANG. Dengan diagram pohon diperoleh:

PELUANG. Dengan diagram pohon diperoleh: PELUANG A. Kaidah Pencacahan Kaidah pencacahan adalah suatu ilmu yang berkaitan dengan menentukan banyaknya cara suatu percobaan dapat terjadi. Menentukan banyakya cara suatu percobaan dapat terjadi dilakukan

Lebih terperinci

Penerapan Kombinatorial dan Peluang dalam Poker yang Menggunakan Wildcard

Penerapan Kombinatorial dan Peluang dalam Poker yang Menggunakan Wildcard Penerapan Kombinatorial dan Peluang dalam Poker yang Menggunakan Wildcard Agung Dwi Lambang Gito Santosa (13508086) Program Studi Teknik Informatika ITB, Bandung, email : gerrard_io@yahoo.com ABSTRAK Makalah

Lebih terperinci

KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL

KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL Fransisca Cahyono (13509011) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw

Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw Hanifah Azhar 13509016 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Penggunaan Teori Kombinatorial dalam CAPTCHA

Penggunaan Teori Kombinatorial dalam CAPTCHA Penggunaan Teori Kombinatorial dalam CAPTCHA Gilbran Imami, 13509072 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

4. Pencacahan. Pengantar. Aturan penjumlahan (sum rule) Aturan penjumlahan Yang Diperumum. Aturan Perkalian (Product Rule)

4. Pencacahan. Pengantar. Aturan penjumlahan (sum rule) Aturan penjumlahan Yang Diperumum. Aturan Perkalian (Product Rule) 4. Pencacahan Pengantar Pencacahan (counting) adalah bagian dari matematika kombinatorial. Matematika kombinatorial berkaitan dengan pengaturan sekumpulan objek. Pencacahan berusaha menjawab pertanyaan-pertanyaan

Lebih terperinci

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 1 PELUANG

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 1 PELUANG - - M O D U L S T A T I S T I K A BAB 1 PELUANG Ilmu Statistika sering disebut sebagai ilmu peluang. Statistika bertanggung jawab atas banyak hal. Di setiap negara, lembaga yang sejenis dengan Biro Pusat

Lebih terperinci

KUMPULAN MATERI PEMBINAAN DAN PENGAYAAN MATEMATIKA

KUMPULAN MATERI PEMBINAAN DAN PENGAYAAN MATEMATIKA KUMPULAN MATERI PEMBINAAN DAN PENGAYAAN MATEMATIKA ANDI SYAMSUDDIN Guru Mata Pelajaran Matematika Pada SMP Negeri 8 Kota Sukabumi SMP NEGERI 8 KOTA SUKABUMI DINAS PENDIDIKAN KOTA SUKABUMI 009 Yang bertanda

Lebih terperinci

PELUANG. n cara yang berbeda. Contoh 1: Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali?

PELUANG. n cara yang berbeda. Contoh 1: Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? -1- PELUANG 1. KAIDAH PENCACAHAN 1.1 Aturan Pengisian Tempat Jika beberapa peristiwa dapat terjadi dengan n1, n2, n3,... cara yang berbeda, maka keseluruhan peristiwa itu dapat terjadi dengan n n......

Lebih terperinci

Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1

Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1 Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan

Lebih terperinci

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014 Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 3 KOMBINATORIAL Tujuan 1.Mahasiswa

Lebih terperinci

MATERI PELATIHAN TRAINING OF TRAINER OLIMPIADE NASIONAL MATEMATIKA TINGKAT SEKOLAH DASAR DI KECAMATAN SRANDAKAN BANTUL. Oleh :

MATERI PELATIHAN TRAINING OF TRAINER OLIMPIADE NASIONAL MATEMATIKA TINGKAT SEKOLAH DASAR DI KECAMATAN SRANDAKAN BANTUL. Oleh : MATERI PELATIHAN TRAINING OF TRAINER OLIMPIADE NASIONAL MATEMATIKA TINGKAT SEKOLAH DASAR DI KECAMATAN SRANDAKAN BANTUL Oleh : Musthofa, M.Sc Nikenasih Binatari, M.Si FAKULTAS MATEMATIKA DAN ILMUPENGETAHUAN

