BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Potensi Tenaga Air Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air mengalir). Tenaga air (Hydropower) adalah energi yang diperoleh dari air yang mengalir. Energi yang dimiliki air dapat dimanfaatkan dan digunakan dalam wujud energi mekanis maupun energi listrik. Pemanfaatan energi air banyak dilakukan dengan menggunakan kincir air atau turbin air yang memanfaatkan adanya suatu air terjun atau aliran air di sungai. Besarnya tenaga air yang tersedia dari suatu sumber air bergantung pada besarnya head dan debit air. Dalam hubungan dengan reservoir air maka head adalah beda ketinggian antara permukaan air pada reservoir dengan air keluar dari turbin air. Total energi yang tersedia dari suatu reservoir air adalah merupakan energi potensial air yaitu : EE = mmmmh... (2.1) Dimana : m = massa air h = head (m) g = percepatan gravitasi (m/ s 2 ) Daya merupakan energi tiap satuan waktu EE sehingga persamaan (2.1) dapat tt dinyatakan sebagai : EE = mm tt tt ggh...(2.2) Dengan mensubsitusikan P terhadap EE dan mensubstitusikan ρq terhadap tt mm tt maka : P = ρ.q.g.h....(2.3) Dimana: P = daya [watt] Q = kapasitas aliran [m 3 /s] ρ = densitas air [kg/m 3 ]

2 Selain memanfaatkan air jatuh dapat diperoleh dari aliran air datar. Dalam hal ini energi yang tersedia merupakan energi kinetik EE = 1 2 mmvv2... (2.4) Dimana : v = kecepatan aliran air [m/s] Daya air yang tersedia dinyatakan sebagai berikut: PP = 1 2 ρqvv2... (2.5) atau dengan menggunakan persamaan kontinuitas Q = Av maka PP = 1 2 ρavv3... (2.6) Dimana : A = luas penampang aliran air (m 2 ) 2.2 Sejarah Turbin Air Kata "turbine" ditemukan oleh seorang insinyur Perancis yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa Latin dari kata "whirling" (putaran) atau "vortex" (pusaran air). Perbedaan dasar antara turbin air dengan kincir air adalah komponen putaran air yang memberikan energi pada poros yang berputar. Komponen tambahan ini memungkinkan turbin dapat memberikan daya yang lebih besar dengan komponen yang lebih kecil. Turbin dapat memanfaatkan air dengan putaran lebih cepat dan dapat memanfaatkan head yang lebih tinggi. Untuk selanjutnya dikembangkan turbin impuls yang tidak membutuhkan putaran air. Sejarah di temukanya turbin yaitu bermula dari di temukanya kincir air yang sudah sejak lama digunakan untuk tenaga industri. Pada mulanya yang dipertimbangkan adalah ukuran kincirnya, yang membatasi debit dan head yang dapat dimanfaatkan. Perkembangan kincir air menjadi turbin modern membutuhkan jangka waktu yang cukup lama. Perkembangan yang dilakukan dalam waktu revolusi industri menggunakan metode dan prinsip ilmiah. Mereka juga mengembangkan teknologi material dan metode produksi baru pada saat itu. Ján Andrej Segner mengembangkan turbin air reaksi pada pertengahan tahun turbin ini mempunyai sumbu horizontal dan merupakan awal mula

3 dari turbin air modern. Turbin ini merupakan mesin yang simpel yang masih diproduksi saat ini untuk pembangkit tenaga listrik skala kecil. Segner bekerja dengan Euler dalam membuat teori matematis awal untuk desain turbin. Pada tahun 1820, Jean-Victor Poncelet mengembangkan turbin aliran kedalam. Pada tahun 1826, Benoit Fourneyon mengembangkan turbin aliran keluar. Turbin ini sangan efisien (80%) yang mengalirkan air melalui saluran dengan sudu lengkung satu dimensi. Saluran keluaran juga mempunyai lengkungan pengarah. Pada tahun 1844, Uriah A. Boyden mengembangkan turbin aliran keluar yang meningkatkan performa dari turbin Fourneyon. Bentuk sudunya mirip dengan turbin Francis. Pada tahun 1849, James B. Francis meningkatkan efisiensi turbin reaksi aliran kedalam hingga lebih dari 90%. Dia memberikan test yang memuaskan dan mengembangkan metode engineering untuk desain turbin air. Turbin Francis dinamakan sesuai dengan namanya, yang merupakan turbin air modern pertama. Turbin ini masih digunakan secara luas di dunia saat ini. Turbin air aliran kedalam mempunyai susunan mekanis yang lebih baik dan semua turbin reaksi modern menggunakan desain ini. Putaran massa air berputar hingga putaran yang semakin cepat, air berusaha menambah kecepatan untuk membangkitkan energi. Energi tadi dibangkitkan pada sudu dengan memanfaatkan berat jatuh air dan pusarannya. Tekanan air berkurang sampai nol sampai air keluar melalui sirip turbin dan memberikan energi. Sekitar tahun 1890, bantalan fluida modern ditemukan, sekarang umumnya digunakan untuk mendukung pusaran turbin air yang berat. Hingga tahun 2002, bantalan fluida terlihat mempunyai arti selama lebih dari 1300 tahun. Sekitar tahun 1913, Victor Kaplan membuat turbin Kaplan, sebuah tipe mesin balingbaling. Ini merupakan evolusi dari turbin Francis tetapi dikembangkan dengan kemampuan sumber air yang mempunyai head kecil. 2.3 Klasifikasi Turbin Air Turbin air dapat diklasifikasikan berdasarkan beberapa cara, namun yang paling utama adalah klasifikasi turbin air berdasarkan cara turbin air tersebut

