matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN"

Transkripsi

1 K-1 Kelas X matematika WAJIB PERTIDAKSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan linear satu variabel. 2. Menyelesaikan pertidaksamaan linear satu variabel.. Membuat dan menyelesaikan model matematika dari masalah yang berkaitan dengan pertidaksamaan linear satu variabel. A. PENDAHULUAN Selain persamaan, pertidaksamaan adalah bentuk lain untuk menyatakan situasi nyata dalam notasi matematika. Pertidaksamaan digunakan untuk membandingkan dua atau lebih nilai besaran. Sebagai contoh, kalimat Badan ayah lebih tinggi dari paman, akan tetapi penghasilan ayah lebih kecil dari paman atau dalam kalimat Pengusaha tersebut mendapatkan keuntungan paling sedikit Rp ,00 per bulan. Kata-kata lebih tinggi, lebih kecil, dan paling sedikit dapat dinyatakan dengan notasi matematika berupa pertidaksamaan sebagai berikut. 1. Kalimat Badan ayah lebih tinggi dari Paman dapat dinyatakan dengan: tinggi ayah > tinggi paman 2. Kalimat Penghasilan ayah lebih kecil dari paman dapat dinyatakan dengan: penghasilan ayah < penghasilan paman. Kalimat Pengusaha tersebut mendapatkan keuntungan paling sedikit Rp ,00 per bulan dapat dinyatakan dengan: penghasilan pengusaha per bulan Rp ,00. 1

2 B. NOTASI PERTIDAKSAMAAN Pertidaksamaan yang melibatkan dua besaran atau lebih memiliki beberapa bentuk sebagai berikut. 1. a < b dibaca a lebih kecil dari b 2. a b dibaca a lebih kecil atau sama dengan b. a > b dibaca a lebih besar dari b 4. a b dibaca a lebih besar atau sama dengan b C. GARIS BILANGAN Dalam matematika dasar, garis bilangan adalah suatu garis lurus dengan titik-titik yang diasumsikan sebagai suatu bilangan real dan setiap bilangan real merujuk pada satu titik tertentu. Namun, seringkali bilangan bulat juga ditunjukkan dengan lambang titik-titik tertentu yang berjarak sama di sepanjang garis ini. Garis bilangan berikut menunjukkan bilangan bulat dari 12 sampai 1. Meskipun demikian, garis ini mencakup semua bilangan real, yaitu bilangan berkelanjutan tak terhingga ke kedua arahnya dan bilangan-bilangan yang tak dituliskan yang terdapat di antara bilangan-bilangan bulat tersebut Semakin ke kanan, nilai bilangan pada garis bilangan semakin besar, sedangkan semakin ke kiri nilainya semakin kecil. Untuk menyatakan himpunan bilangan dalam garis bilangan, dapat digunakan notasi pertidaksamaan atau bentuk kurung. Perhatikan cara menyatakan himpunan bilangan pada garis bilangan berikut. No. Garis bilangan Pertidaksamaan Bentuk kurung 1. a {x x > a, x R} (a, ) 2. a {x x a, x R} [a, ) 2

3 No. Garis bilangan Pertidaksamaan Bentuk kurung. a x {x x < a, x R} (, a) 4. a x {x x a, x R} (, a] 5. a b x {x a < x < b, x R} (a, b) 6. a b x {x a x b, x R} [a, b] 7. a b x {x x a atau x > b, x R} (, a] (b, ) Contoh Soal 1 Nyatakan himpunan bilangan yang dipilih pada garis bilangan berikut dengan notasi pertidaksamaan dan bentuk kurung Berdasarkan cara menyatakan himpunan bilangan pada garis bilangan, diperoleh: Notasi pertidaksamaan: {x x < 5 atau < x 7, x R} Bentuk kurung: (, 5) atau (, 7] D. SIFAT-SIFAT PERTIDAKSAMAAN Jika a, b, dan c bilangan real, maka berlaku: 1. a b b a 2. a b a + c b + c