Lebih terperinci

D. 18 anak Kunci : C Penyelesaian : Gambarkan dalam bentuk diagram Venn seperti gambar di bawah ini :

D. 18 anak Kunci : C Penyelesaian : Gambarkan dalam bentuk diagram Venn seperti gambar di bawah ini : 1. Dalam suatu kelas terdapat 25 anak gemar melukis, 21 anak gemar menyanyi, serta 14 anak gemar melukis dan menyanyi, maka jumlah siswa dalam kelas tersebut adalah... A. 60 anak C. 32 anak B. 46 anak

Lebih terperinci

Kombinatorial pada Tanda Nomor Kendaraan Bermotor Kota Surabaya

Kombinatorial pada Tanda Nomor Kendaraan Bermotor Kota Surabaya Matematika Diskrit Kombinatorial pada Tanda Nomor Kendaraan Bermotor Kota Surabaya Nama : Andreas NIM : 1313004 Departemen Teknologi Informasi INSTITUT TEKNOLOGI HARAPAN BANGSA 2014 Kata Pengantar Puji

Lebih terperinci

PRINSIP INKLUSI DAN EKSKLUSI

PRINSIP INKLUSI DAN EKSKLUSI PRINSIP INKLUSI DAN EKSKLUSI Misalkan A dan B sembarang himpunan. Penjumlahan A + B menghitung banyaknya elemen A yang tidak terdapat dalam B dan banyaknya elemen B yang tidak terdapat dalam A tepat satu

Lebih terperinci

SOAL URAIAN. 2. The triangle ABC has a right angle on B with BAC = 34. Point D lies on AC so that AD=AB. Find DBC. Jawab: 17

SOAL URAIAN. 2. The triangle ABC has a right angle on B with BAC = 34. Point D lies on AC so that AD=AB. Find DBC. Jawab: 17 SOAL URAIAN 1. Firly memotong tali pancing yang panjangnya 70 m menjadi tiga bagian. Jika panjang tali pancing kedua adalah dua kali panjang tali pertama, dan panjang tali ketiga dua kali panjang tali

Lebih terperinci

Aplikasi Matematika Diskrit dalam Permainan Nonogram

Aplikasi Matematika Diskrit dalam Permainan Nonogram Aplikasi Matematika Diskrit dalam Permainan Nonogram Mahesa Gandakusuma (13513091) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional Tahun 1991 Matematika

Evaluasi Belajar Tahap Akhir Nasional Tahun 1991 Matematika Evaluasi Belajar Tahap Akhir Nasional Tahun 99 Matematika EBTANAS-SMP-9-0 Amir, Adi dan Budi selalu berbelanja ke Toko "Anda". Amir tiap 3 hari sekali, Adi tiap 4 hari sekali dan Budi tiap hari sekali.

Lebih terperinci

Combinatorics dan Counting

Combinatorics dan Counting CHAPTER 6 COUNTING Combinatorics dan Counting Kombinatorik Ilmu yang mempelajari pengaturan obyek Bagian penting dari Matematika Diskrit Mulai dipelajari di abad 17 Enumerasi Penghitungan obyek dengan

Lebih terperinci

Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1

Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1 Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Kolonel Wahid Udin Lk. I Kel. Kayuara, Sekayu 30711 web:www.polsky.ac.id mail: polsky@polsky.ac.id

Lebih terperinci

C. Ø D. S. Gambar di atas adalah kubus ABCD.EFGH dan salah satu jaring-jaringnya, maka titik E menempati nomor... A.(I) C.(III) B.