4 merubah energi menjadi energi puntir. Berdasarkan klasifikasi ini, maka turbin air dibagi menjadi dua yaitu: 1. Turbin impuls, dan 2. Turbin reaksi Turbin Impuls Turbin Impuls adalah turbin yang bekerja karena aliran air. Energi potensial air diubah menjadi energi kinetik pada nosel. Air keluar nosel yang mempunyai kecepatan tinggi membentur sudu turbin. Setelah membentur sudu arah kecepatan aliran berubah sehingga terjadi perubahan momentum (impulse). Akibatnya roda turbin akan berputar. Turbin impuls adalah turbin tekanan sama karena aliran air yang keluar dari nosel tekanannya adalah sama dengan tekanan atmosfir sekitarnya. Semua energi tinggi tempat dan tekanan ketika masuk ke sudu jalan turbin dirubah menjadi energi kecepatan Turbin Pelton. Turbin Pelton merupakan turbin impuls. Turbin Pelton terdiri dari satu set sudu jalan yang diputar oleh pancaran air yang disemprotkan dari satu atau lebih alat yang disebut nosel. Turbin Pelton adalah salah satu dari jenis turbin air yang paling efisien. Turbin Pelton adalah turbin yang cocok digunakan untuk head tinggi.

5 Gambar 2.1 Turbin pelton (Sumber: http//turbin-pelton.blogspot.com) Turbin Turgo Turbin Turgo dapat beroperasi pada head 30 s/d 300 m. Seperti turbin Pelton, turbin Turgo merupakan turbin impuls, tetapi sudunya berbeda. Pancaran air dari nozzle membentur sudu pada sudut 20 o. Kecepatan putar turbin Turgo lebih besar dari turbin Pelton. Akibatnya dimungkinkan transmisi langsung dari turbin ke generator sehingga menaikkan efisiensi total sekaligus menurunkan biaya perawatan

6 Gambar 2.2 Turbin turgo (Sumber: Turbin Ossberger Atau Turbin Crossflow Turbin Cross-Flow adalah salah satu turbin air dari jenis turbin aksi (impuls turbine). Prinsip kerja turbin ini mula-mula ditemukan oleh seorang insinyur Australia yang bernama A.G.M. Michell pada tahun Kemudian turbin ini dikembangkan dan dipatenkan di Jerman Barat oleh Prof. Donat Banki sehingga turbin ini diberi nama Turbin Banki kadang disebut juga Turbin Michell- Ossberger (Haimerl, L.A., 1960). Pemakaian jenis Turbin Cross-Flow lebih menguntungkan dibanding dengan pengunaan kincir air maupun jenis turbin mikro hidro lainnya. Penggunaan turbin ini untuk daya yang sama dapat menghemat biaya pembuatan penggerak mula sampai 50 % dari penggunaan kincir air dengan bahan yang sama. Penghematan ini dapat dicapai karena ukuran Turbin Cross-Flow lebih kecil dan lebih kompak dibanding kincir air. Diameter kincir air yakni runnernya biasanya 2 meter ke atas, tetapi diameter Turbin Cross-Flow dapat dibuat hanya 20 cm saja sehingga bahan-bahan yang dibutuhkan jauh lebih sedikit, itulah sebabnya bisa lebih murah. Demikian juga daya guna atau effisiensi rata-rata turbin ini lebih tinggi dari pada daya guna kincir air. Hasil pengujian laboratorium yang dilakukan oleh pabrik turbin Ossberger Jerman Barat yang menyimpulkan bahwa daya guna kincir air dari jenis yang paling unggul sekalipun hanya mencapai 70 % sedangkan effisiensi turbin Cross-Flow mencapai 82 % (Haimerl, L.A., 1960).

7 Gambar 2.3 Turbin ossberger (Sumber: Turbin Reaksi Turbin reaksi adalah turbin yang memanfaatkan energi potensial untuk menghasikan energi gerak. Sudu pada turbin reaksi mempunyai profil khusus yang menyebabkan terjadinya penurunan tekanan air selama melalui sudu. Perbedaan tekanan ini memberikan gaya pada sudu sehingga runner (bagian turbin yang berputar) dapat berputar. Turbin yang bekerja berdasarkan prinsip ini dikelompokkan sebagai turbin reaksi. Runner turbin reaksi sepenuhnya tercelup dalam air dan berada dalam rumah turbin. Jenis-jenis turbin reaksi yakni: Turbin Francis Diciptakan oleh James Francis Bichens dari Inggris. Termasuk jenis turbin reaksi dengan arah aliran aksial-radial. Turbin ini beroperasi pada head (tinggi jatuh) meter, dapat menghasilkan daya MW dengan Ns (spesific speed) rpm. Pada umumnya turbin ini di desain dengan posisi poros vertikal untuk menjaga agar air tidak mengenai rumah generator dan peralatan bantu lainnya. Turbin dipasang diantara sumber air tekanan tinggi di bagian masuk dan

8 air bertekanan rendah di bagian keluar. Sudu pengarah pada turbin Francis merupakan suatu sudu pengarah yang tetap ataupun sudu pengarah yang dapat diatur sudutnya. Gambar 2.4Turbin prancis ( Sumber:https semayangboy.com) Turbin Kaplan Turbin Kaplan termasuk kelompok turbin air reaksi jenis baling-baling (propeller). Keistimewaannya adalah sudut sudu geraknya (runner) bisa diatur (adjustable blade) untuk menyesuaikan dengan kondisi aliran saat itu yaitu perubahan debit air. Turbin ini beroperasi pada head (tinggi jatuh) meter, dapat menghasilkan daya MW dengan Ns (spesific speed) rpm. Pada pemilihan turbin didasarkan pada kecepatan spesifiknya. Turbin Kaplan ini memiliki kecepatan spesifik tinggi (high spesific speed). Turbin kaplan bekerja pada kondisi head rendah dengan debit besar.