4 . a b a c b c 4. Jika c > 0, maka a b ac bc 5. Jika c < 0, maka a b ac bc Jika a > 0 dan b > 0, maka a b a b 7. Jika a b dan c d, maka a + c b + d 8. Jika a b dan b c, maka a c E. DEFINISI PERTIDAKSAMAAN LINEAR SATU VARIABEL Pertidaksamaan linear satu variabel adalah pertidaksamaan yang hanya memuat satu variabel dan pangkat pada variabel tersebut adalah satu. Berikut ini merupakan contohcontoh dari pertidaksamaan linear satu variabel dan yang bukan pertidaksamaan linear satu variabel. Pertidaksamaan linear satu variabel: 1. 2x + 5 > y 4y. 6p 5 p+1 2 Bukan pertidaksamaan linear satu variabel: 1. x 2 2x < 9 memuat variabel berpangkat x x 1 <1 bentuk pertidaksamaan rasional, variabel terdapat pada penyebut.. 2x y > 1 memuat dua variabel. F. PENYELESAIAN PERTIDAKSAMAAN LINEAR SATU VARIABEL Langkah-langkah umum penyelesaian pertidaksamaan linear satu variabel adalah sebagai berikut. 1. Jika terdapat operasi perkalian terhadap penjumlahan atau pengurangan pada pertidaksamaan, gunakan sifat distributif. 2. Jika terdapat pecahan pada pertidaksamaan, kalikan setiap ruas dengan KPK dari semua penyebutnya.. Sederhanakan ruas kiri dan ruas kanan. 4. Hilangkan variabel pada ruas kanan dengan menggunakan langkah 2 atau. 5. Hilangkan konstanta pada ruas kiri dengan menggunakan langkah 2 atau. 4

5 6. Hilangkan koefisien variabel pada ruas kiri dengan menggunakan langkah 4 atau Uji dengan bilangan bulat yang memenuhi pertidaksamaan untuk memastikan jawaban. Contoh Soal 2 Tentukan himpunan penyelesaian dari pertidaksamaan 2x > 0! 2x > 0 (2x ) + > 0 + (kedua ruas ditambah ) 2x + ( + ) > (sifat asosiatif) 2x > 2x 2 > 2 (kedua ruas dibagi 2) x > 2 Misalkan kita uji dengan x = 2. 2(2) > 0 1> 0 (pernyataan benar) Jadi, himpunan penyelesaian dari pertidaksamaan 2x > 0 adalah x x > x R 2,. Contoh Soal Tentukan himpunan penyelesaian dari pertidaksamaan 7 2x > 0! 7 2x > (7 2x) > (kedua ruas ditambah -7) ( 7 + 7) 2x > 7 (sifat asosiatif) 2x > 7 5

6 2x 2 < 7 2 (kedua ruas dibagi 2, tanda ketidaksamaan berubah) x < 7 2 Misalkan kita uji dengan x =. 7 2x > 0 7 2() > 0 1 > 0 (pernyataan benar) Jadi, himpunan penyelesaian dari pertidaksamaan 7 2x > 0 adalah x x< 7 x R 2,. Contoh Soal 4 Tentukan solusi dari pertidaksamaan (x 2) 4! (x 2) 4 x 6 4 (sifat distributif) (x 6) (kedua ruas ditambah 6) x + ( 6 + 6) 10 (sifat asosiatif) x 10 x 10 (kedua ruas dibagi ) x 10 Misalkan kita uji dengan x =. (x 2) 4 ( 2) 4 4 (pernyataan benar) Jadi, solusi dari pertidaksamaan (x 2) 4 adalah x 10 atau, 10. 6

7 Contoh Soal 5 ( )! Tentukan solusi dari pertidaksamaan 1 5 x 2 1 ( 5 x) x 2 (sifat distributif) 5 1 x.2 (kedua ruas dikali, tanda ketidaksamaan berubah) x 6 (sifat distributif) 5 + x ( 5 + x) 5 + ( 6) (kedua ruas ditambah 5) (5 5) + x 1 (sifat asosiatif) x 1 Misalkan kita uji dengan x = 4. 1 ( 5 ( 4) ) (pernyataan benar) Jadi, solusi dari pertidaksamaan 1 5 x 2 ( ) adalah {x x 1, x R} atau (, 1]. Contoh Soal 6 ( )! Tentukan solusi dari pertidaksamaan 1 2 x + 1 ( 4) <1 2 x 7

8 1 ( 2 x) + 1 ( 4) <1 2 x 2 x + x 2<1 2 (sifat distributif) 6 2 x + x 2 <6.1 (kedua ruas dikali KPK dari dan 2, yaitu 6) 2 4 2x + 9x 12 < 6 (sifar distributif) 7x 8 < 6 (7x 8) + 8 < (kedua ruas ditambah 8) 7x + ( 8 + 8) < 14 (sifat asosiatif) 7x < 14 7x 7 < 14 (kedua ruas dibagi 7) 7 x < 2 Misalkan kita uji dengan x = 1. 1 ( 2 1 ) + 1 (.1 4) < <1 1 6 <1 (pernyataan benar) Jadi, solusi dari pertidaksamaan 1 2 x + 1 ( 4) <1 2 x ( ) adalah {x x < 2, x R} atau (, 2). Contoh Soal 7 Tentukan himpunan penyelesaian dari pertidaksamaan 2x 4 (x 5)! 2x 4 (x 5) 2x 4 x 15 (sifat distributif) x 15 2x 4 2x + (x 15) 2x + (2x 4) (kedua ruas ditambah -2x) ( 2x + x) 15 ( 2x + 2x) 4 (sifat asosiatif) 8