C. Ø D. S. Gambar di atas adalah kubus ABCD.EFGH dan salah satu jaring-jaringnya, maka titik E menempati nomor... A.(I) C.(III) B. 1. Amir, Adi, dan Budi selalu berbelanja ke Toko "Anda", Amir tiap 3 hari sekali. Adi tiap 4 hari sekali, Budi tiap 6 hari sekali. Bila ketiganya mulai berbelanja sama-sama pertama kali tanggal 20 Mei

Lebih terperinci

Gugus dan Kombinatorika

Gugus dan Kombinatorika Bab 1 Gugus dan Kombinatorika 1.1 Gugus Gugus, atau juga disebut himpunan adalah kumpulan objek. Objek dalam sebuah himpunan disebut anggota atau unsur. Penulisan himpunan dapat dilakukan dengan dua cara,

Lebih terperinci

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat 1. AB = 1, CE = 8, BD =, CD =. Tentukan panjang EF! 0 BCD : ABE : BC BC BC CD BC 4 BD 9 1 AB 1 BE 144 AE 4 8 AE 0 AE AE EF EF 0 AFE : AE AF 0 0 EF EF 400 400 800 . Keliling ABC = 4, Luas ABC = 4. Tentukan

Lebih terperinci

PENERAPAN REPRESENTASI RELASI DENGAN DIAGRAM PANAH UNTUK MEMBUAT SILSILAH KELUARGA

PENERAPAN REPRESENTASI RELASI DENGAN DIAGRAM PANAH UNTUK MEMBUAT SILSILAH KELUARGA PENERAPAN REPRESENTASI RELASI DENGAN DIAGRAM PANAH UNTUK MEMBUAT SILSILAH KELUARGA PENERAPAN REPRESENTASI RELASI DENGAN DIAGRAM PANAH UNTUK MEMBUAT SILSILAH KELUARGA Anselmus Krisma Adi Kurniawan - 13508012

Lebih terperinci

Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1

Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1 Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan

Lebih terperinci

Himpunan. Nur Hasanah, M.Cs

Himpunan. Nur Hasanah, M.Cs Himpunan Nur Hasanah, M.Cs 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Himpunan lima bilangan genap positif pertama: B ={2, 4, 6, 8, 10}. C = {kucing, a, Amir,

Lebih terperinci

didapat !!! BAGIAN Disusun oleh :

didapat !!! BAGIAN Disusun oleh : SELEKSI OLIMPIADE TINGKAT PROVINSI 2012 TIM OLIMPIADE MATEMATIKAA INDONESIA 2013 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 2012

Lebih terperinci

II. KONSEP DASAR PELUANG

II. KONSEP DASAR PELUANG II. KONSEP DASAR PELUANG Teori Peluang memberikan cara pengukuran kuantitatif tentang kemungkinan munculnya suatu kejadian tertentu dalam suatu percobaan/peristiwa. Untuk dapat menghitung peluang lebih

Lebih terperinci

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan. Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan. Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 Cakupan Himpunan Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 Himpunan Tujuan Mahasiswa memahami konsep dasar

Lebih terperinci

Analisa Kombinatorial Dalam Android Pattern Safety Lock

Analisa Kombinatorial Dalam Android Pattern Safety Lock Analisa Kombinatorial Dalam Android Pattern Safety Lock Rizal Panji Islami (13510066) Program StudiTeknikInformatika SekolahTeknikElektrodanInformatika InstitutTeknologiBandung, Jl. Ganesha 10 Bandung40132,

Lebih terperinci

HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan

HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) Pengertian Himpunan Himpunan adalah kumpulan dari benda atau objek yang berbeda dan didefiniskan secara jelas Objek di dalam himpunan

Lebih terperinci

Menyelesaikan Kakuro Puzzle dengan Kombinatorial

Menyelesaikan Kakuro Puzzle dengan Kombinatorial Menyelesaikan Kakuro Puzzle dengan Kombinatorial Muhammad Farhan Majid (13514029) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Aturan Penilaian & Grade Penilaian. Deskripsi. Matematika Diskrit 9/7/2011

Aturan Penilaian & Grade Penilaian. Deskripsi. Matematika Diskrit 9/7/2011 Matematika Diskrit Sesi 01-02 Dosen Pembina : Danang Junaedi Tujuan Instruksional Setelah proses perkuliahan, mahasiswa memiliki kemampuan Softskill Meningkatkan kerjasama dalam kelompok dan kemampuan

Lebih terperinci

TEORI KOMBINATORIAL PADA TEBARAN KARTU TAROT

TEORI KOMBINATORIAL PADA TEBARAN KARTU TAROT TEORI KOMBINATORIAL PADA TEBARAN KARTU TAROT Ananda Kurniawan Pramudiono/13511052 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Penerapan Kombinatorial dalam Hukum Pewarisan Sifat pada Manusia

Penerapan Kombinatorial dalam Hukum Pewarisan Sifat pada Manusia Penerapan Kombinatorial dalam Hukum Pewarisan Sifat pada Manusia hmad Fauzul Yogiandra / 13513059 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi andung, Jl. Ganesha

Lebih terperinci

Logika Matematika Modul ke: Himpunan

Logika Matematika Modul ke: Himpunan Logika Matematika Modul ke: Himpunan Fakultas FASILKOM Syukri Nazar. M.Kom Program Studi Teknik Informatika Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut

Lebih terperinci

Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB

Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB Matematika Komputasional Himpunan Oleh: M. Ali Fauzi PTIIK - UB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah

Lebih terperinci

2-1 Probabilitas adalah:

2-1 Probabilitas adalah: 2 Teori Probabilitas Pengertian probabilitas Kejadian, ruang sample dan probabilitas Aturan dasar probabilitas Probabilitas bersyarat Independensi Konsepsi kombinatorial Probabilitas total dan teorema

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar seperti teorema dan beberapa definisi yang akan penulis gunakan sebagai landasan berpikir dalam melakukan penelitian ini sehingga mempermudah

Lebih terperinci

Learning Outcomes Pencacahan Permutasi Kombinasi Sebaran Bola dalam Keranjang Kesimpulan. Kombinatorika. Julio Adisantoso.

Learning Outcomes Pencacahan Permutasi Kombinasi Sebaran Bola dalam Keranjang Kesimpulan. Kombinatorika. Julio Adisantoso. 11 Pebruari 2014 Learning Outcome Mahasiswa dapat memahami pentingnya teknik counting problem dalam Ilmu Hitung Peluang Mahasiswa mengetahui dan memahami teknik kombinatorika Mahasiswa dapat melakukan

Lebih terperinci

NASKAH UJIAN NASIONAL SMP TAHUN 2003 / Ruslan tri Setiawan

NASKAH UJIAN NASIONAL SMP TAHUN 2003 / Ruslan tri Setiawan NASKAH UJIAN NASIONAL SMP TAHUN 003 / 004 Oleh Ruslan tri Setiawan Di dukung oleh : Open Knowledge and Education http://www.oke.or.id Lisensi Tutorial: Copyright 008 Oke.or.id Seluruh tulisan di oke.or.id

Lebih terperinci

B. 26 September 1996 D. 28 September 1996

B. 26 September 1996 D. 28 September 1996 1. Ditentukan A = {2, 3, 5, 7, 8, 11} Himpunan semesta yang mungkin adalah... A.{bilangan ganjil yang kurang dari 12} B.{bilangan asli yang kurang dari 12} C.{bilangan prima yang kurang dari 12} D.{bilangan

Lebih terperinci

PELUANG Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

PELUANG Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika PELUANG Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 00 di PPPG Matematika Oleh: Drs. MARSUDI RAHARJO, M.Sc.Ed. Widyaiswara PPPG Matematika Yogyakarta

Lebih terperinci

PENERAPAN TEORI KOMBINATORIAL DAN PELUANG DISKRIT DALAM PERMAINAN POKER

PENERAPAN TEORI KOMBINATORIAL DAN PELUANG DISKRIT DALAM PERMAINAN POKER PENERAPAN TEORI KOMBINATORIAL DAN PELUANG DISKRIT DALAM PERMAINAN POKER Irma Juniati - 13506088 Jurusan Teknik Informatika ITB, Bandung 40116, email: if16088@students.if.itb.ac.id Abstrak Makalah ini membahas

Lebih terperinci

Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika

Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika Modul ke: 01Fakultas FASILKOM Penyajian Himpunan operasi-operasi dasar himpunan Sediyanto, ST. MM Program Studi Teknik Informatika Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda.

Lebih terperinci