9 Gambar 2.5 Turbin kaplan (Sumber: http//turbin-kaplan.blogspot.com) Prinsip Kerja Turbin Kaplan Tidak berbeda dengan turbin Francis, turbin Kaplan cara kerjanya menggunakan prinsip reaksi. Turbin ini mempunyai roda jalan yang mirip dengan baling-baling pesawat terbang. Bila baling-baling pesawat terbang berfungsi untuk menghasilkan gaya dorong, roda jalan pada Kaplan berfungsi untuk mendapatkan gaya F yaitu gaya putar yang dapat menghasilkan torsi pada poros turbin. Berbeda dengan roda jalan pada Francis, sudu-sudu pada roda jalan Kaplan dapat diputar posisinya untuk menyesuaikan kondisi beban turbin. Turbin Kaplan banyak dipakai pada instalasi pembangkit listrik tenaga air sungai, karena turbin ini mempunyai kelebihan dapat menyesuaikan head yang berubah-ubah sepanjang tahun. Turbin Kaplan dapat beroperasi pada kecepatan tinggi sehingga ukuran

10 roda turbin lebih kecil dan dapat dikopel langsung dengan generator. Pada kondisi pada beban tidak penuh turbin kaplan mempunyai efisiensi paling tinggi, hal ini dikarenakan sudu-sudu turbin Kaplan dapat diatur menyesuaikan dengan beban yang ada Komponen Utama Turbin Kaplan Komponen-komponen utama turbin Kaplan adalah: 1. Rumah turbin Air dari saluran pipa didistribusikan di sekeliling cincin rumah turbin. Rumah turbin didesain sedemikian sehingga luas penampang melintangnya berkurang secara seragam. Luas penampang melintangnya maksimum pada sisi masuk dan minimum pada ujung. Gambar 2.6 Rumah turbin

11 Rumah turbin akan mendistribusikan air secara merata kepada guide vane. Untuk mencapai aliran seragam pada runner blade, maka aliran air harus seragam masuk ke dalam guide vane. 2. Mekanisme pengarah (guide vane) Sudu pengarah (guide vane) terpasang tetap diantara dua cincin dalam bentuk roda. Roda ini dipasang tetap pada rumah turbin. Sudu pengarah didesain untuk: Supaya air masuk ke runner tanpa kejut. Supaya air mengalir tanpa membentuk arus Eddy. Supaya sejumlah air bisa memasuki turbin. Sudu pengarah bisa dibuka dan ditutup dengan memutar poros pengatur, sehingga jumlah air bisa diatur sesuai keperluan. Poros pengatur dioperasikan dengan menggunakan governor, yang fungsinya mengatur turbin (yaitu menjaga kecepatan turbin konstan pada beban yang bervariasi). Gambar 2.7 Guide vane Turbin Kaplan adalah salah satu jenis dari turbin reaksi aliran ke dalam (inward), yakni turbin reaksi dimana air memasuki roda pada bagian lingkaran luar dan mengalir menuju kedalam melalui sudu (yaitu menuju pusat roda). Turbin reaksi ini terdiri dari sudu pengarah tetap, yang mengarahkan air ke roda

12 bergerak dengan sudut yang benar. Air ketika mengalir pada sudu/vane, menghasilkan gaya ke roda. Gaya ini menyebabkan roda berputar. 3. Runner blade Runner blade terdiri dari sudu yang terpasang tetap pada poros atau cincin. Sudu didesain supaya air masuk dan meninggalkan turbin tanpa kejut. Runner blade terpasang pada poros. Jika porosnya vertikal, disebut turbin vertikal, dan jika poros horisontal maka disebut turbin horisontal. Untuk head rendah, runner blade bisa dibuat dari besi tuang, tetapi untuk head tinggi, runner blade dibuat dari baja atau paduan. Jika air secara kimia tidak murni, runner dibuat dari paduan spesial. Gambar 2.8 Runner blade 4. Draft tube Air setelah melewati runner, mengalir turun melalui pipa yang disebut draft tube. Draft tube mempunyai fungsi antara lain:

13 Meningkatkan head air sebesar tinggi runner dari permukaan air. Meningkatkan efisiensi turbin. Gambar 2.9 Draft tube Dimensi Dasar Turbin Kaplan Dimensi dasar turbin Kaplan bergantung pada diameter luar runner (D), tinggi guide vane (B), jarak vertikal runner terhadap sisi dalam guide vane (λ), dan diameter hub (d) dapat dilihat pada gambar 2.10

14 Gambar 2.10 Elemen dasar turbin Kaplan (Sumber : Dengan Persamaan dasar untuk mencari diameter luar runner (D) : DD = (66,76 + 0,136 nnnn) HH eff nn ns = putaran spesifik [rpm] n = putaran turbin [rpm] Persamaan dasar untuk mencari tinggi guide vane (B) : (2.7) BB = 0,45 31,80 DD... (2.8) nnnn Sedangkan persamaan dasar untuk mencari jarak vertikal runner terhadap sisi dalam guide vane (λ): λ =0,25.D (2.9) Dan persamaan untuk mencari diameter hub (d) : dd DD = 0,70...(2.10)

15 Dimensi Dasar Runner Blade Segitiga kecepatan masuk pada runner blade dapat dilihat pada gambar 2.11 dibawah ini. u v v f u v v f 58,62 Arah Putaran Sudu (Blade) u 33,89 v f 146,11 v f v v f u Gambar 2.11 Segitiga kecepatan Dimana, V f U b U U wb U w ββ ii ββ ee = Kecepatan aliran air = Kecepatan tepi (rim) diameter boss = Kecepatan tepi (rim) diameter luar = Kecepatan pusaran air (whirl) diameter boss = Kecepatan pusaran air (whirl) diameter luar = Sudut sudu (blade) pada area fluida masuk (inlet) = Sudut sudu (blade) pada area fluida keluar (outlet)

