BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA II.1. PEMBEBANAN Dalam melakukan analisis desain suatu struktur, perlu ada gambaran yang jelas mengenai perilaku dan besar beban yang bekerja pada struktur. Beban-beban yang bekerja pada struktur bangunan adalah sebagai berikut: II.1.1. Beban Mati Menurut Peraturan Pembebanan Indonesia Untuk Gedung (PPIUG) 1983, beban mati adalah berat dari semua bagian dari suatu gedung yang bersifat tetap, termasuk segala unsur tambahan yang merupakan bagian yang tak terpisahkan dari gedung itu. Sehingga berat sendiri dari struktur bangunan merupakan beban mati. Adapun tabel mengenai berat sendiri bahan bangunan dapat dilihat pada Tabel 2.1 berikut. Tabel 2.1 Berat Sendiri Bahan Bangunan dan Komponen Gedung Bahan Bangunan Berat (kg/m 3 ) Beton bertulang 2400 Komponen Gedung Berat (kg/m 2 ) Adukan, per cm tebal dari semen 21 Dinding pasangan bata merah setengah batu 250 Langit-langit dan dinding (termasuk rusukrusuknya, tanpa penggantung langit-langit atau pengaku), terdiri dari semen asbes (eternit dan 11 bahan lain sejenis), dengan tebal maksimum 4 mm Penggantung langit-langit (dari kayu) dengan bentang maksimum 5 m dan jarak s.k.s minimun 7 0,8 m Penutup lantai dari ubin semen portland, teraso dan beton, tanpa adukan, per cm tebal 24 Mengenai beban mati tambahan lainnya seperti beban gording baja ringan dan beban atap seng gelombang didapat dari merek produk dapat dilihat pada Tabel 2.2. II-1

2 Tabel 2.2 Beban Mati Tambahan Komponen Gedung Berat (kg/m 2 ) Gording baja C ,2 6,133 Penutup atap seng gelombang 10 II.1.2. Beban Hidup Beban hidup menurut Peraturan Pembebanan Indonesia Untuk Gedung (PPIUG) 1983 adalah semua beban yang terjadi akibat penghunian atau penggunaan suatu bangunan termasuk beban pada lantai yang berasal dari barangbarang yang dapat berpindah. Pembebanan untuk beban hidup pada lantai gedung menurut PPIUG 1983 seperti terlihat pada Tabel 2.3, sudah termasuk perlengkapan ruang sesuai dengan kegunaan dan juga dinding ringan dengan berat tidak lebih dari 100 kg/m 2. Tabel 2.3 Beban Hidup pada Lantai Gedung No. Beban Hidup Pada Lantai Gedung Berat (kg/m 2 ) 1 Lantai dan tangga rumah tinggal, kecuali yang di sebut dalam nomor Lantai dan tangga rumah sederhana dan gudang-gudang tidak penting yang bukan 125 untuk toko, pabrik atau bengkel 3 Lantai sekolah, ruang kuliah, kantor, toko, toserba, restoran, hotel, asrama dan rumah 250 sakit 4 Lantai ruang olah raga Lantai ruang dansa 500 Sedangkan untuk beban hidup pada atap, berbeda halnya dengan beban hidup pada lantai gedung. Beban hidup pada atap menurut PPIUG 1983, adalah sebagai berikut: 1) Beban hidup pada atap dan atau bagian atap serta pada struktur tudung (canopy) yang dapat dicapai dan dibebani oleh orang, harus diambil minimum sebesar 100 kg/m 2 bidang datar. II-2

3 2) Beban hidup pada atap dan atau bagian atap yang tidak dapat dicapai dan dibebani oleh orang, harus diambil yang paling menentukan diantara dua macam beban, yaitu beban air hujan atau beban sebesar 100 kg. Reduksi beban hidup untuk peninjauan beban gravitasi dan beban gempa memiliki perbedaan. Perbedaan untuk peninjauan beban gravitasi dibedakan juga sesuai jumlah lantai pada suatu bangunan. Reduksi beban hidup dapat dilihat pada Tabel 2.4 Tabel 2.5. Tabel 2.4 Peninjauan Terhadap Beban Hidup Gravitasi dan Gempa Penggunaan Gedung Koefisien Reduksi beban hidup Peninjauan Beban Gravitasi Peninjauan Beban Gempa PERDAGANGAN Toko, toserba, pasar 0,80 0,80 Tabel 2.5 Peninjauan Terhadap Beban Hidup Gravitasi KOEFISIEN REDUKSI BEBAN HIDUP KUMULATIF Jumlah lantai yang Koefisien reduksi yang dipikul (n) dikalikan kepada beban hidup kumulatif 1 1,0 2 1,0 3 0,9 4 0,8 5 0,7 6 0,6 7 0,5 n > 8 0,4 II.1.3. Beban Gempa Menurut PPIUG 1983, beban gempa adalah semua beban yang bekerja pada gedung atau bagian gedung yang terjadi oleh gerakan tanah akibat gempa. Gerakan tanah ini merupakan pergeseran keempat lempeng dunia yang bergerak saling mendekati sehingga terjadi tubrukan. II-3

4 II Analisis Struktur Terhadap Beban Gempa Penentuan metode analisis struktur tergantung pada bentuk atau desain gedung itu sendiri, merupakan gedung beraturan atau tidak beraturan. Struktur gedung itu sendiri ditetapkan sebagai gedung beraturan atau tidak beraturan. Struktur gedung ditetapkan sebagai struktur gedung beraturan apabila memenuhi ketentuan sebagai berikut (SNI ): Tinggi struktur gedung diukur dari taraf penjepitan lateral tidak lebih dari 10 tingkat atau 40 m. Denah struktur gedung adalah persegi panjang tanpa tonjolan dan kalaupun mempunyai tonjolan tersebut tidak lebih dari 25% dari ukuran terbesar denah struktur gedung dalam arah tonjolan tersebut. Denah struktur gedung tidak menunjukkan coakan sudut dan kalaupun mempunyai coakan sudut, panjang sisi coakan tidak lebih dari 15% dari ukuran terbesar denah struktur gedung dalam arah sisi coakan sudut tersebut. Sistem struktur gedung tidak menunjukkan loncatan bidang muka dan kalaupun mempunyai loncatan bidang muka, ukuran dan denah struktur bagian gedung yang menjulang dalam masing-masing arah, tidak kurang dari 75% dari ukuran terbesar denah struktur bagian gedung sebelah bawahnya. Dalam hal ini, struktur rumah atap tingginya tidak lebih dari dua tingkat tidak perlu dianggap menyebabkan adanya loncatan bidang muka. Sistem struktur gedung memiliki berat lantai tingkat yang beraturan, artinya setiap lantai memiliki berat yang tidak lebih dari 150% dari berat lantai tingkat atas atau dibawahnya. Berat atap tidak perlu memenuhi ketentuan ini. Sistem struktur gedung memiliki lantai tingkat menerus, tanpa lubang atau tanpa bukaan yang luasnya lebih dari 50% luas seluruh lantai tingkat. Kalaupun ada lantai tingkat dengan lubang atau bukaan seperti itu, jumlahnya tidak boleh melebihi 20% dari jumlah lantai tingkat seluruhnya. Gedung yang memiliki struktur yang beraturan, pengaruh gempa rencana dapat ditinjau sebagai pengaruh beban gempa statik ekivalen, sehingga analisisnya dilakukan berdasarkan analisis statik ekivalen. II-4

5 II Perencanaan Struktur Gedung Beraturan Struktur gedung beraturan dapat direncanakan terhadap pembebanan gempa nominal akibat pengaruh gempa rencana dalam arah masing-masing sumbu utama denah struktur tersebut. Pembebanan gempa nominal akibat pengaruh gempa rencana struktur gedung beraturan ditampilkan sebagai beban-beban gempa nominal statik ekivalen yang menangkap pada pusat massa lantai-lantai tingkat. Metode statik ekivalen merupakan suatu cara analisis statik secara tiga dimensi linier. Sehubungan dengan sifat struktur bangunan gedung beraturan yang berperilaku sebagai struktur dua dimensi, sehingga respons dinamiknya ditentukan oleh respons ragam yang pertama dandapat ditampilkan sebagai akibat dari beban gempa statik ekivalen. Rumus beban gempa lateral secara statik ekivalen dapat dilihat pada persamaan (2.01). ( ) Keterangan: F i = Beban gempa lateral lantai ke-i W i = Berat lantai tingkat ke-i [ kg ] Z i = Ketinggian lantai tingkat ke-i [ m ] V = Beban geser dasar nominal (2.01) Nilai beban geser dasar nominal (V) pada persamaan di atas didapatkan dari perbandingan antara faktor keutamaan gedung, faktor respon gempa dan berat struktur total bangunan dengan faktor reduksi gempa. Adapun langkah perhitungan beban gempa statik ekivalen, yaitu sebagai berikut. a) Beban geser dasar nominal statik ekivalen (V) Beban geser dasar nominal statik ekivalen (V) yang terjadi ditingkat dasar dapat dihitung menurut persamaan: (2.02) Keterangan: V = Beban gempa nominal C 1 = Nilai faktor respon gempa II-5

6 I = Faktor Keutamaan W t = Berat total struktur R = Faktor reduksi gempa b) Faktor keutamaan gedung (I) Faktor Keutamaan adalah suatu koefisien yang diadakan untuk memperpanjang waktu ulang dari kerusakan struktur gedung yang relatif lebih utama, untuk menanamkan modal yang relatif lebih besar pada gedung itu. Waktu ulang dari kerusakan struktur gedung akibat gempa akan diperpanjang dengan pemakaian suatu faktor keutamaan. Faktor Keutamaan (I) menurut persamaan: (2.03) I 1 merupakan faktor keutamaan untuk menyesuaikan periode ulang gempa berkaitan dengan penyesuaian probabilitas terjadinya gempa selama umur gedung, sedangkan I 2 adalah faktor keutamaan untuk menyesuaikan umur gedung tersebut. Faktor keutamaan I 1, I 2 dan I ditetapkan menurut Tabel 2.6. Tabel 2.6 Faktor Keutamaan untuk Berbagai Gedung dan Bangunan (SNI ) Faktor Keutamaan Kategori Gedung / Bangunan I I 1 I 2 (I = I 1 x I 2 ) Gedung umum seperti untuk penghunian, perniagaan dan perkantoran. 1,0 1,0 1,0 Monumen dan bangunan monumental 1,0 1,6 1,6 Gedung penting seperti rumah sakit, instalasi air bersih, pembangkit tenaga listrik, pusat penyelamatan dalam 1,4 1,0 1,4 keadaan darurat, fasilitas radio dan televisi. Gedung untuk menyimpan bahan berbahaya seperti gas, produk minyak bumi, asam bahan beracun. 1,6 1,0 1,6 Cerobong, tangki air di atas menara 1,5 1,0 1,5 II-6

7 c) Beban gempa nominal statik ekivalen (F i ) Beban geser nominal V harus dibagikan sepanjang tinggi struktur gedung menjadi beban gempa nominal statik ekivalen (F i ) yang menangkap pada pusat massa lantai ke-i, menurut persamaan d) Wilayah gempa dan spektrum respons Besar kecilnya beban gempa yang diterima suatu struktur tergantung pada lokasi dimana struktur bangunan tersebut akan dibangun. Indonesia terbagi menjadi 6 wilayah gempa, dimana wilayah gempa 1 adalah wilayah kegempaan paling rendah dan wilayah gempa 6 adalah wilayah dengan kegempaan paling besar seperti pada Gambar 2.1 berikut. sumber : SNI Gambar 2.1 Peta wilayah gempa indonesia Harga dari respons gempa (C) dapat ditentukan dari Diagram Spektrum Gempa Rencana, sesuai dengan wilayah gempa dan kondisi jenis tanahnya untuk waktu getar alami fundamental. II-7

8 sumber : SNI Gambar 2.2 Respons spektrum gempa rencana e) Daktilitas Struktur Gedung Faktor daktilitas struktur gedung μ adalah rasio antara simpangan maksimum struktur gedung akibat pengauh gempa rencana pada saat mencapai II-8

9 kondisi di ambang keruntuhan δm dan simpangan struktur gedung pada saat terjadinya pelelehan pertama δy, yaitu: μ μ (2.04) Pada persamaan ini, μ = 1,4 adalah nilai faktor daktilitas untuk struktur bangunan gedung yang berlaku elastik penuh, sedangkan μ m adalah nilai faktor daktilitas maksimum yang dapat dikerahkan oleh sistem struktur bangunan gedung yang bersangkutan. Tabel 2.7 Parameter Daktilitas Struktur Gedung (SNI ) Sistem dan subsistem struktur Uraian sistem pemikul beban gedung gempa μ m R m f 1. Sistem dinding penumpu 1. Dinding geser beton bertulang 2,7 4,5 2,8 (Sistem struktur yang tidak 2. Dinding penumpu dengan rangka memiliki rangka ruang pemikul baja ringan dan bresing tarik 1,8 2,8 2,2 beban gravitasi secara lengkap. Dinding penumpu atau sistem bresing pemikul hampir semua beban gravitasi. Beban lateral 3. Rangka bresing di mana bresingnya memikul beban gravitasi a. Baja 2,8 4,4 2,2 b. Beton bertulang (tidak untuk dipikul dinding geser atau rangka wilayah 5 & 6) bresing). 1,8 2,8 2,2 1. Rangka bresing eksentrisitas baja (RBE) 4,3 7,0 2,8 2. Dinding geser beton bertulang 3,3 5,5 2,8 2. Sistem rangka gedung (Sistem struktur gedung yang pada dasarnya memiliki rangka ruang pemikul beban gravitasi secara lengkap. Beban lateral dipikul dinding geser atau rangka bresing). 3. Rangka bresing biasa a. Baja 3,6 5,6 2,2 b. Beton berulang (tidak untuk wilayah 5 & 6) 3,6 5,6 2,2 4. Rangka bresing konsentrik khusus 5. Dinding geser beton bertulang berangkai daktail 4,0 6,5 2,8 6. Dinding geser beton bertulang kantilever daktail penuh 3,6 6,0 2,8 7. Dinding geser beton bertulang kantilever daktail parsial 3,3 5,5 2,8 II-9

10 Tabel 2.7 Parameter Daktilitas Struktur Gedung (lanjutan) Sistem dan subsistem struktur gedung 3. Sistem rangka pemikul momen (Sistem struktur yang pada dasarnya memiliki rangka ruang pemikul beban gravitasi secara lengkap. Beban lateral dipikul rangka pemikul momen terutama melalui mekanisme lentur). 4. Sistem ganda (Terdiri dari: 1) rangka ruang yang memikul seluruh beban gravitasi; 2) pemikul beban lateral berupa dinding geser atau rangka bresing dengan rangka pemikul momen. Rangka pemikul momen harus direncanakan secara terpisah mampu memikul sekurang-kurangnya 25 % dari seluruh beban lateral; 3) kedua sistem harus direncanakan untuk memikul secara bersama-sama dengan seluruh beban lateral dengan memperhatikan interaksi/sistem ganda) Uraian sistem pemikul beban gempa μ m R m F 1. Rangka pemikul momen khusus (SRPMK) a. Baja 5,2 8,5 2,8 b. Beton bertulang 5,2 8,5 2,8 2. Rangka pemikul momen menengah beton (SRPMM) 3,3 5,5 2,8 3. Rangka pemikul momen biasa (SRPMB) a. Baja 2,7 4,5 2,8 b. Beton bertulang 2,1 3,5 2,8 4. Rangka batang baja pemikul momen khusus (SRBPMK) 4,0 6,5 2,8 1. Dinding geser a. Beton bertulang dengan SRPMK beton bertulang 5,2 8,5 2,8 b. Beton bertulang dengan SRPMB baja 2,6 4,2 2,8 c. Beton bertulang dengan SRPMM beton bertulang 4,0 6,5 2,8 2. RBE baja a. Dengan SRPMK baja 5,2 8,5 2,8 b. Baja dengan SRPMB baja 2,6 4,2 2,8 3. Rangka bresing biasa a. Baja dengan SRPMK biasa 4,0 6,5 2,8 b. Baja dengan SRPMB baja 2,6 4,2 2,8 c. Beton bertulang dengan SRPMK beton bertulang (tidak untuk 4,0 6,5 2,8 wilayah 5 & 6) d. Beton bertulang dengan SRPMM beton bertulang (tidak untuk wilayah 5 & 6) 2,6 4,2 2,8 II-10

11 Tabel 2.7 Parameter Daktilitas Struktur Gedung (lanjutan) Sistem atau subsistem struktur gedung 5. Sistem struktur gedung kolom kantilever: (Sistem struktur yang memanfaatkan kolom kantilever untuk beban lateral) 6. Sistem interaksi dinding geser dengan rangka 7. Subsistem tunggal (Subsistem tunggal struktur bidang yang membentuk struktur gedung secara keseluruhan) Uraian sistem pemikul beban gempa μ m R m f Sistem struktur kolom kantilever 1,4 2,2 2 Beton bertulang biasa (tidak untuk wilayah 3, 4, 5 & 6) 3,4 5,5 2,8 1. Rangka terbuka baja 5,2 8,5 2,8 2. Rangka terbuka beton bertulang 5,2 8,5 2,8 3. Rangka terbuka beton bertulang dengan balok beton pratekan 3,3 5,5 2,8 (bergantung pada indeks baja total) 4. Dinding geser beton bertulang bertangkai daktail penuh. 4,0 6,5 2,8 5. Dinding geser beton bertulang kantilever daktail parsial 3,3 5,5 2,8 f) Arah pembebanan gempa Arah pembebanan pada analisis struktur atas gedung dilakukan dengan metode pusat masa yang setiap lantai tingkatnya dibuat diagfragma. a. Pusat Massa Pusat massa lantai tingkat suatu struktur gedung adalah titik tangkap resultan beban mati, berikut beban hidup yang sesuai yang bekerja pada lantai tingkat itu. Pada perancangan struktur gedung, pusat massa adalah titik tangkap beban gempa statik. Nilai pusat massa didapatkan dari perhitungan gaya-gaya dalam dengan melihat gaya normal pada setiap struktur, kemudian dihitung dengan menggunakan rumus: II-11

12 X Y pm pm N i X i n i 1 i 1 N N i X i n N i i (2.05) (2.06) Keterangan: X pm = Jarak dari koordinat (0,0) untuk menentukan pusat massa arah X Y pm =Jarak dari koordinat (0,0) untuk menentukan pusat massa arah Y Pusat massa suatu lantai terletak tidak pada koordinat (X pm,y pm ). b. Pusat Rotasi Pusat rotasi lantai tingkat suatu struktur gedung adalah suatu titik pada lantai tingkat itu yang bila suatu beban horizontal bekerja padanya, lantai tingkat tersebut tidak berotasi, tetapi hanya bertranslasi, sedangkan lantai-lantai tingkat lainnya yang tidak mengalami beban horizontal semuanya berotasi dan bertranslasi. c. Eksentrisitas Desain Menurut SNI Pasal 5.4, pusat massa lantai tingkat suatu struktur gedung adalah titik tangkap resultan beban mati dan beban hidup yang sesuai, yang bekerja pada lantai tingkat tersebut. Pada perancangan struktur gedung, pusat massa adalah titik tangkap beban gempa statik ekivalen. Sedangkan pusat rotasi lantai tingkat suatu struktur gedung adalah suatu titik pada lantai tingkat yang ditinjau yang bila diberi beban horizontal maka lantai tingkat tersebut tidak berotasi akan tetapi mengalami translasi, sedangkan lantai-lantai tingkat lain yang tidak mengalami beban horizontal akan mengalami rotasi dan translasi. Jarak antara pusat massa dan pusat rotasi dinyatakan sebagai eksentrisitas teoritis. Sedangkan antara pusat massa dan pusat rotasi tersebut harus ditinjau suatu eksentrisitas rencana (e d ). Eksentrisitas rencana ini merupakan jarak dari pusat rotasi ke pusat massa yang telah dipindahkan, di mana pusat massa yang II-12

13 telah dipindahkan ini merupakan pusat massa yang dihitung dengan mempertimbangkan kemungkinan perpindahan pergerakan beban hidup. Gaya gempa mempunyai rotasi sehingga harus memperhitungkan rotasi, karena beban-beban yang bekerja tidak tetap, maka rotasi pun akan berpindah pula. Selain itu, pada setiap lantai terdapat pusat rotasi dan pusat massa yang biasanya tidak berimpit (sesuai dengan bentuk bangunan), sehingga perlu dicari eksentrisitas desainnya. Eksentrisitas (SNI pasal 5.4.3) dapat dinyatakan sebagai berikut: Untuk 0 < e 0,3 b, maka: E d = 1,5e + 0,05b (2.07) atau E d = e 0,5b (2.08) Dari kedua nilai di atas, dipilih di antara keduanya yang pengaruhnya paling menentukan untuk unsur atau subsistem struktur gedung yang ditinjau. Untuk e > 0,3b, maka: Ed = 1,33e + 0,1b (2.09) atau Ed = 1,17e - 0,3b (2.10) Dari kedua nilai di atas, di pilih diantara keduanya yang pengaruhnya paling menentukan untuk unsur atau subsistem struktur gedung yang ditinjau. II-13

14 Gambar 2.3 Definisi eksentrisitas antara pusat massa (PM) dan pusat rotasi (PR) (e) Keterangan: e = eksentrisitas antara pusat rotasi dan pusat massa E d = eksentrisitas desain b = ukuran horisontal terbesar denah struktur gedung yang diukur tegak lurus pada arah pembebanan gempa. g) Pembatasan waktu getar Untuk mencegah penggunaan struktur yang terlalu fleksibel, nilai waktu getar struktur fundamental harus dibatasi. Dalam SNI diberikan batasan sebagai berikut: (2.11) Keterangan: T = waktu getar struktur fundamental n = jumlah tingkat gedung = koefisien pembatas (Tabel 2.8) II-14

15 Tabel 2.8 Parameter Daktilitas Struktur Gedung (SNI ) Wilayah Gempa Koefisien Pembatas ( ) 1 0,20 2 0,19 3 0,18 4 0,17 5 0,16 6 0,15 h) Waktu getar alami fundamental Waktu getar alami fundamental struktur bangunan gedung beraturan dalam arah masing-masing sumbu utama dapat ditentukan dengan rumus Rayleigh sebagai berikut: (2.12) Keterangan: Wi = Berat lantai tingkat ke-i Fi di g = Beban gempa rencana lantai tingkat ke-i = Simpangan horizontal lantai tingkat ke-i = Percepatan gravitasi II.2. Analisis Balok Tulangan Ganda II.2.1. Analisis Lentur Balok Persegi Bertulang Rangkap Balok tulangan ganda umum digunakan pada struktur balok. Pengaruh pemberian tulangan tekan pada balok tulangan ganda terhadap kekuatan dan perilaku penampang adalah sebagai berikut: a. Garis netral akan naik ke atas karena semakin sedikit gaya tekan (C) yang dibutuhkan untuk mengimbangi gaya tarik (T). b. Mengurangi defleksi akibat beban yang tetap (sustained). Rangkak pada beton didaerah tekan Transfer beban ke tulangan tekan. II-15

16 Rangkak menjadi lebih kecil. Defleksi akibat beban tetap juga lebih kecil. c. Efektifitas tulangan tekan dalam mengurangi defleksi akibat beban tetap (sustained). d. Meningkatkan daktilitas, pengurangan tinggi balok tekan akan meningkatkan regangan baja, sehingga penampang dapat mencapai kurvatur yang lebih besar. e. Efek tulangan tekan terhadap kekuatan dan daktailitas balok beton bertulang under-reinforced (ρ < ρb). f. Merubah mode keruntuhan dari mode keruntuhan tekan menjadi mode keruntuhan tarik. g. Memudahkan pelaksanaan. As d ε c 0,85 f c Cs ε s Cc β c 1 c d g.n As M u ε c s 0,85 f c As b d c ε s ε s β 1 c Cc Cs d g.n (a) M (b) (c) As u Gambar 2.4 Diagram tegangan-regangan pada balok tulangan ganda b (a) Penampang balok ;(b) ε s regangan ;(c) tegangan s Keterangan: h = tinggi balok [ mm ] b = lebar balok [ mm ] c = garis netral [ mm ] εc = regangan beton εs = regangan baja tulangan tarik εs = regangan baja tulangan tekan II-16

17 Cc = gaya tekan beton [ N ] Cs = gaya tekan baja tulangan tekan [ N ] Ts = gaya tarik baja tulangan [ N ] d = tinggi efektif balok,ditentukan dari serat tekan terluar sampai dengan titik berat tulangan tarik [ mm ] d = jarak serat tekan terluar sampai dengan titik berat tulangan tekan [ mm] As = luas tulangan tarik [ mm2 ] As = luas tulangan tekan [ mm2 ] a = tinggi blok tegangan persegi ekivalen [ mm ] = β 1.c Mn = momen nominal penampang [ Nmm ] Dengan mengasumsikan tulangan tekan sudah leleh, maka: fs = fy > fs = fy Dari keseimbangan gaya horizontal pada diagram (iii) tegangan C C (2.12) f b f f (2.13) f b f f (2.14) ( ) (2.15) c (2.16) Menurut SNI pasal 12.2(7(1)), tegangan beton sebesar 0,85f c. Dari diagram regangan (ii) kontrol asumsi tulangan tekan sudah leleh apabila memenuhi syarat di bawah ini: Tulangan tekan sudah leleh: (c d ) c ( ) (2.17) II-17

18 Tulangan tarik sudah leleh: (2.18) (d c) ε ε c Sesuai SNI pasal 12.2(4), regangan maksimum pada serat beton terluar ( ) harus diambil sama dengan 0,003. Bila kedua asumsi di atas benar, maka besarnya momen nominal (Mn) (d ) ( ) (2.19) dan M u < ⱷ M n Bila tulangan tekan belum leleh, sedangkan tulangan tarik sudah leleh, maka harus ada koreksi terhadap garis netral atau nilai c, karena tegangan tulangan tekan tidak sama dengan tegangan leleh, sehingga besarnya nilai: fs fy, atau Dari keseimbangan gaya horizontal pada diagram (iii) tegangan C C (2.20) f b β c f f (2.21) dengan f f s ε ( ) (2.22) Sesuai dengan SNI pasal 10.5, untuk nilai Modulus Elastisitas (Es) tulangan non-prategang diambil sebesar MPa. Sesuai dengan SNI pasal 12.2, f β f β * + (2.23) ( ), dengan nilai c = ( β d ) β II-18

19 ( d β ) ( ) f s ( d β ) s ( ).0, ( ) (2.24) Jika f s < fy, maka asumsi tulangan tekan belum leleh benar. Dengan mensubtitusikan persamaan di atas (fs ) ke dalam persamaan C C f b β c f f f b ( ) f persamaan dikalikan a f b β d f (2.25) a dan a akan didapatkan hasilnya Besarnya momen nominal yang terjadi (Mn) adalah: M C (d ) C (d d ) M f b (d ) f (d d ) (2.26) Kekuatan momen rencana M harus lebih besar atau sama dengan momen luar rencana M, jadi: M M Sesuai dengan SNI pasal 11.3, faktor reduksi kekuatan ( ) untuk suatu komponen struktur yang mendapat perilaku lentur tanpa aksial adalah sebesar 0,80. Cek daktilitas penampang (2.27) II-19

20 keterangan, Rasio penulangan aktual ( ) (2.28) Rasio penulangan minimum ( ) t u (2.29) Diambil nilai terbesar dari kedua nilai tersebut Rasio penulangan seimbang ( ) β (2.30) Untuk komponen struktur tekan, bagian untuk tulangan tekan, tidak perlu direduksi dengan faktor 0,75. Rasio penulangan maksimum ( ) (2.31) Jika, maka digunakan Jika, maka dimensi dari penampang balok harus diperbesar. Jika, maka persyaratan daktilitas penampang terpenuhi. Dengan catatan, bila: f s < f y, maka digunakan nilai f s f s f y, maka digunakan nilai f y II.2.2. Analisis Kapasitas Geser Balok Perilaku balok beton bertulang pada keadaan runtuh karena geser lentur sangat berbeda dengan keruntuhan yang disebabkan olen lentur (momen). Balok dengan keruntuhan geser, pada umumnya tidak adanya peringatan terlebih dahulu. Untuk perilaku kegagalan getas ini, perlu direncanakan penampang yang cukup kuat untuk memikul gaya geser yang terjadi. II-20

21 berikut: Perhitungan tulangan geser balok pada kondisi SRMM dihitung sebagai Gambar 2.5 Perencanaan gaya geser untuk balok Sumber : SNI a. Perhitungan nilai Vug yaitu gaya geser akibat beban Wu ug (2.31) b. Perhitungan pada kondisi Gambar 2.5 u ug (2.32) u ug (2.33) Nilai Mnl dan Mnr adalah nilai tulangan lentur balok akibat gaya gravitasi. Setelah didapat nilai Vu L dan Vu R, kemudian dibandingkan dengan nilai analisis gaya geser berdasarkan pembesaran dua kali beban gempa yang ditentukan dalam SNI Gaya geser yang terjadi dipikul secara bersama-sama antar beton dan tulangan geser. Analisis penampang akibat geser lentur harus memenuhi: u (2.34) Keterangan Faktor reduksi kekuatan Vn = Kuat geser nominal penampang Vu = Kuat geser terfaktor penampang yang ditinjau II-21

22 Besarnya kuat geser nominal penampang dapat dihitung dari persamaan sebagai berikut: c s (2.35) Keterangan: Vn = Kuat geser nominal penampang Vc = Kuat geser nominal yang didapat dari beton Vs = Kuat geser nominal yang didapat dari tulangan sengkang a. Kuat geser yang ditahan oleh beton Sesuai dengan peraturan bahwa kuat geser yang ditahan oleh beton sebesar: c b d (2.36) Keterangan: Vc = Kuat geser akibat tulangan sengkang [ N ] f c = Mutu beton [ MPa ] b = Lebar penampang [ mm ] d = Tinggi efektif balok [ mm ] Tetapi tidak boleh lebih besar dari pada f c bd dan tidak boleh diambil melebihi 1,0. Dimana Mu merupakan momen terfaktor yang terjadi. b. Kuat geser yang ditahan oleh tulangan Besarnya kuat geser yang ditahan oleh tulangan sengkang sebagai berikut: s (2.37) Keterangan: Vs = Kuat geser akibat tulangan sengkang [ N ] Av = Luas tulangan geser [ mm 2 ] f y = Tegangan leleh baja tulangan [ MPa ] d = Tinggi efektif balok [ mm ] s = Jarak antar tulangan sengkang [ mm ] Namun nilai Vs harus tidak boleh lebih besar dari f c bd. II-22

23 II.2.3. Analisis Puntir Balok Berdasarkan SNI ketentuan-ketentuan perhitungan tulangan puntir balok adalah sebagai berikut: a. Berdasarkan SNI pasal pengaruh puntir dapat diabaikan bila nilai momen puntir terfaktor Tu, ( ) (2.38) Keterangan: T u = Momen puntir terfaktor pada penampang [ knm ] = Faktor reduksi berdasarkan SNI f c = Kuat tekan beton [ MPa ] A cp = Luas yang dibatasi oleh keliling luar penampang beton [ mm 2 ] P cp = Keliling luar penampang beton [ mm ] Gambar 2.6 Definisi A cp dan P cp b. Tulangan transversal yang dibutuhkan untuk puntir menahan geser dan torsi berdasarkan persamaan berikut: (2.39) (2.40) Keterangan : T = Momen puntir terfaktor pada penampang [ knm ] = Faktor reduksi berdasarkan SNI s = Jarak tulangan [ mm ] V s = Kuat geser nominal yang disumbangkan oleh tulangan geser [ kn ] II-23

24 A t = Luas satu kaki sengkang tertutup yang menahan puntir dalam daerah sejarak s [ mm 2 ] A o = Luas bruto yang dibatasi oleh lintasan aliran geser [ mm 2 ] f yv = Kuat leleh tulangan sengkang torsi [ MPa ] A v = Luas tulangan geser dalam daerah jarak s [ mm 2 ] c. Bilamana diperlukan tulangan puntir, maka tulangan transversal minimum dihitung dengan ketentuan: ( ) (2.41) Namun, (A v + 2 A t ) tidak boleh kurang dari Keterangan: = Luas tulangan geser dalam daerah jarak s (mm 2 ) = Luas kaki sengkang tertutup yang menahan puntir dalam daerah jarak s (mm 2 ) f = Kuat leleh tulangan sengkang torsi (MPa) s = Jarak tulangan (mm) f c = Kuat tekan beton (MPa) b = Lebar badan, atau diameter penampang lingkaran (mm) d. Berdasarkan SNI pasal kuat lentur puntir untuk penampang solid harus memenuhi ketentuan berikut: ( ) ( ) [ ] (2.42) Jika memenuhi maka penampang harus diperbesar. Keterangan: = Faktor reduksi berdasarkan SNI c = Kuat geser nominal yang disumbangkan oleh beton (kn) u = gaya geser terfaktor pada penampang (kn) = Luas daerah yang dibatasi oleh garis pusat tulangan sengkang torsi terluar (mm 2 ) b = lebar badan, atau diameter penampang lingkaran (mm) II-24

25 d f c = jarak dari serat tekan terluar terhadap titik berat tulangan tarik (mm) = kuat tekan beton (MPa) = keliling dari garis pusat tulangan sengkang torsi terluar (mm) Gambar 2.7 Definisi dan e. Tulangan longitudinal tambahan yang diperlukan untuk menahan puntir tidak boleh kurang dari: ( ) c t (2.43) Keterangan: = Luas total tulangan longitudinal yang memikul puntir (mm 2 ) = Luas satu kaki sengkang tertutup yang menahan puntir dalam daerah sejarak s (mm 2 ) f = Kuat leleh tulangan sengkan torsi (MPa) s = Jarak tulangan (mm) f = Kuat leleh tulangan torsi longitudinal (MPa) = Keliling dari pusat tulangan sengkang torsi terluar (mm) f. Bilamana diperlukan tulangan puntir, maka minimum tulangan puntir longitudinal dihitung dengan ketentuan: i ( ) (2.44) dengan ketentuan tidak kurang dari II-25

26 Keterangan: A cp = Luas yang dibatasi oleh keliling luar penampang beton [ mm 2 ] f = Kuat leleh tulangan torsi longitudinal (MPa) = Luas satu kaki sengkang tertutup yang menahan puntir dalam daerah sejarak s (mm 2 ) s = Jarak tulangan (mm) = Keliling dari pusat tulangan sengkang torsi terluar (mm) f = Kuat leleh tulangan sengkan torsi (MPa) II.3. Analisis Kapasitas Struktur Kolom Kolom adalah batang vertikal dari rangka struktur yang memikul beban dari balok dan pelat lantai. Kolom merupakan elemen stuktur yang memiliki peranan penting dari suatu bangunan. Kolom termasuk struktur utama untuk meneruskan berat bangunan dan beban-beban baik itu beban hidup maupun beban lainnya. II.3.1. Analisis Aksial dan Lentur Diagram interaksi merupakan suatu diagram yang menunjukkan hubungan antara gaya aksial nominal dengan momen nominal M atau eksentrisitas e kolom, sehingga dapat diketahui batas wilayah aman kolom terhadap kombinasi beban aksial dan momen. Diagram interaksi yang biasa dikenal adalah diagram interaksi yang menggambarkan hubungan antara: dan M dan e dan e II-26

27 L e b Garis netral b (a) Pusat berat plastis d (b) Sumber : Modul Mata Kuliah PSG Hal.19 Gambar 2.8 Beban aksial konsentris (a) dan beban aksial eksentris (b) Pusat berat plastis merupakan titik tangkap resultan komponen gaya-gaya dalam yang terdiri dari gaya akibat beton tekan dan gaya akibat tulangan, yang masing-masing diakibatkan oleh tegangan (pada kondisi plastis) sebesar 0,85 fc pada beton dan fy pada tulangan, pada saat kolom menerima beban aksial konsentris (beban aksial tanpa momen) seperti pada Gambar 2.8(a). Letak pusat berat plastis dapat ditentukan melalui perhitungan statis momen terhadap gayagaya dalam yang masing-masing disumbangkan oleh beton dan tulangan dalam kondisi plastis. Pada kolom dengan bentuk penampang simetris dan jumlah serta posisi tulangan yang simetris, pusat berat plastis terletak pada titik tengah penampang. Hubungan antara gaya aksial nominal dengan momen atau eksentrisitas dapat ditentukan dalam beberapa kondisi berikut: a. Beban tekan aksial konsentris Dengan memperhitungkan luas tulangan dengan luas total yang berada pada penampang kolom, maka gaya total atau kuat tekan nominal pada penampang kolom adalah sebagai berikut: C C (2.45) f ( ) f (2.46) Dalam kasus ini, momen atau eksentrisitas pada penampang = 0 II-27

28 b. Beban tarik aksial konsentris Pada kondisi ini, seluruh penampang kolom menerima tegangan tarik sehingga kontribusi beton dalam menahan beban tarik dapat diabaikan, gaya dalam hanya disumbangkan oleh tulangan, sehingga gaya total atau kuat tarik nominal pada penampang adalah: f (2.47) Dalam kasus ini, momen atau eksentrisitas pada penampang = 0 c. Kondisi regangan berimbang (balanced) Gambar 2.9 Diagram tegangan regangan penampang kolom pada kondisi berimbang Pada kondisi berimbang, letak garis netral diukur dari sisi tekan beton terluar, dihitung menggunakan persamaan berikut: c c d (2.48) dan regangan pada baja terluar adalah: ε (2.49) Tegangan pada baja tulangan : ε f ε (2.50) ε f f (2.51) Gaya aksial pada kondisi berimbang: II-28

29 C C (2.52) Momen nominal pada kondisi berimbang: M e (2.53) Perhitungan eksentrisitas yang terjadi: e (2.54) d. Pada kondisi tekan dominan Pada kondisi tekan dominan perhitungan dilakukan dengan mengasumsikan nilai c dengan ketentuan nilai c pada kondisi tekan dominan lebih besar dari nilai c pada kondisi berimbang c c (lihat Gambar 2.6). Tahapan perhitungan seperti analisis pada kondisi berimbang. Gambar 2.10 Diagram tegangan regangan penampang kolom pada kondisi tekan dominan e. Pada kondisi tarik dominan Seperti halnya perhitungan pada kondisi tekan dominan, pada kondisi tarik dominan pun perhitungan dilakukan dengan mengasumsikan nilai c dengan ketentuan nilai c pada kondisi tarik dominan lebih kecil dari nilai c pada kondisi berimbang (c c ). Perhitungan pada kondisi tarik dominan dengan nilai c. Tahapan perhitungan seperti analisis pada kondisi berimbang. II-29

30 Gambar 2.11 Diagram tegangan regangan penampang kolom pada kondisi tarik dominan II.3.2. Hubungan-hubungan Gaya pada Diagram Interaksi Hubungan gaya aksial dan momen nominal M Gambar 2.12 Grafik daerah aman pada diagram interaksi M Daerah aman dinyatakan dalam daerah I, II, III, dan IV. Daerah I dan II menyatakan kombinasi beban dengan kondisi tekan dominan, sedangkan daerah III dan IV menyatakan kombinasi beban dengan kondisi tarik dominan. Daerah IV menyatakan kombinasi beban dengan beban aksial tarik. Daerah I adalah daerah yang menyatakan beban kolom dengan eksentrisitas kecil. Kondisi aman pada daerah I dibatasi dengan nilai beban aksial sebesar: II-30

31 , untuk kolom dengan pengikat spiral (2.55), untuk kolom dengan pengikat sengkang (2.56) Pembatasan tersebut dimaksudkan sebagai upaya pengamanan, dengan mengingat bahwa pada keadaan yang sesungguhnya sangat sulit untuk mengkondisikan suatu beban aksial betul-betul bekerja secara konsentris. Hubungan Gaya aksial dan eksentrisitas e Gambar 2.13 Daerah aman pada diagram interaksi e Hubungan antara dan e 1/Pn Gambar 2.14 Daerah aman pada diagram interaksi e II-31

32 II.3.3. Analisis geser kolom a. Perhitungan gaya geser rencana kolom akibat Mn kolom Mn1 Pu Vu.t ln V u b V u t ( M n M n l n ) Vu.t Pu Mn2 Gambar 2.15 Perencanaan geser kolom berdasarkan momen kolom Perhitungan gaya geser rencana kolom yang diakibatkan oleh momen plastis Mn kolom dengan melihat Gambar 2.15, sehingga dapat dihitung menggunakan persamaan berikut : ( ) (2.57) b. Perhitungan gaya geser rencana Harga M kolom tidak perlu lebih besar dari akumulasi M balok-balok yang merangka pada kolom tersebut. Sehingga digunakan dari akumulasi M balok yang didistribusikan pada kolom, dengan perhitungan menggunakan persamaan berikut : M (M M ) (2.58) M (M M ) (2.59) dan nilai gaya geser rencana akibat M balok, dihitung menggunakan persamaan berikut : ( ) (2.60) II-32

33 L 3 Mn1.2b Mn.t2 Lt.b Mn1.2a b M pr.2b M pr.t2 M pr.2 e.t L 2 Mn1.1b Lt.a Mn1.1a a M pr.1b Mn.b2 e.b M pr.1 M pr.b2 L 1 Gambar 2.16 Perencanaan geser kolom berdasarkan momen plastis balok c. Kontrol gaya geser rencana Nilai gaya geser rencana tidak boleh lebih kecil dari nilai gaya geser terfaktor yang terjadi. (2.61) d. Kapasitas geser yang diberikan oleh beton Sesuai SNI pasal 13.3(2(3)) bahwa nilai pada sepanjang bentang L menganggap, bila : f (2.62) e. Perhitungan kapasitas geser yang diberikan beton Apabila ketentuan mengenai kontrol nilai tidak terpenuhi, maka nilai dihitung menggunakan persamaan berikut : Apabila pada kolom terjadi gaya aksial tekan terfaktor dihitung dengan: ( ) b d (2.63) Apabila pada kolom terjadi gaya aksial tarik terfaktor dihitung dengan: ( ) b d (2.64) II-33

34 f. Perhitungan kapasitas geser akibat sengkang terpasang Perhitungan kapasitas geser yang diberikan oleh sengkang adalah sebagai berikut : (2.65) Apabila pengaruh puntir dapat diabaikan, tulangan geser yang dihitung menggunakan persamaan diatas minimum harus memiliki luas sebesar: (2.66) g. Perhitungan kuat geser kolom eksisting Perhitungan kuat geser kolom eksisting dihitung menggunakan persamaan berikut: ( ) (2.67) II.4. Analisis Kapasitas Struktur Pelat Pelat lantai adalah elemen struktur yang berada di atas balok yang berfungsi untuk menerima beban mati dan beban hidup yang ada di atasnya. Pelat dapat dibedakan menjadi dua jenis, yaitu pelat satu arah dan pelat dua arah. Pelat satu arah hanya ditumpu pada kedua sisi yang berseberangan. Disebut pelat satu arah karena lentur yang terjadi hanya pada satu arah yaitu arah tegak lurus terhadap sisi-sisi tumpuannya. Apabila pelat ditumpu balok pada keempat sisinya, maka pelat tersebut disebut pelat dua arah, karena lentur terjadi pada kedua arah pelat tersebut. II.4.1. Pelat Satu Arah Apabila sebuah pelat persegi ditumpu pada keempat sisinya di mana sisi terpanjang (ly) dari pelat tersebut dua kali atau lebih dari sisi pendeknya (lx), maka pelat tersebut dapat dikatakan berperilaku sebagai pelat satu arah di mana lentur utamanya terjadi pada arah terpendek. Pelat tersebut dapat dirancang sebagai pelat satu arah. Pelat satu arah : (2.68) II-34

35 Gambar 2.17 Contoh Pelat Satu Arah Pelat satu arah dapat diasumsikan sebagai sebuah balok persegi panjang dengan rasio lebar (l) terhadap tebal (t) yang besar. Pada umumnya pelat satu arah di rancang sebagai sebuah balok persegi dengan lebar 1 meter, pelat diasumsikan terdiri dari serangkaian balok yang berjajar bersebelahan. Beban yang bekerja pada pelat satu arah, termasuk berat sendiri pelat, disalurkan kepada elemen-elemen pendukung pada sisi-sisi pelat tersebut. Oleh karena itu tulangan lentur diletakan tegak lurus terhadap tumpuan-tumpuan tersebut, yaitu paralel (searah) terhadap arah panjang balok-balok dengan lebar 1 meter. Jarak tulangan lentur utama tersebut (pusat ke pusat) tidak boleh lebih besar dari: 3 kali tebal pelat 500 mm II.4.2. Pelat dua arah Pada pelat yang perbandingan bentang panjang ( ) terhadap bentang pendeknya ( ) kurang dari dua, seperti tertera pada persamaan (2-69), maka pelat tersebut dapat dikatakan berperilaku sebagai pelat dua arah di mana lentur utamanya terjadi pada kedua arah sumbu pelat. Pelat seperti itu dapat dirancang sebagai pelat dua arah. Beban pelat dipikul oleh empat balok pendukung sekeliling panel pelat, dengan demikian panel menjadi suatu pelat yang melentur pada dua arah, dengan sendirinya penulangan untuk pelat tersebut harus dua arah. Pelat dua arah : (2.69) II-35

36 Gambar 2.18 Contoh Pelat Dua Arah Pelat dua arah yang ditumpu pada keempat tepinya merupakan struktur statis tak tentu. Langkah langkah analisis pelat dua arah: 1. Diketahui bentang pelat, tebal pelat h, beban hidup LL, beban mati DL, mutu beton dan mutu baja. 2. Tentukan bentang terpanjang Ly dan terpendek Lx pada panel tersebut 3. Tentukan apakah panel yang akan dianalisis merupakan pelat satu arah atau dua arah, apabila maka pelat tersebut adalah pelat dua arah. 4. Perhitungan pembebanan yang ada, beban hidup LL, beban mati DL dan beban gempa E. 5. Hitung besarnya momen-momen terfaktor untuk arah x dan y maupun untuk lapangan dan tumpuan. 6. Tentukan diameter tulangan yang dipakai, sehingga dapat dihitung tinggi efektif pelat d. 7. Hitung As sesuai jumlah tulangan yang ada pada setiap arahnya ( arah x dan arah y ). s (2.70) 8. Hitung a aktual = (2.71) 9. Hitung momen nominal Mn. Jadi, M s f (d ) (2.72) II-36

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara 4 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan komponen struktur terutama struktur beton bertulang harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara Perhitungan

Lebih terperinci

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²). DAFTAR NOTASI A cp Ag An Atp Luas yang dibatasi oleh keliling luar penampang beton (mm²). Luas bruto penampang (mm²). Luas bersih penampang (mm²). Luas penampang tiang pancang (mm²). Al Luas total tulangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu sendiri

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir DAFTAR ISTILAH A0 = Luas bruto yang dibatasi oleh lintasan aliran geser (mm 2 ) A0h = Luas daerah yang dibatasi oleh garis pusat tulangan sengkang torsi terluar (mm 2 ) Ac = Luas inti komponen struktur

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung, BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencaaan struktur bangunan harus mengikuti peraturan pembebanan yang berlaku untuk mendapatkan struktur bangunan yang aman. Pengertian beban adalah

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm² Ag = Luas bruto penampang (mm²) An = Luas bersih penampang (mm²) Atp = Luas penampang tiang pancang (mm²) Al = Luas total

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. itu sendiri adalah beban-beban baik secara langsung maupun tidak langsung yang. yang tak terpisahkan dari gedung.

BAB II TINJAUAN PUSTAKA. itu sendiri adalah beban-beban baik secara langsung maupun tidak langsung yang. yang tak terpisahkan dari gedung. BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu sendiri adalah

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

Yogyakarta, Juni Penyusun

Yogyakarta, Juni Penyusun KATA PENGANTAR Assalamu Alaikum Warahmatullahi Wabarakatuh Alhamdulillah, dengan segala kerendahan hati serta puji syukur, kami panjatkan kehadirat Allah SWT, karena atas segala kasih sayang-nya sehingga

Lebih terperinci

PERHITUNGAN BEBAN GEMPA PADA BANGUNAN GEDUNG BERDASARKAN STANDAR GEMPA INDONESIA YANG BARU 1

PERHITUNGAN BEBAN GEMPA PADA BANGUNAN GEDUNG BERDASARKAN STANDAR GEMPA INDONESIA YANG BARU 1 PERHITUNGAN BEBAN GEMPA PADA BANGUNAN GEDUNG BERDASARKAN STANDAR GEMPA INDONESIA YANG BARU 1 Himawan Indarto ABSTRAK Dengan adanya standar gempa Indonesia yang baru yaitu Perencanaan Ketahanan Gempa Untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan BAB II TINJAUAN PUSTAKA 2.1 Umum Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan suatu kombinasi antara beton dan baja tulangan. Beton bertulang merupakan material yang kuat

Lebih terperinci

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI 03-2847-2002 ps. 12.2.7.3 f c adalah kuat tekan beton yang diisyaratkan BAB III A cv A tr b w d d b adalah luas bruto penampang beton yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Analisis desain suatu struktur, perlu ada gambaran yang jelas mengenai perilaku dan besar beban yang bekerja pada struktur. Beban-beban yang bekerja pada struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Dalam perencanaan bangunan tinggi, struktur gedung harus direncanakan agar kuat menahan semua beban yang bekerja padanya. Berdasarkan Arah kerja

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Perencanaan suatu struktur bangunan gedung didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Pengertian

Lebih terperinci

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450 PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI 02-1726-2002 DAN FEMA 450 Eben Tulus NRP: 0221087 Pembimbing: Yosafat Aji Pranata, ST., MT JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur BAB II TINJAUAN PUSTAKA.. Pembebanan Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu sendiri adalah

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH David Bambang H NRP : 0321059 Pembimbing : Daud Rachmat W., Ir., M.Sc. FAKULTAS TEKNIK JURUSAN

Lebih terperinci

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus BAB III LANDASAN TEORI 3.1 Perencanaan Beban Gempa 3.1.1 Klasifikasi Situs Dalam perumusan kriteria desain seismik suatu bangunan di permukaan tanah atau penentuan amplifikasi besaran percepatan gempa

Lebih terperinci

BAB III STUDI KASUS 3.1 UMUM

BAB III STUDI KASUS 3.1 UMUM BAB III STUDI KASUS 3.1 UMUM Tahap awal adalah pemodelan struktur berupa desain awal model, yaitu menentukan denah struktur. Kemudian menentukan dimensi-dimensi elemen struktur yaitu balok, kolom dan dinding

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 PEMBEBANAN 2.1.1 Beban Mati Menurut Peraturan Pembebanan Indonesia Untuk Gedung (PPIUG) 1983, beban mati adalah berat dari semua bagian suatu gedung yang bersifat tetap, termasuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Berdasarkan Pasal 3.25 SNI 03 2847 2002 elemen struktural kolom merupakan komponen struktur dengan rasio tinggi terhadap dimensi lateral terkecil melebihi tiga,

Lebih terperinci

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 BAB II BAB 1 TINJAUAN PUSTAKA 2.1. Peraturan-Peraturan yang Dugunakan 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 2847 2002), 2. Peraturan Pembebanan Indonesia Untuk Bangunan

Lebih terperinci

T I N J A U A N P U S T A K A

T I N J A U A N P U S T A K A B A B II T I N J A U A N P U S T A K A 2.1. Pembebanan Struktur Besarnya beban rencana struktur mengikuti ketentuan mengenai perencanaan dalam tata cara yang didasarkan pada asumsi bahwa struktur direncanakan

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 16 BAB III LANDASAN TEORI 3.1 Analisis Statik Ekuivalen Berdasarkan SNI 2002 Suatu cara analisis statik 3 dimensi linier dengan meninjau beban-beban gempa statik ekuivalen, sehubungan dengan sifat struktur

Lebih terperinci

BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang

BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS 2.1 Tinjauan Umum Secara umum struktur atas adalah elemen-elemen struktur bangunan yang biasanya di atas permukaan tanah yang berfungsi menerima dan menyalurkan

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

BAB IV ANALISA STRUKTUR

BAB IV ANALISA STRUKTUR BAB IV ANALISA STRUKTUR 4.1 Data-data Struktur Pada bab ini akan membahas tentang analisa struktur dari struktur bangunan yang direncanakan serta spesifikasi dan material yang digunakan. 1. Bangunan direncanakan

Lebih terperinci

TUGAS AKHIR PERANCANGAN ULANG STRUKTUR PORTAL GEDUNG PPPPTK MATEMATIKA YOGYAKARTA

TUGAS AKHIR PERANCANGAN ULANG STRUKTUR PORTAL GEDUNG PPPPTK MATEMATIKA YOGYAKARTA TUGAS AKHIR PERANCANGAN ULANG STRUKTUR PORTAL GEDUNG PPPPTK MATEMATIKA YOGYAKARTA Disusun oleh : ZUL PAHMI 20070110044 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH YOGYAKARTA 2012 LEMBAR

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

DAFTAR PUSTAKA. 1. SNI , Tata Cara Penghitungan Struktur Beton untuk. Bangunan Gedung. Badan Standarisasi Nasional. Jakarta.

DAFTAR PUSTAKA. 1. SNI , Tata Cara Penghitungan Struktur Beton untuk. Bangunan Gedung. Badan Standarisasi Nasional. Jakarta. Daftar Pustaka DAFTAR PUSTAKA 1. SNI 03 2847 2002, Tata Cara Penghitungan Struktur Beton untuk Bangunan Gedung. Badan Standarisasi Nasional. Jakarta. 2002 2. SNI 03 1727 1989, Tata Cara Perencanaan Pembebanan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : KEVIN IMMANUEL

Lebih terperinci

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2)

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2) 8 BAB III LANDASAN TEORI 3.1. Elemen Struktur 3.1.1. Kuat Perlu Kuat yang diperlukan untuk beban-beban terfaktor sesuai pasal 4.2.2. dan pasal 7.4.2 SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2.

Lebih terperinci

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan BAB III METEDOLOGI PENELITIAN 3.1 Prosedur Penelitian Pada penelitian ini, perencanaan struktur gedung bangunan bertingkat dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan perhitungan,

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton SNI 03-1974-1990 memberikan pengertian kuat tekan beton adalah besarnya beban per satuan luas, yang menyebabkan benda uji beton hancur bila dibebani dengan gaya

Lebih terperinci

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) Tugas Akhir untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S 1 Teknik Sipil diajukan

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Katolik

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON 03-2847-2002 DAN SNI GEMPA 03-1726-2002 Rinto D.S Nrp : 0021052 Pembimbing : Djoni Simanta,Ir.,MT FAKULTAS TEKNIK JURUSAN

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1 DAFTAR ISI HALAMAN JUDUL.. i LEMBAR PENGESAHAN ii KATA PENGANAR.. iii ABSTRAKSI... DAFTAR ISI DAFTAR GAMBAR.. DAFTAR NOTASI. v vi xii xiii BAB I PENDAHULUAN 1.1. Latar Belakang...... 1 1.2. Maksud dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Flat Slab Flat Slab adalah pelat beton bertulang yang mentransfer beban langsung ke kolom tanpa adanya balok sepanjang garis kolom dalam, namun balok tepi luar boleh jadi ada

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Kuat Tekan Beton Kekuatan tekan adalah kemampuan beton untuk menerima gaya tekan persatuan luas. Kuat tekan beton mengidentifikasikan mutu dari sebuah struktur. Semakin tinggi

Lebih terperinci

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB III PEMODELAN DAN ANALISIS STRUKTUR BAB III PEMODELAN DAN ANALISIS STRUKTUR 3.1. Pemodelan Struktur Pada tugas akhir ini, struktur dimodelkan tiga dimensi sebagai portal terbuka dengan penahan gaya lateral (gempa) menggunakan 2 tipe sistem

Lebih terperinci

PERANCANGAN STRUKTUR TAHAN GEMPA

PERANCANGAN STRUKTUR TAHAN GEMPA PERANCANGAN STRUKTUR TAHAN GEMPA SNI.03-1726-2002 TATA CARA PERENCANAAN KETAHANAN GEMPA UNTUK BANGUNAN GEDUNG FILOSOFI GEMPA 1. MENGHIDARI TERJADINYA KORBAN JIWA MANUSIA 2. MEMBATASI KERUSAKAN, SEHINGGA

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA. Oleh : PRISKA HITA ERTIANA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA. Oleh : PRISKA HITA ERTIANA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : PRISKA

Lebih terperinci

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Surat Pernyataan iv Kata Pengantar v DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xiv DAFTAR NOTASI xviii DAFTAR LAMPIRAN xxiii ABSTRAK xxiv ABSTRACT

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Konsep perencanaan struktur bangunan bertingkat tinggi harus memperhitungkan kemampuannya dalam memikul beban-beban yang bekerja pada struktur tersebut, diantaranya

Lebih terperinci

BAB IV ANALISIS & PEMBAHASAN

BAB IV ANALISIS & PEMBAHASAN BAB IV ANALISIS & PEMBAHASAN 4.1 EKSENTRISITAS STRUKTUR Pada Tugas Akhir ini, semua model mempunyai bentuk yang simetris sehingga pusat kekakuan dan pusat massa yang ada berhimpit pada satu titik. Akan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem BAB III METODOLOGI PENELITIAN 3.1 Alur Penelitian Dalam penelitian ini akan dilakukan analisis sistem struktur penahan gempa yang menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan

Lebih terperinci

BAB V DESAIN TULANGAN STRUKTUR

BAB V DESAIN TULANGAN STRUKTUR BAB V DESAIN TULANGAN STRUKTUR 5.1 Output Penulangan Kolom Dari Program Etabs ( gedung A ) Setelah syarat syarat dalam pemodelan struktur sudah memenuhi syarat yang di tentukan dalam peraturan SNI, maka

Lebih terperinci

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER Andi Algumari NRP : 0321059 Pembimbing : Daud Rachmat W., Ir., M.Sc. FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL

Lebih terperinci

TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL

TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S 1) Disusun oleh : Nama : Lenna Hindriyati

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM. PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh

Lebih terperinci

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL DAFTAR ISI HALAMAN JUDUL HALAMAN PERSETUJUAN DOSEN PEMBIMBING HALAMAN PENGESAHAN TIM PENGUJI LEMBAR PERYATAAN ORIGINALITAS LAPORAN LEMBAR PERSEMBAHAN INTISARI ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

BAB III LANDASAN TEORI. Kuat perlu dihitung berdasarkan kombinasi beban sesuai dengan SNI

BAB III LANDASAN TEORI. Kuat perlu dihitung berdasarkan kombinasi beban sesuai dengan SNI BAB III LANDASAN TEORI 3.1 Elemen Struktur 3.1.1. Kuat Perlu Kuat perlu dihitung berdasarkan kombinasi beban sesuai dengan SNI 2847:2013 dan SNI 1726:2012, berikut kombinasi kuat perlu yang digunakan:

Lebih terperinci

PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4

PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4 PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4 Naskah Publikasi Untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Teknik Sipil Diajukan Oleh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI Halaman Judul... i Lembar Pengesahan... ii Kata Pengantar... iii Daftar Isi... iv Daftar Notasi... Daftar Tabel... Daftar Gambar... Abstraksi... BAB I PENDAHULUAN... 1 1.1 Latar Belakang Masalah...

Lebih terperinci

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) 1 PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai S-1 Teknik Sipil diajukan

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS BAB III STUDI KASUS Pada bagian ini dilakukan 2 pemodelan yakni : pemodelan struktur dan juga pemodelan beban lateral sebagai beban gempa yang bekerja. Pada dasarnya struktur yang ditinjau adalah struktur

Lebih terperinci

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i )

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i ) DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERSETUJUAN... iii PERNYATAAN BEBAS PLAGIARISME... iv KATA PENGANTAR... v HALAMAN PERSEMBAHAN... vii DAFTAR ISI... viii DAFTAR GAMBAR... xii

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI

ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI Raden Ezra Theodores NRP : 0121029 Pembimbing : Ir. DAUD R. WIYONO, M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Umum Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman terhadap dari segala kemungkinan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Beton Beton didefinisikan sebagai campuran antara sement portland atau semen hidraulik yang lain, agregat halus, agregat kasar dan air, dengan atau tanpa bahan tambahan yang

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 Perhitungan Struktur Akibat Gaya Gempa Beban gempa adalah semua beban statik ekivalen yang bekerja pada gedung tersebut atau bagian dari gedung tersebut yang menirukan pengaruh

Lebih terperinci

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton DAI'TAH NOTASI DAFTAR NOTASI a = tinggi balok tegangan beton persegi ekivalen Ab = luas penampang satu bentang tulangan, mm 2 Ag Ah AI = luas penampang bruto dari beton = luas dari tulangan geser yang

Lebih terperinci

DAFfAR NOTASI. = Luas total tulangan longitudinal yang menahan torsi ( batang. = Luas dari tulangan geser dalam suatu jarak s. atau luas dari tulangan

DAFfAR NOTASI. = Luas total tulangan longitudinal yang menahan torsi ( batang. = Luas dari tulangan geser dalam suatu jarak s. atau luas dari tulangan NOTASI 1 DAFfAR NOTASI a = Tinggi blok tegangan beton persegi ekivalen Ab = Luas penampang satu batang tulangan. mm 2 Ag Ah AI = Luas penampang bruto dari beton = Luas dari tulangan geser yang pararel

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1 Analisis Struktur Analisis struktur bertujuan untuk mengetahui gaya-gaya dalam, reaksi perletakan, dan perpindahan yang terjadi akibat pembebanan. Sebelum dilakukan analisis struktur

Lebih terperinci

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan BAB II DASAR-DASAR DESAIN BETON BERTULANG. Umum Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan membuat suatu campuran yang mempunyai proporsi tertentudari semen, pasir, dan koral

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Pemilihan Struktur Desain struktur harus memperhatikan beberapa aspek, diantaranya : Aspek Struktural ( kekuatan dan kekakuan struktur) Aspek ini merupakan aspek yang

Lebih terperinci

PEMODELAN DINDING GESER BIDANG SEBAGAI ELEMEN KOLOM EKIVALEN PADA MODEL GEDUNG TIDAK BERATURAN BERTINGKAT RENDAH

PEMODELAN DINDING GESER BIDANG SEBAGAI ELEMEN KOLOM EKIVALEN PADA MODEL GEDUNG TIDAK BERATURAN BERTINGKAT RENDAH PEMODELAN DINDING GESER BIDANG SEBAGAI ELEMEN KOLOM EKIVALEN PADA MODEL GEDUNG TIDAK BERATURAN BERTINGKAT RENDAH Yunizar NRP : 0621056 Pemnimbing : Yosafat Aji Pranata, ST., MT. FAKULTAS TEKNIK JURUSAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. PENDAHULUAN Perencanaan komponen struktur harus berdasarkan peraturan yang telah ditetapkan. Dalam merencanakan komponen struktur beton bertulang mengikuti ketentuan yang terdapat

Lebih terperinci

DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH. Refly. Gusman NRP :

DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH. Refly. Gusman NRP : DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH Refly. Gusman NRP : 0321052 Pembimbing : Ir. Daud R. Wiyono, M.Sc. Pembimbing Pendamping : Cindrawaty Lesmana, ST., M.Sc.(Eng) FAKULTAS

Lebih terperinci

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK Tugas Akhir ini diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata-1

Lebih terperinci

EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON

EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM STUDI TEKNIK SIPIL oleh

Lebih terperinci

ANALISA STRUKTUR DAN KONTROL KEKUATAN BALOK DAN KOLOM PORTAL AS L1-L4 PADA GEDUNG S POLITEKNIK NEGERI MEDAN

ANALISA STRUKTUR DAN KONTROL KEKUATAN BALOK DAN KOLOM PORTAL AS L1-L4 PADA GEDUNG S POLITEKNIK NEGERI MEDAN ANALISA STRUKTUR DAN KONTROL KEKUATAN BALOK DAN KOLOM PORTAL AS L1-L4 PADA GEDUNG S POLITEKNIK NEGERI MEDAN LAPORAN Ditulis untuk Menyelesaikan Mata Kuliah Tugas Akhir Semester VI Pendidikan Program Diploma

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci