III. MATEMATIKA DAN STATISTIKA APLIKASI (S.1) EFEK PERUBAHAN POLA CUACA PADA DEBIT AIR MASUK DI WADUK SAGULING

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "III. MATEMATIKA DAN STATISTIKA APLIKASI (S.1) EFEK PERUBAHAN POLA CUACA PADA DEBIT AIR MASUK DI WADUK SAGULING"

Transkripsi

1 III. MATEMATIKA DAN STATISTIKA APLIKASI (S.1) EFEK PERUBAHAN POLA CUACA PADA DEBIT AIR MASUK DI WADUK SAGULING Yurian Yudanto Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjadjaran, Dengan bimbingan : Dra.Hj.Neneng Sunengsih, M.Stat dan Gumgum Darmawan, M.Si dari Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjadjaran. Pendahuluan Disadari atau tidak, pola iklim yang telah dikenal selama ini dan diyakini akan bertahan untuk waktu yang lama saat ini telah mengalami perubahan, Lembaga Penerbangan dan Antariksa Nasional (Lapan) dalam webnya* mengatakan bahwa diprediksi akan terjadi peningkatan curah hujan di wilayah Indonesia pada tahun , hal yang demikian bisa menjadi angin segar bagi dunia pembangkitan energi tenaga air karena menjanjikan peningkatan bahan baku produksi dalam industri energi ramah lingkungan ini. Dalam penelitian mengenai perubahan iklim ini, penulis menggunakan data debit air masuk harian pada Waduk Saguling untuk mendapatkan gambaran perubahan volume debit air antara tahun 2009 dan 2010 yang diperkuat dengan data ramalan sebanyak 60 hari kedepan dimulai dari bulan juni Data 184

2 Data yang dipakai dalam penelitian ini adalah debit air masuk harian di Waduk Saguling tanggal 1 januari 2009 hingga 30 juni 2010 yang dicatat pukul setiap harinya, berikut adalah plot datanya (data asli terlampir) : Gambar 1.1 Plot Data Debit Air Masuk Harian di Waduk Saguling Bulan Januari 2009 hingga Bulan Juni (Sumber : PT Indonesia Power UBP Saguling) Dari pengamatan diatas dapat terlihat bahwa terjadi peningkatan volume debit air masuk pada Waduk Saguling khususnya pada tengah musim hujan yakni bulan maret, untuk memperjelas peningkatan tersebut berikut disajikan gambar perbandingan antaraa tahun 2009 dan Gambar 1.2 Perbandingan Debit Air Masuk Harian di Waduk Saguling bulan Januari hingga Mei di tahun 2009 dan 2010 (Sumber : PT Indonesia Power UBP Saguling) 185

3 Peningkatan volume debit air masuk harian yang terjadi pada musim hujan di awal tahun 2010 menimbulkan pertanyaan akankah peningkatan debit air masuk ini akan terus berlanjut pada musim-musim hujan berikutnya? demi menjawab pertanyaan tersebut maka dilakukanlah proses peramalan. Analisis data (Peramalan) Sebelum analisis dimulai perlu dilakukan proses paling penting dalam peramalan, yakni uji autokorelasi. Autokorelasi didefinisikan sebagai adanya hubungan antara data pengamatan waktu ke t dengan data pengamatan pada waktu ke t-x di masa lampau dalam variabel yang sama, sehingga menjamin bahwa data dapat dianalisis menggunakan metode-metode peramalan, jika data tidak mengandung autokorelasi maka pendekatan peramalannya dapat dilakukan menggunakan regresi deret data atas waktu. Pengujian autokorelasi ini menggunakan Diagram Fungsi Autokorelasi (ACF), jika diagram ACF membentuk pola yang menurun secara eksponensial (bertahap) maka disimpulkan bahwa data tersebut memiliki autokorelasi didalamnya, berikut adalah diagram ACF untuk data penelitian ini Gambar 1.3 Diagram ACF Debet Air Masuk Harian bulan Januari 2009 hingga Juni

4 Berdasarkan karakteristik data Debit Air Masuk Harian yang berautokorelasi dan hanya terdiri dari satu variabel (univariat) maka proses peramalannya dapat menggunakan menggunakan metode exponential smoothing. Metode yang berdasarkan konsep pemulusan sederhana ini merupakan hasil modifikasi model dasar sehingga dapat diterapkan pada data yang memiliki komponen trend dan musiman. Metode ini mempunyai kelebihan dalam kesederhanaan proses analisis karena tidak memerlukan pengujian asumsi secara berlapis sehingga tidak akan memunculkan hambatan tertentu apabila digunakan oleh individu yang tidak memiliki pengalaman sebelumnya dalam bidang ilmu Statistika. Metode exponential smoothing yang diterapkan pada penelitian kali ini menggunakan model Winter yang dapat mengatasi data dengan komponen tren dan musiman, berikut adalah persamaan yang dipakai dalam metode ini : Dimana : l = α y s + (1 α)( l + b ) (1.1) Level : t ( t t) t 1 t 1 Trend : bt = β( lt lt 1) + (1 β) bt 1 (1.2) t γ t t γ t s s = y l + s (1.2) Musiman : ( ) (1 ) Ramalan : $ yt = lt + bt + st (3.13) l t : Pemulusan pada tahap level b t $ y t α β γ : Pemulusan tren : Data peramalan untuk waktu t : Koefisien pemulusan untuk level : koefisien pemulusan untuk tren : koefisien pemulusan untuk musiman 187

5 Metode ini dapat lebih tahan terhadap keberadaan komponen tren dan musiman karena memiliki proses penghalusan untuk kedua komponen tersebut didalamnya, proses tersebut terlihat dalam Persamaan (1.1) yang dikenal dengan istilah level yakni nilai yang dihaluskan dari data pengamatan terakhir, sedangkan keberadaan komponen tren dan musiman dalam data terlihat pada Persamaan (1.2) untuk tren dan Persamaan (1.3) untuk musiman yang merupakan nilai fluktuasi dan nilai sifat musiman yang dihaluskan dari data pengamatan yang terakhir (Kalekar, Prajakta S. 2004). Pada akhirnya, nilai ramalan merupakan penjumlahan antara komponen level, tren, dan musiman yang sudah melalui proses penghalusan. Penentuan besar koefisien pemulusan yang dipakai dalam penelitian ini dibantu menggunakan software zaitun time series, software ini akan menganalisa semua kemungkinan besar koefisien pemulusan dan mengurutkan kombinasinya berdasarkan nilai error terkecil. Berikut adalah hasilnya Tabel 1.1 Kombinasi koefisien pemulusan terbaik PERHATIAN!! gamma diatas merupakan koefisien pemulusan untuk tren, dan beta untuk musiman, berkebalikan dengan prinsip umum exponential smooting dimana beta untuk trend dan gamma untuk musiman. Dari Tabel 1.1 didapat bahwa kombinasi terbaik untuk koefisien pemulusan adalah α = 0.9, β =0.1, dan γ = 0.2. untuk selanjutnya koefisien tersebut dipakai dalam analisis exponential smoothing menggunakan software Minitab 14. Hasil Analisis 188

6 Analisis peramalan dengan menggunakan metode exponential smoothing dengan koefisien pemulusan sebesar α = 0.9, β=0.1, dan γ = 0.2 yang diterapkan pada data debit air masuk harian di Waduk Saguling, memberikan hasil peramalan untuk 60 hari kedepan (2 bulan) adalah sebagai berikut (dalam plot data, data hasil peramalan terlampir) : Gambar 1.1 Plot Data Debit Air Masuk Harian di Waduk Saguling Bulan Januari 2009 hingga Bulan Juni 2010 dan nilai ramalan 60 hari mulai tanggal 1 juli 2010 Plot peramalan diatas memperlihatkan bahwa pola volume debit air masuk pada bulan juli-agustus 2010 telah bertambah apabila dibandingkan dengan bulan yang sama pada tahun Kesimpulan Berdasarkan hasil analisis peramalan, didapat kesimpulan bahwa : 1. Dalam bulan juli dan agustus 2010 diramalkan akan terjadi peningkatan debit air masuk meskipun telah memasuki musim kemarau, 2. Apabila hasil peramalan menjadi kenyataan akan terjadi peningkatan potensi Pembangkit Listrik Tenaga Air sebagai energi ramah lingkungan, dan 3. Diperkirakan telah terjadi perubahan pola musim. 189

7 Saran - dilakukan penelitian lanjutan sesuai oleh rekan-rekan mahasiswa dari disiplin ilmu yang lain mengenai perubahan pola cuaca dan pengaruhnya terhadap peningkatan atau pengurangan potensi sistem produksi energi. - Peningkatan debit air masuk harian yang terjadi pada musim hujan di awal tahun 2010 diharapkan dapat menjadi acuan penyesuaian bagi pihak-pihak terkait khususnya perusahaan-perusahaan yang bergerak di bidang energi. Referensi 1. (diakses tanggal 8 November 2010) 2. Kalekar, Prajakta S Time Series Forecasting using Holt-Winters Exponential Smoothing. Bombay : Kanwal Rekhi School of Information Technology Lampiran 1. Data Debit Air Masuk Harian di Waduk Saguling Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan

8 85.08 Jan Feb Feb Mar Jan Feb Feb Mar Jan Feb Feb Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Mar Jan Feb Mar Apr Feb Feb Mar Apr Feb Feb Mar Apr Feb Feb Mar Apr Feb Feb Mar Apr Feb Feb Mar Apr

9 Apr Apr Mei Juni Apr Apr Mei Juni Apr Apr Mei Juni Apr Apr Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Mei Juni Apr Mei Juni Juni Apr Mei Juni Juni Apr Mei Juni Juni Apr Mei Juni Juni Apr Mei Juni Juni

10 60.00 Juni Juli Agus Juni Juli Juni Juli Juni Juli Agus Juni Juli Agus Juli Juli Agus Juli Juli Agus Juli Juli Sep Juli Juli Sep Juli Juli Sep Juli Juli Agus Sep Juli Juli Agus Sep Juli Juli Agus Sep Juli Juli Agus Sep Juli Juli Agus Sep Juli Juli Sep Juli Agus Sep Juli Agus Sep Juli Sep Juli Agus Sep

11 10.42 Sep Okt Okt Nov Sep Okt Okt Nov Sep Okt Okt Nov Sep Okt Okt Nov Sep Okt Okt Nov Sep Okt Okt Nov Sep Okt Okt Nov Sep Okt Okt Nov Sep Okt Nov Nov Sep Okt Nov Nov Sep Okt Nov Nov Sep Okt Nov Nov Sep Okt Nov Nov Sep Okt Nov Nov Sep Okt Nov Nov Sep Okt Nov Nov Sep Okt Nov Nov Okt Okt Nov Nov Okt Okt Nov Des Okt Okt Nov Des

12 70.71 Des Des Jan Feb Des Des Jan Feb Des Des Jan Feb Des Des Jan Feb Des Des Jan Feb Des Des Jan Feb Des Des Jan Feb Des Des Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Jan Feb Des Jan Feb Feb

13 Feb Mar Apr Apr Feb Mar Apr Apr Feb Mar Apr Apr Feb Mar Apr Apr Feb Mar Apr Apr Feb Mar Apr Apr Feb Mar Apr Apr Mar Mar Apr Apr Mar Mar Apr Mei Mar Mar Apr Mei Mar Mar Apr Mei Mar Mar Apr Mei Mar Mar Apr Mei Mar Mar Apr Mei Mar Mar Apr Mei Mar Mar Apr Mei Mar Mar Apr Mei Mar Mar Apr Mei Mar Apr Apr Mei Mar Apr Apr Mei

14 Mei Mei Juni Juni Mei Mei Juni Juni Mei Mei Juni Juni Mei Mei Juni Juni Mei Mei Juni Juni Mei Mei Juni Juni Mei Juni Juni Juni Mei Juni Juni Juni Mei Juni Juni Juni Mei Juni Juni Juni Mei Juni Juni Mei Juni Juni Mei Juni Juni-10 Hari ke. 2. Hasil Peramalan 60 hari kedepan Peramalan