16 Persamaan untuk mencari kecepatan aliran air (V f ) adalah: V f = 2gH...(2.11) Persamaan untuk mencari Kecepatan tepi (rim) diameter boss dan diameter dalam (UU bb dddddd UU) adalah: UU bb = ππ.dd bb.nn 60...(2.12) UU = ππ.dd.nn 60...(2.13) Persamaan untuk mencari Kecepatan pusaran air (whirl) diameter boss dan diameter dalam adalah : UU wwww = nn HH.gg.HH 100. UU bb...(2.14) UU ww = nn HH.gg.HH 100. UU...(2.15) Persamaan untuk mencari Sudut sudu (blade) pada area fluida masuk (inlet) adalah : tan (ββ ii ) = UU ff UU ww...(2.16) Persamaan untuk mencari Sudut sudu (blade) pada area fluida keluar (outlet) adalah : tan (ββ ee ) = VV ff UU wwww...(2.17)

17 2.4 KARAKTERISTIK TURBIN Perbandingan karakteristik turbin dapat kita lihat pada grafik head (m) vs flow (m 3 /s) dibawah ini. Gambar 2.12 Grafik perbandingan karakteristik turbin (Sumber : Dapat dilihat pada gambar 2.12 turbin Kaplan adalah turbin yang beroperasi pada head yang rendah dengan kapasitas aliran yang tinggi. Hal ini karena sudusudu turbin dapat diatur secara manual atau otomatis untuk merespon perubahan kapasitas.

18 2.5 SELEKSI AWAL JENIS TURBIN Seleksi awal dari jenis turbin yang cocok untuk suatu keperluan paling tepat dilakukan dengan kecepatan spesifik (Ns). Dalam tabel 2.1 disajikan nilai kecepatan spesifik (Ns) untuk berbagai jenis turbin. Tabel 2.1 dapat digunakan sebagai panduan awal dalam pemilihan jenis turbin yang tepat untuk nilai Ns tertentu. Nilai Ns yang tercantum dalam tabel 2.1 bukan nilai eksak. Untuk setiap jenis turbin terdapat suatu nilai kisaran tinggi terjun dan kecepatan spesifik yang sesuai. Korelasi empiris antara terjun (H) dan kecepatan spesifik (Ns) disajikan dibawah ini. Untuk turbin Francis, Moody memperoleh korelasi sebagai berikut: NNNN = (2.18) HH+9,75 Sedangkan untuk turbin propeller atau Kaplan, Moody memperoleh korelasi sebagai berikut: NNNN = 9431 HH+9, (2.19) Dengan H adalah tinggi terjun netto (m) dan Ns adalah kecepatan spesifik metrik.

19 Tabel 2.1 Jenis-jenis turbin air dan kisaran kecepatan spesifiknya (Ns) Jenis Turbin Ns (metrik) 1. Turbin Impuls a. Satu jet (Turbin Pelton) 4-30 b. Banyak jet (turbin Doble) Turbin Reaksi a. Francis Ns rendah Ns normal Ns tinggi Ns exspress b. Propeller Sudu tetap (Turbin Nagler) Sudu dapat diatur (Turbin Kaplan) Untuk Pembangkit Listrik Tenaga Air selalu diusahakan agar generator dikopel langsung dengan turbin. Atau dengan kata lain putaran turbin terbatas pemilihannya agar dapat dikopel dengan generator. Putaran turbin berhubungan dengan spesifik sebagaimana persamaan 2.17 di atas, atau menurut referensi yang lain : NN ss = NN PP...(2.20) HH 5 4 dimana : N s = putaran spesifik [rpm] N = putaran turbin [rpm] P = daya air [kw]

20 H = tinggi terjun efektif [m] Dari nilai spesifik ini dapat ditentukan jenis turbin yang digunakan yang dapat dijelaskan sebagai berikut : N s = 8-50 jenis turbin Pelton N s = jenis turbin Perancis N s = jenis turbin Kaplan atau Propeler Pemilihan putaran spesifik ini sangat berhubungan dengan dimensi peralatannya, yang berarti juga mempengaruhi konstruksi dan harga. Pemilihan turbin kebanyakan didasarkan juga pada head air yang didapatkan dan kurang lebih pada rata-rata alirannya. Umumnya, turbin impuls digunakan untuk tempat dengan head tinggi, dan turbin reaksi digunakan untuk tempat dengan head rendah. Turbin Kaplan baik digunakan untuk semua jenis debit dan head, efisiensinya baik dalam segala kondisi aliran. Turbin kecil (umumnya dibawah 10 MW) mempunyai poros horisontal, dan kadang dipakai juga pada kapasitas turbin mencapai 100 MW. Turbin Francis dan Kaplan besar biasanya mempunyai poros / sudu vertikal karena ini menjadi penggunaan paling baik untuk head yang didapatkan, dan membuat instalasi generator lebih ekonomis. Poros Pelton bisa vertikal maupun horisontal karena ukuran turbin lebih kecil dari head yang di dapat atau tersedia. Beberapa turbin impuls menggunakan beberapa semburan air tiap semburan untuk meningkatkan kecepatan spesifik dan keseimbangan gaya poros.

21 2. 6 GENERATOR LISTRIK Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik berdasarkan prinsip induksi elektromagnetik 5 runner blade dan analisa perbandingan sudut guide vane (30 0, 45 0 dan 60 0 ), yakni: Gambar 2.13 Generator 2.7 SABUK DATAR DAN PULI Belt (sabuk) digunakan untuk mentransmisikan daya dari poros yang satu ke poros yang lainnya melalui roda (pulley) yang berputar dengan kecepatan sama atau berbeda. Sabuk umumnya dipakai pada puli, sabuk ini lebih tenang dan efisien pada kecepatan tinggi, dan juga mampu mentransmisikan sejumlah daya yang besar pada jarak pusat pulley yang panjang.

22 pada sabuk: Jenis Gerakan Pada Sabuk Energi dari suatu puli ditransmisikan kemanapun. Berikut jenis gerakan 1. Gerakan sabuk terbuka Gerakan sabuk terbuka ditunjukkan di dalam gambar 2.19, jenis ini digunakan diporos. Berputar dan paralel yang diatur ke arah yang sama. Ketika memusat jarak antara kedua poros besar, kemudian sisi yang ketat sabuk harus lebih rendah. Gambar 2.14 Sabuk terbuka 2. Gerakan membelit atau melingkar pada sabuk Gerakan membelit atau melingkar ditunjukkan di dalam gambar 2.20, digunakan poros pengatur berputar dan paralel di dalam arah kebalikannya. Tegangan yang kecil akan menunjukkan bahwa pada suatu titik silang sabuk, hal ini akan menggosok melawan terhadap satu sama lain dan di sana akan terjadi kerusakan disebabkan gesekan berlebih dalam rangka menghindari ini, poros

23 harus ditempatkan pada suatu jarak yang maksimum 20 b, dimana b menjadikan sabuk melebar dan kecepatan sabuk harus kurang dari 15m/sec. Gambar 2.15 Gerakan membelit atau melingkar pada sabuk 3. Gerakan dengan puli pengarah Gerakan sabuk dengan puli pengarah ditunjukkan didalam gambar 2.16, dengan menggunakan poros yang digunakan untuk pengaturan paralel dan ketika sabuk terbuka tidak adapat digunakan dalam sudut yang kecil dan penghubung pada puli kecil. Pengarah jenis ini disajikan untuk memperoleh perbandingan percepatan tinggi dan ketika tegangan sabuk yang diperlukan tidak bisa diperoleh oleh alat-alat lain. Ketika itu diinginkan untuk mentransmisikan gerakan dari satu poros ke beberapa poros, semua diatur didalam paralel, suatu sabuk menggerakan dengan banyak puli.

24 Gambar 2.16 Gerakan dengan puli pengarah Perbandingan KecepatanPuli Karena kecepatan linier pada kedua puli sama, maka: ππdd 1 NN 1 = ππdd 2 NN 2...(2.21) Dan perbandingan putaran kedua puli menjadi: Dimana, NN 2 NN 1 = DD 1 DD 2...(2.22) N 1 = Putaran penggerak [rpm] N 2 = Putaran yang digerakkan [rpm] D 1 =Diameter puli penggerak [m] D 2 = Diameter puli yang digerakkan [m]

25 2.7.3 Efisiensi Puli Untuk mencari efisiensi puli menggunakan rumus sebagai berikut: ηη p = DD 2NN 2 DD 1 NN 1 xx 100%...(2.23) Dimana : η p = Efisiensi puli 2.8 DAYA LISTRIK Daya listrik adalah banyaknya energi tiap satuan waktu dimana pekerjaan sedang berlangsung atau kerja yang dilakukan persatuan waktu. Dari definisi ini, maka daya listrik (P l ) dapat dirumuskan: DDDDDDDD = EEEEEEEEEEEE WWWWWWWWWW...(2.24) Dimana: PP = EE tt PP = VV.II.tt tt P = V.I...(2.25) P = Daya listrik (Watt) V = Tegangan (Volt) I = Arus (Ampere)

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu 23 BAB II TINJAUAN PUSTAKA Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat pembangkit listrik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Turbin Air Turbin air termasuk dalam kelompok mesin fluida yaitu, mesin yang berfungsi untuk mengubah energi fluida (energi potensial dan energi kinetis air) menjadi energi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat listrik tenaga air.

Lebih terperinci

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air BAB II 2 LANDASAN TEORI 2.1 Turbin Air Turbin air atau pada mulanya kincir air adalah suatu alat yang sudah sejak lama digunakan untuk keperluan industri. Pada mulanya yang dipertimbangkan adalah ukuran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi II. TINJAUAN PUSTAKA.1. Potensi Pemanfaatan Mikrohidro Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi kebutuhan yang mendasar saat ini, namun penyebarannya tidak merata terutama

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA SESSION 8 HYDRO POWER PLANT 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA 6. Kelebihan dan Kekurangan PLTA 1. POTENSI PLTA Teoritis Jumlah potensi tenaga air di permukaan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal II. TINJAUAN PUSTAKA A. Pengertian Mikrohidro Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal sejak lama, mulai dengan teknologi sederhana seperti kincir air ( water wheel),

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Mikrohidro atau biasa disebut dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik

Lebih terperinci

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian.

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian. MESIN-MESIN FLUIDA TURBIN AIR TURBIN AIR Turbin air mengubah energi kinetik dan potensial dari air menjadi tenaga mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara energi

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Penelitian ini di peruntukan untuk tugas akhir dengan judul Studi Analisis Pengaruh Sudu Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro.Penelitian ini mengacu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 69-74 KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO Mulyono, Suwarti Program Studi Teknik Konversi Energi,

Lebih terperinci

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK Perangkat elektro mekanik merupakan salah satu komponen utama yang diperlukan oleh suatu PLTMH untuk menghasilkan energi listrik Proses

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin air dikembangkan pada abad 19 dan digunakan secara luas untuk tenaga industri untuk jaringan listrik. Sekarang lebih umum dipakai untuk generator listrik. Turbin kini dimanfaatkan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pembangkit Listrik Tenaga Mikrohidro. Pembangkit listrik kecil yang dapat menggunakan tenaga air pada saluran

BAB II DASAR TEORI. 2.1 Pembangkit Listrik Tenaga Mikrohidro. Pembangkit listrik kecil yang dapat menggunakan tenaga air pada saluran BAB II DASAR TEORI 2.1 Pembangkit Listrik Tenaga Mikrohidro Mikrohidro adalah istilah yang digunakan untuk instalasi pembangkit listrik yang mengunakan energi air. Kondisi air yang bisa dimanfaatkan sebagai

Lebih terperinci

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar.