9 x 15 4 (x 15) (kedua ruas ditambah 15) x+ ( ) 11 (sifat asosiatif) x 11 Misalkan kita uji dengan x = 11. 2x 4 (x 5) (11 5) (pernyataan benar) Jadi, himpunan penyelesaian dari 2x 4 (x 5) adalah {x x 11, x R} atau [11, ). Contoh Soal 8 Tentukan himpunan penyelesaian dari pertidaksamaan 5 ( 2 x)+ 1 (4 + )>2 +6 x x! 5 ( 2 x)+ 1 (4 + )>2 +6 x x x x >2 x +6 (sifat distributif) x x >15 2 x +6 ( ) (kedua ruas dikali KPK dari 5 dan, yaitu 15) 27 18x x > 0x + 90 (sifat distributif) 47 1x > 0x x + 90 < 47 1x (0x + 90) + 1x < (47 1x) + 1x (kedua ruas ditambah 1x) (0x + 1x) + 90 < 47 + ( 1x + 1x) (sifat asosiatif) 4x + 90 < 47 (4x + 90) 90 < (kedua ruas dikurangi 90) 4x < 4 4x 4 < 4 4 x < 1 (kedua ruas dibagi 4) 9

10 Misalkan kita uji dengan x = 2. 5 ( 2( 2 ))+ 1 (4 + ( 2 )> ) ( ) >2 7 >2 (pernyataan benar) 15 Jadi, himpunan penyelesaian dari 5 ( 2 x )+ 1 (4 + x)>2 x +6 adalah {x x < 1, x R}. Contoh Soal 9 Tentukan solusi dari pertidaksamaan linear 2 < x 2 < 8! 2 < x 2 < < (x 2) + 2 < (setiap ruas ditambah 2) 4 < x + ( 2 + 2) < 10 (sifat asosiatif) 4 < x < 10 Misalkan kita uji dengan x = 5. 2 < 5 2 < 8 2 < < 8 (pernyataan benar) Jadi, solusi dari pertidaksamaan linear 2 < x 2 < 8 adalah (4, 10). Contoh Soal 10 Tentukan himpunan penyelesaian dari pertidaksamaan 2 < 4 x < 8! 2 < 4 x < < x < (setiap ruas ditambah 4) 2 < ( 4 + 4) x < 4 2 < x < 4 2 > x > 4 (setiap ruas dibagi, tanda ketidaksamaan berubah) 10

11 2 > x > 4 4 < x < 2 Misalkan kita uji dengan x = 0. 2 < 4.0 < 8 2 < 4 < 8 (pernyataan benar) 4 Jadi, solusi dari pertidaksamaan 2 < 4 x < 8 adalah x x x R < < 2,. Contoh Soal 11 Tentukan solusi dari pertidaksamaan x 2 < 2x + 1 < x 4! x 2 < 2x + 1 < x 4! Pertidaksamaan tersebut dapat juga dituliskan sebagai berikut. x 2 < 2x + 1 dan 2x + 1 < x 4 2x + 1 > x 2 dan x 4 > 2x + 1 2x + 1 > x 2 dan x 4 > 2x + 1 x + (2x + 1) > x + (x 2) (dikurangi x) dan 2x + (x 4) > 2x + (2x + 1) (ditambah 2x) ( x + 2x) + 1 > ( x + x) 2 dan ( 2x + x) 4 > ( 2x + 2x) + 1 (sifat asosiatif) x + 1 > 2 dan x 4 > 1 (x +1) 1 > 2 1 (ditambah 1) dan (x 4) + 4 > (ditambah 4) x + (1 1) > dan x + ( 4 + 4) > 5 x > dan x > 5 Pengertian pertidaksamaan di atas adalah x harus lebih besar dari dan juga harus lebih besar dari 5. Jika digambarkan pada garis bilangan, akan diperoleh: x 11

12 Dari irisan kedua daerah tersebut diperoleh x > 5. Misalkan kita uji dengan x = 6. x 2 < 2x + 1 < x < < < 1 < 14 (pernyataan benar) Jadi, solusi dari pertidaksamaan x 2 < 2x + 1 < x 4 adalah {x x > 5, x R} atau (5, ). G. APLIKASI PERTIDAKSAMAAN LINEAR Langkah-langkah penyelesaian soal aplikasi pertidaksamaan linear sama dengan aplikasi persamaan linear, yaitu sebagai berikut. 1. Mengenali variabel Kenali besaran apa saja yang ditanyakan dalam soal cerita. Besaran ini biasanya dapat ditentukan dengan membaca soal cerita secara hati-hati sampai akhir. Kemudian, buatlah pemisalan tentang besaran yang ditanyakan dengan suatu variabel, misalnya x. 2. Menerjemahkan soal cerita ke dalam bentuk aljabar Baca kembali setiap kalimat dan nyatakan semua besaran yang disebutkan dalam bentuk variabel yang telah didefinisikan pada langkah sebelumnya. Untuk mengatur informasi ini, terkadang penggunaan tabel atau diagram sangat membantu.. Membentuk model atau pertidaksamaan aljabar sesuai dengan masalah dalam soal cerita. 4. Menyelesaikan model atau pertidaksamaan aljabar yang terbentuk. Contoh Soal 12 Sebuah truk berhenti sebelum melalui suatu jembatan timbang yang memiliki total pembebanan 100 ton. Jika bagian truk mempunyai berat 40 ton dan bak truk mempunyai berat ton, berapakah berat maksimal muatan yang dapat diangkut oleh truk tersebut? Misalkan x adalah berat muatan truk dalam ton. Berat total truk dapat dinyatakan dengan 40 ton + ton + x ton = (4 + x) ton. Oleh karena total pembebanan jembatan adalah 100 ton, maka permasalahan tersebut dapat dinyatakan dengan pertidaksamaan berikut. 12

13 4 + x x (kedua ruas ditambah 4) x 57 Jadi, truk tersebut dapat mengangkut muatan dengan berat maksimal 57 ton. Contoh Soal 1 Suatu perusahaan rental mobil menawarkan pilihan tarif mobil yang hendak disewakan sebagai berikut. Biaya Tarif Pertama Tarif Kedua Biaya administrasi Rp ,00 Rp75.000,00 Biaya sewa per hari Rp ,00 Rp ,00 Jika kamu hendak menyewa mobil di perusahaan tersebut, tarif manakah yang akan kamu pilih agar biaya yang kamu keluarkan lebih murah? Misalkan x adalah lamanya waktu menyewa mobil. Tarif pertama dapat dinyatakan dengan: x Tarif kedua dapat dinyatakan dengan: x Jika kita ingin mengetahui kapan tarif kedua lebih murah dari tarif pertama, maka: x < x (kedua ruas dikurangi x) x < ( x) < (kedua ruas ditambah ) x < x < (kedua ruas dibagi ) x < Jadi, jika menyewa mobil kurang dari hari, maka akan menggunakan tarif kedua karena lebih murah. Akan tetapi, jika menyewa mobil selama hari atau lebih, maka akan menggunakan tarif pertama yang lebih murah, sesuai dengan tabel berikut. 1

14 Banyak Hari Tarif 1 Tarif 2 1 Rp50.000,00 Rp00.000,00 2 Rp ,00 Rp ,00 Rp ,00 Rp ,00 4 Rp ,00 Rp ,00 5 Rp ,00 Rp ,00 6 Rp ,00 Rp ,00 7 Rp ,00 Rp ,00 8 Rp ,00 Rp ,00 9 Rp ,00 Rp ,00 14

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL K-3 Kelas X matematika Wajib PERSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi dan solusi persamaan linear

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

1. Variabel, Konstanta, dan Faktor Variabel Konstanta Faktor

1. Variabel, Konstanta, dan Faktor Variabel Konstanta Faktor ALJABAR BENTUK ALJABAR adalah suatu bentuk matematika yang dalam penyajiannya memuat huruf-huruf untuk mewakili bilangan yang belum diketahui Bentuk aljabar dapat dimanfaatkan untuk menyelesaikan masalah

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

Modul 05 Persamaan Linear dan Persamaan Linear Simultan

Modul 05 Persamaan Linear dan Persamaan Linear Simultan Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b 2 SISTEM BILANGAN Perhatikan skema sistem bilangan berikut Bilangan Bilangan Kompleks Bilangan Real Bilangan Rasional Bilangan Irasional Bilangan Bulat Bilangan Pecahan Bilangan bulat adalah bilangan yang

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

Himpunan dari Bilangan-Bilangan

Himpunan dari Bilangan-Bilangan Program Studi Pendidikan Matematika STKIP YPM Bangko October 22, 2014 1 Khususnya dalam analisis, maka yang teristimewa penting adalah himpunan dari bilangan-bilangan riil, yang dinyatakan dengan R. Himpunan

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LINEAR SATU VARIABEL

PERSAMAAN DAN PERTIDAKSAMAAN LINEAR SATU VARIABEL PERSAMAAN DAN PERTIDAKSAMAAN LINEAR SATU VARIABEL Makalah ini Disusun guna Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu :Palupi Sri Wijayanti, M. Pd Disusun Oleh: Deviana Nian Kumandari

Lebih terperinci

LAMPIRAN A. A1. Analisis kurikulum. A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar

LAMPIRAN A. A1. Analisis kurikulum. A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar 86 LAMPIRAN A A1. Analisis kurikulum A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar A. Materi, contoh soal dan soal latihan permainan materi operasi aljabar 87 ANALISIS KURIKULUM

Lebih terperinci

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK Matematika Peminatan SMA kelas X Kurikulum 2013 BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK I. Pertidaksamaan Rasional (Bentuk Pecahan) A. Pengertian Secara umum, terdapat empat macam bentuk umum

Lebih terperinci

MATEMATIKA EKONOMI 1. Oleh : Muhammad Imron H

MATEMATIKA EKONOMI 1. Oleh : Muhammad Imron H MATEMATIKA EKONOMI 1 Oleh : Muhammad Imron H UNIVERSITAS GUNADARMA 015 Universitas Gunadarma Halaman BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur,

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI BALONGAN RENCANA PELAKSANAAN PEMBELAJARAN Kode. Dok PBM.0 Edisi/Revisi A/0 Tanggal 7 Juli 207 Halaman dari RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Lebih terperinci

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa 0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :

Lebih terperinci

Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL

Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL Standar Kompetensi Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL Memahami dan dapat melakukan operasi bentuk aljabar, persamaan dan pertidaksamaan linear satu variabel, himpunan serta dapat menggunakan

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

SMPIT AT TAQWA Beraqidah, Berakhlaq, Berprestasi

SMPIT AT TAQWA Beraqidah, Berakhlaq, Berprestasi KISI-KISI SOAL UJIAN AKHIR SEMESTER (UAS) GENAP TAHUN PELAJARAN 2015/2016 BIDANG STUDI : Matematika KELAS : 7 ( Tujuh) STANDAR KOMPETENSI / KOMPETENSI INTI : 1. Memahami sifat-sifat operasi hitung bilangan

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional SISTEM BILANGAN REAL Sebelum membahas tentag konsep sistem bilangan real, terlebih dahulu ingat kembali tentang konsep himpunan. Konsep dasar dalam matematika adalah berkaitan dengan himpunan atau kelas

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan

Lebih terperinci

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2 Kunci Jawaban Uji Kompetensi 1.1 1. a. {, 1,0,1,,3,4} BAB I Bilangan Riil Uji Kompetensi 1. 1. a. asosiatif b. memiliki elemen penting 3. 10 Uji Kompetensi 1.3 1. a. 1 4 e. 1 35 15 c. 1 8 1 1 c. 1 4 5.

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

A. UNSUR - UNSUR ALJABAR

A. UNSUR - UNSUR ALJABAR PENGERTIAN ALJABAR Bentuk ALJABAR adalah suatu bentuk matematika yang dalam penyajiannya memuat hurufhuruf untuk mewakili bilangan yang belum diketahui. Bentuk aljabar dapat dimanfaatkan untuk menyelesaikan

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

SILABUS. KOMPETENSI DASAR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN Bilangan Bulat dan Pecahan. pecahan Menyatakan bilangan dalam bentuk

SILABUS. KOMPETENSI DASAR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN Bilangan Bulat dan Pecahan. pecahan Menyatakan bilangan dalam bentuk SILABUS MATA PELAJARAN KELAS : MATEMATIKA : VII TAHUN PELAJARAN : 2016 / 2017 ALOKASI WAKTU : 5 JP / MINGGU KOMPETENSI DASAR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN Bilangan Bulat dan Pecahan 3.1 Menjelaskan

Lebih terperinci

PERSAMAAN & SISTEM PERSAMAAN LINEAR

PERSAMAAN & SISTEM PERSAMAAN LINEAR PERSAMAAN & SISTEM PERSAMAAN LINEAR Persamaan Sistem Persamaan Linear DEFINISI PERSAMAAN Persamaan adalah kalimat matematika terbuka yang memuat hubungan sama dengan. Sedangkan kalimat matematika tertutup

Lebih terperinci

PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017

PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017 PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017 Jenis Sekolah : SMP Waktu : 90 menit Mata Pelajaran : Matematika Banyak soal : 25/5 Kelas : VII Pembuat Soal : Tim Kurikulum : KTSP Bentuk Soal

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian

Lebih terperinci

BAB V. PERTIDAKSAMAAN

BAB V. PERTIDAKSAMAAN BAB V. PERTIDAKSAMAAN Pengertian: Pertidaksamaan adalah kalimat terbuka dimana ruas kiri dan kanannya dihubungkan dengan tanda pertidaksamaan > (lebih dari), < (kurang dari), (lebih besar dari dan sama

Lebih terperinci

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya; BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga

Lebih terperinci

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK Nama Siswa LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK : Kelas : KOMPETENSI DASAR: 3.2 Mendeskripsikan dan menganalisis konsep nilai mutlak dalam persamaan dan pertidaksamaan serta

Lebih terperinci

Materi Ke_2 (dua) Himpunan

Materi Ke_2 (dua) Himpunan Materi Ke_2 (dua) Himpunan 12-10-2013 OPERASI HIMPUNAN Gabungan (union), notasi U : Gabungan dari himpunan A dan himpunan B merupakan suatu himpunan yang anggota-anggotanya adalah anggota himpunan A atau

Lebih terperinci

1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1.

1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1. I. HIMPUNAN 1.1 Pengertian Himpunan 1.2 Macam-macam Himpunan 1.3 Relasi Antar Himpunan 1.4 Diagram Himpunan 1.5 Operasi pada Himpunan 1.6 Aljabar Himpunan Pengertian Himpunan 1. Apa yang dimaksud dengan

Lebih terperinci

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis.

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis. Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / AKUNTANSI DAN PENJUALAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi bilangan

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi + 5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan,

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

BAB VI BILANGAN REAL

BAB VI BILANGAN REAL BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul

Lebih terperinci

Himpunan dan Sistem Bilangan Real

Himpunan dan Sistem Bilangan Real Modul 1 Himpunan dan Sistem Bilangan Real Drs. Sardjono, S.U. PENDAHULUAN M odul himpunan ini berisi pembahasan tentang himpunan dan himpunan bagian, operasi-operasi dasar himpunan dan sistem bilangan

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

SISTEM BILANGAN BULAT

SISTEM BILANGAN BULAT SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan

Lebih terperinci

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan Unit KONSEP DASAR ALJABAR Clara Ika Sari Pendahuluan P ada unit ini kita akan mempelajari beberapa konsep dasar dalam aljabar seperti persamaan dan pertidaksamaan ang berbentuk linear dan kuadrat, serta

Lebih terperinci

BAB I HIMPUNAN. Contoh: Himpunan A memiliki 5 anggota, yaitu 2,4,6,8 dan 10. Maka, himpunan A dapat dituliskan: A = {2,4,6,8,10}

BAB I HIMPUNAN. Contoh: Himpunan A memiliki 5 anggota, yaitu 2,4,6,8 dan 10. Maka, himpunan A dapat dituliskan: A = {2,4,6,8,10} BAB I HIMPUNAN 1 1. Definisi Himpunan Definisi 1 Himpunan (set) adalah kumpulan dari objek yang berbeda. Masing masing objek dalam suatu himpunan disebut elemen atau anggota dari himpunan. Tidak ada spesifikasi

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

BAB I BILANGAN BULAT dan BILANGAN PECAHAN

BAB I BILANGAN BULAT dan BILANGAN PECAHAN BAB I BILANGAN BULAT dan BILANGAN PECAHAN A. Bilangan Bulat I. Pengertian Bilangan bulat terdiri atas bilangan bulat positif atau bilangan asli, bilangan nol dan bilangan bulat negatif. Bilangan bulat

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

6. Hasil dari... A. C. 3 B. D Hasil dari adalah A. 26 C. 14 B. 14 D Jika dan ; nilai dari adalah... A. C.

6. Hasil dari... A. C. 3 B. D Hasil dari adalah A. 26 C. 14 B. 14 D Jika dan ; nilai dari adalah... A. C. I. Pilihlah jawaban yang paling tepat 1. Suhu mula-mula sebuah ruangan adalah -5 Setelah penghangat ruangan dihidupkan suhunya naik menjadi 20 Besar kenaikan suhu ruangan tersebut adalah... 2. Hasil dari

Lebih terperinci

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA LIMIT FUNGSI SMK NEGERI 1 SURABAYA Halaman 1 BAB LIMIT FUNGSI A. Limit Fungsi Aljabar PENGERTIAN

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR Persamaan linear Bentuk umun persamaan linear satu vareabel Ax + b = 0 dengan a,b R ; a 0, x adalah vareabel Contoh: Tentukan penyelesaian dari 4x-8 = 0 Penyelesaian.

Lebih terperinci

6/28/2016 al muiz

6/28/2016 al muiz 6/28/2016 al muiz 2013 1 Unsur-unsur dalam model matematis Varia bel Kons tanta Para meter Unsur model matematis 6/28/2016 al muiz 2013 2 Variabel adalah sesuatu yang besarnya dapat berubah, misalnya sesuatu

Lebih terperinci

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar Bab Sumber: Science Encylopedia, 997 Faktorisasi Aljabar Masih ingatkah kamu tentang pelajaran Aljabar? Di Kelas VII, kamu telah mengenal bentuk aljabar dan juga telah mempelajari operasi hitung pada bentuk

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA

KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA KALKULUS UNTUK MAHASISWA 9 CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA BAB I PENDAHULUAN. Sistem Bilangan Real Dalam Uraian

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

FAQ Bilangan Bulat untuk Siswa/i SMP

FAQ Bilangan Bulat untuk Siswa/i SMP FAQ Bilangan Bulat untuk Siswa/i SMP PERTANYAAN YANG SERING DITANYAKAN SEPUTAR BILANGAN BULAT Anis Faozi CARA MUDAH BELAJAR MATEMATIKA www.caramudahbelajarmatematika.com Assalamualaikum Wr. Wb. Puji syukur

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK Mata Pelajaran : Matematika Kelas / Program : X (Sepuluh) / Akuntansi dan Penjualan Semester : Ganjil Standar Kompetensi : 1. Memecahkan masalah

Lebih terperinci

SISTEM BILANGAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Senin, 03 Oktober 2016

SISTEM BILANGAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Senin, 03 Oktober 2016 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER SISTEM BILANGAN ILHAM SAIFUDIN Senin, 03 Oktober 2016 Universitas Muhammadiyah Jember SISTEM BILANGAN 1 Sistem Bilangan

Lebih terperinci

BAB I BILANGAN BULAT dan BILANGAN PECAHAN

BAB I BILANGAN BULAT dan BILANGAN PECAHAN File asli diunduh di 8-Spensasi.blogspot.com BAB I BILANGAN BULAT dan BILANGAN PECAHAN A. Bilangan Bulat I. Pengertian Bilangan bulat terdiri atas bilangan bulat positif atau bilangan asli, bilangan nol

Lebih terperinci

Kegiatan Pembelajaran Instrumen. Tugas individu. Menjelaskan pengertian variabel, konstanta, suku, koefisien suku, suku

Kegiatan Pembelajaran Instrumen. Tugas individu. Menjelaskan pengertian variabel, konstanta, suku, koefisien suku, suku Silabus Jenjang : SMP dan MTs Mata Pelajaran : Matematika Kelas : VII Semester : 1 Standar Kompetensi : ALJABAR 2. Memahami bentuk aljabar, dan Kompetensi Dasar Materi Ajar Kegiatan Pembelajaran Indikator

Lebih terperinci

Persamaan dan Pertidaksamaan Linier Satu Variabel

Persamaan dan Pertidaksamaan Linier Satu Variabel Persamaan dan Pertidaksamaan Linier Satu Variabel Apa yang akan Anda pelajari? o Mengenal PLSV/PtLSV dalam berbagai bentuk dan variabel o Menentukan bentuk setara dari PLSV/PtLSV o Menentukan penyelesaian

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN No : 14

RENCANA PELAKSANAAN PEMBELAJARAN No : 14 RENCANA PELAKSANAAN PEMBELAJARAN No : 14 Mata Pelajaran : Matematika Kelas / Semester : V / 1 Alokasi : 2 jam pelajaran A. Standar Kompetensi 2. Memahami bentuk aljabar, persamaan dan pertidaksamaan linear

Lebih terperinci

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012 MODUL MATEMATIKA PERSIAPAN UJIAN NASIONAL 0 TAHUN AJARAN 0/0 MATERI PERSAMAAN KUADRAT DAN PERTIDAKSAMAAN KUADRAT UNTUK KALANGAN MA AL-MU AWANAH MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 0 Jalan RH. Umar

Lebih terperinci

MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.

MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen. MATEMATIKA BISNIS Modul ke: Himpunan Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Konsep Himpunan merupakan suatu konsep yang paling mendasar bagi

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

Sistem Bilangan Riil. Pendahuluan

Sistem Bilangan Riil. Pendahuluan Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

BAB I HIMPUNAN. Matematika Infomatika. Universitas Gunadarma Halaman 1

BAB I HIMPUNAN. Matematika Infomatika. Universitas Gunadarma Halaman 1 BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur, anggota, elemen) yang dirumuskan secara jelas dan tegas, sehingga dapat dibeda-bedakan antara satu dengan

Lebih terperinci

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Lebih terperinci

BILANGAN CACAH. b. Langkah 1: Jumlahkan angka satuan (4 + 1 = 5). tulis 5. Langkah 2: Jumlahkan angka puluhan (3 + 5 = 8), tulis 8.

BILANGAN CACAH. b. Langkah 1: Jumlahkan angka satuan (4 + 1 = 5). tulis 5. Langkah 2: Jumlahkan angka puluhan (3 + 5 = 8), tulis 8. BILANGAN CACAH a. Pengertian Bilangan Cacah Bilangan cacah terdiri dari semua bilangan asli (bilangan bulat positif) dan unsur (elemen) nol yang diberi lambang 0, yaitu 0, 1, 2, 3, Bilangan cacah disajikan

Lebih terperinci

PERSAMAAN & PERTIDAKSAMAAN

PERSAMAAN & PERTIDAKSAMAAN PERSAMAAN & PERTIDAKSAMAAN PERTEMUAN III Nur Edy, PhD. Tujuan Mengaplikasikan konsep persamaan dan pertidaksamaan Pokok Bahasan: Persamaan (Minggu 3 dan 4) Pertidaksamaan (Minggu 3 dan 4) Harga mutlak

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

BAB 5 Bilangan Berpangkat dan Bentuk Akar

BAB 5 Bilangan Berpangkat dan Bentuk Akar BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi

Lebih terperinci

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya BAB I A. SISTEM BILANGAN REAL Sistem bilangan real dan berbagai sifatnya merupakan basis dari kalkulus. Sistem bilangan real terdiri dari himpunan unsur yang dinamakan Bilangan Real yang sering dinyatakan

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

PERSAMAAN DAN PERTIDAKSAMAAN LINEAR Kegiatan Belajar Mengajar 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR Drs.Zainuddin, M.Pd Kegiatan belajar mengajar 2 ini akan membahas tentang persamaan dan pertidaksamaan linear. Kegiatan belajar mengajar

Lebih terperinci

Bahan ajar PERTIDAKSAMAAN Mk : kalkulus 1 Dosen : yayat suyatna

Bahan ajar PERTIDAKSAMAAN Mk : kalkulus 1 Dosen : yayat suyatna Bahan ajar PERTIDAKSAMAAN Mk : kalkulus 1 Dosen : yayat suyatna STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat. KOMPETENSI

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 5 KUANTOR II: METODE MEMILIH (c) Hendra Gunawan (2015) 2 Masih Berurusan dengan Kuantor Sekarang kita akan membahas metode memilih,

Lebih terperinci

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Standar Kompetensi KOMPETENSI DASAR 1.1 Melakukan operasi hitung bilangan bulat. : SMP : VII : MATEMATIKA

Lebih terperinci

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3 MATRIKS a. Konsep Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegipanjang dan diletakkan di dalam kurung biasa ( ) atau

Lebih terperinci

Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.

Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Modul 03 HIMPUNAN I. Cara Menyatakan Himpunan PENGERTIAN Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Contoh: Himpunan siswi kelas III SMU 6 tahun 1999-2000 yang

Lebih terperinci

2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama.

2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama. A. OPERASI BENTUK ALJABAR 1. Pengertian suku, koefisien, variabel, dan konstanta bentuk aljabar Bentuk 8x + 17 merupakan bentuk aljabar dengan x sebagai variabel, 8 sebagai koefisien, dan 17 adalah konstant

Lebih terperinci

Kata-kata Mutiara. Lelah dalam belajar itu wajar Tapi... tetap semangat dan jangan menyerah dalam belajar...!!!

Kata-kata Mutiara. Lelah dalam belajar itu wajar Tapi... tetap semangat dan jangan menyerah dalam belajar...!!! Persamaan dan Pertidaksamaan Linear dengan Satu Variabel 1 Kata-kata Mutiara Lelah dalam belajar itu wajar Tapi... tetap semangat dan jangan menyerah dalam belajar...!!! Jika seseorang bepergian dengan

Lebih terperinci