15

METODE PERAMALAN HOLT-WINTER UNTUK MEMPREDIKSI JUMLAH PENGUNJUNG PERPUSTAKAAN UNIVERSITAS RIAU ABSTRACT

METODE PERAMALAN HOLT-WINTER UNTUK MEMPREDIKSI JUMLAH PENGUNJUNG PERPUSTAKAAN UNIVERSITAS RIAU ABSTRACT METODE PERAMALAN HOLT-WINTER UNTUK MEMPREDIKSI JUMLAH PENGUNJUNG PERPUSTAKAAN UNIVERSITAS RIAU Encik Rosalina 1, Sigit Sugiarto 2, M.D.H. Gamal 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan

Lebih terperinci

BAB V ANALISA DAN PEMBAHASAN

BAB V ANALISA DAN PEMBAHASAN BAB V ANALISA DAN PEMBAHASAN 5.1 Peramalan Kebutuhan Bahan Baku Pada bab ini berisikan tentang analisa hasil dari pengolahan data dalam perhitungan Forecasting dan MRP tepung terigu untuk 12 bulan yang

Lebih terperinci

METODE PEMULUSAN EKSPONENSIAL WINTER UNTUK PERAMALAN ABSTRACT

METODE PEMULUSAN EKSPONENSIAL WINTER UNTUK PERAMALAN ABSTRACT METODE PEMULUSAN EKSPONENSIAL WINTER UNTUK PERAMALAN Arganata Manurung 1, Bustami 2, M.D.H. Gamal 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN. konstan, namun ada beberapa periode yang memperlihatkan keadaan yang ekstrim.

BAB I PENDAHULUAN. konstan, namun ada beberapa periode yang memperlihatkan keadaan yang ekstrim. 1 BAB I PENDAHULUAN 1.1. Latar Belakang Variasi dan keadaan curah hujan yang terjadi, tidaklah selalu tetap dan konstan, namun ada beberapa periode yang memperlihatkan keadaan yang ekstrim. Pada umumnya,

Lebih terperinci

SKRIPSI APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING. Disusun oleh: DANI AL MAHKYA

SKRIPSI APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING. Disusun oleh: DANI AL MAHKYA APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING SKRIPSI Disusun oleh: DANI AL MAHKYA 24010210141025 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

Dian Kristanti 1) 1 Prodi Pendidikan Matematika, STKIP Bina Bangsa Meulaboh.

Dian Kristanti 1) 1 Prodi Pendidikan Matematika, STKIP Bina Bangsa Meulaboh. PERAMALAN JUMLAH PENDISTRIBUSIAN BAHAN BAKAR MINYAK DI PT. PERTAMINA (PERSERO) REGION III DEPOT MALANG MENGGUNAKAN METODE WINTER DAN METODE DEKOMPOSISI Dian Kristanti 1) 1 Prodi Pendidikan Matematika,

Lebih terperinci

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER 6.1. Analisis Pola Data Penjualan Ayam Broiler Data penjualan ayam broiler adalah data bulanan yang diperoleh dari bulan Januari 2006

Lebih terperinci

METODE MOVING AVERAGE DAN METODE WINTER DALAM PERAMALAN ABSTRACT

METODE MOVING AVERAGE DAN METODE WINTER DALAM PERAMALAN ABSTRACT METODE MOVING AVERAGE DAN METODE WINTER DALAM PERAMALAN Widya Risnawati Siagian 1, Sigit Sugiarto 2, M.D.H. Gamal 2 1 Mahasiswa Program Studi S1 Matematika FMIPA Universitas Riau 2 Dosen Fakultas Matematika

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Sejarah Umum Perusahaan Saputra Plastik adalah perusahaan yang bergerak dalam bidang pemasaran berbagai jenis plastik seperti PP, PE, HD, dan Tali Plastik ; didirikan pada

Lebih terperinci

BAB 1 PENDAHULUAN. Pasar global dewasa ini tanpa disadari telah membuat kompetisi di dalam dunia

BAB 1 PENDAHULUAN. Pasar global dewasa ini tanpa disadari telah membuat kompetisi di dalam dunia BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Pasar global dewasa ini tanpa disadari telah membuat kompetisi di dalam dunia perindustrian menjadi hal yang lebih penting. Pasar yang dulunya pada masa Perang

Lebih terperinci

BAB I PENDAHULUAN. Sejak kondisi ekonomi dan bisnis selalu berubah setiap waktu, maka para

BAB I PENDAHULUAN. Sejak kondisi ekonomi dan bisnis selalu berubah setiap waktu, maka para 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sejak kondisi ekonomi dan bisnis selalu berubah setiap waktu, maka para pimpinan suatu perusahaan atau para pelaku bisnis harus menemukan cara untuk terus

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN 2301-9115 FORECASTING FITNESS GYM MEMBERSHIP PADA PUSAT KEBUGARAN THE BODY ART FITNESS, AEROBIC & POOL MENGGUNAKAN METODE EXPONENTIAL SMOOTHING

Lebih terperinci

1. Latar Belakang. 2. Tinjauan Pustaka

1. Latar Belakang. 2. Tinjauan Pustaka 1. Latar Belakang Indonesia mempunyai kompleksitas dalam fenomena cuaca dan iklim. Atmosfer diatas Indonesia sangat kompleks dan pembentukan awannya sangat unik. Secara latitudinal dan longitudinal, Indonesia

Lebih terperinci

PREDIKSI HARGA DAGING SAPI DI PEKANBARU DENGAN METODE PEMULUSAN EKSPONENSIAL TRIPEL WINTER

PREDIKSI HARGA DAGING SAPI DI PEKANBARU DENGAN METODE PEMULUSAN EKSPONENSIAL TRIPEL WINTER PREDIKSI HARGA DAGING SAPI DI PEKANBARU DENGAN METODE PEMULUSAN EKSPONENSIAL TRIPEL WINTER Rahmadeni 1, Evi Febriantikasari 2 Jurusan Matematika, Fakultas Sains dan Teknologi,UIN Sultan Syarif Kasim Riau

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

Harwein et al., Peramalan Data Times Series Kebutuhan Tepung Terigu Sebagai Bahan Baku Pembuatan Roti...

Harwein et al., Peramalan Data Times Series Kebutuhan Tepung Terigu Sebagai Bahan Baku Pembuatan Roti... TEKNOLOGI HASIL PERTANIAN PERAMALAN DATA TIMES SERIES KEBUTUHAN TEPUNG TERIGU SEBAGAI BAHAN BAKU PEMBUATAN ROTI (Studi Kasus di PT. Inti Cakrawala Citra Jember Jawa Timur) FORECASTING OF WHEAT FLOUR AS

Lebih terperinci

BAB I PENDAHULUAN. yang ada pada CV. Agung Jaya Cabang Pabean diperoleh dari supplier atau

BAB I PENDAHULUAN. yang ada pada CV. Agung Jaya Cabang Pabean diperoleh dari supplier atau BAB I PENDAHULUAN 1.1 Latar Belakang Masalah CV. Agung Jaya Cabang Pabean adalah cabang perusahaan CV. Agung Jaya Kalang Anyar Sedati. CV. Agung Jaya Cabang Pabean merupakan distributor alat tulis kantor

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara 13 BAB 1 PENDAHULUAN 1.1 Latar Belakang Era globalisasi saat ini, perkembangan zaman semankin maju dan berkembang pesat, di antaranya banyak pernikahan dini yang menyebabkan salah satu faktor bertambahnya

Lebih terperinci

ANALISIS DERET WAKTU

ANALISIS DERET WAKTU ANALISIS DERET WAKTU JENIS DATA Cross section Beberapa pengamatan diamati bersama-sama pada periode waktu tertentu Harga saham semua perusahaan yang tercatat di BEJ pada hari Rabu 27 Februari 2008 Time

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang. Peramalan diperlukan karena adanya kesenjaan waktu

Lebih terperinci

PENENTUAN METODE PERAMALAN SEBAGAI DASAR PENENTUAN TINGKAT KEBUTUHAN PERSEDIAAN PENGAMAN PADA PRODUK KARET REMAH SIR 20

PENENTUAN METODE PERAMALAN SEBAGAI DASAR PENENTUAN TINGKAT KEBUTUHAN PERSEDIAAN PENGAMAN PADA PRODUK KARET REMAH SIR 20 PENENTUAN METODE PERAMALAN SEBAGAI DASAR PENENTUAN TINGKAT KEBUTUHAN PERSEDIAAN PENGAMAN PADA PRODUK KARET REMAH SIR 20 Theresia Oshin Rosmaria Pasaribu 1 Rossi Septy Wahyuni 2 Jurusan Teknik Industri,

Lebih terperinci

Perancangan Kalender Tanam Berdasarkan Data Klimatologi Menggunakan Metode Forecasting Holt-Winters (Studi Kasus : Boyolali) Artikel Ilmiah

Perancangan Kalender Tanam Berdasarkan Data Klimatologi Menggunakan Metode Forecasting Holt-Winters (Studi Kasus : Boyolali) Artikel Ilmiah Perancangan Kalender Tanam Berdasarkan Data Klimatologi Menggunakan Metode Forecasting Holt-Winters (Studi Kasus : Boyolali) Artikel Ilmiah Peneliti : Gabriel Alvin Pryanto (672006257) Kristoko Dwi Hartomo,

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

PENGEMBANGAN SI STOK BARANG DENGAN PERAMALAN MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHING (STUDI KASUS : PT. TOMAH JAYA ELEKTRIKAL)

PENGEMBANGAN SI STOK BARANG DENGAN PERAMALAN MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHING (STUDI KASUS : PT. TOMAH JAYA ELEKTRIKAL) PENGEMBANGAN SI STOK BARANG DENGAN PERAMALAN MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHING (STUDI KASUS : PT. TOMAH JAYA ELEKTRIKAL) Cahyarizki Adi Utama, Yan Watequlis S. Teknologi Informasi, Teknik

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN. langsung melihat database yang digunakan dengan cara menekan tombol open

BAB 4 HASIL DAN PEMBAHASAN. langsung melihat database yang digunakan dengan cara menekan tombol open BAB 4 HASIL DAN PEMBAHASAN 4.1 Program Peramalan 4.1.1 Tampilan Layar Pada saat pertama kali menjalankan program peramalan ini, user akan dihadapkan pada tampilan program seperti Gambar 4.1. Pada kondisi

Lebih terperinci

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA SISTEM PENDUKUNG KEPUTUSAN PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA Alda Raharja - 5206 100 008! Wiwik Anggraeni, S.Si, M.Kom! Retno

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

Teknik Peramalan Melalui Pemulusan Data (Bagian II) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2017/2018

Teknik Peramalan Melalui Pemulusan Data (Bagian II) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2017/2018 Teknik Peramalan Melalui Pemulusan Data (Bagian II) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2017/2018 The most crucial issue in simple moving averages is the choice of the span, N. A simple moving

Lebih terperinci

LAMPIRAN 1. Catylac New, Catylac Exterior Base, Catylac Exterior.

LAMPIRAN 1. Catylac New, Catylac Exterior Base, Catylac Exterior. L1 LAMPIRAN 1 Spesifikasi produk : Catylac New, Catylac Exterior Base, Catylac Exterior. Cat Catylac adalah cat yang berfungsi sebagai pelapis serta pelindung dari hujan dan memberikan varian warna yang

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

Analisis Deret Waktu

Analisis Deret Waktu Analisis Deret Waktu Jenis Data Cross section Beberapa pengamatan diamati bersama-sama pada periode waktu tertentu Harga saham semua perusahaan yang tercatat di BEJ pada hari Rabu 27 Februari 2008 Time

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 18 HASIL DAN PEMBAHASAN Eksplorasi data Tahap pertama dalam pembentukan model VAR adalah melakukan eksplorasi data untuk melihat perilaku data dari semua peubah yang akan dimasukkan dalam model. Eksplorasi

Lebih terperinci

Evelina Padang, Gim Tarigan, Ujian Sinulingga

Evelina Padang, Gim Tarigan, Ujian Sinulingga Saintia Matematika Vol. 1, No. 2 (2013), pp. 161 174. PERAMALAN JUMLAH PENUMPANG KERETA API MEDAN-RANTAU PRAPAT DENGAN METODE PEMULUSAN EKSPONENSIAL HOLT-WINTERS Evelina Padang, Gim Tarigan, Ujian Sinulingga

Lebih terperinci

U K D W BAB I PENDAHULUAN

U K D W BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam pengelolaan suatu minimarket tidak pernah lepas dari yang namanya persediaan barang. Persediaan barang menjadi bagian yang sangat vital dalam tumbuh kembangnya

Lebih terperinci

APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING ABSTRACT

APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING ABSTRACT ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 605-614 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. PengertianPeramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Dalam usaha mengetahui atau melihat perkembangan di masa depan,

Lebih terperinci

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Ni Kadek Sukerti STMIK STIKOM Bali Jl. Raya Puputan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan adalah alat bantu yang penting dalam perencanaan yang efektif dan efisien (Makridakis,1991). Peramalan merupakan studi terhadap data historis untuk menemukan

Lebih terperinci

PERAMALAN PENJUALAN GAS LPG PADA TOKO UPAYA TETAP BERKARYA

PERAMALAN PENJUALAN GAS LPG PADA TOKO UPAYA TETAP BERKARYA PERAMALAN PENJUALAN GAS LPG PADA TOKO UPAYA TETAP BERKARYA Nama : Liza Indriani NPM : 14210058 Jurusan : Manajemen Pembimbing : Lies Handrijaningsih, SE,.MM LATAR BELAKANG MASALAH Perkembangan penggunaan

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Desain Penelitian Dari uraian latar belakang masalah, penelitian ini dikategorikan ke dalam penelitian kasus dan penelitian lapangan. Menurut Rianse dan Abdi dalam Surip (2012:33)

Lebih terperinci

BAB II LANDASAN TEORITIS

BAB II LANDASAN TEORITIS BAB I PENDAHULUAN Pengaruh pemanasan global yang sering didengungkan tidak dapat dihindari dari wilayah Kalimantan Selatan khususnya daerah Banjarbaru. Sebagai stasiun klimatologi maka kegiatan observasi

Lebih terperinci

BAB 4 PENGUMPULAN DAN ANALISA DATA

BAB 4 PENGUMPULAN DAN ANALISA DATA BAB 4 PENGUMPULAN DAN ANALISA DATA 4.1 Pengumpulan Data 4.1.1 Data untuk Peramalan Permintaan Untuk peramalan permintaan pada bulan Januari April 2007 diperlukan data penjualan selama bulan Mei 2005 Desember

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 9 menguji kelayakan model sehingga model sementara tersebut cukup memadai. Salah satu caranya adalah dengan menganalisis galat (residual). Galat merupakan selisih antara data observasi dengan data hasil

Lebih terperinci

PERAMALAN PENJUALAN AVTUR DENGAN MEMPERTIMBANGKAN SPECIAL EVENT

PERAMALAN PENJUALAN AVTUR DENGAN MEMPERTIMBANGKAN SPECIAL EVENT SIG TUGAS AKHIR PERAMALAN PENJUALAN AVTUR DENGAN MEMPERTIMBANGKAN SPECIAL EVENT Siti Lukmatul Henifa (1210 100 064) Pembimbing: Dra. Nuri Wahyuningsih, M.Kes. Senin, 20 Januari 2014 Matematika - ITS Page

Lebih terperinci

PERAMALAN PENENTUAN JUMLAH PERMINTAAN KONSUMEN BERBASIS TEKNOLOGI INFORMASI TERHADAP PRODUK BORDIR PADA KOTA TASIKMALAYA

PERAMALAN PENENTUAN JUMLAH PERMINTAAN KONSUMEN BERBASIS TEKNOLOGI INFORMASI TERHADAP PRODUK BORDIR PADA KOTA TASIKMALAYA PERAMALAN PENENTUAN JUMLAH PERMINTAAN KONSUMEN BERBASIS TEKNOLOGI INFORMASI TERHADAP PRODUK BORDIR PADA KOTA TASIKMALAYA Lies Sunarmintyastuti 1, Salman Alfarisi 2, Fitria Sari Hasanusi 3 Program Studi

Lebih terperinci

PERAMALAN PENJUALAN PADA USAHA DEPOT AIR MINUM ISI ULANG AQUA JOSS

PERAMALAN PENJUALAN PADA USAHA DEPOT AIR MINUM ISI ULANG AQUA JOSS PERAMALAN PENJUALAN PADA USAHA DEPOT AIR MINUM ISI ULANG AQUA JOSS Nama : Annis Nur Hayati R. NPM : 10210904 Jurusan : Manajemen Pembimbing : Gatot Subiyakto, SH.,MM. Bab I. Pendahuluan Latar Belakang

Lebih terperinci

Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential Smoothing

Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential Smoothing Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA) Vol.11, No.1, Februari 2017 ISSN: 0852-730X Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential

Lebih terperinci

PERBANDINGAN METODE PEMULUSAN (SMOOTHING) EKSPONENSIAL GANDA DUA PARAMETER DARI HOLT DAN METODE BOX-JENKINS

PERBANDINGAN METODE PEMULUSAN (SMOOTHING) EKSPONENSIAL GANDA DUA PARAMETER DARI HOLT DAN METODE BOX-JENKINS PERBANDINGAN METODE PEMULUSAN (SMOOTHING) EKSPONENSIAL GANDA DUA PARAMETER DARI HOLT DAN METODE BOX-JENKINS DALAM MERAMALKAN HASIL PRODUKSI KERNEL KELAPA SAWIT PT. EKA DURA INDONESIA SKRIPSI EKA ARYANI

Lebih terperinci

PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) TERTINGGI BULAN DESEMBER disusun untuk memenuhi Tugas Lapangan Mata Kuliah Metode Peramalan

PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) TERTINGGI BULAN DESEMBER disusun untuk memenuhi Tugas Lapangan Mata Kuliah Metode Peramalan PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) TERTINGGI BULAN DESEMBER 3 disusun untuk memenuhi Tugas Lapangan Mata Kuliah Metode Peramalan Disusun Oleh :. Ilani Agustina M00037 2. Intan Purnomosari M00042

Lebih terperinci

BAB III LANGKAH PEMECAHAN MASALAH. CV. JOGI CITRA MANDIRI adalah perusahaan yang bergerak di bidang industri

BAB III LANGKAH PEMECAHAN MASALAH. CV. JOGI CITRA MANDIRI adalah perusahaan yang bergerak di bidang industri BAB III LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi 3.1.1 Analisa Kondisi Perusahaan saat ini CV. JOGI CITRA MANDIRI adalah perusahaan yang bergerak di bidang industri parfum. Merek parfum

Lebih terperinci

PERAMALAN DATA TIME SERIES DENGAN METODE PENGHALUSAN EKSPONENSIAL HOLT - WINTER

PERAMALAN DATA TIME SERIES DENGAN METODE PENGHALUSAN EKSPONENSIAL HOLT - WINTER PERAMALAN DATA TIME SERIES DENGAN METODE PENGHALUSAN EKSPONENSIAL HOLT - WINTER PERAMALAN DATA TIME SERIES DENGAN METODE PENGHALUSAN EKSPONENSIAL HOLT WINTER Adi Suwandi 1, Annisa 2, Andi Kresna Jaya

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1. Metode Time Series 3.1.1. Definisi Peramalan dan Time Series Peramalan (forecasting)adalah kegiatan memperkirakan apa yang terjadi pada masa yang akan datang berdasarkan data

Lebih terperinci

BAB 4 HASIL DAN BAHASAN

BAB 4 HASIL DAN BAHASAN BAB 4 HASIL DAN BAHASAN 4.1 Hasil dan Bahasan 4.1.1 Penentuan Suku Cadang Prioritas Untuk menentukan suku cadang prioritas pada penulisan tugas akhir ini diperlukan data aktual permintaan filter fleetguard

Lebih terperinci

SISTEM PERINGATAN DINI PENCAPAIAN PENDAPATAN ASLI DAERAH PADA DINAS PENDAPATAN PROVINSI JAWA TIMUR

SISTEM PERINGATAN DINI PENCAPAIAN PENDAPATAN ASLI DAERAH PADA DINAS PENDAPATAN PROVINSI JAWA TIMUR SISTEM PERINGATAN DINI PENCAPAIAN PENDAPATAN ASLI DAERAH PADA DINAS PENDAPATAN PROVINSI JAWA TIMUR Nurvan Indra Praja 1) dan Joko Lianto Buliali 2) Program Studi Magister Manajemen Teknologi, Institut

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

Peramalan Penjualan Avtur dengan Mempertimbangkan Special Event

Peramalan Penjualan Avtur dengan Mempertimbangkan Special Event Peramalan Penjualan Avtur dengan Mempertimbangkan Special Event Siti Lukmatul Henifa, Dra. Nuri Wahyuningsih, M.Kes. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam (MIPA), Institut Teknologi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 20 BAB 2 LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah pemikiran terhadap suatu besaran, misalnya permintaan terhadap satu atau beberapa produk pada periode yang akan datang.

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

LAPORAN PRAKTIKUM MODUL I PERAMALAN

LAPORAN PRAKTIKUM MODUL I PERAMALAN LAPORAN PRAKTIKUM MODUL I PERAMALAN Disusun oleh: Kelompok II 1. Ari Handayani (4409216094) 2. Caecilia Eka A.W.S. (4409216097) 3. Dwi Darmawan Saputra (4409216100) LABORATORIUM SISTEM PRODUKSI FAKULTAS

Lebih terperinci

BAB 3 LANGKAH PEMECAHAN MASALAH

BAB 3 LANGKAH PEMECAHAN MASALAH 49 BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Standar Optimasi Dasar evaluasi untuk mengoptimalkan supply chain management pada Honda Tebet (PT. Setianita Megah Motor) dari proses bisnis perusahaan

Lebih terperinci

ANALISIS TINGKAT PENJUALAN UNTUK MENENTUKAN PERENCANAAN PERSEDIAAN DENGAN MENGGUNAKAN FORECASTING. (Studi pada Toko Tekstil Gemilang Jaya Bandung)

ANALISIS TINGKAT PENJUALAN UNTUK MENENTUKAN PERENCANAAN PERSEDIAAN DENGAN MENGGUNAKAN FORECASTING. (Studi pada Toko Tekstil Gemilang Jaya Bandung) ANALISIS TINGKAT PENJUALAN UNTUK MENENTUKAN PERENCANAAN PERSEDIAAN DENGAN MENGGUNAKAN FORECASTING (Studi pada Toko Tekstil Gemilang Jaya Bandung) Skripsi Untuk Memenuhi Sebagian Persyaratan Mencapai Derajat

Lebih terperinci

BAB 1 PENDAHULUAN. Ekomoni adalah salah satu hal yang terpenting untuk dipelajari. Karena ekonomi

BAB 1 PENDAHULUAN. Ekomoni adalah salah satu hal yang terpenting untuk dipelajari. Karena ekonomi BAB 1 PENDAHULUAN 1.1 Latar Belakang Ekomoni adalah salah satu hal yang terpenting untuk dipelajari. Karena ekonomi merupakan suatu pengetahuan dan ilmu yang menyangkut kehidupan manusia di dunia. Ekonomi

Lebih terperinci

IMPLEMENTASI METODE TRIPLE EXPONENTIAL SMOOTHING DALAM PERAMALAN PENJUALAN PULSA ELEKTRIK

IMPLEMENTASI METODE TRIPLE EXPONENTIAL SMOOTHING DALAM PERAMALAN PENJUALAN PULSA ELEKTRIK IMPLEMENTASI METODE TRIPLE EXPONENTIAL SMOOTHING DALAM PERAMALAN PENJUALAN PULSA ELEKTRIK Sugiyanto 1, Rinci Kembang Hapsari 2 1,2 Jurusan Teknik Informatika Fakultas Teknologi Informasi Institut Teknologi

Lebih terperinci

PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA

PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA UJM 6 (1) (2017) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA Tias Safitri, Nurkaromah

Lebih terperinci

7. PERUBAHAN PRODUKSI

7. PERUBAHAN PRODUKSI 7. PERUBAHAN PRODUKSI 7.1. Latar Belakang Faktor utama yang mempengaruhi produksi energi listrik PLTA dan air minum PDAM adalah ketersedian sumberdaya air baik dalam kuantitas maupun kualitas. Kuantitas

Lebih terperinci

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman Lampiran 1. Data Tingkat Hunian Hotel di Propinsi DIY Tahun 1991-2003 48 49 Lampiran 1 Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun 1991-2003, Tahun Bulan Wisman 1991 1 27,00 1991 2 30,60

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan sering dipandang sebagai seni dan ilmu dalam memprediksikan kejadian yang mungkin dihadapi pada masa yang akan datang. Secara teoritis peramalan

Lebih terperinci

Analisis Metode Peramalan Permintaan Terbaik Produk Oxycan pada PT. Samator Gresik

Analisis Metode Peramalan Permintaan Terbaik Produk Oxycan pada PT. Samator Gresik Analisis Metode Peramalan Permintaan Terbaik Produk Oxycan pada PT. Samator Gresik Eucharistia Yacoba Nugraha* ) dan I Wayan Suletra 2) ) Mahasiswa program Studi Teknik Industri, Fakultas Teknik, Universitas

Lebih terperinci

BAB III HASIL ANALISIS

BAB III HASIL ANALISIS 51 BAB III HASIL ANALISIS 3.1 Pengumpulan Data Pada tahap ini, penulis secara langsung mengambil data dari PT. Coca-Cola Bottling Indonesia Medan pada periode Januari 00 sampai dengan Desember 006. Disamping

Lebih terperinci

PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN Oleh: Norma Endah Haryati ( )

PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN Oleh: Norma Endah Haryati ( ) TUGAS AKHIR PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN Oleh: Norma Endah Haryati (1207 100 031) Dosen Pembimbing: Drs. I G Ngurah Rai Usadha, M.Si Dra. Nuri

Lebih terperinci

PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN

PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN Ryan Putranda Kristianto 1), Ema Utami 2), Emha Taufiq Lutfi 3) 1, 2,3) Magister Teknik informatika STMIK

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.. Parameter Curah Hujan model REMO Data curah hujan dalam keluaran model REMO terdiri dari 2 jenis, yaitu curah hujan stratiform dengan kode C42 dan curah hujan konvektif dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 1.1 Landasan Teori 1.1.1 Prediksi Prediksi adalah sama dengan ramalan atau perkiraan. Menurut kamus besar bahasa indonesia, prediksi adalah hasil dari kegiatan memprediksi atau

Lebih terperinci

DAFTAR ISI. ABSTRAK... i ABSTRACT... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... viii DAFTAR GAMBAR...

DAFTAR ISI. ABSTRAK... i ABSTRACT... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... viii DAFTAR GAMBAR... DAFTAR ISI ABSTRAK... i ABSTRACT... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... ii iii iv vi DAFTAR TABEL... viii DAFTAR GAMBAR... ix BAB I PENDAHULUAN... 1 1.1 Latar Belakang... 1 1.2 Rumusan

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan BAB 2 LADASA TEORI 2.1 Pengertian Peramalan (Forecasting) Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan terjadi pada masa mendatang. Peramalan penjualan adalah peramalan

Lebih terperinci

MENENTUKAN PENJUALAN PRODUK TERBAIK DI PERUSAHAAN X DENGAN METODE WINTER EKSPONENSIAL SMOOTHING DAN METODE EVENT BASED

MENENTUKAN PENJUALAN PRODUK TERBAIK DI PERUSAHAAN X DENGAN METODE WINTER EKSPONENSIAL SMOOTHING DAN METODE EVENT BASED J. Math. and Its Appl. E-ISS: 2579-8936 P-ISS: 1829-605X Vol. 14, o. 1, Mei 2017, 25 35 MEETUKA PEJUALA PRODUK TERBAIK DI PERUSAHAA X DEGA METODE WITER EKSPOESIAL SMOOTHIG DA METODE EVET BASED Farida Agustini

Lebih terperinci

PEMODELAN PERAMALAN PENJUALAN PAKAN UDANG PADA PT CENTRAL PROTEINA PRIMA, TBK DENGAN METODE PEMULUSAN EKSPONENSIAL (EXPONENTIAL SMOOTHING) SKRIPSI

PEMODELAN PERAMALAN PENJUALAN PAKAN UDANG PADA PT CENTRAL PROTEINA PRIMA, TBK DENGAN METODE PEMULUSAN EKSPONENSIAL (EXPONENTIAL SMOOTHING) SKRIPSI PEMODELAN PERAMALAN PENJUALAN PAKAN UDANG PADA PT CENTRAL PROTEINA PRIMA, TBK DENGAN METODE PEMULUSAN EKSPONENSIAL (EXPONENTIAL SMOOTHING) SKRIPSI HERRIJUNIANTO PURBA 130823002 DEPARTEMEN MATEMATIKA FAKULTAS

Lebih terperinci

BAB. 1 PENDAHULUAN Latar Belakang

BAB. 1 PENDAHULUAN Latar Belakang 1 BAB. 1 PENDAHULUAN 1.1. Latar Belakang Kain adalah bahan mentah yang dapat dikelola menjadi suatu pakaian yang mempunyai nilai financial dan konsumtif dalam kehidupan, seperti pembuatan baju. Contohnya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

USULAN PERENCANAAN DAN PENGENDALIAN BAHAN BAKU BOKS PANEL DENGAN MENGGUNAKAN METODE MATERIAL REQUIREMENTS PLANNING (MRP)

USULAN PERENCANAAN DAN PENGENDALIAN BAHAN BAKU BOKS PANEL DENGAN MENGGUNAKAN METODE MATERIAL REQUIREMENTS PLANNING (MRP) Profesionalisme Akuntan Menuju Sustainable Business Practice PROCEEDINGS USULAN PERENCANAAN DAN PENGENDALIAN BAHAN BAKU BOKS PANEL DENGAN MENGGUNAKAN METODE MATERIAL REQUIREMENTS PLANNING (MRP) Gidion

Lebih terperinci

BAB VI. POLA KECENDERUNGAN DAN WATAK DEBIT SUNGAI

BAB VI. POLA KECENDERUNGAN DAN WATAK DEBIT SUNGAI BAB VI. POLA KECENDERUNGAN DAN WATAK DEBIT SUNGAI Metode Mann-Kendall merupakan salah satu model statistik yang banyak digunakan dalam analisis perhitungan pola kecenderungan (trend) dari parameter alam

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1 Pengumpulan Data Pengumpulan data yang dilakukan dengan cara pengamatan dari dokumen perusahaan. Data yang di perlukan meliputi data penjualan produk Jamur Shiitake,

Lebih terperinci

Prediksi Nilai Indeks Harga Konsumen (IHK) Kota Jambi Menggunakan Radial Basis Function Neural Network (RBFNN) dengan Metode Fuzzy C-Means Clustering

Prediksi Nilai Indeks Harga Konsumen (IHK) Kota Jambi Menggunakan Radial Basis Function Neural Network (RBFNN) dengan Metode Fuzzy C-Means Clustering SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 T - 12 Prediksi Nilai Indeks Harga Konsumen (IHK) Kota Jambi Menggunakan Radial Basis Function Neural Network (RBFNN) dengan Metode Fuzzy C-Means Clustering

Lebih terperinci

BAB II LANDASAN TEORI. Suatu sistem adalah suatu jaringan kerja dari prosedur-prosedur yang

BAB II LANDASAN TEORI. Suatu sistem adalah suatu jaringan kerja dari prosedur-prosedur yang 7 BAB II LANDASAN TEORI 2.1 Sistem Informasi 2.1.1 Sistem Suatu sistem adalah suatu jaringan kerja dari prosedur-prosedur yang saling berhubungan, berkumpul bersama-sama untuk melakukan suatu kegiatan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Matematika memegang peranan penting dalam kehidupan. Selain sebagai salah satu kajian ilmu utama dalam pendidikan, matematika juga berperan untuk menunjang ilmu-ilmu

Lebih terperinci

SISTEM PERAMALAN STOK OBAT MENGGUNAKAN METODE EXPONENTIAL SMOOTHING

SISTEM PERAMALAN STOK OBAT MENGGUNAKAN METODE EXPONENTIAL SMOOTHING Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 SISTEM PERAMALAN STOK OBAT MENGGUNAKAN METODE EXPONENTIAL SMOOTHING Eka Mala Sari R 1), Yeni Kustiyahningsih 2), Rizki

Lebih terperinci

PENGEMBANGAN SISTEM INFORMASI PERAMALAN PENJUALAN GUNA MENENTUKAN KEBUTUHAN BAHAN BAKU PUPUK MENGGUNAKAN METODE TRIPLE EXPONENTIAL SMOOTHING

PENGEMBANGAN SISTEM INFORMASI PERAMALAN PENJUALAN GUNA MENENTUKAN KEBUTUHAN BAHAN BAKU PUPUK MENGGUNAKAN METODE TRIPLE EXPONENTIAL SMOOTHING Jurnal Informatika Polinema ISSN: 2407-070X PENGEMBANGAN SISTEM INFORMASI PERAMALAN PENJUALAN GUNA MENENTUKAN KEBUTUHAN BAHAN BAKU PUPUK MENGGUNAKAN METODE TRIPLE EXPONENTIAL SMOOTHING Ely Setyo Astuti

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN. dari UD. Wingko Babat Pak Moel sebagai berikut: a. Data permintaan wingko pada tahun 2016.

BAB IV ANALISIS DAN PEMBAHASAN. dari UD. Wingko Babat Pak Moel sebagai berikut: a. Data permintaan wingko pada tahun 2016. BAB IV ANALISIS DAN PEMBAHASAN 4.1 Pengumpulan dan Pengolahan Data Untuk menganalisi permasalahan pengoptimalan produksi, diperlukan data dari UD. Wingko Babat Pak Moel sebagai berikut: a. Data permintaan

Lebih terperinci

PENERAPAN METODE GOAL PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI TEH (Studi Kasus: PT Perkebunan Nusantara IV Pabrik Teh Bah Butong)

PENERAPAN METODE GOAL PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI TEH (Studi Kasus: PT Perkebunan Nusantara IV Pabrik Teh Bah Butong) Saintia Matematika Vol. 1, No. 2 (2013), pp. 117 128. PENERAPAN METODE GOAL PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI TEH (Studi Kasus: PT Perkebunan Nusantara IV Pabrik Teh Bah Butong) Elikson Damanik,

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.. Plotting Data Bahan baku komponen yang dipakai untuk membuat panel listrik jumlahnya cukup banyak dan beragam untuk masing-masing panel listrik yang dibuat. Jadi, penggunaan

Lebih terperinci

BAB 5 HASIL DAN PEMBAHASAN. Tabel 5.1 Total Hasil Penjualan

BAB 5 HASIL DAN PEMBAHASAN. Tabel 5.1 Total Hasil Penjualan BAB 5 HASIL DAN PEMBAHASAN 5. Penyajian Data Tabel 5. Total Hasil Penjualan Total Hasil Penjualan Bulan (dalam jutaan rupiah) Jan-04 59.2 Feb-04 49.2 Mar-04 57.7 Apr-04 53.2 May-04 56.3 Jun-04 60.2 Jul-04

Lebih terperinci

HASIL DAN ANALISIS DATA. Berikut ini adalah data penjualan besi Wiremesh selama 4 tahun berturutturut.

HASIL DAN ANALISIS DATA. Berikut ini adalah data penjualan besi Wiremesh selama 4 tahun berturutturut. BAB 5 HASIL DAN ANALISIS DATA 5.1 Penyajian Data Penelitian Berikut ini adalah data penjualan besi Wiremesh selama 4 tahun berturutturut. Data berikut merupakan data aktual untuk diramalkan penjualannya

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Di dalam aspek kehidupan ini, banyak ditemui permasalahan yang berkaitan dengan prediksi masa depan yang tidak pasti. Peramalan adalah suatu usaha untuk memperkirakan

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran Penelitian Pada dasarnya setiap perusahaan memiliki tujuan yang sama yaitu mendapatkan keuntungan untuk kelancaraan kontinuitas usahanya dan mampu bersaing

Lebih terperinci

PENERAPAN LOGIKA FUZZY DALAM MEMPERKIRAKAN JUMLAH PRODUKSI TELUR TERHADAP PERMINTAAN PASAR

PENERAPAN LOGIKA FUZZY DALAM MEMPERKIRAKAN JUMLAH PRODUKSI TELUR TERHADAP PERMINTAAN PASAR J. Math. and Its Appl. E-ISSN: 2579-8936 P-ISSN: 1829-605X Vol. 14, No. 2, Desember 2017, 81-105 PENERAPAN LOGIKA FUZZY DALAM MEMPERKIRAKAN JUMLAH PRODUKSI TELUR TERHADAP PERMINTAAN PASAR Anindita Nurizza

Lebih terperinci

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi?

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? a. Ada ketidak-pastian aktivitas produksi di masa yag akan datang b. Kemampuan & sumber daya perusahaan

Lebih terperinci