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Turbin Air 117 Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Contoh soal Sebuah turbin reaksi aliran keluar mempunyai diameter dalam dan diameter luar berturut-turut 1 meter dan 2 meter.

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi II. TINJAUAN PUSTAKA A. Energi Secara global telah diketahui bersama bahwa sumber energi tak terbaharui semakin berkurang keberadaannya maka sudah selayaknya untuk dicari dan digalakan penemuan-penemuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

Turbin Reaksi Aliran Ke Luar

Turbin Reaksi Aliran Ke Luar Turbin Reaksi Aliran Ke Luar Turbin reaksi aliran keluar adalah turbin reaksi dimana air masuk di tengah roda dan kemudian mengalir ke arah luar melalui sudu (gambar 8). Gambar 8. Turbin reaksi aliran

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

Potensi Tenaga Air di Indonesia Selama ini telah beberapa kali dilakukan studi potensi tenaga air di negara kita. Pada tahun 1968 Lembaga Masalah Ketenagaan- PLN (LMK) mencatat potensi tenaga air sebesar

Lebih terperinci

Makalah Pembangkit listrik tenaga air

Makalah Pembangkit listrik tenaga air Makalah Pembangkit listrik tenaga air Di susun oleh : Muhamad Halfiz (2011110031) Robi Wijaya (2012110003) Alhadi (2012110093) Rari Ranjes Noviko (2013110004) Sulis Tiono (2013110008) Jurusan Teknik Mesin

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Turbin air tergolong mesin konversi energi yang mengubah energi gerak air menjadi energi listrik, mekanis dan lain sebagainya. Energi gerak air tergolong energi terbarukan

Lebih terperinci

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL Yudi Setiawan, Irfan Wahyudi, Erwin Nandes Jurusan Teknik Mesin, Universitas Bangka Belitung Jl.Merdeka no. 04 Pangkalpinang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI digilib.uns.ac.id BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Eksplorasi intensif dari berbagai alternatif dan sumber daya energi terbarukan saat ini sedang dilakukan di seluruh dunia. Listrik pico hydro

Lebih terperinci

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR Mafrudin 1), Dwi Irawan 2). 1, 2) Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hajar Dewantara

Lebih terperinci

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls 1. TURBIN AIR Dalam suatu sistim PLTA, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi puntir ini kemudian

Lebih terperinci

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik DONALD SUPRI

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka (Chen, J., et al., 2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan Power Generation untuk aliran air dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

PENGUJIAN TURBIN AIR FRANCIS

PENGUJIAN TURBIN AIR FRANCIS PENGUJIAN TURBIN AIR FRANCIS BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam bidang

Lebih terperinci

Pembangkit Listrik Tenaga Air. BY : Sulistiyono

Pembangkit Listrik Tenaga Air. BY : Sulistiyono Pembangkit Listrik Tenaga Air BY : Sulistiyono Pembangkit listrik tenaga air Tenaga air bahasa Inggris: 'hydropower' adalah energi yang diperoleh dari air yang mengalir. Air merupakan sumber energi yang

Lebih terperinci

Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH SUDUT SUDU DAN DEBIT ALIRAN TERHDAP PERFORMA TURBIN KAPLAN Frisca Anugra Putra 421204243

Lebih terperinci

II. TINJAUAN PUSTAKA. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro

II. TINJAUAN PUSTAKA. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro II. TINJAUAN PUSTAKA A. Tinjauan Umum PLTMH Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro artinya air. Dalam prakteknya istilah ini tidak merupakan sesuatu yang baku namun Mikro

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 Armansyah Munthe *), Rahmawaty, ST, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail : arman.munthe@yahoo.com

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 Muhammad tohari *), Ir. Husin Ibrahim Lubis, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail :hari_boy03@yahoo.co.id

Lebih terperinci

UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI SUDUT GUIDE VANE

UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI SUDUT GUIDE VANE UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI SUDUT GUIDE VANE SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik JAN SIMALUNGUN PURBA NIM.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Tenaga Uap Pada mesin uap dan turbin uap, air sebagai benda kerja mengalami deretan peubahan keadaan. Untuk merubah air menjadi uap digunakan suatu alat dinamakan boiler

Lebih terperinci

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT.

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT. PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON Dr. Sri Poernomo Sari, ST., MT.*), Ryan Fasha**) *) Dosen Teknik Mesin Universitas Gunadarma **) Mahasiswa

Lebih terperinci

UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI JARAK VERTIKAL RUNNER TERHADAP SUDUT GUIDE VANE 60 0

UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI JARAK VERTIKAL RUNNER TERHADAP SUDUT GUIDE VANE 60 0 UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI JARAK VERTIKAL RUNNER TERHADAP SUDUT GUIDE VANE 60 0 SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH JUMLAH SUDU DAN LAJU ALIRAN TERHADAP PERFORMA TURBIN KAPLAN Ari Rachmad Afandi 421204156

Lebih terperinci

Stabilitas Konstruksi Bendungan

Stabilitas Konstruksi Bendungan Stabilitas Konstruksi Bendungan Merupakan perhitungan konstruksi untuk menentukan ukuran (dimensi) bendungan, agar mampu menahan muatan-muatan dan gaya-gaya yang bekerja dalam keadaan apapun, (angin, gempa,

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE) DENGAN HEAD 2 m DAN DEBIT 0,03 m 3 /s

PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE) DENGAN HEAD 2 m DAN DEBIT 0,03 m 3 /s JTM Vol. 03, No. 3, Oktober 2014 7 PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE) DENGAN HEAD 2 m DAN DEBIT 0,03 m 3 /s Ridwan Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana,

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Eksergi Jurnal Teknik Energi Vol 8 No. 1 Januari 2012; 14-19 KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Bono Prodi Teknik Konversi Energi, Jurusan Teknik Mesin, Politeknik Negeri Semarang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Mikro Hidro Mikrohidro atau yang dimaksud dengan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan

Lebih terperinci

MODEL FISIK KINCIR AIR SEBAGAI PEMBANGKIT LISTRIK

MODEL FISIK KINCIR AIR SEBAGAI PEMBANGKIT LISTRIK MODEL FISIK KINCIR AIR SEBAGAI PEMBANGKIT LISTRIK Rinaldi 1, Andy Hendri dan Akhiar Junaidi 3 1,,3 Jurusan Teknik Sipil, Fakultas Teknik, Universitas Riau ri.naldi @yahoo.com ABSTRAK Salah satu jenis energi

Lebih terperinci

BAB II DASAR TEORI 2.1 PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

BAB II DASAR TEORI 2.1 PEMBANGKIT LISTRIK TENAGA MIKROHIDRO BAB II DASAR TEORI 2.1 PEMBANGKIT LISTRIK TENAGA MIKROHIDRO 2.1.1 Gambaran Umum Mikrohidro Air merupakan salah satu sumber energi yang terbarukan yang sudah sejak lama dipergunakan. Pada dasarnya, air

Lebih terperinci

PERANCANGAN DAN PEMBUATAN TURBIN AIR KAPLAN SEBAGAI PEMBANGKIT LITRIK TENAGA MIKROHIDRO (BERTITIK BERAT PADA DIMENSI GUIDE VANE)

PERANCANGAN DAN PEMBUATAN TURBIN AIR KAPLAN SEBAGAI PEMBANGKIT LITRIK TENAGA MIKROHIDRO (BERTITIK BERAT PADA DIMENSI GUIDE VANE) PERANCANGAN DAN PEMBUATAN TURBIN AIR KAPLAN SEBAGAI PEMBANGKIT LITRIK TENAGA MIKROHIDRO (BERTITIK BERAT PADA DIMENSI GUIDE VANE) Oleh : NASRUL SAIYIDIN 2107030045 Dosen Pembimbing : Dr. Ir. HERU MIRMANTO,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA AIR SKALA PIKO

BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA AIR SKALA PIKO BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA AIR SKALA PIKO 2.1. Pengertian PLTA Skala Piko Berdasarkan output yang dihasilkan, pembangkit listrik tenaga air dibedakan atas : 1. Large-hydro : lebih dari

Lebih terperinci

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut:

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut: B. TURBIN REAKSI Pada turbin reaksi, uap masuk ke roda dengan tekanan tertentu dan mengalir pada sudu. Uap ketika meluncur, memutar sudu dan membuatnya bergerak. Kenyataannya, runner turbin berotasi karena

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut:

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut: BAB IV TURBIN UAP Turbin uap adalah penggerak mula dimana gerak putar diperoleh dengan perubahan gradual dari momentum uap. Pada turbin uap, gaya dibangkitkan pada sudu (blade) karena kecepatan uap. Ini

Lebih terperinci

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI PERANCANGAN ULANG TURBIN FRANCIS PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) STUDI KASUS DI SUNGAI SUKU BAJO, DESA LAMANABI, KECAMATAN TANJUNG BUNGA, KABUPATEN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN Rancang Bangun Turbin Vortex Dengan Casing Berpenampang Lingkaran Yang Menggunakan Sudu Diameter 46cm Pada 3 Variasi Jarak Antara Sudu Dan Saluran Keluar SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 TINJAUAN UMUM TURBIN AIR Tenaga air mulai digunakan oleh manusia sudah sekitar 2000 tahun yang lalu yaitu ketika bangsa Yunani dan Romawi sudah mengenal kincir air, yang mana

Lebih terperinci

RANCANG BANGUN DRAFT TUBE,TRANSMISI DAN PENGUJIAN TURBIN AIR FRANCIS DENGAN KAPASITAS 500 L/MIN DAN HEAD 3,5 M

RANCANG BANGUN DRAFT TUBE,TRANSMISI DAN PENGUJIAN TURBIN AIR FRANCIS DENGAN KAPASITAS 500 L/MIN DAN HEAD 3,5 M RANCANG BANGUN DRAFT TUBE,TRANSMISI DAN PENGUJIAN TURBIN AIR FRANCIS DENGAN KAPASITAS 500 L/MIN DAN HEAD 3,5 M D III TEKNIK MESIN FTI-ITS Oleh: TRISNA MANGGALA Y 2107030056 Dosen Pembimbing: Dr. Ir. HERU

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi Turbin Uap 71 1. Rumah turbin (Casing). Merupakan rumah logam kedap udara, dimana uap dari ketel, dibawah tekanan dan temperatur tertentu, didistribusikan disekeliling sudu tetap (mekanisme pengarah) di

Lebih terperinci

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON Ali Thobari, Mustaqim, Hadi Wibowo Faculty of Engineering, Universitas Pancasakti Tegal Jl. Halmahera KM. 1 Kota Tegal 52122 Telp./Fax.

