matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran"

Transkripsi

1 Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan menggunakan konteks nyata.. Dapat menjelaskan arti it fungsi di suatu titik melalui perhitungan nilai-nilai di sekitar titik tersebut.. Dapat menggunakan teorema-teorema dalam perhitungan it fungsi aljabar.. Dapat memahami it fungsi tak berhingga melalui grafik dan perhitungan. 5. Dapat mengaplikasikan konsep it dalam kehidupan sehari-hari. A. Pengertian Limit Fungsi di Suatu Titik Ibu rutin berbelanja bahan pokok setiap minggu di supermarket. Bahan pokok yang dibeli selalu sama, baik macam maupun banyaknya. Sulit ditentukan dengan pasti dana yang dibutuhkan karena harga bahan pokok yang tidak stabil. Untuk itu, ibu menyiapkan uang Rp5., untuk pembelian bahan pokok dan uang cadangan untuk berjagajaga. Kenyataannya, jumlah uang yang dihabiskan ibu tidak pernah persis Rp5.,. Jumlahnya bisa lebih atau juga kurang. Jika lebih dari target, ibu terpaksa menambahkan pembayarannya dengan uang cadangan. Uang yang dihabiskan ibu untuk berbelanja bahan pokok dalam 6 minggu adalah Rp99.9,, Rp5.5,, Rp5.5,, Rp99.5,, Rp5.1,, dan Rp99.95,. Jika diurutkan dari yang terkecil ke yang terbesar, akan diperoleh tabel seperti berikut.

2 Dalam rupiah target Jika dimisalkan sebagai uang belanja ibu per minggu, nilai < 5. merupakan bilangan yang mendekati 5. dari kiri (ditulis: 5. ) dan > 5. merupakan bilangan yang mendekati 5. dari kanan (ditulis: 5. + ). Secara umum, bilangan-bilangan itu disebut mendekati 5. atau 5. atau nilai hampiran terhadap 5.. Nilai hampiran suatu variabel terhadap suatu bilangan real tertentu disebut dengan it yang dinotasikan sebagai berikut. f L atau f L untuk c dengan Lc, R c (dibaca: it fungsi f() untuk mendekati c sama dengan L). Nilai f() dapat dibuat sedekat mungkin dengan L jika nilai yang diambil dekat dengan c, untuk c. Suatu it fungsi dikatakan ada (terdefinisi) jika nilai it kiri dan kanan untuk mendekati c sama. Secara Matematis, dapat dituliskan sebagai berikut. f L jika danhanya jika f f L + Keterangan: f f c + ( ) disebut it kiri; dan ( ) disebut it kanan. Contoh Soal 1 Buktikan bahwa ada! Misalkan f( ).

3 Fungsi f() merupakan fungsi rasional. Oleh karena itu, daerah asalnya adalah semua є R dengan syarat penyebutnya tidak, atau dapat dituliskan sebagai berikut. { R, } Ini berarti, f() tidak terdefinisi untuk. Meskipun demikian, pembuktiannya masih dapat diselesaikan. Hal ini dikarenakan pada it fungsi, nilai yang digunakan adalah yang mendekati, bukan nilai itu sendiri. Dengan mensubstitusikan nilai < (it kiri) dan > (it kanan) ke f (), diperoleh: < (it kiri) > (it kanan) 1,5 1,9 1,99 1, ,1,1,1,5 f (),5,9,99,999...?...,1,1,1,5 Dari tabel tersebut, diketahui bahwa jika bergerak semakin dekat dengan, baik dari kiri maupun dari kanan, f () akan bergerak semakin dekat dengan. Ini berarti: it kirinya adalah it kanannya adalah + Dengan demikian, diperoleh: + Jadi, terbukti bahwa ada. Contoh Soal Diketahui: 1, < f( ), <, Berdasarkan fungsi tersebut, apakah f dan f ada?

4 Mula-mula, tentukan it kiri dan kanannya. Untuk f : f( ) ( 1) 1 f + + Oleh karena it kiri dan kanannya tidak sama, maka f ( ) tidak ada. Untuk f : f 1 f( ) ( ) Oleh karena it kiri dan kanannya sama, maka f B. Teorema Limit Jika f dan g ada, k sembarang konstanta real, serta n bilangan bulat positif, berlaku: 1. k k c. c c. k f k f ± ±. f g f g 5. f g f g f( ) f( ) 6., g g( ) dengan g( ) 7. n n c c 8. f f n n ( ) n n 9. c, dengan c untuk n genap ada. 1. n f n f, dengan f untuk n genap ( ) ( )

5 Contoh Soal Tentukan nilai dari + 1! 1 Dengan menggunakan teorema it, diperoleh: Teorema Teorema Teorema dan Teorema 7 dan () ()+ 9 Jadi, Contoh Soal + ( ) 8f g Jika f( ) dan g( ), tentukan nilai dari f( ). g( ) Dengan menggunakan teorema it, diperoleh: f( )+ ( g( ) ) 8 8f( )+ ( g( ) ) f( ) g( ) Teorema 6 ( f( ) g( ) ) 8 + ( ) f g f g ( ) 8 f( )+ g f g + 8 f g f g Teorema Teorema 5 Teorema Teorema 8. 5

6 + ( ) ( ) 8 ( ) f g Jadi,. f( ) g( ) 1 C. Limit Fungsi f () untuk c, c є R 1. Substitusi Langsung Bentuk umum substitusi langsung pada it aljabar adalah sebagai berikut. a. f ( ) f ( c ) c f( ) f c b. g( ) g( c) Cara ini wajib dicoba terlebih dahulu dalam perhitungan it fungsi. Nilai suatu it hasil substitusi langsung dapat berupa bentuk tertentu (nilai yang diperbolehkan, yaitu suatu bilangan real,, dan ) atau bentuk tak tentu.. Cara Alternatif Cara alternatif digunakan jika substitusi langsung menghasilkan bentuk tak tentu seperti,,. Bentuk tak tentu yang sering muncul pada it fungsi f() untuk c, c R adalah. Ada cara alternatif yang dapat digunakan untuk menentukan nilai it fungsi f () untuk c, yaitu sebagai berikut. a. Memfaktorkan f( ) c u u c Bentuk umum: g( ) ( ) ( c) v( ) v( c) Keterangan: u (c), v (c) ; ( c) u () merupakan faktor dari f (); dan ( c) v () merupakan faktor dari g(). 6

7 b. Mengalikan dengan Akar Sekawan f Cara ini digunakan untuk menyelesaikan g atau keduanya memuat bentuk akar. dengan pembilang, penyebut, c. Dalil L Hopital f( ) f Bentuk umum: c g c g Cara ini baru dapat digunakan saat kamu telah mempelajari materi turunan fungsi aljabar. Contoh Soal 5 Tentukan nilai dari 5+. Dengan cara substitusi langsung, diperoleh: ( 5+ ) 5+ Jadi, ( 5+ ). Contoh Soal 6 18 Tentukan nilai dari. Mula-mula, gunakan cara substitusi langsung Oleh karena substitusi langsung menghasilkan bentuk tak tentu, maka gunakan cara alternatif, yaitu memfaktorkan. 7

8 Dengan memfaktorkan, diperoleh: ( + ) 18 ( ) ( + 1) ( + ) ( + 1) 1 Jadi, nilai dari 18. Contoh Soal 7 Tentukan nilai dari. Berdasarkan definisi it, diperoleh: Jadi, Contoh Soal 8 Tentukan nilai dari 8. Mula-mula, gunakan cara substitusi langsung Oleh karena substitusi langsung menghasilkan bentuk tak tentu, maka gunakan cara alternatif, yaitu memfaktorkan. + + ( + ) 8 8 Jadi,. 1 8

9 Contoh Soal 9 Tentukan nilai dari Mula-mula, gunakan cara substitusi langsung Oleh karena substitusi langsung menghasilkan bentuk tak tentu, maka gunakan cara alternatif. Cara alternatif yang dapat digunakan adalah mengalikan dengan akar sekawan l im ( ( + ) ) ( ) Jadi, nilai dari. + 8 D. Limit Fungsi f() Mendekati Tak Hingga Notasi (dibaca: tak hingga) melambangkan nilai bilangan yang semakin besar. Lambang ini bukan merupakan suatu bilangan, sehingga tidak dapat dilakukan operasi aljabar terhadapnya. Ini berarti, dan 1. Limit fungsi f() dengan mendekati tak hingga dinotasikan dengan f ( ). Untuk memahami pengertian it fungsi mendekati tak hingga, perhatikan grafik fungsi f( ) 1 berikut ini. 9

10 Y f( ) 1 X Berdasarkan grafik tersebut, terlihat bahwa semakin besar nilai, kurva f( ) semakin dekat dengan sumbu X (y f (). Hal ini diperkuat dengan tabel hubungan antara dan f( ) berikut f( ) 1,5,,1,1,1... Dari grafik dan tabel tersebut, diperoleh kesimpulan bahwa untuk, nilai f( ) semakin kecil mendekati nol. Secara matematis, dapat dituliskan sebagai berikut. 1 Bentuk ini merupakan dasar perhitungan it fungsi f() dengan mendekati tak hingga. Agar lebih mudah menyelesaikan persoalan it fungsi mendekati tak hingga, gunakan sifat-sifat berikut. Sifat-Sifat Limit Fungsi f() Mendekati Tak Hingga Jika n bilangan bulat positif dan k R, berlaku: k 1. n. k n Sama halnya dengan it fungsi f() untuk c, ada cara dalam menyelesaikan it fungsi mendekati tak hingga, yaitu dengan substitusi langsung dan cara alternatif. 1

11 1. Substitusi Langsung Limit fungsi untuk biasanya memiliki bentuk berikut. f a a. g b m n b. f g m 1 a... n 1 dengan m dan n bilangan bulat positif + b +... f Substitusi nilai ke dan f g g berturut-turut akan menghasilkan bentuk tak tentu dan. Untuk mengubah hasilnya menjadi bentuk tertentu, dapat digunakan cara alternatif.. Cara Alternatif Ada cara alternatif yang dapat digunakan untuk menentukan nilai it fungsi f () untuk, yaitu membagi dengan pangkat tertinggi dan mengalikan dengan akar sekawan. a. Membagi dengan Pangkat Tertinggi Cara ini digunakan untuk menyelesaikan bentuk it berikut ini. m m 1 f a a... n n g b + b Langkah-langkah penyelesaiannya adalah sebagai berikut. 1) Menentukan variabel dengan pangkat tertinggi pada f(). ) Menentukan variabel dengan pangkat tertinggi pada g(). ) Membandingkan variabel dengan pangkat tertinggi dari f() dan g() untuk menentukan pangkat tertinggi secara keseluruhan. ) Membagi setiap suku dengan variabel yang mempunyai pangkat tertinggi tersebut. Contoh Soal 1 Tentukan nilai dari Variabel dengan pangkat tertinggi pada pembilang:. Variabel dengan pangkat tertinggi pada penyebut:. Secara keseluruhan, variabel dengan pangkat tertinggi:. 11

12 Dengan demikian, diperoleh: Jadi,. + Contoh Soal Tentukan nilai dari Variabel dengan pangkat tertinggi pada pembilang: 5. Variabel dengan pangkat tertinggi pada penyebut:. Secara keseluruhan, variabel dengan pangkat tertinggi: 5. Dengan demikian, diperoleh:

13 Jadi, Contoh Soal 1 Tentukan nilai dari ( ) Mula-mula, sederhanakan bentuk pangkatnya ( ) Ini berarti, variabel dengan pangkat tertinggi pada pembilang sama dengan penyebut, yaitu 16. Selanjutnya, bagi setiap suku pada pembilang dan penyebut dengan 16 sehingga diperoleh: Jadi, ( )

14 a b SUPER, Solusi Quipper m> n, dengan a >, hasil m> n, dengan a <, hasil m 1 + a +... n 1 a + b +... m n, hasil b m< n, hasil m 1 n 1 Sekarang, mari selesaikan contoh soal 1, 11, 1 dengan SUPER "Solusi Quipper". Penyelesaian contoh soal 1 dengan SUPER "Solusi Quipper". Dari 15 6, diperoleh pangkat tertinggi pembilang, m dan pangkat + tertinggi penyebut, n Oleh karena m < n, maka. + Penyelesaian contoh soal 11 dengan SUPER "Solusi Quipper". Dari , diperoleh pangkat tertinggi pembilang, m 5 dan pangkat tertinggi penyebut, n. Oleh karena m > n dengan koefisien pangkat tertinggi pada pembilang bernilai positif, maka Penyelesaian contoh soal 1 dengan SUPER "Solusi Quipper" ( ) Dari, diperoleh pangkat 16 5( ) tertinggi pembilang, m 16 dan pangkat tertinggi penyebut, n Oleh karena m n, maka 15 5( )

15 Contoh Soal 1 Tentukan nilai dari Soal ini dapat diselesaikan dengan SUPER "Solusi Quipper". Dari dan pangkat tertinggi penyebut, n 1. Oleh karena m n, maka: Jadi, , diperoleh pangkat tertinggi pembilang, m 1 (karena ) b. Mengalikan dengan Akar Sekawan Langkah-langkah menyelesaikan it fungsi berbentuk f g sebagai berikut. adalah 1.) Mengalikan fungsi f( ) g( ) dengan bilangan 1 dalam bentuk akar sekawannya, yaitu f g + + f g f g + + f g f g. Dengan demikian, diperoleh: f g f g +.) Sederhanakan fungsi yang terbentuk dari langkah 1..) Bagi setiap suku dari fungsi pada langkah dengan variabel berpangkat tertinggi. Contoh Soal 1 Tentukan nilai dari ( )

16 Dengan menggunakan akar sekawannya, diperoleh: ( ) ( ) Jadi, nilai dari ( ) l im ( Bagi pembilang dan penyebut dengan atau ) l im Contoh Soal 15 Nilai dari ( + ( 5) )... (UN 16) A. 6 B. C. 1 D. E. 6 Jawaban: E Mula-mula, ubah bentuk ( 5) ke dalam bentuk akar. ( 5) ( 5) + 5 Misalkan ( ) + 5 p 16

17 Tentukan nilai it fungsinya menggunakan perkalian akar sekawan seperti berikut. p ( ) ( Bagi pembilang dan penyebut dengan atau ) Jadi, nilai dari ( + ( 5 )) 6. SUPER, Solusi Quipper a> d, hasil b e a + b + c d + e+ f a d, hasil a a< d, hasil Sekarang, mari selesaikan contoh soal 1 dan 15 dengan SUPER "Solusi Quipper". Penyelesaian contoh soal 1 dengan SUPER "Solusi Quipper". Dari , diperoleh a 1, b, d 1, dan e 8. Oleh karena a d, maka: b e a 1 17

18 Penyelesaian contoh soal 15 dengan SUPER "Solusi Quipper". Dari + 5 5, diperoleh ( ) + + a, b, d, dan e. Oleh karena a d, maka: ( + + ) 5 6 E. Aplikasi Limit dalam Kehidupan Sehari-Hari Pada umumnya, aplikasi it fungsi disajikan dalam bentuk soal cerita terkait disiplin ilmu lain seperti Fisika, Biologi, Ekonomi, Kimia, dan sebagainya. Langkah-langkah menyelesaikan soal cerita tekait dengan it fungsi adalah sebagai berikut. 1. Tentukan nilai yang didekati oleh untuk melengkapi notasi it fungsinya.. Selesaikan it fungsi yang diperoleh dengan cara substitusi langsung terlebih dahulu.. Jika substitusi langsung menghasilkan bentuk tak tentu, gunakan cara alternatif yang sesuai dengan bentuk fungsinya. Contoh Soal 16 Populasi kijang di suatu hutan lindung sangat memengaruhi populasi predatornya, seperti harimau dan ular. Hubungan antara populasi kijang dan predatornya dinyatakan dengan. fungsi y, y populasi predator dan populasi kijang. 8+ Jika populasi kijang meningkat tanpa batas, tentukan jumlah populasi predatornya. Oleh karena populasi kijang () meningkat tanpa batas, maka. Dengan cara membagi dengan pangkat tertinggi untuk it fungsi mendekati tak hingga, populasi predator dapat ditentukan sebagai berikut.. y Jadi, populasi predatornya adalah. ekor. 18

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/ matematika K e l a s XI LIMIT TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menghitung it fungsi trigonometri di suatu

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA LIMIT FUNGSI SMK NEGERI 1 SURABAYA Halaman 1 BAB LIMIT FUNGSI A. Limit Fungsi Aljabar PENGERTIAN

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

Limit Fungsi. semua x bilangan real, kecuali x = 2

Limit Fungsi. semua x bilangan real, kecuali x = 2 LA - WB (Lembar Aktivitas Warga Belajar) LIMIT FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Created By Ita Yuliana 27 Limit Fungsi Kompetensi Dasar

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

BAB 5 Bilangan Berpangkat dan Bentuk Akar

BAB 5 Bilangan Berpangkat dan Bentuk Akar BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

BILANGAN BERPANGKAT DAN BENTUK AKAR

BILANGAN BERPANGKAT DAN BENTUK AKAR BILANGAN BERPANGKAT DAN BENTUK AKAR 1. Bilangan Berpangkat Sederhana Dalam kehidupan sehari-hari kita sering menemui perkalian bilangan-bilangan dengan faktorfaktor yang sama. Misalkan kita temui perkalian

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

LIMIT FUNGSI. Standar kompetensi : Mengunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

LIMIT FUNGSI. Standar kompetensi : Mengunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah LIMIT FUNGSI Standar kompetensi : Mengunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah Kompetensi Dasar : Menjelaskan secara intuitif arti limit fungsi di suatu titik dan di takhingga.

Lebih terperinci

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..

Lebih terperinci

Pengertian limit secara intuisi

Pengertian limit secara intuisi Pengertian it secara intuisi Perhatikan fungsi f ( ) = Fungsi diatas tidak terdefinisi di =, karena di titik tersebut f() berbentuk 0/0. Tapi masih bisa ditanyakan berapa nilai f() jika mendekati Dengan

Lebih terperinci

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2 Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk

Lebih terperinci

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI Diktat Kuliah TK Matematika BAB LIMIT DAN KEKONTINUAN FUNGSI Limit Fungsi Pengantar Limit Tinjau fungsi yang didefinisikan oleh f ( ) Perhatikan bahwa fungsi ini tidak terdefinisi pada = karena memiliki

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN K-1 Kelas X matematika WAJIB PERTIDAKSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan linear

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL K-3 Kelas X matematika Wajib PERSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi dan solusi persamaan linear

Lebih terperinci

Silabus. Sekolah : : 2. Menentukan Komposisi Dua Fungsi Dan Invers Suatu Fungsi. Kegiatan Pembelajaran. Kompetensi Dasar.

Silabus. Sekolah : : 2. Menentukan Komposisi Dua Fungsi Dan Invers Suatu Fungsi. Kegiatan Pembelajaran. Kompetensi Dasar. Silabus Sekolah : Mata Pelajaran : Matematika Kelas/Program : XI/ Ilmu Sosial Semester : II (Genap) Standar Kompetensi : 2. Menentukan Komposisi Dua Fungsi Dan Invers Suatu Fungsi : 35 x 45 Menit Kompetensi

Lebih terperinci

tidak terdefinisi ketika x = 1, tetapi dapat kita peroleh

tidak terdefinisi ketika x = 1, tetapi dapat kita peroleh Lecture 4. Limit A A. Definition of Limit Definisi 4.1 (a). Jika f adalah suatu fungsi, maka kita mengatakan bahwa jika nilai f(x) mendekati L saat x dipilih mendekati a. Dengan kata lain, bilangan L merupakan

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

karena limit dari kiri = limit dari kanan

karena limit dari kiri = limit dari kanan A. DEFINISI LIMIT Istilah it dalam matematika hampir sama artinya dengan istilah mendekati. Akibatnya, nilai it sering dikatakan sebagai nilai pendekatan.. Pengertian Limit secara Intusi Untuk memahami

Lebih terperinci

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

B. PENGERTIAN LIMIT FUNGSI

B. PENGERTIAN LIMIT FUNGSI B. PENGERTIAN LIMIT FUNGSI Dalam kehidupan sehari-hari kita sering mendengar kaat-kaat seperti : a. Mobil itu nyaris masuk ke jurang. b. Kita hampir memasuki kota Jakarta. c. Kecantikannya mendekati sempurna.

Lebih terperinci

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional BAB III PECAHAN KONTINU dan PIANO A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional Sekarang akan dibahas tentang pecahan kontinu tak hingga yang diawali dengan barisan tak hingga bilangan bulat mendefinisikan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut:

SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: SUKU BANYAK A. Pengertian Suku Banyak Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: Dinamakan suku banyak (polinom) dalam yang berderajat dengan bilangan cacah

Lebih terperinci

MATEMATIKA EKONOMI Program Studi Agribisnis

MATEMATIKA EKONOMI Program Studi Agribisnis MATEMATIKA EKONOMI Program Studi Agribisnis Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website: http://almasdi.unri.ac.id HUBUNGAN FUNGSIONAL Pengertian dan unsur-unsur

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.2 Himpunan Buka dan Himpunan Tutup Titik limit dari suatu himpunan tidak harus merupakan anggota himpunan tersebut. Pada interval

Lebih terperinci

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. dan XI IPA2 pada bulan April- Mei Pada bulan April 2014 peneliti

BAB IV HASIL DAN PEMBAHASAN. dan XI IPA2 pada bulan April- Mei Pada bulan April 2014 peneliti 33 BAB IV HASIL DAN PEMBAHASAN A. Deskripsi Pelaksanaan Penelitian Penelitian dilaksanakan di SMAN 1 Kasihan untuk kelas XI IPA1 dan XI IPA2 pada bulan April- Mei 2014. Pada bulan April 2014 peneliti melakukan

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

MODUL MATA PELAJARAN MATEMATIKA

MODUL MATA PELAJARAN MATEMATIKA KERJASAMA DINAS PENDIDIKAN KOTA SURABAYA DENGAN FAKULTAS MIPA UNIVERSITAS NEGERI SURABAYA MODUL MATA PELAJARAN MATEMATIKA Bilangan dan Aljabar untuk kegiatan PELATIHAN PENINGKATAN MUTU GURU DINAS PENDIDIKAN

Lebih terperinci

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN)

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) PENDAHULUAN BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) (Pertemuan ke 11 & 12) Diskripsi singkat Pada bab ini dibahas tentang integral tak tentu, integrasi parsial dan beberapa metode integrasi lainnya yaitu

Lebih terperinci

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga

Lebih terperinci

PERSAMAAN LINGKARAN. Tujuan Pembelajaran

PERSAMAAN LINGKARAN. Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI PERSAMAAN LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut.. Memahami definisi lingkaran.. Memahami persamaan

Lebih terperinci

Fungsi Analitik (Bagian Pertama)

Fungsi Analitik (Bagian Pertama) Fungsi Analitik (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IV) Outline 1 Fungsi Variabel Kompleks 2 Pemetaan/Transformasi/Mappings

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

Untuk sebuah fungsi y = f(x), bagaimana perilaku dari f(x) jika x mendekati c, akan tetapi x tidak sama dengan c (x c).

Untuk sebuah fungsi y = f(x), bagaimana perilaku dari f(x) jika x mendekati c, akan tetapi x tidak sama dengan c (x c). 5 LIMIT FUNGSI 5. PENDAHULUAN LIMIT Untuk sebuah fungsi y f(), bagaimana perilaku dari f() jika mendekati c, akan tetapi tidak sama dengan c ( c). Contoh, kita ambil fungsi f() dan g() dan akan kita cari

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..

Lebih terperinci

Bahan Ajar. Limit Fungsi Aljabar. (Edisi 1,00) Disusun Oleh : Fendi Alfi Fauzi

Bahan Ajar. Limit Fungsi Aljabar. (Edisi 1,00) Disusun Oleh : Fendi Alfi Fauzi Bahan Ajar Limit Fungsi Aljabar (Edisi 1,00) Disusun Oleh : Fendi Alfi Fauzi Fendi Alfi Fauzi Bahan Ajar Limit Fungsi Aljabar (Edisi 1,00) Tulisan ini bebas dibaca dan disebarluaskan kepada siapapun dengan

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Pengertian dan notasi dari it suatu fungsi, f() di suatu nilai = a diberikan secara intuitif berikut. Bila nilai f() mendekati L untuk nilai mendekati a dari arah kanan maka dikatakan

Lebih terperinci

Persamaan dan pertidaksamaan kuadrat BAB II

Persamaan dan pertidaksamaan kuadrat BAB II BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI EKSPONEN K13 A. Definisi Fungsi Eksponen

matematika PEMINATAN Kelas X FUNGSI EKSPONEN K13 A. Definisi Fungsi Eksponen K13 Kelas X matematika PEMINATAN FUNGSI EKSPONEN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi fungsi eksponen dan cara menghitung

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

SRI REDJEKI KALKULUS I

SRI REDJEKI KALKULUS I SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih

Lebih terperinci

Disarikan dari Malatuni Topik Bahasan Penggunaan Konsep Limit Fungsi

Disarikan dari Malatuni Topik Bahasan Penggunaan Konsep Limit Fungsi Disarikan dari Malatuni 7 Topik Baasan Penggunaan Konsep Limit Fungsi y f Ditulis: f L L X Amati ara terbang dua ekor burung menuju sangkar dari ara yang berbeda. Jika kita aplikasikan dalam bentuk matematis

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

1. Variabel, Konstanta, dan Faktor Variabel Konstanta Faktor

1. Variabel, Konstanta, dan Faktor Variabel Konstanta Faktor ALJABAR BENTUK ALJABAR adalah suatu bentuk matematika yang dalam penyajiannya memuat huruf-huruf untuk mewakili bilangan yang belum diketahui Bentuk aljabar dapat dimanfaatkan untuk menyelesaikan masalah

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B Soal nomor 1, dengan soal sebagai berikut: Jawab : D Pernyataan majemuk pada soal ini adalah suatu disjungsi. Misalkan p: Petani panen beras. q: Harga beras murah., pernyataan di atas dapat dinotasikan

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan (Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: hgunawan@math.itb.ac.id. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang

Lebih terperinci

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN

PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI BALONGAN RENCANA PELAKSANAAN PEMBELAJARAN Kode. Dok PBM.0 Edisi/Revisi A/0 Tanggal 7 Juli 207 Halaman dari RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Lebih terperinci

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Vol. 9, No.1, 49-56, Juli 2012 Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Nur Erawaty 1, Andi Kresna Jaya 1, Nirwana 1 Abstrak Misalkan D adalah daerah integral. Unsur tak nol yang bukan unit

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

Modul 05 Persamaan Linear dan Persamaan Linear Simultan

Modul 05 Persamaan Linear dan Persamaan Linear Simultan Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

PERTEMUAN 6-7 LIMIT DAN KESINAMBUNGAN FUNGSI

PERTEMUAN 6-7 LIMIT DAN KESINAMBUNGAN FUNGSI PERTEMUAN 6-7 LIMIT DAN KESINAMBUNGAN FUNGSI LIMIT Limit menggambarkan seberapa jauh sebuah fungsi akan berkembang apabila variabel di dalam fungsi yang bersangkutan terus menerus berkembang mendekati

Lebih terperinci

Bentuk Pangkat, Akar dan Logaritma

Bentuk Pangkat, Akar dan Logaritma BAB 1 Bentuk Pangkat, Akar dan Logaritma Penggunaan bentuk pangkat, akar, dan logaritma banyak dijumpai di pelajaran lain, misalnya fisika, kimia, biologi, dan lain-lain. Dalam fisika, logaritma dapat

Lebih terperinci

BAB IV DERET FOURIER

BAB IV DERET FOURIER BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut

Lebih terperinci

Limit Fungsi. Bab. Limit fungsi Pendekatan (kiri dan kanan) Bentuk tentu dan tak tentu Perkalian sekawan A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Limit Fungsi. Bab. Limit fungsi Pendekatan (kiri dan kanan) Bentuk tentu dan tak tentu Perkalian sekawan A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Limit Fungsi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran it fungsi, siswa mampu: 1. menghayati pola hidup disiplin, kritis, bertanggungjawab, konsisten

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom BAB 9 RING POLINOM Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2 a home base to eellene Mata Kuliah : Kalkulus Kode : TSP 0 SKS : 3 SKS Limit Fungsi Pertemuan - a home base to eellene TIU : Mahasiswa dapat memahami it ungsi TIK : Mahasiswa mampu menyelesaikan it ungsi

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN SEMSTER GENAP

MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN SEMSTER GENAP MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN 05 06 SEMSTER GENAP STANDAR KOMPETENSI 4. Menggunakan aturan sukubanyak dalam penyelesaian masalah. KOMPETENSI DASAR 4. Menggunakan

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristan Satya Wacana. Bagian 3. Limit & Kontinuitas ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristan Satya Wacana. Bagian 3. Limit & Kontinuitas ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristan Satya Wacana Bagian 3 Limit & Kontinuitas ALZ DANNY WOWOR Topik yang dibahas A. Limit Fungsi B. Perhitungan Limit (menggunakan hukum

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

BAB VI BILANGAN REAL

BAB VI BILANGAN REAL BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul

Lebih terperinci

INTEGRAL. Bab. Di unduh dari : Bukupaket.com. Integral tak tentu Fungsi aljabar Derivatif Antiderivatif A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

INTEGRAL. Bab. Di unduh dari : Bukupaket.com. Integral tak tentu Fungsi aljabar Derivatif Antiderivatif A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab INTEGRAL A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran integral siswa mampu:. Mampu mentransformasi diri dalam berperilaku jujur, tangguh menghadapi masalah,

Lebih terperinci

NOTASI ILMIAH DAN ANGKA PENTING

NOTASI ILMIAH DAN ANGKA PENTING NOTASI ILMIAH DAN ANGKA PENTING Apa itu notasi ilmiah? Apa itu angka penting? Dalam fisika, sering dijumapi bilangan yang sangat kecil atau sangat besar. Misalnya jari-jari atom hidrogen 0,000000000053

Lebih terperinci