2 BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "2 BAB II TINJAUAN PUSTAKA"

Transkripsi

1 2 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Listrik Bagian dari sistem tenaga listrik yang paling dekat dengan pelanggan adalah sistem distribusi. Sistem distribusi juga merupakan bagian yang paling banyak mengalami gangguan sehingga konsentrasi atau fokus utama dalam operasi sistem tenaga listrik pada sistem distribusi adalah mengatasi gangguan. One-Line Diagram suatu sistem distribusi dapat ditunjukkan pada Gambar 2.1 berikut: Jaringan Tegangan Menengah (JTM) Circuit Breaker Sekering T.M. Trafo Distribusi Sakelar T.R. Rel T.R. Sekering T.R. Pelanggan Gambar 2.1 Sistem Distribusi Tenaga Listrik 4

2 Baik Jaringan Tegangan Menengah (JTM) maupun Jaringan Tegangan Rendah (JTR) pada umumnya beroperasi secara radial. Di samping itu, masalah tegangan, bagian-bagian instalasi yang berbeban lebih, dan rugi-rugi daya dalam jaringan merupakan masalah yang perlu dicatat dan dianalisis secara terus menerus untuk dijadikan masukan bagi perencanaan pengembangan sistem dan juga untuk melakukan tindakan-tindakan pemeliharaan dan penyempurnaan operasi sistem distribusi. Dalam pengoperasian sistem distribusi, masalah yang utama adalah mengatasi gangguan karena jumlah gangguan dalam sistem distribusi relatif banyak dibandingkan dengan gangguan pada bagian sistem yang lain [2]. 2.2 Jaringan Distribusi Jaringan distribusi merupakan salah satu bagian dari suatu sistem tenaga listrik yang terletak paling dekat dengan pelanggan. Jaringan distribusi berfungsi untuk menyalurkan tenaga listrik dari gardu induk ke pelanggan. Permasalahan utama pada jaringan distribusi adalah banyaknya gangguan yang sering terjadi. Intensitas gangguan yang terjadi pada jaringan distribusi lebih banyak dari pada gangguan di sistem tenaga listrik yang lain [2]. Permasalahan yang terjadi pada jaringan distribusi dapat mengakibatkan terganggunya kontinuitas pelayanan tenaga listrik dari gardu induk ke pelanggan. Tingkat kontinuitas pelayanan tenaga listrik setiap jaringan distribusi berbedabeda tergantung jenis jaringan distribusi yang diterapkan. Berdasarkan bentuk jaringan, jaringan distribusi dapat dibedakan menjadi beberapa jenis [6]: 1. Sistem radial terbuka 2. Sistem radial paralel 3. Sistem rangkaian tertutup 4. Sistem network 5

3 5. Sistem interkoneksi 2.3 Distributed Generation Defenisi Distributed Generation Sistem pembangkitan daya listrik konvensional telah muncul lebih dari 50 tahun lalu dan terus mengalami perkembangan setiap tahunnya. Sistem pembangkitan daya konvensional ini menawarkan berbagai keuntungan, seperti efisiensi yang tinggi dan dapat beroperasi dalam jumlah yang kecil jika menangani kebutuhan daya yang sedikit [4]. Terdapat berbagai pengertian tentang Distributed Generation.beberapa hal tentang pengertian Distributed Generation adalah sebagai berikut: [4] 1. Electric Power Research Institute mengartikan bahwa DG adalah sebuah pembangkit yang beroperasi hanya sampai 50 MW saja. 2. Preston and Rastler mengartikan bahwa DG adalah pembangkit yang berskala dari beberapa KW hingga 100 MW. 3. Cardell mengartikan bahwa DG adalah pembangkit berskala 500 kw dan 1 MW. Akan tetapi umumnya, pengertian Distributed Generation adalah sebuah pembangkit yang terletak di daerah sistem distribusi ataupun pada daerah dekat beban [3]. Distributed Generation memiliki rating berdasarkan definisi yang diperoleh berdasarkan literatur. Rating maksimum yang dapat dikoneksikan pada sebuah sistem distribusi tergantung pada kapasitas dari sistem distribusi tersebut. Meskipun tidak ada ketentuan yang pasti untuk menentukan klasifikasi tingkat dari Distributed Generation, namun berdasarkan besar daya yang dihasilkan, dapat disimpulkan bahwa klasifikasi Distributed Generation dibagi atas : [3] - Micro : ~1 Watt sampai dengan < 5 kw 6

4 - Small : 5 kw sampai dengan < 5 MW - Medium : 5 MW sampai dengan 50 MW - Large : 50 MW sampai dengan ~ 300 MW Teknonologi dari DG DG dapat dibedakan berdasarkan energi utama yang digunakan, yaitu [5][6]: a. Internal Combustion Engines (ICE) ICE merupakan salah satu teknologi yang umum digunakan untuk DG. ICE merupakan contoh DG dengan biaya modal rendah dan ukuran yang besar, dari beberapa kw hingga MW. ICE juga memiliki efisiensi dan keandalan operasi yang tinggi. Karakteristik ini dikombinasikan dengan kemampuan mesin untuk memulai kerja yang cepat selama terjadi pemadaman. Hal ini membuat ICE menjadi pilihan utama dalam keadaan darurat atau menjadi cadangan daya listrik. Kelemahan utama dari ICE adalah: 1. Biaya perawatan (maintenance) dan bahan bakar yang tinggi (tertinggi di antara teknologi DG lain) 2. Emisi NO X yang tinggi (tertinggi di antara teknologi DG lain) 3. Tingkat kebisingan yang tinggi b. Turbin Gas Turbin gas dengan segala ukuran dewasa ini telah luas digunakan. Turbin gas ukuran kecil 1-20 MW umum digunakan dalam aplikasi Combined Heat and Power (CHP). Turbin gas kecil ini khususnya sangat berguna ketika dibutuhkan uap dengan temperatur yang tinggi. Biaya perawatan dan emisi yang dihasilkan oleh turbin gas sedikit lebih rendah dibandingkan dengan ICE. Tetapi tingkat kebisingan untuk turbin gas masih tergolong tinggi. c. Combined Cycle Gas Turbines (CCGT) Pada CCGT, campuran udara pembuangan sisa bahan bakar bertukar energi dengan air di boiler untuk menghasilkan uap air yang digunakan untuk 7

5 menggerakkan turbin uap. Pergerakan turbin uap bertujuan untuk mengubah energi gerak tersebut menjadi tambahan energi listrik pada generator. Kemudian, aliran uap dari turbin mengalami kondensasi dan kembali ke boiler. Teknologi CCGT menjadi cukup populer dikarenakan efisiensi yang tinggi. Namun, instalasi turbin gas di bawah 10 MW umumnya bukan merupakan combined-cycle. d. Microturbines Microturbines menghasilkan daya ac dengan frekuensi tinggi. Sebuah inverter daya digunakan untuk mengubah frekuensi ini ke dalam kisaran frekuensi yang dapat digunakan. Unit individu dari microturbines berkisar dari kw. Tetapi beberapa microturbines dapat digabungkan menjadi beberapa unit (multiple unit). Temperatur pembakaran yang rendah membuat emisi NO X menjadi sangat rendah. Microturbines juga menghasilkan tingkat kebisingan yang lebih rendah dibandingkan teknologi pembangkit lain yang memiliki ukuran sama. Kebanyakan Microturbines menggunakan gas alam. Penggunaan energi terbarukan seperti ethanol sangat memungkinkan untuk digunakan. Kekurangan utama dari microturbines adalah biaya bahan bakar yang lebih tinggi bila dibandingkan dengan ICE. e. Fuel Cells Fuel cells merupakan peralatan elektrokimia yang merubah energi kimia dari sebuah bahan bakar menjadi energi yang dapat digunakan (listrik dan panas) tanpa pembakaran. Fuel cells menghasilkan listrik dengan efisiensi yang tinggi hingga 40-60% dengan tingkat emisi yang rendah dan beroperasi tanpa kebisingan yang berarti. Hal ini yang menjadi keuntungan utama dari fuel cells. Tantangan utama dalam pengembangan fuel cells adalah biaya investasi yang tinggi. f. Solar Photovoltaic (PV) Sistem Photovoltaic (PV) melibatkan perubahan langsung dari cahaya matahari menjadi listrik. Penerapan dari sistem PV sangat didukung dengan 8

6 ketersediaan sinar matahari sepanjang hari, siklus kerja yang lama, perawatan yang mudah, biaya operasi yang rendah, ramah lingkungan, serta waktu untuk mendesain, menginstal, dan kemampuan untuk memulai kerja yang cepat. Umumnya modul individu PV mempunyai kisaran daya dari 20 W hingga 100 kw. Beberapa penghalang untuk sistem PV yaitu biaya instalasi PV yang relatif tinggi dibandingkan teknologi DG lain. g. Tenaga Angin Tenaga angin memainkan peran yang penting dalam pembangkitan listrik dari energi terbarukan. Tantangan utama dari teknologi tenaga angin adalah penyaluran listrik yang masih sering terputus dan keandalan jaringan. Hal ini dikarenakan teknologi tenaga angin memanfaatkan kekuatan alam yang tidak bisa hadir sepanjang waktu. Tantangan lain dalam pengembangan teknologi ini adalah ketersedian pembangkit tersebut dikarenakan lokasi terbaik untuk pembangunan teknologi ini adalah pada daerah terpencil tanpa akses ke jaringan transmisi yang sesuai. h. Small Hydropower (SHP) Small Hydropower (SHP) umumnya digunakan untuk menunjukkan tenaga air dengan kapasitas daya kurang dari 10 MW. Istilah lain yang sering digunakan adalah mini hydropower dengan kapasitas di antara 100 KW dan 1 MW dan micro hydropower dengan kapasitas di atas 100 KW. i. Solar Thermal Sistem solar thermal menghasilkan listrik dengan mengkonsentrasikan cahaya matahari yang datang dan kemudian memerangkap panas dari cahaya matahari tersebut yang digunakan untuk menaikkan temperatur cairan ke derajat temperatur yang sangat tinggi untuk menghasilkan uap air dan menghasilkan listrik. Pengembangan konsentrasi cahaya matahari sekarang memungkinkan pembangkitan daya listrik dari beberapa kilowatt hingga ratusan megawatt. 9

7 j. Panas Bumi Energi panas bumi tersedia sebagai panas yang diemisikan dari dalam bumi, biasanya dalam bentuk air panas atau uap. Pembangkit listrik tenaga panas bumi membutuhkan biaya modal yang tinggi tetapi dengan biaya operasi yang rendah. Teknologi panas bumi ini juga ramah lingkungan tanpa ada emisi CO 2 selama beroperasi Dampak dari Pemasangan Distributed Generation pada Jaringan Distribusi Terpasangnya Distributed Generation pada jaringan menyebabkan beberapa dampak yang perlu diperhatikan yaitu faktor perubahan arah aliran daya, rugi rugi daya pada saluran, dan perubahan profil tegangan pada saluran [4]. Jaringan konvensional merupakan jaringan dengan aliran daya satu arah seperti dilihat pada Gambar 2.2. Namun dengan adanya DG maka aliran daya tidak dapat dianggap bergerak pada satu arah lagi. Sehingga aliran daya juga berubah menjadi aliran daya dua arah seperti Gambar 2.3. Gambar 2.2 Aliran Daya Satu Arah 10

8 Gambar 2.3 Aliran Daya Dua Arah Perubahan pola aliran daya yang terjadi pada saluran dari Gambar 2.2 ke Gambar 2.3 mengakibatkan perubahan nilai arus yang mengalir pada jaringan distribusi. Hal ini mengakibatkan perubahan nilai rugi rugi daya pada jaringan. Faktor yang mempengaruhi nilai rugi rugi pada jaringan adalah resistansi penghantar, serta besar arus yang melalui penghantar tersebut. Bertambah besarnya daya yang disalurkan dari sebuah sumber daya ke beban melalui sebuah penghantar mengakibatkan penghantar tersebut akan menghantarkan arus yang lebih besar, sehingga rugi rugi pada penghantar pun lebih besar [4] Dampak dari Pemasangan Distributed Generation Untuk Memperbaiki Tegangan Naiknya tegangan yang disebabkan oleh DG dikarenakan ukuran DG yang terlalu besar dan beban yang terlalu rendah yang berada di sekitar DG [6]. Oleh karena itu, jika DG yang digunakan memiliki kapasitas daya yang besar, maka agar tidak terjadi naiknya tegangan DG yang hendaknya diletakan di daerah berbeban besar juga. DG yang dapat membangkitkan daya reaktif sendiri, seperti diesel ataupun mikro hidro, ketika DG mensuplai daya yang besar, dia juga akan menyerap daya reaktif yang besar juga. Ketika ia menyerap daya reaktif yang besar, maka kelebihan tegangan pada sistem dapat diatasi [5][6]. Tetapi jika DG 11

9 tidak dapat membangkitkan daya reaktif sendiri, seperti solar cell, maka DG harusnya dioperasikan pada keadaan unity power factor, sampai tegangan pada DG mencapai tegangan maksimum, dan jika daya yang diperlukan lebih banyak lagi, maka diperlukannya pengatur tegangan untuk menyesuaikan tegangan pada tegangan yang diizinkan [5][6]. Pada Gambar 2.4 merupakan aliran daya dengan DG dikoneksikan ke beban. Gambar 2.4 Diagram Aliran Daya dengan Koneksi DG Dari Gambar 2.4 didapatkan persamaan sebagai berikut : S = P + jq (2.1) I = (2.2) I = (2.3) U = (2.4) (2.5) Dari persamaan di atas diketahui, bahwa nilai drop tegangan berubah, semakin bertambah atau berkurang, tergantung jika DG menyerap daya reaktif atau memberi daya reaktif. Jika DG menyerap daya reaktif terlalu besar, maka jatuh tegangan pada sistem semakin bertambah, oleh karena itu, rugi rugi dapat semakin bertambah bukannya berkurang. 12

10 Jika DG diletakan di tempat yang tepat dengan besar yang tepat, penambahan DG pun tidak lagi menambah rugi rugi, melainkan mengurangi rugi-rugi dari sistem. Perubahan pola aliran daya akibat interkoneksi DG pada jaringan distribusi dapat berdampak bertambahnya nilai rugi rugi atau berkurangnya rugi rugi pada jaringan. Bertambahnya daya yang mengalir pada jaringan akan menyebabkan naiknya jatuh tegangan pada saluran. Maka dari itu dibutuhkan juga pengaturan tegangan yang tepat sehingga beban beban dapat terlayani dengan baik [4] Dampak dari Pemasangan Distributed Generation Terhadap Rugi Rugi Daya Dampak DG pada rugi rugi jaringan ialah diakibatkan oleh lokasi dari DG, penyulangnya dan parameter bebannya. Intinya, DG diletakan di sekitar beban yang besar, untuk mengurangi rugi rugi jaringan akibat arus yang besar yang mengalir di penghantar. Aliran daya berubah dimana DG akan ditempatkan, perubahan aliran daya ini, menyebabkan arah aliran gerak arus pun berubah. Perubahan arah gerak arus ini, menyebabkan rugi rugi pun menjadi berubah. Oleh karena itu, pengaruh dari peletakan dari DG ini mempengaruhi rugi-rugi dari sistem [6]. Pada Gambar 2.5 dapat dilihat aliran daya saat DG dikoneksikan pada Bus yang berbeda: Gambar 2.5 Perbandingan Aliran Daya Saat DG Dikoneksikan di Bus yang Berbeda 13

11 Dari Gambar 2.5 terdapat dua keadaan, dimana pada keadaan pertama switch satu tutup dan saklar dua buka dan keadaan kedua yaitu saklar satu buka dan saklar dua yang tutup. Terdapat dua rugi rugi yang berbeda pada dua keadaan tersebut, dimana hal tersebut ditunjukan dalam persamaan umum di bawah ini : Rugi rugi = (2.6) Dimana pada keadaan 1 : (2.7) (2.8) Rugi rugi = + ) (2.9) Pada keadaan 2 : Rugi rugi = (2.10) Melalui Persamaan 2.6 dan 2.7 dilihat bahwa pada kondisi ke 2 nilai rugirugi pada jaringan lebih kecil dari rugi rugi pada kondisi pertama. Dapat kita lihat bahwa penempatan DG juga mempengaruhi bagaimana kondisi rugi rugi pada jaringan. 2.4 Distributed Generation Tipe MVAR Control Distributed Generation dapat dibagi menjadi 4 tipe berdasarkan karakteristik tiap pembangkit dalam mengirim daya aktif dan daya reaktif, sehingga diklasifikasikan seperti dibawah; 1. Tipe 1 : Kemampuan menginjeksi daya aktif saja. 2. Tipe 2 : Kemampuan menginjeksi daya reaktif saja. 3. Tipe 3 : Kemampuan menginjeksi daya aktif dan daya reaktif. 4. Tipe 4 : Kemampuan menginjeksi daya aktif namun mengkonsumsi daya reaktif. 14

12 Tipe dari DG yang digunakan pada penelitian ini yaitu DG tipe 2 MVAR Control yang hanya mampu memberikan injeksi daya reaktif saja. Salah satu generator yang menggunakan tipe DG ini yaitu generator turbin gas yang menggunakan kompensator sinkron [7]. Kompensator sinkron adalah sebuah motor sinkron yang bekerja tanpa adanya beban mekanis, dan tergantung kepada besar eksitasi yang diberikan kepadanya, kompensator sinkron dapat menyerap atau membangkitkan daya reaktif. Pada kompensator sinkron rugi rugi diperhitungkan dibandingkan dengan menggunakan kapasitor. Oleh karena itu pada kompensator sinkron power faktornya tidak sama dengan nol. Ketika kompensator sinkron digunakan dengan regulator tegangan maka kompensator secara otomatis bekerja over eksitasi ketika beban tinggi dan under eksitasi ketika beban rendah. Keuntungan dari kompensator sinkron ini adalah dapat dioperasikan secara fleksibel untuk setiap kondisi tegangan, meskipun biaya instalasi sangat mahal [8]. Model interkoneksi dari kompensator sinkron ini dapat ditunjukkan pada Gambar 2.6. Kompensator ini diajalankan sebagai motor induksi terlebih dahulu dalam waktu 2,5 menit dan kemudian disinkronkan [8]. Gambar 2.6 One Line Diagram Untuk Mengilustrasikan Jatuh Tegangan di Sistem Distribusi yang Terdapat DG dengan Tipe MVAR control 15

13 Untuk sebuah jaringan distribusi yang memiliki beban dan terhubung dengan DG yang mengasilkan daya reaktif seperti yang ditunjukkan Gambar 2.6 diatas, jatuh tegangan pada penyulang dapat dihitung oleh: V V S V (2.11) R R ( P P ) X ( Q ( Q DG DG V (2.12) V R )) dimana: P DG = Daya aktif yang dihasilkan oleh DG (Watt) Q DG = Daya reaktif yang dihasilkan oleh DG (VAR) Persamaan (2.12) menunjukkan bahwa jika DG menghasilkan daya reaktif atau DG tidak bertukar daya reaktif dengan jaringan (grid), DG selalu menurunkan jatuh tegangan sepanjang penyulang. Jika daya yang dibangkitkan lebih besar dari beban penyulang, daya akan mengalir dari DG menuju gardu induk dan menyebabkan kenaikan tegangan pada sisi primer transformator. Lebih lanjut, Persamaan (2.12) juga menunjukkan bahwa jika DG menyerap daya reaktif, DG bisa meningkatkan jatuh tegangan (-Q DG ) dan jika DG menghasilkan daya reaktif, DG dapat menurunkan jatuh tegangan (+Q DG ). Hal ini bergantung dari daya aktif dan daya reaktif dari DG. 2.5 Studi Aliran Daya Studi aliran daya merupakan suatu bagian yang penting dalam analisis sistem tenaga. Studi aliran daya diperlukan untuk tahap perencanaan, pengaturan biaya, dan dapat menjadi peramalan untuk perencanaan pengembangan jaringan di masa depan. Beberapa parameter yang perlu diperhatikan dalam aliran daya 16

14 adalah menentukan besar dan sudut fasa dari tegangan pada masing masing bus, serta daya aktif dan reaktif yang mengalir pada setiap line. Dalam penyelesaian sebuah aliran daya, sistem dioperasikan dalam keadaan seimbang. Besaran besaran yang menjadi parameter dalam studi aliran Konsep Perhitungan Aliran Daya Perhitungan aliran daya pada dasarnya adalah menghitung besar tegangan, sudut fasa dan rugi rugi pada jaringan dalam kondisi tunak dan dengan beban seimbang. Pada setiap bus ada 4 variabel operasi yang terkait, yaitu daya aktif, daya reaktif, besar tegangan, dan sudut fasa tegangan. Supaya Persamaan aliran daya dapat dihitung, dua dari empat variabel diatas harus diketahui untuk setiap bus, sedangkan variabel yang lainnya dihitung. Setiap bus dalam sistem tenaga listrik dikelompokkan menjadi 3 tipe bus, yaitu [10] : a. Bus beban Bus beban adalah bus yang tidak memiliki unsur pembangkitan tenaga listrik / generator, dan terhubung secara langsung dengan beban (konsumen). Bus beban biasa disebut dengan P-Q bus, karena pada bus ini, yang dapat diatur adalah kapasitas daya yang terpasang. P merupakan daya aktif terpasang dalam satuan Watt (W), sedangkan Q merupakan daya reaktif terpasang dalam satuan Volt Ampere Reaktif (VAR). Hubungan antara daya aktif dan daya reaktif terhubung dengan nilai cos phi (cos φ). b. Bus generator Bus generator atau biasa disebut bus voltage controlled. Disebut demikian, karena tegangan pada bus ini biasanya dijaga konstan. Pada bus ini terhubung dengan generator yang dapat dikontrol daya aktif dan tegangannya. Pengaturan daya aktif pada bus ini diatur dengan mengontrol penggerak mula (prime mover), sedangkan pengaturan tegangan pada bus ini diatur dengan mengontrol arus 17

15 eksitasi pada generator. Oleh karena daya aktif (P) dan tegangan (V) yang dapat dikontrol, maka bus ini sering disebut sebagai P-V bus. c. Bus referensi Pada bus referensi atau biasa disebut slack bus, adalah sebuah bus generator yang dianggap sebagai bus utama karena merupakan bus yang memiliki kapasitas daya yang paling besar. Oleh karena daya yang dapat disalurkan oleh bus ini besar, maka dari itu, pada bus ini hanya nilai tegangan dan sudut fasa yang bisa diatur, sedangakan besar daya aktif dan reaktifnya akan dicari dalam perhitungan. Dalam sistem pemrograman, tipe bus identik dengan kode angka. Dimana kode untuk bus referensi adalah angka 1, kode untuk bus generator adalah angka 2, dan kode untuk bus beban adalah angka 3. Untuk lebih jelasnya dari pembagian tipe dan kode bus, dapat dilihat dari Tabel 2.1 berikut ini : Tabel 2.1 Tipe Bus Dalam Sistem Tenaga Listrik. Tipe bus Kode Bus Nilai yang diketahui Nilai yang dihitung Bus beban 3 P, Q V, δ Bus generator 2 P, V Q, δ Bus referensi 1 V, δ P, Q Persamaan Aliran Daya Sistem tenaga listrik tidak hanya terdiri dari 2 bus, melainkan terdiri dari beberapa bus yang akan diinterkoneksikan satu sama lain. Daya listrik yang diinjeksikan oleh generator kepada salah satu bus, bukan hanya dapat diserap oleh beban bus tersebut, melainkan juga dapat diserap oleh beban di bus yang lain. Kelebihan daya pada bus akan dikirimkan melalui saluran transmisi ke bus-bus lain yang kekurangan daya. 18

16 Diagram satu garis beberapa bus dari suatu sistem tenaga diperlihatkan pada Gambar 2.7: Gambar 2.7 Diagram Satu Garis dari N-Bus dalam Suatu Sistem Tenaga Arus pada bus I dapat ditulis: Kemudian, didefinisikan: (2.13) Dalam bentuk matriks admitansi dapat dinyatakan menjadi: (2.14) 19

17 Sehingga I i pada Persamaan (2.13) dapat ditulis menjadi: (2.15) Atau dapat ditulis: (2.16) Persamaan daya pada bus I adalah: ; dimana adalah conjugate pada bus i (2.17) diperoleh: Dengan melakukan substitusi Persamaan (2.17) ke Persamaan (2.16) maka (2.18) Dari Persamaan (2.18) terlihat bahwa persamaan aliran daya bersifat tidak linier dan harus diselesaikan dengan metode numerik Metode Newton-Raphson Kecepatan relatif dari bermacam-macam metode analisis aliran beban sukar dipastikan. Salah satu metoda untuk menghitung aliran daya adalah metode Newton-Raphson. Metode ini memiliki perhitungan lebih baik untuk sistem tenaga yang lebih besar dan tidak linier. Metode ini juga memiliki keuntungan dalam hal konvergensi yang jauh lebih cepat dan persamaan aluran daya yang dirumuskan dalam bentuk polar. Dimana penurunan rumus nya dapat dilihat sebagai berikut [2] : Pada suatu bus dimana besarnya tegangan dan daya reaktif yang tidak diketahui, nilai real dan imajiner tegangan untuk setiap iterasi didapatkan dengan menghitung nilai daya reaktif terlebih dahulu. Dari Persamaan (2.17) diperoleh: 20

18 (2.19) Dimana i = n, sehingga diperoleh: (2.20) (2.21) Untuk menerapkan metode Newton-Raphson pada penyelesaian persamaan aliran maka dinyatakan tegangan bus dan admitansi saluran dalam bentuk polar. Jika dipilih bentuk polar dan diuraikan Persamaan (2.19) ke dalam unsur real dan imajiner maka didapatkan: Sehingga didapatkan: (2.22) (2.23) (2.24) Persamaan (2.23) dan Persamaan (2.24) merupakan langkah awal perhitungan aliran daya dengan metode Newton-Raphson. Penyelesaian aliran menggunakan proses iterasi (k+1). Untuk iterasi pertama menggunakan nilai k = 0 merupakan nilai perkiraan awal yang diterapkan sebelum dimulai perhitungan aliran daya. Hasil perhitungan daya menggunakan Persamaan (2.23) dan Persamaan (2.24) akan diperoleh nilai dan. Hasil ini digunakan untuk menghitung nilai dan menggunakan persamaan berikut: 21

19 (2.25) (2.26) Hasil perhitungan Persamaan (2.25) dan Persamaan (2.26) digunakan untuk membentuk matriks Jacobian. Persamaan matriks Jacobian disusun sebagai berikut: (2.27) Secara umum Persamaan (2.27) dapat disederhanakan ke dalam bentuk: (2.28) Unsur Jacobian diperoleh dengan membuat turunan parsial dari Persamaan (2.23) dan Persamaan (2.24) dan memasukkan nilai tegangan perkiraan pada iterasi pertama. Dimana dalam menentukan matriks Jacobian adalah sebagai berikut: Jumlah baris dan kolom matriks dibuat berdasarkan dengan [(2n-2-m) x (2n-2-m)] dan jumlah baris dan kolom J1 dibuat berdasarkan [(n-1) x (n-1)], jumlah baris dan kolom J2 dibuat berdasarkan [(n-1) x (n-1-m)], jumlah baris dan kolom J3 dibuat berdasarkan [(n-1-m) x (n-1)], lalu jumlah baris dan kolom J4 dibuat berdasarkan [(n-1-m) x (n-1-m)]. Komponen diagonal dan off diagonal dari J1 adalah : (2.29) 22

20 j 1 (2.30) Komponen diagonal dan off diagonal dari J2 adalah : (2.31) j 1 (2.32) Komponen diagonal dan off diagonal dari J3 adalah : (2.33) j 1 (2.34) Komponen diagonal dan off diagonal dari J4 adalah : (2.35) j 1 (2.36) Setelah mendapatkan nilai matriks Jacobian selanjutnya dilakukan perhitungan pada nilai dan dengan cara melakukan inverse matriks Jacobian, sehingga diperoleh bentuk sebagai berikut: (2.37) Setelah nilai dan didapat, maka dapat dihitung nilai tersebut untuk iterasi berikutnya, yaitu dengan menambahkan nilai dan, sehingga diperoleh persamaan berikut: (2.38) 23

21 (2.39) Hasil perhitungan Persamaan (2.38) dan Persamaan (2.39) digunakan lagi dalam proses iterasi selanjutnya, yaitu dengan memasukkan nilai hasil ke dalam Matriks (2.27) sebagai langkah awal perhitungan aliran daya. Proses ini dilakukan secara terus menerus sampai diperoleh nilai yang konvergen. Secara ringkas, metode penyelesaian aliran daya menggunakan metode Newton-Raphson dapat dilakukan dengan langkah-langkah sebagai berikut: a. Tentukan nilai-nilai dan yang mengalir ke dalam sistem pada setiap bus untuk nilai yang diperkirakan dari besar tegangan (V) dan sudut fasanya (δ) untuk iterasi pertama atau nilai tegangan yang ditentukan paling akhir untuk iterasi berikutnya b. Hitung pada setiap rel c. Hitung nilai-nilai untuk Jacobian dengan menggunakan nilai-nilai perkiraan atau yang ditentukan dari besar dan sudut fasa tegangan dalam persamaan untuk turunan parsial yang ditentukan dengan persamaan diferensial Persamaan (2.23) dan Persamaan (2.24) d. Inverse matriks Jacobian dan hitung koreksi-koreksi tegangan dan pada setiap rel e. Hitung nilai yang baru dari dan dengan menambahkan nilai dan pada setiap rel f. Kembali ke langkah 1 dan ulangi proses tersebut dengan menggunakan nilai besar dan sudut fasa tegangan yang ditentukan oleh nilai hasil terakhir sehingga semua nilai yang diperoleh lebih kecil dari indeks ketepatan yang dipilih. 24

22 2.5.4 Contoh Perhitungan Aliran Daya dengan Menggunakan Metode Newton Raphson Dilakukan perhitungan aliran daya menggunakan metode Newton-Raphson seperti yang dijelaskan sebelumnya. Dimisalkan sebuah jaringan distribusi seperti digambarkan pada Gambar 2.3 mempunyai satu slack bus, satu bus generator dan satu bus beban. Gambar 2.8 Single Line Diagram Sistem Distribusi dengan Tiga Bus berikut: Didapatkan nilai matriks Y dari jaringan distribusi tersebut sebagai Dengan menggunakan Persamaan (2.21), didapatkan: 25

23 cos sin cos 33 Setelah didapatkan nilai P 2 dan nilai Q 2, dilakukan perhitungan untuk mendapatkan nilai dan sesuai Persamaan (2.25) dan Persamaan (2.26) sebagai berikut: Dimana matriks jacobian dibentuk dengan persamaan : cos 22 26

24 sin 22 = - pu = 2 pu = -4 - (-1,14) = -2,86 = -2,5-(-2,28) = -0,22 = 2 0,5616 = 1,4384 Lalu masukan semua nilai pada element matriks Jacobian. Dimana, hasil perhitungan dari atas akan didapatkan : Lalu hasil selisih di atas ditambahkan dengan nilai awal = 0 + (-0,045263) = 0,

25 Lalu nilai yang didapatkan di atas, dimasukan lagi ke dalam matriks jacobian untuk dilakukan perhitungan pada interasi ke 2, lalu dilanjutkan sampai nilai menjadi konvergen. Lalu nilai ahkir yang akan didapatkan adalah sebagai berikut : = 0, (-0, ) = 0,04706 Lalu nilai di atas dimasukan ke dalam Persamaan 2.9 untuk mencari besar daya aktif dan daya reaktif pada bus 3 dan bus 1 Maka hasil yang didapatkan adalah sebagai berikut: = 1,4085 pu = 2,1842 pu = 1,4617 pu Hasil perhitungan tersebut masih belum akurat sepenuhnya dan dibutuhkan iterasi lanjutan untuk menghasilkan data yang konvergen. Perhitungan 28

26 iterasi yang terlalu banyak menjadi alasan digunakan simulasi menggunakan program komputer dalam melihat aliran daya pada suatu sistem kelistrikan. 2.6 Fuzzy Logic Konsep tentang logika Fuzzy diperkanlakan oleh Prof. Lotfi Astor Zadeh pada tahun Fuzzy Logic merupakan sebuah metodologi pemecahan masalah yang berbasis akuisisi data. Dalam logika klasik, umumnya nilai keanggotaan bernilai 0 dan 1, akan tetapi dalam logika fuzzy ini nilai keanggotaan berada di antara 0 dan satu. Maksudnya dalam logika fuzzy, dalam suatu keadaan bisa memiliki nilai benar dan salah, namun besar nilainya tergantung kepada nilai keanggotaan yang dimilikinya [9] Penggunaan Fuzzy Logic Bila dibandingkan dengan logika konvensional, kelebihan logika fuzzy adalah kemampuannya dalam proses penalaran secara bahasa sehingga dalam perancangannya tidak memerlukan persamaan matematik yang rumit. Beberapa alasan mengapa digunakan logika fuzzy diantaranya adalah mudah dimengerti memiliki toleransi terhadap data data yang tidak tepat, mampu memodelkan fungsi fungsi nonlinear yang sangat kompleks, dapat membangun dan mengaplikasikan pengalaman pengalaman para pakar secara langsung tanpa harus melalui proses pelatihan, dapat bekerja secara konvensional, dan didasarkan pada bahasa alami [9] Cara Kerja Fuzzy Logic Untuk memahami cara kerja logika fuzzy, perhatikan struktur elemen dasar sistem interferensi fuzzy pada Gambar 2.9 berikut: [9] 29

27 INPUT FUZZYFIKASI Mesin Inteferensi Defuzzyfikasi OUTPUT Gambar 2.9 Struktur Sistem Inteferensi Fuzzy (FIS) Gambar 2.9 di atas merupakan keterangan bagaimana cara kerja fuzzy interference system dalam mengakusisi data. Dimana keterangan gambar di atas: - Fuzzyfikasi : Mengubah input system menjadi variable linguistik. - Mesin Inteferensi : Proses mengubah input fuzzy menjadi output fuzzy berdasarkan aturan-aturan yang telah ditetapkan. - Defuzzyfikasi : Mengubah output fuzzy dari mesin inteferensi menjadi nilai tegas. Logika Fuzzy terdiri dari 3 bentuk metode, yaitu: 1. Metode Tsukamoto 2. Metode Mamdani 3. Metode Sugeno Tugas ahkir ini menggunakan logika fuzzy dengan menggunakan metode Sugeno dimana dalam interferensinya menggunakan tahap berikut [9]: 1. Fuzzyfikasi 2. Pembetukan basis pengetahuan fuzzy 3. Mesin interferensi 4. Defuzzyfikasi Untuk menentukan lokasi yang paling tepat dari DG, dengan membandingkan profil tegangan pada bus dan besar total rugi rugi jaringan. Dimana Fuzzy Interference System (FIS) ini berisi beberapa aturan yang digunakan untuk menentukan penempatan pada tiap bus pada sistem distribusi. 30

28 Penempatan DG dilakukan pada bus yang memiliki nilai indeks yang paling tinggi. Pada sistem fuzzy ini terdapat 2 input dan 1 output. Dimana inputnya merupakan nilai profil tegangan dan nilai rugi-rugi dayanya sedangkan outputnya merupakan nilai kesesuaian DG yang paling tepat. Nilai kesesuaian DG merupakan tingkat kesesuaian DG dipasang pada sistem, semakin besar nilai kesesuaiannya maka semakin bagus DG tersebut dipasang pada sistem tersebut Untuk lebih mempermudah memahami bagaimana fungsi dari fuzzy logic ini bekerja, maka contoh di bawah ini dapat diperhatikan : Diketahui: Besar tegangan maksimum ialah 21 kv dan besar tegangan minimum ialah 18 kv. Besar rugi-rugi minimum dan maksimum adalah sebesar 500 kva dan 2000 kva. Lalu nilai kesesuaian DG minimum ialah 0 dan 1 Dimana Rulenya adalah sebagai berikut : [R1] : IF Tegangan Minimum And Rugi-rugi Maksimum THEN Kesesuaian DG Minimum [R2] : IF Tegangan Maksimum And Rugi-rugi Minimum THEN Kesesuaian DG Maksimum Pertanyaan : Berapa tingkat kesesuaian DG jika besar tegangan 19 kv dan besar nilai rugi-rugi 1000 kva? Penyelesaian : Untuk menyelesaikan masalah tersebut perhatikan variabel yang digunakan dalam proses Fuzzifikasi yang harus lakukan. Input : 1. Tegangan [18 21] { Minimum Maksimum } 31

29 2. Rugi-rugi [ ] { Minimum Maksimum } Output : Tingkat Kesesuaian DG [0 1] { Minimum Maksimum } Proses Implikasi [R1] IF Tegangan Minimum And Rugi-rugi Maksimum THEN Kesesuaiann DG Minimum. alpha_predikat 1 = min (µ minimum [15],µ Banyak [1000]) = min (0.33 ; 0.33) = 0,33 Proses Implikasi [R2] IF Tegangan Maksimum And Rugi-rugi Minimum THEN Kesesuaian DG Maksimum. alpha_predikat 1 = min (µ Maksimum [15],µ Minimum [1000]) = min (0.67 ; 0.67) = 0,67 Lalu berdasarkan nilai di atas dicari batas integral untuk perhitungan integral. (Z 0)/1 = 0.33 z= 0.33 (Z - 0 )/1 = 0.67 z= 0.67 Melalui batas diatas didapatkan µ : µ = 32

30 Nilai di atas dimasukan ke dalam persamaan : COG b a b a A x A x xdx dx Dengan demikian, Nilai Kesesuaian DG untuk besar tegangan 15 kv dan besar rugi-rugi 1000 kva adalah sebesar :

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Sistem Tenaga Listrik Sistem tenaga listrik merupakan kumpulan peralatan listrik yang saling terhubung membentuk suatu sistem yang digunakan untuk membangkitkan tenaga listrik pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegangannya menjadi tegangan tinggi, tegangan ekstra tinggi, dan tegangan ultra

BAB II TINJAUAN PUSTAKA. tegangannya menjadi tegangan tinggi, tegangan ekstra tinggi, dan tegangan ultra BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik Berdasarkan sistem tenaga listrik konvensional, energi listrik dibangkitkan pada pusat pembangkit dengan daya yang besar. Kemudian dinaikkan

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator, BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK II.1. Sistem Tenaga Listrik Struktur tenaga listrik atau sistem tenaga listrik sangat besar dan kompleks karena terdiri atas komponen peralatan atau mesin listrik

Lebih terperinci

BAB II DASAR TEORI. Universitas Sumatera Utara

BAB II DASAR TEORI. Universitas Sumatera Utara BAB II DASAR TEORI 2.1.Studi Aliran Daya Studi aliran daya di dalam sistem tenaga listrik merupakan studi yang penting.studi aliran daya merupakan studi yang mengungkapkan kinerja dan aliran daya (nyata

Lebih terperinci

2.1 Distributed Generation

2.1 Distributed Generation BAB II TINJAUAN PUSTAKA 2.1 Distributed Generation Distributed Generation adalah semua jenis pembangkit skala kecil yang menghasilkan daya listrik di atau sekitar lokasi beban, baik terhubung langsung

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Distributed Generation Distributed Generation adalah sebuah pembangkit tenaga listrik yang bertujuan menyediakan sebuah sumber daya aktif yang terhubung langsung dengan jaringan

Lebih terperinci

2 BAB II TINJAUAN PUSTAKA

2 BAB II TINJAUAN PUSTAKA 2 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Listrik Bagian dari sistem tenaga listrik yang paling dekat dengan pelanggan adalah sistem distribusi. Sistem distribusi juga merupakan bagian yang paling

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Static VAR Compensator Static VAR Compensator (SVC) pertama kali dipasang pada tahun 1978 di Gardu Induk Shannon, Minnesota Power and Light system dengan rating 40 MVAR. Sejak

Lebih terperinci

BAB II DASAR TEORI. Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1

BAB II DASAR TEORI. Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1 BAB II DASAR TEORI 2.1 UMUM Sistem Tenaga Listrik terdiri dari Pusat Pembangkit, Jaringan Transmisi, Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1 di bawah ini. Gambar

Lebih terperinci

STUDI PENGATURAN TEGANGAN PADA JARINGAN DISTRIBUSI 20 KV YANG TERHUBUNG DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG TR 5 GI TARUTUNG)

STUDI PENGATURAN TEGANGAN PADA JARINGAN DISTRIBUSI 20 KV YANG TERHUBUNG DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG TR 5 GI TARUTUNG) STUDI PENGATURAN TEGANGAN PADA JARINGAN DISTRIBUSI 20 KV YANG TERHUBUNG DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG TR 5 GI TARUTUNG) Andika Handy (1), Zulkarnaen Pane (2) Konsentrasi Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1.Tinjauan Pustaka Semakin pesatnya pertumbuhan suatu wilayah menuntut adanya jaminan ketersediaannya energi listrik serta perbaikan kualitas dari energi listrik, menuntut para

Lebih terperinci

STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS

STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS OLEH : PANCAR FRANSCO 2207100019 Dosen Pembimbing I Prof.Dr. Ir. Adi Soeprijanto,

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1 Umum BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK Kehidupan moderen salah satu cirinya adalah pemakaian energi listrik yang besar. Besarnya pemakaian energi listrik itu disebabkan karena banyak dan beraneka

Lebih terperinci

ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU 2 SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER

ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU 2 SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER Asri Akbar, Surya Tarmizi Kasim Konsentrasi Teknik Energi

Lebih terperinci

STUDI ALIRAN DAYA PADA JARINGAN DISTRIBUSI 20 KV YANG TERINTERKONEKSI DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG PM.6 GI PEMATANG SIANTAR)

STUDI ALIRAN DAYA PADA JARINGAN DISTRIBUSI 20 KV YANG TERINTERKONEKSI DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG PM.6 GI PEMATANG SIANTAR) STUDI ALIRAN DAYA PADA JARINGAN DISTRIBUSI 20 KV YANG TERINTERKONEKSI DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG PM.6 GI PEMATANG SIANTAR) Rimbo Gano (1), Zulkarnaen Pane (2) Konsentrasi Teknik

Lebih terperinci

PERBAIKAN REGULASI TEGANGAN

PERBAIKAN REGULASI TEGANGAN JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER PERBAIKAN REGULASI TEGANGAN Distribusi Tenaga Listrik Ahmad Afif Fahmi 2209 100 130 2011 REGULASI TEGANGAN Dalam Penyediaan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Pendahuluan Gambar 1. Diagram Satu Garis Sistem Daya Listrik [2] Gambar 2 menunjukkan bahwa sistem tenaga listrik terdiri dari tiga kelompok jaringan yaitu pembangkitan, transmisi

Lebih terperinci

STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 150 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 17

STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 150 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 17 STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 50 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 7 Adly Lidya, Yulianta Siregar Konsentrasi Teknik Energi Listrik, Departemen

Lebih terperinci

SOAL UJIAN KOMPREHENSIF WAKTU : 100 MENIT. 1. Yang bukan merupakan representasi dari suatu algoritma adalah..

SOAL UJIAN KOMPREHENSIF WAKTU : 100 MENIT. 1. Yang bukan merupakan representasi dari suatu algoritma adalah.. SOAL UJIAN KOMPREHENSIF WAKTU : 100 MENIT 1. Yang bukan merupakan representasi dari suatu algoritma adalah.. a. Pseudocode b. Flow chart c. Nassi d. Programming language e. Entity 2. Di bawah ini adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini

BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini 2.1 Sistem Transmisi Tenaga Listrik BAB II TINJAUAN PUSTAKA Sistem transmisi adalah sistem yang menghubungkan antara sistem pembangkitan dengan sistem distribusi untuk menyalurkan tenaga listrik yang dihasilkan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan yang paling penting untuk menunjang kehidupan manusia saat ini. Penyaluran energi listrik konvensional dalam memenuhi

Lebih terperinci

Optimisasi Injeksi Daya Aktif dan Reaktif Dalam Penempatan Distributed Generator (DG) Menggunakan Fuzzy - Particle Swarm Optimization (FPSO)

Optimisasi Injeksi Daya Aktif dan Reaktif Dalam Penempatan Distributed Generator (DG) Menggunakan Fuzzy - Particle Swarm Optimization (FPSO) TESIS Optimisasi Injeksi Daya Aktif dan Reaktif Dalam Penempatan Distributed Generator (DG) Menggunakan Fuzzy - Particle Swarm Optimization (FPSO) Dosen Pembimbing : Prof. Ir. Mochamad Ashari, M.Eng. Ph.D

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen TINJAUAN PUSTAKA 2.1. Sistem Distribusi Sistem distribusi merupakan keseluruhan komponen dari sistem tenaga listrik yang menghubungkan secara langsung antara sumber daya yang besar (seperti gardu transmisi)

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS Gambar 4.1 Lokasi PT. Indonesia Power PLTP Kamojang Sumber: Google Map Pada gambar 4.1 merupakan lokasi PT Indonesia Power Unit Pembangkitan dan Jasa Pembangkitan Kamojang terletak

Lebih terperinci

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING 2.1 Jenis Gangguan Hubung Singkat Ada beberapa jenis gangguan hubung singkat dalam sistem tenaga listrik antara lain hubung singkat 3 phasa,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 34 BAB III METODE PENELITIAN Penelitian ini bertujuan untuk mengetahui kondisi tegangan tiap bus, perubahan rugi-rugi daya pada masing-masing saluran dan indeks kestabilan tegangan yang terjadi dari suatu

Lebih terperinci

ANALISIS DAMPAK PEMASANGAN DISTIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI-RUGI DAYA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS

ANALISIS DAMPAK PEMASANGAN DISTIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI-RUGI DAYA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS F.10. Analisis dampak pemasangan distributed generation (DG)... (Agus Supardi dan Romdhon Prabowo) ANALISIS DAMPAK PEMASANGAN DISTIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI-RUGI DAYA SISTEM

Lebih terperinci

ANALISIS RUGI DAYA SISTEM DISTRIBUSI DENGAN PENINGKATAN INJEKSI JUMLAH PEMBANGKIT TERSEBAR. Publikasi Jurnal Skripsi

ANALISIS RUGI DAYA SISTEM DISTRIBUSI DENGAN PENINGKATAN INJEKSI JUMLAH PEMBANGKIT TERSEBAR. Publikasi Jurnal Skripsi ANALISIS RUGI DAYA SISTEM DISTRIBUSI DENGAN PENINGKATAN INJEKSI JUMLAH PEMBANGKIT TERSEBAR Publikasi Jurnal Skripsi Disusun Oleh : RIZKI TIRTA NUGRAHA NIM : 070633007-63 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 34 BAB III METODE PENELITIAN Penelitian ini bertujuan untuk mengetahui kondisi tegangan tiap bus, perubahan rugi-rugi daya pada masing-masing saluran dan indeks kestabilan tegangan yang terjadi dari suatu

Lebih terperinci

BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT

BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT 4.1. Perancangan Instalasi dan Jenis Koneksi (IEEE std 18-1992 Standard of shunt power capacitors & IEEE 1036-1992 Guide for Application

Lebih terperinci

PENENTUAN TITIK INTERKONEKSI DISTRIBUTED GENERATION

PENENTUAN TITIK INTERKONEKSI DISTRIBUTED GENERATION PENENTUAN TITIK INTERKONEKSI DISTRIBUTED GENERATION (DG) PADA JARINGAN 20 KV DENGAN BANTUAN METODE ARTIFICIAL BEE COLONY STUDI KASUS : PLTMH AEK SILAU 2 Syilvester Sitorus Pane, Zulkarnaen Pane Konsentrasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kualitas Daya Listrik Peningkatan terhadap kebutuhan dan konsumsi energi listrik yang baik dari segi kualitas dan kuantitas menjadi salah satu alasan mengapa perusahaan utilitas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu energi primer yang tidak dapat dilepaskan penggunaannya dalam kehidupan sehari-hari. Peningkatan jumlah penduduk dan pertumbuhan

Lebih terperinci

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh.

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh. BAB II DASAR TEORI 2.1. Sistem Jaringan Distribusi Pada dasarnya dalam sistem tenaga listrik, dikenal 3 (tiga) bagian utama seperti pada gambar 2.1 yaitu : a. Pusat pusat pembangkit tenaga listrik, merupakan

Lebih terperinci

PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY

PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY Tommy Oys Damanik, Yulianta Siregar Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro

Lebih terperinci

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014 PERBANDINGAN METODE FAST-DECOUPLE DAN METODE GAUSS-SEIDEL DALAM SOLUSI ALIRAN DAYA SISTEM DISTRIBUSI 20 KV DENGAN MENGGUNAKAN ETAP POWER STATION DAN MATLAB (Aplikasi Pada PT.PLN (Persero Cab. Medan) Ken

Lebih terperinci

atau pengaman pada pelanggan.

atau pengaman pada pelanggan. 16 b. Jaringan Distribusi Sekunder Jaringan distribusi sekunder terletak pada sisi sekunder trafo distribusi, yaitu antara titik sekunder dengan titik cabang menuju beban (Lihat Gambar 2.1). Sistem distribusi

Lebih terperinci

1. Dalam studi aliran daya, berikut ini merupakan jenis bus yang umum digunakan, kecuali

1. Dalam studi aliran daya, berikut ini merupakan jenis bus yang umum digunakan, kecuali Nama Dosen : Avrin Nur Widiastuti I. Soal Subkonsentrasi Power Sistem 1. Peralatan kontrol yang digunakan untuk mengatur input mekanis suatu generator adalah : a. AVR b. Governor c. PSS d. AGC e. Prime

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

Jurnal Media Elektro Vol. V No. 2 ISSN: ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG

Jurnal Media Elektro Vol. V No. 2 ISSN: ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG Sri Kurniati. A, Sudirman. S Jurusan Teknik Elektro, Fakultas Sains dan Teknik, Undana, AdiSucipto Penfui, Kupang, Indonesia,

Lebih terperinci

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4. SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.0 Rudi Salman 1) Mustamam 2) Arwadi Sinuraya 3) Abstrak Penelitian

Lebih terperinci

BAB 1 PENDAHULUAN. serta dalam pengembangan berbagai sektor ekonomi. Dalam kenyataan ekonomi

BAB 1 PENDAHULUAN. serta dalam pengembangan berbagai sektor ekonomi. Dalam kenyataan ekonomi BAB 1 PENDAHULUAN 1.1 Latar Belakang. Daya listrik memberikan peran sangat penting dalam kehidupan masyarakat serta dalam pengembangan berbagai sektor ekonomi. Dalam kenyataan ekonomi modren sangat tergantung

Lebih terperinci

ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV

ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV Oleh Endi Sopyandi Dasar Teori Dalam penyaluran daya listrik banyak digunakan transformator berkapasitas besar dan juga bertegangantinggi. Dengan transformator tegangan

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan permintaan energi dalam kurun waktu menurut

BAB I PENDAHULUAN. Perkembangan permintaan energi dalam kurun waktu menurut BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan permintaan energi dalam kurun waktu 2011-2030 menurut skenario BAU (Business As Usual) meningkat seperti pada gambar 1.1. Dalam gambar tersebut diperlihatkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

BAB I PENDAHULUAN. panas yang dihasilkan oleh pembakaran bahan bakar menjadi energi mekanik, dan

BAB I PENDAHULUAN. panas yang dihasilkan oleh pembakaran bahan bakar menjadi energi mekanik, dan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam menghasilkan energi listrik, terjadi konversi energi dari energi mekanik menjadi energi listrik melalui suatu alat konversi energi, dalam hal ini disebut dengan

Lebih terperinci

ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION TUGAS AKHIR. Jurusan Teknik Elektro Fakultas Teknik

ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION TUGAS AKHIR. Jurusan Teknik Elektro Fakultas Teknik ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION 4. 0. 0 TUGAS AKHIR Disusun Sebagai Salah Satu Syarat Menyelesaikan Program Studi Strata 1 Jurusan Teknik Elektro Fakultas Teknik

Lebih terperinci

ANALISIS RUGI RUGI ENERGI LISTRIK PADA JARINGAN DISTRIBUSI

ANALISIS RUGI RUGI ENERGI LISTRIK PADA JARINGAN DISTRIBUSI TUGAS AKHIR ANALISIS RUGI RUGI ENERGI LISTRIK PADA JARINGAN DISTRIBUSI Oleh Senando Rangga Pitoy NIM : 12 023 030 Dosen Pembimbing Deitje Pongoh, ST. M.pd NIP. 19641216 199103 2 001 KEMENTERIAN RISET TEKNOLOGI

Lebih terperinci

BAB IV ANALISIS DATA LAPANGAN. Ananlisi ini menjadi salah satu sarana untuk mencari ilmu yang tidak

BAB IV ANALISIS DATA LAPANGAN. Ananlisi ini menjadi salah satu sarana untuk mencari ilmu yang tidak 4.1. Analisis Data di Industri BAB IV ANALISIS DATA LAPANGAN Ananlisi ini menjadi salah satu sarana untuk mencari ilmu yang tidak didapatkan di bangku kuliah. Salah satu fungsi dari praktik industri adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Proses Penyaluran Tenaga Listrik Gambar 2.1. Proses Tenaga Listrik Energi listrik dihasilkan dari pusat pembangkitan yang menggunakan energi potensi mekanik (air, uap, gas, panas

Lebih terperinci

BAB III OPERASI PARALEL GENERATOR PLTU UNIT 3/4 TANJUNG PRIOK

BAB III OPERASI PARALEL GENERATOR PLTU UNIT 3/4 TANJUNG PRIOK BAB III OPERASI PARALEL GENERATOR PLTU UNIT 3/4 TANJUNG PRIOK 3.1 PARALEL GENERATOR KE JARINGAN Ketika terhubung ke system/jaringan yang besar (infinite bus), generator sinkron menjadi bagian jaringan

Lebih terperinci

ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG)

ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG) ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG) Agus Supardi 1, Tulus Wahyu Wibowo 2, Supriyadi 3 1,2,3 Jurusan Teknik Elektro,

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1 Informasi Umum 4.1.1 Profil Kabupaten Bantul Kabupaten Bantul merupakan salah satu kabupaten yang berada di provinsi Daerah Istimewa Yogyakarta (DIY) terletak antara 07

Lebih terperinci

Kata kunci Kabel Laut; Aliran Daya; Susut Energi; Tingkat Keamanan Suplai. ISBN: Universitas Udayana

Kata kunci Kabel Laut; Aliran Daya; Susut Energi; Tingkat Keamanan Suplai. ISBN: Universitas Udayana Efek Beroperasinya Kabel Laut Bali Nusa Lembongan Terhadap Sistem Kelistrikan Tiga Nusa Yohanes Made Arie Prawira, Ida Ayu Dwi Giriantari, I Wayan Sukerayasa Jurusan Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

BAB I PENDAHULUAN. sekunder dalam kehidupan sehari-hari, baik penggunaan skala rumah tangga

BAB I PENDAHULUAN. sekunder dalam kehidupan sehari-hari, baik penggunaan skala rumah tangga BAB I PENDAHULUAN 1.1. Latar Belakang Untuk saat ini, energi listrik bisa menjadi kebutuhan primer ataupun sekunder dalam kehidupan sehari-hari, baik penggunaan skala rumah tangga maupun skala besar/kecil

Lebih terperinci

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa BAB I PENDAHULUAN 1.1 Latar Belakang Generator sinkron merupakan alat listrik yang berfungsi mengkonversikan energi mekanis berupa putaran menjadi energi listrik. Energi mekanis berupa putaran tersebut

Lebih terperinci

Penentuan Kapasitas dan Lokasi Optimal Penempatan Kapasitor Bank Pada Penyulang Rijali Ambon Menggunakan Sistem Fuzzy

Penentuan Kapasitas dan Lokasi Optimal Penempatan Kapasitor Bank Pada Penyulang Rijali Ambon Menggunakan Sistem Fuzzy 119 Penentuan Kapasitas dan Lokasi Optimal Penempatan Kapasitor Bank Pada Penyulang Rijali Ambon Menggunakan Sistem Fuzzy Hamles Leonardo Latupeirissa, Agus Naba dan Erni Yudaningtyas Abstrak Penelitian

Lebih terperinci

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS NASKAH PUBLIKASI ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS DENGAN MENGGUNAKAN PROGRAM ETAP POWER STATION 7.0 Diajukan oleh: FAJAR WIDIANTO D 400 100 060 JURUSAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Sistem Tenaga Listrik dikatakan sebagai kumpulan/gabungan yang terdiri dari komponen-komponen atau alat-alat listrik seperti generator, transformator,

Lebih terperinci

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4. SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.0 Rudi Salman 1) Mustamam 2) Arwadi Sinuraya 3) mustamam1965@gmail.com

Lebih terperinci

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis 24 Diagram Satu Garis Dengan mengasumsikan bahwa sistem tiga fasa dalam keadaan seimbang, penyelesaian rangkaian dapat dikerjakan dengan menggunakan rangkaian 1 fasa dengan sebuah jalur netral sebagai

Lebih terperinci

Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya

Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya Idraki Sariyan #1, Hafidh Hasan #2, Syahrizal Syahrizal #3 # Jurusan Teknik

Lebih terperinci

BAB I PENDAHULUAN. kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan

BAB I PENDAHULUAN. kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan BAB I PENDAHULUAN Latar Belakang Listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan dengan listrik. Tenaga

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

EVALUASI EKSPANSI JARINGAN TEGANGAN MENENGAH 20 kv GI SOLO BARU

EVALUASI EKSPANSI JARINGAN TEGANGAN MENENGAH 20 kv GI SOLO BARU EVALUASI EKSPANSI JARINGAN TEGANGAN MENENGAH 20 kv GI SOLO BARU Diajukan untuk Melengkapi Tugas Akhir dan Memenuhi Syarat-syarat untuk Mencapai Gelar Sarjana Teknik Jurusan Teknik Elektro Fakultas Teknik

Lebih terperinci

BAB I PENDAHULUAN. pembangunan dan penghematan disegala bidang. Selaras dengan laju

BAB I PENDAHULUAN. pembangunan dan penghematan disegala bidang. Selaras dengan laju 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada saat sekarang ini Indonesia khususnya sedang melaksanakan pembangunan dan penghematan disegala bidang. Selaras dengan laju pertumbuhan pembangunan,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Pada dasarnya, definisi dari sebuah sistem tenaga listrik mencakup tiga bagian penting, yaitu pembangkitan, transmisi, dan distribusi, seperti dapat terlihat

Lebih terperinci

Studi Perbaikan Stabilitas Tegangan Kurva P-V pada Sistem Jawa-Bali 500kV dengan Pemasangan Kapasitor Bank Menggunakan Teori Sensitivitas

Studi Perbaikan Stabilitas Tegangan Kurva P-V pada Sistem Jawa-Bali 500kV dengan Pemasangan Kapasitor Bank Menggunakan Teori Sensitivitas Studi Perbaikan Stabilitas Tegangan Kurva P-V pada Sistem Jawa-Bali 500kV dengan Pemasangan Kapasitor Bank Menggunakan Teori Sensitivitas Tutuk Agung Sembogo Jurusan Teknik Elektro Fakultas Teknologi Industri,

Lebih terperinci

Panduan Praktikum Sistem Tenaga Listrik TE UMY

Panduan Praktikum Sistem Tenaga Listrik TE UMY 42 UNIT 4 PERBAIKAN UNJUK KERJA SALURAN DENGAN SISTEM INTERKONEKSI A. TUJUAN PRAKTIKUM a. Mengetahui fungsi switch pada jaringan interkoneksi b. Mengetahui setting generator dan interkoneksinya dengan

Lebih terperinci

II. TINJAUAN PUSTAKA. sinkron antara tegangan, frekuensi, dan sudut fasa. Operasi ini akan menyatakan

II. TINJAUAN PUSTAKA. sinkron antara tegangan, frekuensi, dan sudut fasa. Operasi ini akan menyatakan II. TINJAUAN PUSTAKA 2.1. Stabilitas Sistem Tenaga Permasalahan utama yang terjadi di sistem tenaga adalah operasi sinkron antara tegangan, frekuensi, dan sudut fasa. Operasi ini akan menyatakan keserempakan

Lebih terperinci

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini, penelitian mengenai sumber energi terbarukan sangat gencar dilakukan. Sumber-sumber energi terbarukan yang banyak dikembangkan antara lain sumber energi tenaga

Lebih terperinci

BAB I PENDAHULUAN. Semakin bertambahnya permintaan konsumen terhadap energi listrik dari

BAB I PENDAHULUAN. Semakin bertambahnya permintaan konsumen terhadap energi listrik dari BAB I PENDAHULUAN 1.1 Latar Belakang Semakin bertambahnya permintaan konsumen terhadap energi listrik dari tahun ketahun tentu semakin besar pula daya listrik yang harus disediakan. Karena itu perlu adanya

Lebih terperinci

BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA. daya aktif (watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda

BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA. daya aktif (watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda 25 BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA 3.1 Pengertian Faktor Daya Listrik Faktor daya (Cos φ) dapat didefinisikan sebagai rasio perbandingan antara daya aktif (watt) dan daya

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pembangkit-pembangkit tenaga listrik yang ada saat ini sebagian besar masih mengandalkan kepada sumber energi yang tidak terbarukan dalam arti untuk mendapatkannya

Lebih terperinci

SIMULASI OPTIMASI PENEMPATAN KAPASITOR MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA PADA SISTEM TEGANGAN MENENGAH REGION JAWA BARAT

SIMULASI OPTIMASI PENEMPATAN KAPASITOR MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA PADA SISTEM TEGANGAN MENENGAH REGION JAWA BARAT SIMULASI OPTIMASI PENEMPATAN KAPASITOR MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA PADA SISTEM TEGANGAN MENENGAH REGION JAWA BARAT Gahara Nur Eka Putra NRP : 1022045 E-mail : bb.201smg@gmail.com ABSTRAK

Lebih terperinci

BAB IV HASIL DAN ANALISA. IEEE 30 bus yang telah dimodifikasi. Sistem IEEE 30 bus ini terdiri 30 bus,

BAB IV HASIL DAN ANALISA. IEEE 30 bus yang telah dimodifikasi. Sistem IEEE 30 bus ini terdiri 30 bus, BAB IV HASIL DAN ANALISA Pada penelitian ini metode RCF ( Reactive Contribution Factor ) dan LSF ( Loss Sensitivity Factor ) akan diujikan pada sebuah test sistem IEEE 30 yang telah dimodifikasi. Sistem

Lebih terperinci

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK 3.1 Tahapan Perencanaan Instalasi Sistem Tenaga Listrik Tahapan dalam perencanaan instalasi sistem tenaga listrik pada sebuah bangunan kantor dibagi

Lebih terperinci

PENEMPATAN SVC (STATIC VAR COMPENSATOR ) PADA JARINGAN DISTRIBUSI DENGAN ETAP 7.5.0

PENEMPATAN SVC (STATIC VAR COMPENSATOR ) PADA JARINGAN DISTRIBUSI DENGAN ETAP 7.5.0 Jurnal Sains, Teknologi dan Industri, Vol. 12, No. 1, Desember 2014, pp. 1-8 ISSN 1693-2390 print/issn 2407-0939 online PENEMPATAN SVC (STATIC VAR COMPENSATOR ) PADA JARINGAN DISTRIBUSI DENGAN ETAP 7.5.0

Lebih terperinci

ALAT PEMBAGI TEGANGAN GENERATOR

ALAT PEMBAGI TEGANGAN GENERATOR ALAT PEMBAGI TEGANGAN GENERATOR 1. Pendahuluan Listrik seperti kita ketahui adalah bentuk energi sekunder yang paling praktis penggunaannya oleh manusia, di mana listrik dihasilkan dari proses konversi

Lebih terperinci

II. TINJAUAN PUSTAKA. utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem

II. TINJAUAN PUSTAKA. utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem II. TINJAUAN PUSTAKA A. Aliran Daya Tiga Fasa Menurut Marsudi, proses penyaluran tenaga listrik terdiri dari tiga komponen utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Cilacap, Jl. Letjen Haryono MT. 77 Lomanis, Cilacap, Jawa Tengah, Indonesia.

BAB III METODOLOGI PENELITIAN. Cilacap, Jl. Letjen Haryono MT. 77 Lomanis, Cilacap, Jawa Tengah, Indonesia. BAB III METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Lokasi penelitian tugas akhir berada di PT Pertamina (Persero) RU IV Cilacap, Jl. Letjen Haryono MT. 77 Lomanis, Cilacap, Jawa Tengah, Indonesia. Gambar

Lebih terperinci

PERENCANAAN SISTEM TENAGA LISTRIK. Oleh : Bambang Trisno, MSIE

PERENCANAAN SISTEM TENAGA LISTRIK. Oleh : Bambang Trisno, MSIE PERENCANAAN SISTEM TENAA LISTRIK Oleh : Bambang Trisno, MSIE PRORAM STUDI LISTRIK TENAA JURUSAN PENDIDIKAN TEKNIK ELEKTRO FPTK UPI BANDUN 19 JUNI 2006 PERENCANAAN SISTEM TENAA LISTRIK I. PENDAHULUAN Struktur

Lebih terperinci

BAB II STRUKTUR JARINGAN DAN PERALATAN GARDU INDUK SISI 20 KV

BAB II STRUKTUR JARINGAN DAN PERALATAN GARDU INDUK SISI 20 KV BAB II STRUKTUR JARINGAN DAN PERALATAN GARDU INDUK SISI 20 KV 2.1. UMUM Gardu Induk adalah suatu instalasi tempat peralatan peralatan listrik saling berhubungan antara peralatan yang satu dengan peralatan

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1. Umum Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik yang dihasilkan pusat pembangkitan disalurkan melalui jaringan transmisi.

Lebih terperinci

ANALISIS GENERATOR DAN MOTOR = V. SINKRON IÐf SEBAGAI PEMBANGKIT DAYA REAKTIF SISTEM

ANALISIS GENERATOR DAN MOTOR = V. SINKRON IÐf SEBAGAI PEMBANGKIT DAYA REAKTIF SISTEM Sugeng A Karim, Analisis Generator dan Motor Sinkron Sebagai Pembangkit Daya Reaktif Sistem ANALISIS GENERATOR DAN MOTOR = V. SINKRON IÐf (2) SEBAGAI PEMBANGKIT DAYA REAKTIF SISTEM (Drs. Sugeng A. Karim,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Energi listrik merupakan suatu element penting dalam masyarakat

BAB I PENDAHULUAN Latar Belakang. Energi listrik merupakan suatu element penting dalam masyarakat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan suatu element penting dalam masyarakat modern saat ini. Pemanfaatannya yang secara tepat guna adalah salah satu cara ampuh untuk dapat mendongkrak

Lebih terperinci

NASKAH PUBLIKASI ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE LINE TO GROUND

NASKAH PUBLIKASI ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE LINE TO GROUND NASKAH PUBLIKASI ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE LINE TO GROUND PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS DENGAN MENGGUNAKAN PROGRAM ETAP POWER STATION 7.0 Diajukan oleh: INDRIANTO D 400 100

Lebih terperinci

Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Tegangan Pada Penyulang Abang Karangasem

Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Tegangan Pada Penyulang Abang Karangasem Teknologi Elektro, Vol. 16, No. 3,September - Desember 217 79 Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Pada Penyulang Abang Karangasem I Nyoman Cita Artawa 1, I Wayan Sukerayasa

Lebih terperinci

BAB 1 KONSEP DASAR JARINGAN DISTRIBUSI

BAB 1 KONSEP DASAR JARINGAN DISTRIBUSI KONSEP DASAR JARINGAN DISTRIBUSI 1 BAB 1 KONSEP DASAR JARINGAN DISTRIBUSI A. Pendahuluan Sistem penyaluran tenaga listrik dari pembangkit tenaga listrik ke konsumen (beban), merupakan hal penting untuk

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Pengukuran dan Pengambilan Data Pengambilan data dengan cara melakukan monitoring di parameter yang ada dan juga melakukan pengukuran ke lapangan. Di PT.Showa Indonesia Manufacturing

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Metode Waktu dan Lokasi Penelitian Pelaksanaan penelitian ini berlokasi di kabupaten Bantul provinsi Yogyakarta, tepatnya di PT PLN (persero) APJ (Area Pelayanan Jaringan)

Lebih terperinci

BAB III KETIDAKSEIMBANGAN BEBAN

BAB III KETIDAKSEIMBANGAN BEBAN 39 BAB III KETIDAKSEIMBANGAN BEBAN 3.1 Sistem Distribusi Awalnya tenaga listrik dihasilkan di pusat-pusat pembangkit seperti PLTA, PLTU, PLTG, PLTGU, PLTP, dan PLTP dan yang lainnya, dengan tegangan yang

Lebih terperinci

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS DENGAN MENGGUNAKAN PROGRAM ETAP POWER STATION 7.

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS DENGAN MENGGUNAKAN PROGRAM ETAP POWER STATION 7. ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS DENGAN MENGGUNAKAN PROGRAM ETAP POWER STATION 7.0 Fajar Widianto, Agus Supardi, Aris Budiman Jurusan TeknikElektro

Lebih terperinci

BAB I PENDAHULUAN. Energi listrik merupakan salah satu energi yang sangat penting dalam

BAB I PENDAHULUAN. Energi listrik merupakan salah satu energi yang sangat penting dalam BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu energi yang sangat penting dalam menjalankan kehidupan sehari-hari. Faktor pertumbuhan baik itu pertumbuhan ekonomi, industri serta

Lebih terperinci

Gambar 1. Karakteristik torka-kecepatan pada motor induksi, memperlihatkan wilayah operasi generator. Perhatikan torka pushover.

Gambar 1. Karakteristik torka-kecepatan pada motor induksi, memperlihatkan wilayah operasi generator. Perhatikan torka pushover. GENERATOR INDUKSI Generator induksi merupakan salah satu jenis generator AC yang menerapkan prinsip motor induksi untuk menghasilkan daya. Generator induksi dioperasikan dengan menggerakkan rotornya secara

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Di era modern saat ini, energi lisrik merupakan salah satu elemen yang menjadi kebutuhan pokok masyarakat dalam beraktifitas, baik digunakan untuk keperluan rumah

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

Diajukan untuk memenuhi salah satu persyaratan dalam

Diajukan untuk memenuhi salah satu persyaratan dalam OPTIMASI PENENTUAN DAYA DAN PELETAKAN DISTRIBUTED GENERATION PADA JARINGAN DISTRIBUSI 20 kv (STUDI KASUS: PENYULANG PM. 6 GARDU INDUK PEMATANGSIANTAR) Diajukan untuk memenuhi salah satu persyaratan dalam

Lebih terperinci