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH )

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) Naif Fuhaid 1) ABSTRAK Kebutuhan listrik bagi masyarakat masih menjadi permasalahan penting di Indonesia, khususnya

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Pengertian PLTMH Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) adalah suatu instalasi pembangkit listrik skala kecil yang menggunakan energi air sebagai tenaga penggeraknya seperti

Lebih terperinci

TUGAS AKHIR. Rancang Bangun Kincir Air Irigasi. Sebagai Pembangkit Listrik di Desa Talawaan

TUGAS AKHIR. Rancang Bangun Kincir Air Irigasi. Sebagai Pembangkit Listrik di Desa Talawaan TUGAS AKHIR Rancang Bangun Kincir Air Irigasi Sebagai Pembangkit Listrik di Desa Talawaan Diajukan Untuk Memenuhi Salah Satu Persyaratan Dalam Menyelesaikan Pendidikan Diploma IV Program Studi Teknik Listrik

Lebih terperinci

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 1.1 KETERSEDIAAN DEBIT AIR PLTM CILEUNCA

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 1.1 KETERSEDIAAN DEBIT AIR PLTM CILEUNCA 42 BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 1.1 KETERSEDIAAN DEBIT AIR PLTM CILEUNCA Sebelum melakukan perhitungan maka alangkah baiknya kita mengetahui dulu ketersediaan debit air di situ Cileunca

Lebih terperinci

BAB V STUDI POTENSI. h : ketinggian efektif yang diperoleh ( m ) maka daya listrik yang dapat dihasilkan ialah :

BAB V STUDI POTENSI. h : ketinggian efektif yang diperoleh ( m ) maka daya listrik yang dapat dihasilkan ialah : BAB V STUDI POTENSI 5.1 PERHITUNGAN MANUAL Dari data-data yang diperoleh, dapat dihitung potensi listrik yang dapat dihasilkan di sepanjang Sungai Citarik. Dengan persamaan berikut [23]: P = ρ x Q x g

Lebih terperinci

PEMILIHAN TURBIN AIR SEBAGAI PENGGERAK GENERATOR 3 KW DI DESA PADAYO KECAMATAN LUBUK KILANGAN

PEMILIHAN TURBIN AIR SEBAGAI PENGGERAK GENERATOR 3 KW DI DESA PADAYO KECAMATAN LUBUK KILANGAN PEMILIHAN TURBIN AIR SEBAGAI PENGGERAK GENERATOR 3 KW DI DESA PADAYO KECAMATAN LUBUK KILANGAN TUGAS AKHIR Sebagai salah satu syarat untuk memperoleh gelar Ahli Madya dari Politeknik Negeri Padang JONI

Lebih terperinci

BAB II TINJAUAN PUSTAKA Pengertian dan Klasifikasi Pembangkit Listrik Tenaga Air

BAB II TINJAUAN PUSTAKA Pengertian dan Klasifikasi Pembangkit Listrik Tenaga Air 5 BAB II TINJAUAN PUSTAKA 2.1 PEMBANGKIT LISTRIK TENAGA AIR 2.1.1 Pengertian dan Klasifikasi Pembangkit Listrik Tenaga Air Tenaga air merupakan sumberdaya terpenting setelah tenaga uap/panas, pemanfaatan

Lebih terperinci

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN NASKAH PUBLIKASI Disusun oleh : ANDI SUSANTO NIM : D200 080

Lebih terperinci

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur *

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur * Pengujian Prototipe Model Turbin Air Sederhana Dalam Proses Charging 4 Buah Baterai 1.2 Volt Yang Disusun Seri Pada Sistem Pembangkit Listrik Alternatif Tenaga Air Fitrianto Nugroho *, Iwan Sugihartono,

Lebih terperinci

Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow

Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow Roy Hadiyanto*, Fauzi Bakri Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 RANCANGAN NOSEL DENGAN KATUP PENGATURAN DEBIT AIR PENGGERAK TURBIN OSSBEGER DAYA TURBIN = 2,6 KW HEAD = 12 METER SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana H E R D Y

Lebih terperinci

BAB II TINJAUAN PUSTAKA. relatif tinggi menuju tempat yang relatif lebih rendah. Fluida cair pada tekanan

BAB II TINJAUAN PUSTAKA. relatif tinggi menuju tempat yang relatif lebih rendah. Fluida cair pada tekanan BAB II TINJAUAN PUSTAKA 2.1 PENGERTIAN POMPA Gaya gravitasi menyebabkan fluida cair mengalir dari satu tempat yang relatif tinggi menuju tempat yang relatif lebih rendah. Fluida cair pada tekanan tinggi

Lebih terperinci

TURBIN AIR A. TURBIN IMPULS. Roda Pelton

TURBIN AIR A. TURBIN IMPULS. Roda Pelton 6 TURBIN AIR A. TURBIN IMPULS Turbin impuls adalah turbin dimana bererak karena adanya impuls dari air. Pada turbin impuls, air dari sebuah bendunan dialirkan melalui pipa, dan kemudian melewati mekanisme

Lebih terperinci

1. OVERSHOT WATER WHEEL

1. OVERSHOT WATER WHEEL MESIN-MESIN FLUIDA KINCIR AIR 1 PENDAHULUAN Sejarah kincir air Roda air radial dengan mekanisme, pertama kali ditemukan oleh ilmuwan Prancis Burdin pada 1824. kemudian Fourneyron mengembangkan desain tersebut

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bona Halasan Nababan 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar:

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar: LAMPIRAN Panduan Manual Alat Peraga PLTMH Dengan Turbin Pelton 1. Bagian Bagian Alat Gambar 1.1 Bagian Alat Keterangan gambar: 1. Turbin Pelton 2. Rumah Turbin 3. Bagian Display 4. Pompa Air 5. Sensor

Lebih terperinci

PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK

PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK Jones Victor Tuapetel 1), Diyan Poerwoko 2) 1, 2) Program Studi Teknik Mesin Institut Teknologi Indonesia E-mail: jvictor_tuapetel@yahoo.com,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan kebutuhan yang sangat penting bagi manusia dalam berbagai sektor, baik dalam rumah tangga maupun dalam perindustrian. Di Indonesia, penggunaan

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bernardus Lumban Gaol 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci