PERAMALAN DBIT AIR SUNGAI BRANTAS DENGAN METODE GSTAR DAN ARIMA

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERAMALAN DBIT AIR SUNGAI BRANTAS DENGAN METODE GSTAR DAN ARIMA"

Transkripsi

1 PERAMALAN DBIT AIR SUNGAI BRANTAS DENGAN METODE GSTAR DAN ARIMA HENNY DWI KHOIRUN NISA Dosen Pembimbing Dra Nuri Wahyuningsih, MKes Seminar Tugas Ahir Senin, 19 juli 2010

2 Latar belakang 1. Sungai Brantas, dengan batas administrasi meliputi 9 kabupaten dan 6 kota atau sebesar 26,5% dari wilayah propinsi Jawa Timur. 2. Kawasan rawan banjir adalah kawasan yang setiap musim hujan mengalami genangan lebih dari enam jam pada saat hujan turun dalam keadaan normal. 3. Agar ada Perkiraan kapan banjir itu akan terjadi, maka perlu kirannya untuk melakukan peramalan debit air sungai Brantas. 4. Model GSTAR ini dapat diterapkan pada data debit air sungai Brantas. Dengan diperoleh model GSTAR, maka diharapkan akan diketahui hasil peramalan debit air sungai Brantas.

3 Perumusan Masalah Bagaimana 1. akurasi peramalan 2. ramalan terbaik Batasan Masalah 1. Data yang digunakan skunder 2. Lokasi berdekatan 3. Model GSTAR dengan bobot lokasi seragam dan invers jarak Tujuan Menentukan 1. model terbaik 2. ramalan dari model terbaik Manfaat 1. Dapat mengetahui debit air sungai pada periode yang akan datang 2. Memberikan informasi

4 TINJAUAN PUSTAKA Model ARIMA dimana : orde AR nonmusiman, orde differencing nonmusiman, orde MA nonmusiman koefisien komponen AR nonmusiman dengan derajat p koefisien komponen MA nonmusiman dengan derajat q backshift operator nonmusiman

5 Lanjutan... Model GSTAR Dengan: 1. dan 2.Pembobot dipilih sedemikian hingga dan

6 Dua bobot lokasi yang digunakan dalam Dua bobot lokasi yang digunakan dalam penelitian ini adalah: 1. Bobot seragam atau Uniform. 2. Bobot invers jarak. Lanjutan

7 METODELOGI PENELITIAN 1. Data yang digunakan dalam penelitian ini didapatkan dari Biro Pengelolaan Data dan Lingkungan. 2. Variabel yang digunakan dalam penelitian ini Jumlah debit air sungai di out mrican (Z 1 ). Jumlah debit air sungai di kertosono (Z 2 ). Jumlah debit air sungai di ploso (Z 3 ).

8 METODE ANALISIS GSTAR Menentukan orde GSTAR Mulai Estimasi parameter model GSTAR Data debit air sungai Brantas Apakah data stasioner? ya Tidak Differencing atau tranformasi Apakah model sesuai? ya Peramalan Tidak Menentukan MPACF, MACF, dan nilai AIC A

9 LANJUTAN ARIMA Menentukan orde ARIMA Mulai Estimasi parameter model ARIMA Data debit air sungai Brantas Apakah data stasioner? ya Tidak Differencing atau tranformasi Apakah model sesuai? ya Peramalan Tidak Menentukan PACF dan ACF B

10 LANJUTAN A B Menentukan model terbaik berdasarkan RMSE selesai

11 Plot Box-Cox

12 MACF dan MPACF

13 Nilai AIC

14 Dua bobot lokasi 1. Bobot seragam 2. Bobot invers jarak

15 Taksiran Parameter model GSTAR(2 1 )-I(1)

16 Taksiran Parameter Model GSTAR(2 1 )-I(1) yang Signifikan Model yang dihasilkan untuk bobot seragam Model yang dihasilkan untuk bobot invers jarak

17 Model GSTAR(2 1 )-I(1) dengan lokasi Bobot Seragam Model GSTAR(2 1 )-I(1) dengan lokasi Bobot Invers Jarak

18 Cek diagnosa White noise Multivariate normal

19 Plot ACF

20 Hasil Estimasi parameter Dugaan Model ARIMA dan Hasil Uji-t untuk signifikasi

21 White noise Cek Diagnosa

22 Normal Lanjutan

23 RMSE Model one step forecast Model GSTAR(2 1 )-I(1) dengan Bobot Invers Jarak

24 Data debit air sungai brantas

25 Hasil ramalan model terbaik

26 Syntax sas untuk model var/gstar data DEBITAIR; input Z1 Z2 Z3; datalines; ; run; proc varmax data=debitair; model Z1 Z2 Z3/ p=1 dify(1)lagmax=10 minic=(p=9)noint noint print=(corry pcorr);

27 Lanjutan

28 Syntax SAS untuk model ARIMA data DATADEBIT; input Z1; datalines; ; proc arima data=datadebit out=out1; identify var=z1; run; estimate p=1 noconstant; run; forecast lead=30 out=out2; run; data DATADEBIT; input Z2; datalines; ; proc arima data=datadebit out=out1; identify var=z2; run; estimate p=1 noconstant; run; forecast lead=30 out=out2; run; data DATADEBIT; input Z3; datalines; ; proc arima data=datadebit out=out1; identify var=z3(1); run; estimate p=(3,10) q=(3,13) noconstant; run; forecast lead=30 out=out2; run;

29 Hasil ramalan untuk lokasi Z1

30 Hasil ramalan untuk lokasi Z2

31 Hasil ramalan untuk lokasi Z3

32 Kesimpulan 1. Model GSTAR(2 1 )-I(1) dengan Bobot Invers Jarak 2. Berdasarkan nilai rata-rata RMSE terkecil, model terbaik yang dihasilkan adalah model GSTAR(2 1 )- I(1) dengan bobot lokasi invers jarak. Nilai rata-rata RMSE dari model metode peramalan one step forecast adalah 165,5078 m 3 /s

33 Saran Untuk penelitian selanjutnya, perlu dilakukan kajian lebih lanjut mengenai hubungan spasial antar variabel dan mencoba menggunakan variabel yang lebih dari 3

34 DAFTAR PUSTAKA Armstrong, J.S. (2006). Significance Test Harm Progress in Forecasting. International Journal of Forecasting, vol 23, pp Borovkova, S.A., dkk. (2002). Generalized STAR model with experimental weights. In M. Stasionopoulos and G. Toulomi (Eds.). Proceedings of the 17 th International Workshop on Statistical Modeling, Chania, pp Borovkova, S.A., dkk. (2008). Consistency and asymptotic normality of least square estimators in generalized STAR models. Journal compilation Statistica Neerlandica, Neerlandica, pp Box, G.E.P., dkk. (1994). Time Series Analysis: Forcasting and Control. 3 rd edition, Englewood Cliffs: Prentice Hall. Cryer, J.D. (1986). Time Series Analysis. PWS-Kent Publishing Co: Boston. Kostenko, A.V. dan R.J. Hyndman. (2008). Forecasting without significance test?. RobJHynman.com/papers/sst2.pdf. Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis, New York: Springger. Pfeifer, P.E. dan S.J. Deutsch. (1980a). A Three Stage Iterative Procedure for Space-Time Modeling. Technometrics, 22 (1), Pfeifer, P.E. dan S.J. Deutsch. (1980b). Identification and Interpretation of First Orde Space-Time ARMA Models. Technometrics, 22 (1), Ruchjana, B.N. (2002). Pemodelan Kurva Produksi Minyak Bumi Menggunakan Model Generalisasi S-TAR. Forum Statistika dan Komputasi, IPB, Bogor. Shofiyah, M.A., dkk. (2009). Peramalan Data Produksi Gas di Joint Operating Body Pertamina-Petrochina East Java (JOB P-PEJ) dengan Model GSTAR dan ARIMA. Suhartono dan R.M. Atok. (2006). Pemilihan bobot lokasi yang optimal pada model GSTAR. Prosiding Konferensi Nasional Matematika XIII, (h ). Semarang, Indonesia: Universitas Negeri Semarang. Suhartono dan Subanar. (2007). Some Comments on the Theorem Providing Stasionerity Condition for GSTAR Models in the Paper by Borovkova et al. Journal of The Indonesian Mathematical Siciety (MIHMI), 13 (1), Suhartono dan Subanar (2006). The Optimal Determination of Space Weight in GSTAR Model by using Cross-correlation Inference. Journal of Quantitative Method, Journal Devoted to the Mathematical and Statistical Aplication in Various Field, 2 (2), Wei, W.W.S. (2006). Time Series Analysis Univariate and Multivariate Methods, second edition, Pearson Education, Inc.

35

PERAMALAN DEBIT AIR SUNGAI BRANTAS DENGAN MODEL GSTAR DAN ARIMA. Abstrak

PERAMALAN DEBIT AIR SUNGAI BRANTAS DENGAN MODEL GSTAR DAN ARIMA. Abstrak PERAMALAN DEBIT AIR SUNGAI BRANTAS DENGAN MODEL GSTAR DAN ARIMA Oleh: Henny Dwi Khoirun Nisa 25 44 Dosen Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH Tri Mulyaningsih ), Budi Nurani R ), Soemartini 3) ) Mahasiswa Program Magister Statistika Terapan Universitas Padjadjaran

Lebih terperinci

Model Generalized Space Time Autoregressive

Model Generalized Space Time Autoregressive Model Generalized Space Time Autoregressive (GSTAR) Orde 1 dan Penerapannya pada Prediksi Harga Beras di Kota Bitung, Kabupaten Minahasa dan Kabupaten Minahasa Selatan 1 Youla M. A. Latupeirissa, 2 Nelson

Lebih terperinci

Kurniawati, Sri Sulistijowati Handajani, dan Purnami Widyaningsih Program Studi Matematika FMIPA UNS

Kurniawati, Sri Sulistijowati Handajani, dan Purnami Widyaningsih Program Studi Matematika FMIPA UNS PERBANDINGAN PENERAPAN MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE DENGAN PEMBOBOT INVERS JARAK DAN NORMALISASI KORELASI SILANG PADA LAJU INFLASI DI KOTA SURAKARTA, YOGYAKARTA, DAN SURABAYA Kurniawati,

Lebih terperinci

Pemodelan Inflasi di Kota Semarang, Yogyakarta, dan Surakarta dengan pendekatan GSTAR

Pemodelan Inflasi di Kota Semarang, Yogyakarta, dan Surakarta dengan pendekatan GSTAR JURNAL SAINS DAN SENI POMITS Vol., No., (0) 7-0 (0-X Prin D-7 Pemodelan Inflasi di Kota Semarang, Yogyakarta, dan Surakarta dengan pendekatan GSTAR Laily Awliatul Faizah dan Setiawan Jurusan Statistika,

Lebih terperinci

Model Generalized Space Time Autoregressive (GSTAR) dengan Analisis Data Menggunakan Software R

Model Generalized Space Time Autoregressive (GSTAR) dengan Analisis Data Menggunakan Software R Model Generalized Space Time Autoregressive (GSTAR) dengan Analisis Data Menggunakan Software R Yulianti Talungke 1, Nelson Nainggolan 2, Djoni Hatidja 3 1 Program Studi Matematika, FMIPA, UNSRAT Manado,

Lebih terperinci

PEMODELAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SEASONAL PADA DATA JUMLAH WISATAWAN MANCANEGARA EMPAT KABUPATEN/KOTA DI JAWA TENGAH

PEMODELAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SEASONAL PADA DATA JUMLAH WISATAWAN MANCANEGARA EMPAT KABUPATEN/KOTA DI JAWA TENGAH ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman 1017-1026 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SEASONAL

Lebih terperinci

Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta 1.

Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta 1. MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE INTEGRATED DENGAN PEMBOBOT NORMALISASI KORELASI SILANG PADA PERKEMBANGAN ASET BPR DI PROVINSI JAWA BARAT, JAWA TENGAH, DAN JAWA TIMUR Susi Susanti ), Sri Sulistijowati

Lebih terperinci

PERBANDINGAN HASIL ESTIMASI PARAMETER GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) DENGAN VARIABEL EKSOGEN BERTIPE METRIK

PERBANDINGAN HASIL ESTIMASI PARAMETER GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) DENGAN VARIABEL EKSOGEN BERTIPE METRIK PERBANDINGAN HASIL ESTIMASI PARAMETER GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) DENGAN VARIABEL EKSOGEN BERTIPE METRIK Reza Mubarak ) dan Suhartono ) ) Program Pasca Sarjana Jurusan Statistika, Institut

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN 4 KOTA DI JAWA TENGAH MENGGUNAKAN MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)

PERAMALAN INDEKS HARGA KONSUMEN 4 KOTA DI JAWA TENGAH MENGGUNAKAN MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 553-562 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERAMALAN INDEKS HARGA KONSUMEN 4 KOTA DI JAWA TENGAH MENGGUNAKAN

Lebih terperinci

SKRIPSI JURUSAN STATISTIKA PERAMALAN INDEKS HARGA KONSUMEN 4 KOTA DI JAWA TENGAH MENGGUNAKAN MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)

SKRIPSI JURUSAN STATISTIKA PERAMALAN INDEKS HARGA KONSUMEN 4 KOTA DI JAWA TENGAH MENGGUNAKAN MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) PERAMALAN INDEKS HARGA KONSUMEN 4 KOTA DI JAWA TENGAH MENGGUNAKAN MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SKRIPSI Disusun Oleh : LINA IRAWATI NIM : 24010211140072 JURUSAN STATISTIKA FAKULTAS

Lebih terperinci

1 Novita Dya Gumanti, 2 Sutikno, 3 Setiawan

1 Novita Dya Gumanti, 2 Sutikno, 3 Setiawan PENERAPAN METODE GSTAR DENGAN PENDEKATAN SPATIO-TEMPORAL UNTUK MEMODELKAN KEJADIAN DEMAM BERDARAH (STUDI KASUS: JUMLAH PENDERITA DEMAM BERDARAH DI KOTA SURABAYA) Novita Dya Gumanti, Sutikno, Setiawan Mahasiswa

Lebih terperinci

PEMODELAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SEASONAL PADA DATA JUMLAH WISATAWAN MANCANEGARA EMPAT KABUPATEN/KOTA DI JAWA TENGAH

PEMODELAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SEASONAL PADA DATA JUMLAH WISATAWAN MANCANEGARA EMPAT KABUPATEN/KOTA DI JAWA TENGAH PEMODELAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SEASONAL PADA DATA JUMLAH WISATAWAN MANCANEGARA EMPAT KABUPATEN/KOTA DI JAWA TENGAH SKRIPSI Disusun oleh: RONNY GUSNADI 24010211140083 JURUSAN STATISTIKA

Lebih terperinci

MODEL STAR DENGAN BOBOT SERAGAM SEBAGAI PENDETEKSI DEBIT AIR SUNGAI CITARUM

MODEL STAR DENGAN BOBOT SERAGAM SEBAGAI PENDETEKSI DEBIT AIR SUNGAI CITARUM JMP : Vol. 8 No. 2, Des. 2016, hal. 81-88 MODEL STAR DENGAN BOBOT SERAGAM SEBAGAI PENDETEKSI DEBIT AIR SUNGAI CITARUM Kankan Parmikanti Departemen Matematika FMIPA Universitas Padjadjaran parmikanti@unpad.ac.id

Lebih terperinci

PERAMALAN OUTFLOW UANG KARTAL DI BANK INDONESIA WILAYAH JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)

PERAMALAN OUTFLOW UANG KARTAL DI BANK INDONESIA WILAYAH JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 3, Tahun 2016, Halaman 351-360 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERAMALAN OUTFLOW UANG KARTAL DI BANK INDONESIA WILAYAH JAWA

Lebih terperinci

Model Space Time Autoregressive (STAR) Orde 1 Dan Penerapannya Pada Prediksi Harga Beras Di Kota Manado, Tomohon Dan Kabupaten Minahasa Utara

Model Space Time Autoregressive (STAR) Orde 1 Dan Penerapannya Pada Prediksi Harga Beras Di Kota Manado, Tomohon Dan Kabupaten Minahasa Utara Model Space Time Autoregressive (STAR) Orde 1 Dan Penerapannya Pada Prediksi Harga Beras Di Kota Manado, Tomohon Dan Kabupaten Minahasa Utara 1 Rahmadania Paita, 2 Nelson Nainggolan, 3 Yohanes A.R. Langi

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

PERAMALAN DERET WAKTU MULTIVARIAT SEASONAL PADA DATA PARIWISATA DENGAN MODEL VAR-GSTAR

PERAMALAN DERET WAKTU MULTIVARIAT SEASONAL PADA DATA PARIWISATA DENGAN MODEL VAR-GSTAR PERAMALAN DERET WAKTU MULTIVARIAT SEASONAL PADA DATA PARIWISATA DENGAN MODEL VAR-GSTAR S-36 SEASONAL MULTIVARIAT TIME SERIES FORECASTING ON TOURISM DATA BY USING VAR-GSTAR MODEL Dhoriva Urwatul Wutsqa

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Oleh : Defi Rachmawati 1311 105 007 Dosen Pembimbing :

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-300

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-300 JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (203) 233-20 (230-9X Print) D-300 Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R- dengan Metode Fungsi Transfer

Lebih terperinci

SEASONAL ARIMA Arum Handini Primandari

SEASONAL ARIMA Arum Handini Primandari SEASONAL ARIMA Arum Handini Primandari ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts ARIMA Musiman Pola musiman dalam runtun waktu adalah perubahan pola yang berulang dalam kurun waktu s;

Lebih terperinci

PERAMALAN PRODUKSI PADI DENGAN ARIMA, FUNGSI TRANSFER DAN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

PERAMALAN PRODUKSI PADI DENGAN ARIMA, FUNGSI TRANSFER DAN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM PERAMALAN PRODUKSI PADI DENGAN ARIMA, FUNGSI TRANSFER DAN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM Oleh: ADI WIJAYA NRP. 1310201720 Dosen Pembimbing: Dr. Suhartono, S.Si, M.Sc PROGRAM MAGISTER STATISTIKA

Lebih terperinci

PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION

PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION Oleh NYOMAN PANDU WIRADARMA (1308 100 052) Dosen Pembimbing 1

Lebih terperinci

BABI PENDAHULUAN. 1.1 Latar Belakang

BABI PENDAHULUAN. 1.1 Latar Belakang BABI PENDAHULUAN 1.1 Latar Belakang Peramalan yang tepat dari suatu data penjualan produk di waktu-waktu yang akan dating merupakan salah satu dasar utama perencanaan produksi, inventori, dan distribusi

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer 1 Faridah Yuliani dan 2 Dr. rer pol Heri Kuswanto 1,2 Jurusan Statistika

Lebih terperinci

PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER

PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER M. Insanil Kamil 0 0 0 m.insanil_kml@yahoo.com Dosen pembimbing:

Lebih terperinci

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER I Ketut Putra Adnyana 1, I Wayan Sumarjaya 2, I Komang Gde Sukarsa 3 1 Jurusan Matematika, Fakultas FMIPA

Lebih terperinci

PERAMALAN OUTFLOW UANG KARTAL DI BANK INDONESIA WILAYAH JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)

PERAMALAN OUTFLOW UANG KARTAL DI BANK INDONESIA WILAYAH JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) PERAMALAN OUTFLOW UANG KARTAL DI BANK INDONESIA WILAYAH JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SKRIPSI Disusun Oleh : AUKHAL MAULA FINA NIM. 24010212120014 DEPARTEMEN STATISTIKA

Lebih terperinci

APLIKASI MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE PADA DATA PENCEMARAN UDARA DI KOTA SURABAYA

APLIKASI MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE PADA DATA PENCEMARAN UDARA DI KOTA SURABAYA Vol. 7, No. 2, Desember 2 APLIKASI MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE PADA DATA PENCEMARAN UDARA DI KOTA SURABAYA Dhoriva Urwatul Wutsqa, 2 Suhartono, 2 Brodjol Sutijo, S.U. Program studi Matematika

Lebih terperinci

BAB I PENDAHULUAN. Data yang mempunyai keterkaitan dengan kejadian-kejadian sebelumnya

BAB I PENDAHULUAN. Data yang mempunyai keterkaitan dengan kejadian-kejadian sebelumnya BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data yang mempunyai keterkaitan dengan kejadian-kejadian sebelumnya seringkali dijumpai dalam kehidupan sehari-hari. Data semacam ini disebut data runtun waktu

Lebih terperinci

OUTLINE. Pendahuluan. Tinjauan Pustaka. Metodologi Penelitian. Analisis dan Pembahasan. Kesimpulan dan Saran

OUTLINE. Pendahuluan. Tinjauan Pustaka. Metodologi Penelitian. Analisis dan Pembahasan. Kesimpulan dan Saran OUTLINE Pendahuluan Tinjauan Pustaka Metodologi Penelitian Analisis dan Pembahasan Kesimpulan dan Saran LATAR BELAKANG Listrik elemen terpenting dalam kehidupan manusia Penelitian Sebelumnya Masyarakat

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: NURKHOIRIYAH 1205100050 Dosen Pembimbing: Dra. Nuri Wahyuningsih, M.Kes. 1 Latar

Lebih terperinci

ABSTRAK. Kata kunci : Data Runtun Waktu, Indeks Harga Konsumen, ARIMA, Analisis Intervensi, Fungsi Step, Peramalan. I Pendahuluan

ABSTRAK. Kata kunci : Data Runtun Waktu, Indeks Harga Konsumen, ARIMA, Analisis Intervensi, Fungsi Step, Peramalan. I Pendahuluan Analisis Model Intervensi Fungsi Step Terhadap Indeks Harga Konsumen (IHK) Zuhairini Azzahra A 1, Suyono 2, Ria Arafiyah 3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

Peramalan merupakan alat bantu yang penting dalam penyusunan rencana yang efektif dan efisien. Pada

Peramalan merupakan alat bantu yang penting dalam penyusunan rencana yang efektif dan efisien. Pada Estimasi Parameter Autoregressive Integrated Moving Average (ARIMA) Menggunakan Algoritma Particle Swarm Optimization (PSO) (Studi Kasus: Peramalan Curah Hujan DAS Brangkal, Mojokerto) Meytaliana Factmawati,

Lebih terperinci

BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE. Model GSTAR adalah salah satu model yang banyak digunakan untuk

BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE. Model GSTAR adalah salah satu model yang banyak digunakan untuk BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE 3.1 Indeks Gini Model GSTAR adalah salah satu model yang banyak digunakan untuk memodelkan dan meramalkan data deret waktu dan lokasi. Model ini merupakan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 36 HASIL DAN PEMBAHASAN Deskripsi Data Penelitian ini diawali dengan melihat ketergantungan antar lokasi dan waktu. Lokasi-lokasi dalam penelitian ini saling berhubungan, hal ini ditunjukkan dengan nilai

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP SKRIPSI Disusun oleh : DITA RULIANA SARI NIM. 24010211140084 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q)

KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q) UJIAN TUGAS AKHIR KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q) Disusun oleh : Novan Eko Sudarsono NRP 1206.100.052 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

Tugas Akhir. Peramalan Penjualan Produk Minuman TB Wilayah Pemasaran Jawa Timur dengan Menggunakan Metode VARIMA. Oleh : C. Ade Kurniawan

Tugas Akhir. Peramalan Penjualan Produk Minuman TB Wilayah Pemasaran Jawa Timur dengan Menggunakan Metode VARIMA. Oleh : C. Ade Kurniawan Tugas Akhir Peramalan Penjualan Produk Minuman TB Wilayah Pemasaran Jawa Timur dengan Menggunakan Metode VARIMA Oleh : C. Ade Kurniawan 1304100022 Latar Belakang Ketidakpastian dalam aliran hulu supply

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari, seringkali dijumpai data dari suatu kejadian

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari, seringkali dijumpai data dari suatu kejadian BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari, seringkali dijumpai data dari suatu kejadian yang mempunyai keterkaitan dengan kejadian pada waktu-waktu sebelumnya. Data semacam

Lebih terperinci

ABSTRAK. Kata kunci: laju inflasi, GSTAR, invers jarak, normalisasi korelasi silang. iii

ABSTRAK. Kata kunci: laju inflasi, GSTAR, invers jarak, normalisasi korelasi silang. iii ABSTRAK Kurniawati. 2016. PERBANDINGAN PENERAPAN MODEL GENERA- LIZED SPACE TIME AUTOREGRESSIVE DENGAN PEMBOBOT INVERS JARAK DAN NORMALISASI KORELASI SILANG PADA LAJU INFLASI KO- TA SURAKARTA, YOGYAKARTA,

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS Oleh : Agustini Tripena ABSTRACT In this paper, forecasting the consumer price index data and inflation. The method

Lebih terperinci

Meytaliana F Dosen Pembimbing: Prof. Dr. Basuki Widodo, M.Sc. Dra. Nuri Wahyuningsih, M.Kes.

Meytaliana F Dosen Pembimbing: Prof. Dr. Basuki Widodo, M.Sc. Dra. Nuri Wahyuningsih, M.Kes. ESTIMASI PARAMETER AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MENGGUNAKAN ALGORITMA PARTICLE SWARM OPTIMIZATION (PSO) (STUDI KASUS PERAMALAN CURAH HUJAN DAS BRANGKAL MOJOKERTO) Meytaliana F. 1210100014

Lebih terperinci

PERBANDINGAN MODEL STAR DAN GSTAR UNTUK PERAMALAN INFLASI DUMAI, PEKANBARU, DAN BATAM

PERBANDINGAN MODEL STAR DAN GSTAR UNTUK PERAMALAN INFLASI DUMAI, PEKANBARU, DAN BATAM PERBANDINGAN MODEL STAR DAN GSTAR UNTUK PERAMALAN INFLASI DUMAI, PEKANBARU, DAN BATAM Gama Putra Danu Sohibien Jurusan Statistika, Sekolah Tinggi Ilmu Statistik Jakarta Email : gamaputra@stis.ac.id ABSTRAK

Lebih terperinci

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q)

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) SIDANG TUGAS AKHIR KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) Disusun oleh : Ratna Evyka E.S.A NRP 1206.100.043 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura Hak cipta dilindungi Undang-Undang Cetakan I, Agustus Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura ISBN: ---- Deskripsi halaman sampul : Gambar yang ada pada cover

Lebih terperinci

PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32

PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32 PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32 Nanang WIdodo Penelid Staslun Pengamat Dlrgantara Watukosek, LAPAN ABSTRACT The time series of the monthly number

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-249

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-249 JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) 2337-3520 (2301-928X Print) D-249 Analisis Fungsi Transfer pada Harga Cabai Merah yang Dipengaruhi oleh Curah Hujan Di Surabaya Putri Rintan Aryasita,

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 59 67 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA ANNISA UL UKHRA Program Studi Matematika,

Lebih terperinci

Generated by Foxit PDF Creator Foxit Software For evaluation only.

Generated by Foxit PDF Creator Foxit Software  For evaluation only. 20 TINJAUAN PUSTAKA Titik Panas Menurut Brown dan Davis (1973), kebakaran hutan adalah pembakaran yang tidak terkendali dan terjadi dengan tidak sengaja pada areal tertentu yang kemudian menyebar secara

Lebih terperinci

BAB V KESIMPULAN DAN SARAN

BAB V KESIMPULAN DAN SARAN BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Berdasarkan analisis data dan pembahasan pada Bab IV, kesimpulan penelitian ini adalah sebagai berikut. 1. Model VARIMA yang sesuai untuk data penjualan obat I,

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap Berlaku mulai: Genap/2010 MATA KULIAH : TEKNIK PERAMALAN KODE MATA KULIAH/ SKS : 410103096 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING

ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING Nama : Zahroh Atiqoh NRP : 1205 100 021 Dosen Pembimbing : 1. Dra. Nuri Wahyuningsih, MKes 2. Drs. Sulistiyo,

Lebih terperinci

IDENTIFIKASI MODEL FUNGSI TRANSFER MENGGUNAKAN PEMODELAN ARIMA OTOMATIS GOMEZ-MARAVALL (STUDI KASUS PADA DATA INFLASI INDONESIA)

IDENTIFIKASI MODEL FUNGSI TRANSFER MENGGUNAKAN PEMODELAN ARIMA OTOMATIS GOMEZ-MARAVALL (STUDI KASUS PADA DATA INFLASI INDONESIA) IDENTIFIKASI MODEL FUNGSI TRANSFER MENGGUNAKAN PEMODELAN ARIMA OTOMATIS GOMEZ-MARAVALL (STUDI KASUS PADA DATA INFLASI INDONESIA) Oleh: R I O J A K A R I A NPM. 140720090023 T E S I S Untuk memenuhi salah

Lebih terperinci

Ike Fitriyaningsih.

Ike Fitriyaningsih. Identifikasi Model dan Bobot Lokasi GSTAR (Generalized Spatio Temporal Autoregressive) Jumlah Wisatawan Tiga Tempat Wisata di Kawasan Danau Toba Identification and Location Weight GSTAR (Generalized Spatio

Lebih terperinci

ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA

ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA PEMODELAN NILAI INFLASI KOTA SURABAYA, MALANG DAN KEDIRI BERDASARKAN PENDEKATAN GENERALIZED SPACE TIME AUTOREGRESSIVE SKRIPSI MUHINDRO ASRIONO PROGRAM STUDI S-1 STATISTIKA DEPARTEMEN MATEMATIKA FAKULTAS

Lebih terperinci

Jurnal Dinamika, April 2015, halaman Vol. 06. No. 1 ISSN

Jurnal Dinamika, April 2015, halaman Vol. 06. No. 1 ISSN Jurnal Dinamika, April 2015, halaman 61-66 Vol. 06. No. 1 ISSN 2087-7889 SIMULASI PERBANDINGAN METODE PERAMALAN MODEL GENERALIZED SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (GSARIMA) DENGAN SEASONAL

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH

PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH Jurnal Matematika UNAND Vol. VI No. 1 Hal. 1 8 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH

Lebih terperinci

Pemodelan ARIMA Non- Musim Musi am

Pemodelan ARIMA Non- Musim Musi am Pemodelan ARIMA Non- Musimam ARIMA ARIMA(Auto Regresif Integrated Moving Average) merupakan suatu metode analisis runtun waktu(time series) ARIMA(p,d,q) Dengan AR : p =orde dari proses autoreggresif I

Lebih terperinci

PERAMALAN BEBAN HARIAN PEMAKAIAN LISTRIK WILAYAH JAWA-BALI

PERAMALAN BEBAN HARIAN PEMAKAIAN LISTRIK WILAYAH JAWA-BALI PERAMALAN BEBAN HARIAN PEMAKAIAN LISTRIK WILAYAH JAWA-BALI Ibrahim Ali Marwan dan Drs. Kresnayana Yahya, M.Sc 2 Mahasiswa Jurusan Statistika, ITS, Surabaya 2 Dosen Pembimbing, Jurusan Statistika, ITS,

Lebih terperinci

Penerapan Model ARIMA

Penerapan Model ARIMA Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 016 1 Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu: 1. Penentuan model tentatif (spesifikasi model)

Lebih terperinci

Pemodelan Fungsi Transfer Multi Input

Pemodelan Fungsi Transfer Multi Input Jurnal Informatika Mulawarman Vol 4 No. Juli 9 8 Pemodelan Fungsi Transfer Multi Input M. Fathurahman *) Program Studi Statistika, FMIPA Universitas Mulawarman Jl. Barong Tongkok no.5 Kampus Unmul Gn.

Lebih terperinci

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer OLEH : DWI LISTYA NURINI 1311 105 021 DOSEN PEMBIMBING : DR. BRODJOL SUTIJO SU, M.SI Bursa saham atau Pasar

Lebih terperinci

PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS

PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS SKRIPSI Disusun Oleh : ULFAH SULISTYOWATI 24010210120052 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman Online di:

JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman Online di: JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 31-40 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS DATA RUNTUN WAKTU DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Lebih terperinci

OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA)

OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA) OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA) Ni Putu Deviyanti 1, Ni Ketut Tari Tastrawati 2, I Wayan Sumarjaya 3 1 Jurusan

Lebih terperinci

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL...

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL... HALAMAN PERSETUJUAN PEMBIMBING...iii HALAMAN PENGESAHAN...iv MOTTO... v HALAMAN PERSEMBAHAN... vi KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv PERNYATAAN...

Lebih terperinci

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA Seminar Hasil Tugas Akhir Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

Lebih terperinci

Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode

Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode ARIMA Box Jenkins Oleh : Winda Eka Febriana 1307 030 002 Pembimbing : Dra. Wiwiek Setya Winahju, MS Latar Belakang PMI Merupakan

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Jeine Tando 1, Hanny Komalig 2, Nelson Nainggolan 3* 1,2,3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA Gumgum Darmawan 1), Suhartono 2) 1) Staf Pengajar Jurusan Statistika FMIPA UNPAD 2) Staf Pengajar

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 5 (1) (2016) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ANALISIS PERBANDINGAN MENGGUNAKAN ARIMA DAN BOOTSTRAP PADA PERAMALAN NILAI EKSPOR INDONESIA Ari Cynthia, Sugiman,

Lebih terperinci

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH Jurnal Matematika UNAND Vol. VI No. 1 Hal. 110 117 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

Lebih terperinci

Model Penjualan Plywood PT. Linggarjati Mahardika Mulia

Model Penjualan Plywood PT. Linggarjati Mahardika Mulia Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami) Vol., No., Juli 7, Hal. 52-57 p-issn: 25-4596; e-issn: 25-4X Halaman 52 Model Penjualan Plywood PT. Linggarjati Mahardika Mulia

Lebih terperinci

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA Seminar Nasional Statistika IX Institut Teknologi Sepuluh Nopember, 7 November 2009 Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA 1 Harnum Annisa Prafitia dan 2 Irhamah

Lebih terperinci

PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DENGAN MODEL FUNGSI TRANSFER

PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DENGAN MODEL FUNGSI TRANSFER PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DENGAN MODEL FUNGSI TRANSFER (Studi Kasus Indeks Harga Saham Gabungan dan Harga Minyak Mentah Dunia Tahun 2013 sampai 2015) SKRIPSI Oleh: DEBY FAKHRIYANA 24010212130041

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN C BAB IV ANALISIS DAN PEMBAHASAN Penelitian ini mencoba meramalkan jumlah penumpang kereta api untuk masa yang akan datang berdasarkan data volume penumpang kereta api periode Januari 994-Februari 203

Lebih terperinci

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Time Series atau runtun waktu adalah serangkaian data pengamatan yang berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara berurutan

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran.

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. BAB III METODE PENELITIAN 3.1 Jenis / Pendekatan Penelitian Penelitian dan ilmu pengetahuan mempunyai kaitan yang erat keduanya merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. Penelitian

Lebih terperinci

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer TUGAS AKHIR Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer Oleh : Fani Felani Farid (1306 100 047) Pembimbing : Drs. Kresnayana Yahya M.Sc Latar Belakang

Lebih terperinci

Sedangkan model fungsi transfer bentuk kedua adalah sebagai berikut :

Sedangkan model fungsi transfer bentuk kedua adalah sebagai berikut : 1 Metode Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 255 dengan Pendekatan Fungsi Transfer Dwi Listya Nurini, Brodjol Sutijo SU Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG

ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG SKRIPSI Disusun Oleh : NOVIA DIAN ARIYANI 24010211120016 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

Pemodelan Beban Sistem Listrik Jawa-Bali dengan Menggunakan Pendekatan Flexible Seasonality Forecasting

Pemodelan Beban Sistem Listrik Jawa-Bali dengan Menggunakan Pendekatan Flexible Seasonality Forecasting Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 121 Pemodelan Beban Sistem Listrik Jawa-Bali dengan Menggunakan Pendekatan Flexible Seasonality Forecasting (Electricity Demand

Lebih terperinci

Application of ARIMA Models

Application of ARIMA Models Application of ARIMA Models We have learned how to model using ARIMA Stages: 1. Verify whether the data we are analyzing is a stationary data using ACF or other methods 2. If the data is not stationer,

Lebih terperinci

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG Fachrul Ulum Febriansyah dan Abadyo Universitas Negeri Malang E-mail: fachrul.febrian@gmail.com

Lebih terperinci

PEMODELAN ARIMA DAN DETEKSI OUTLIER DATA CURAH HUJAN SEBAGAI EVALUASI SISTEM RADIO GELOMBANG MILIMETER

PEMODELAN ARIMA DAN DETEKSI OUTLIER DATA CURAH HUJAN SEBAGAI EVALUASI SISTEM RADIO GELOMBANG MILIMETER Mauludiyanto, Pemodelan ARIMA dan Deteksi Outlier Data Curah Hujan Sebagai Evaluasi Sistem Radio Gelombang Milimeter PEMODELAN ARIMA DAN DETEKSI OUTLIER DATA CURAH HUJAN SEBAGAI EVALUASI SISTEM RADIO GELOMBANG

Lebih terperinci

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria)

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 131-140 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN

Lebih terperinci

Peramalan Penjualan Pipa di PT X

Peramalan Penjualan Pipa di PT X Elviani, et al. / Peramalan Penjualan Pipa di PT X / Jurnal Titra, Vol.. 2, No. 2, Juni 2014, pp. 55-60 Peramalan Penjualan Pipa di PT X Cicely Elviani 1, Siana Halim 1 Abstract: In this thesis we modeled

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci