ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA"

Transkripsi

1 ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA FATHIN FAHIMAH DOSEN PEMBIMBING Prof. Ir. Gamantyo Hendrantoro, M.Eng. Ph.D. Dr. Ir. Achmad Mauludiyanto, M.T.

2 LATAR BELAKANG Indonesiacurah hujan tinggi. Tetes-tetes hujanpenghamburan dan penyerapan energi gelombang radioredamanpenurunan daya. Diperlukan pemahaman mengenai model curah hujan yang terjadi setiap saat. Dengan mengetahui model curah hujan, maka dapat ditentukan model redaman hujan. Pemodelan ARIMA Solusi yang tepat untuk teknik mitigasi terhadap pengaruh redaman hujan pada gelombang milimeter. Penelitian mengenai pemodelan curah hujan sangat jarang dilakukan di daerah iklim tropis.

3 MASALAH Bagaimana memodelkan data curah hujan menggunakan model ARIMA? Apakah ada keterkaitan antara model dengan curah hujan maksimum? Apakah ada keterkaitan antara model dengan lamanya hujan? Apakah ada keterkaitan antara model dengan curah hujan rata-rata?

4 BATASAN MASALAH Pengukuran curah hujan dilakukan di kampus ITS Surabaya. Data curah hujan diukur dengan Parsivel Disdrometer. Data curah hujan yang digunakan sejak Pemodelan curah hujan didekati dengan model ARIMA. Ada proses pembangkitan model. Proses validasi data dilakukan dengan membandingkan curah hujan dari data hasil pembangkitan model dengan data hasil pengukuran pada kurva CCDF.

5 TUJUAN Memperoleh model curah hujan yang didekati dengan model ARIMA. Mengetahui pola hubungan antara pemodelan ARIMA curah hujan dengan curah hujan maksimum, lama waktu hujan, dan curah hujan rata-rata.

6 PENGOLAHAN DATA START Data Curah Hujan file txt Pengelompokan Data Data Curah Hujan file txt per event Pengubahan Data Curah Hujan ke Bentuk Numerik dengan Matlab STOP

7 PEMODELAN ARIMA Model ARIMA (Autoregresive Integrated Moving Average) adalah model statistik yang digunakan untuk melakukan analisa sifat-sifat dari data runtun waktu terhadap data-data yang telah lalu, sehingga didapatkan suatu persamaan model yang menggambarkan hubungan dari data runtun waktu tersebut Dinotasikan dengan ARIMA (p, d, q). dengan: p = orde atau derajat autoregressive (AR). d = orde atau derajat pembeda. q = orde atau derajat moving average (MA).

8 DIAGRAM ALIR ARIMA Start A Data Curah Hujan (Zt) Tidak Dugaan ARIMA Apakah Stasioner dalam varians Cek dengan Box-Cox Lambda=1 Ya Tidak Transformasi: Lambda = Ln[Zt] Lambda =.5 Zt^.5 Lambda = -.5 1/Zt^.5 Estimasi Parameter : delta & phi Cek p-value <.5 Diagnosis *Uji Ljung-Box : White noise residual p-value >.5 Ya Apakah Stasioner dalam mean Cek ACF Differencing ACFturun lambat Tidak Ya Diagnosis **Uji Normalisasi residual Kolmogorov Smirnov p-value >.5 Identifikasi Cek ACF dan PACF Model ARIMA terbaik, AIC terkecil A End

9 VALIDASI MODEL START Model yang telah diperoleh Pembangkitan Model Plot Kurva CCDF Hasil Pengukuran dan Pembangkitan STOP

10 JUMLAH EVENT DAN MODEL Dari hasil pengukuran diperoleh 238 event dengan 14 model NO. MODEL JUMLAH ARIMA EVENT 1. (,1,1) (,1,2) 6 3. (1,,) (1,,1) 6 5. (1,1,) 7 6. (1,1,1) 2 7. (2,,) (2,1,) 4 9. (3,,) 9 1. (3,1,) (3,1,1) (3,1,2) (4,,) (4,1,) 3 Total 238

11 EVENT DENGAN BEBERAPA MODEL Dari 238 event ada beberapa di antaranya yang multi model, sehingga untuk menentukan model terbaik ditentukan dengan AIC terkecil EVENT DENGAN BEBERAPA MODEL JUMLAH 2 Model 81 3 Model 34 4 Model atau lebih 7

12 Model AR tanpa Differencing Error: (1 )= (2 )=.448 (3 )=.2723 (4 )=.1877

13 Model AR dengan differencing Error: (1 1 )= x1-5 (2 1 )=.17 (3 1 )= 4.395x1-5 (4 1 )= x1-5

14 Model MA dengan differencing Error: ( 1 1)= x1-4 ( 1 2)= 8.69x1-5

15 Model ARMA Error: (1 1)=.127

16 Model ARIMA Error: (1 1 1)=1.5148x1-4 (3 1 1)=4.4485x1-4 (3 1 2)=4.8673x1-5

17 KETERKAITAN ANTARA PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA

18 POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM

19 Jumlah Event Model ARIMA ( 1 1) Curah Hujan Maksimum (mm/h) ada 14 event dari 69 event atau sebanyak 2.3% event dengan model ARIMA ( 1 1) memiliki curah hujan maksimum dari -2 mm/h

20 Jumlah Event Model ARIMA (1 ) Curah Hujan Masimum (mm/h) ada 19 event dari 84 event atau sebanyak 22.6% event dengan model ARIMA (1 ) memiliki curah hujan maksimum dari -2 mm/h

21 Jumlah Event Model ARIMA (2 ) Curah Hujan Maksimum (mm/h) ada 11 event dari 42 event atau sebanyak 26.2% event dengan model ARIMA (2 ) memiliki curah hujan maksimum dari -2 mm/h

22 POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN WAKTU TERJADINYA CURAH HUJAN MAKSIMUM

23 Jumlah Event Model ARIMA ( 1 1) Durasi (%) ada 17 event dari 69 event atau sebanyak 24.6 % event dengan model ARIMA ( 1 1) memiliki curah hujan maksimum yang terjadi pada 1-2 % durasinya

24 Jumlah Event Model ARIMA (1 ) Durasi (%) ada 12 event dari 84 event atau sebanyak 14.3% event dengan model ARIMA (1 ) memiliki curah hujan maksimum yang terjadi pada 3-4 % durasinya dan pada 4-5% durasinya, sehingga sebanyak 28.6% event memiliki curah hujan maksimum yang terjadi pada 3-5% durasinya

25 Jumlah Event Model ARIMA (2 ) Durasi (%) ada 7 event dari 42 event atau sebanyak % event dengan model ARIMA (2 ) memiliki curah hujan maksimum yang terjadi pada 1-2%, 3-4%, dan 4-5% durasinya, sehingga sebanyak 33.33% event memiliki curah hujan maksimum yang terjadi pada 3-5% durasinya

26 POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN LAMA WAKTU HUJAN

27 Jumlah Event Model ARIMA ( 1 1) Lama Waktu Hujan (s) ada 14 event dari 69 event atau sebanyak 2.3 % event dengan model ARIMA ( 1 1) memiliki lama waktu hujan 2-3 s

28 Jumlah Event Model ARIMA (1 ) Lama Waktu Hujan (s) ada 17 event dari 84 event atau sebanyak 2.2 % event dengan model ARIMA (1 ) memiliki lama waktu hujan 4-6 s

29 Jumlah Event Model ARIMA (2 ) ada 13 event dari 42 event atau sebanyak 31 % event dengan model ARIMA (2 ) memiliki lama waktu hujan 1-15 s Lama Waktu Hujan (s)

30 POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN RATA-RATA

31 Jumlah Event Model ARIMA ( 1 1) ada 25 event dari 69 event atau sebanyak 36.2 % event dengan model ARIMA ( 1 1) memiliki curah hujan rata-rata -5 mm/h Curah Hujan Rata-Rata (mm/h)

32 Jumlah Event Model ARIMA (1 ) ada 24 event dari 84 event atau sebanyak 28.6 % event dengan model ARIMA (1 ) memiliki curah hujan rata-rata -5 mm/h Curah Hujan Rata-Rata (mm/h)

33 Jumlah Event Model ARIMA (2 ) Curah Hujan Rata-Rata (mm/h) 1 15 ada 14 event dari 42 event atau sebanyak % event dengan model ARIMA (2 ) memiliki curah hujan rata-rata -5 mm/h

34 Dari data pengukuran curah hujan tahun diperoleh 238 event dengan 14 model ARIMA dengan 3 model ARIMA yang paling dominan, yaitu: Model ARIMA (1 ) sebanyak 84 event Model ARIMA ( 1 1) sebanyak 69 event Model ARIMA (2 ) sebanyak 42 event Ada 116 event dengan 1 model, 81 event dengan 2 model, 34 event dengan 3 model, 7 event dengan 4 model atau lebih. 81 event dari model ARIMA (1 ) merupakan event dengan 1 model. 6 event dari model ARIMA ( 1 1) merupakan event dengan 2 model atau lebih. 27 event dari model ARIMA (2 ) merupakan event dengan 2 model. Untuk model dengan differencing, berdasarkan kurva CCDF, hasil pembangkitan model sangat mendekati hasil pengukuran, dengan nilai error yang sangat kecil.

35 Untuk model tanpa differencing, berdasarkan kurva CCDF, hasil pembangkitan model tidak berbeda jauh dengan hasil pengukuran, namun error yang dihasilkan lebih besar dari model dengan differencing. Model ARIMA ( 1 1), (1 ), dan (2 ) memiliki curah hujan maksimum -2 mm/h. Terjadinya curah hujan maksimum pada model ARIMA ( 1 1) di awal hujan atau 1-2 % durasinya. Sedangkan pada model ARIMA (1 ) dan (2 ) curah hujan maksimum terjadi di pertengahan hujan atau 3-5 % durasinya. Model ARIMA ( 1 1) memiliki lama waktu hujan yang lebih panjang yaitu 2-3 s. Sedangkan untuk model ARIMA (2 ) durasinya lebih pendek dari model ARIMA ( 1 1) yaitu 1-15 s. Model ARIMA (1 ) berdurasi paling pendek dibandingkan ketiga model ini yaitu 4-6 s. Model ARIMA ( 1 1), (1 ), dan (2 ) memiliki tipe hujan gerimis karena rata-rata curah hujan dari tiap eventnya -5 mm/h.

36 TERIMA KASIH

37 StDev StDev Uji Stasioner dalam Varians,3 Lower CL Upper CL Lambda (using 95,% confidence) Estimate,49,52,5 Lower CL Upper CL Lambda (using 95,% confidence) Estimate,99,25 Lower CL,7 Upper CL,99 Rounded Value,5,48 Lower CL,11 Upper CL 1,96 Rounded Value 1,,46,2,44,15,42,1-5, -2,5, Lambda 2,5 5, Limit,4-5, -2,5, Lambda 2,5 5, Limit BACK

38 Uji Stasioner dalam Mean ,,8,6,4,2, -,2 -,4 -,6 -,8-1, Lag Autocorrelation ,,8,6,4,2, -,2 -,4 -,6 -,8-1, Lag Autocorrelation BACK

39 Identifikasi ACF dan PACF Model ACF PACF AR (p) Turun (dies down) Terpotong (cut-off) setelah lag ke-p MA (q) Terpotong (cut-off) setelah lag ke-q Turun (dies down) ARMA (p, q) Turun (dies down) Turun (dies down) AR (p) atau MA (q) Terpotong (cut-off) setelah lag ke-q Terpotong (cut-off) setelah lag ke-p BACK

40 Estimasi Parameter Delta&Phi dan Uji Ljung-Box Final Estimates of Parameters Type Coef SE Coef T P AR 1,9439,213 44,39, Constant,8737, ,12, Mean 1,43888,6223 Number of observations: 267 Residuals: SS =,85343 (backforecasts excluded) MS =,3219 DF = 265 Modified Box-Pierce (Ljung-Box) Chi-Square statistic Lag Chi-Square 18,7 24,2 39, 55,1 DF P-Value,54,335,254,169 BACK

41 AIC (Akaike Information Criteria) EVENT MODEL ARIMA Std. Error Estimate AIC MODEL YANG DIGUNAKAN ( 1 1), (9:53: - 11:1:5) ( 1 1) (1 1 ), BACK

42 PEMBANGKITAN MODEL AR MA ARMA q t q t t t a a a Z q t q t t p t p t t a a a Z Z Z Z t : Nilai variabel dependent pada waktu t : Konstanta ϕ p : Nilai dari koefisien AR (p) θ q : Nilai koefisien dari MA (q) ɑ t : Residual pada waktu t t p t p t t a Z Z Z BACK

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA. Nur Hukim

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA. Nur Hukim TE 091399 TUGAS AKHIR- 4 SKS PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA Oleh Nur Hukim Dosen Pembimbing Prof. Ir. Gamantyo Hendrantoro, M.Eng. Ph.D Ir. Achmad

Lebih terperinci

PEMODELAN ARIMA REDAMAN HUJAN DENGAN EFEK DETECTION OUTLIER DAN AKAIKE INFORMATION TEST

PEMODELAN ARIMA REDAMAN HUJAN DENGAN EFEK DETECTION OUTLIER DAN AKAIKE INFORMATION TEST PEMODELAN ARIMA REDAMAN HUJAN DENGAN EFEK DETECTION OUTLIER DAN AKAIKE INFORMATION TEST Afif Arumahendra 2206 100 041 Email : mahe_354@yahoo.com Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember

Lebih terperinci

PEMODELAN ARIMA INTENSITAS HUJAN TROPIS DARI DATA PENGUKURAN RAINGAUGE DAN DISDROMETER

PEMODELAN ARIMA INTENSITAS HUJAN TROPIS DARI DATA PENGUKURAN RAINGAUGE DAN DISDROMETER 1 PEMODELAN ARIMA INTENSITAS HUJAN TROPIS DARI DATA PENGUKURAN RAINGAUGE DAN DISDROMETER Muhammad Zainuddin Fanani, Achmad Mauludiyanto Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember (ITS)

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS Oleh : Agustini Tripena ABSTRACT In this paper, forecasting the consumer price index data and inflation. The method

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN C BAB IV ANALISIS DAN PEMBAHASAN Penelitian ini mencoba meramalkan jumlah penumpang kereta api untuk masa yang akan datang berdasarkan data volume penumpang kereta api periode Januari 994-Februari 203

Lebih terperinci

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins Statistika, Vol. 16 No. 2, 95 102 November 2016 Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins FERRY KONDO LEMBANG Jurusan Matematika Fakultas MIPA Universitas Pattimura Ambon

Lebih terperinci

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut :

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut : 4 BAB IV HASIL PEMBAHASAN DAN EVALUASI Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtut waktu. Data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data harga

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PEMODELAN ARIMA DAN DETEKSI OUTLIER DATA CURAH HUJAN SEBAGAI EVALUASI SISTEM RADIO GELOMBANG MILIMETER

PEMODELAN ARIMA DAN DETEKSI OUTLIER DATA CURAH HUJAN SEBAGAI EVALUASI SISTEM RADIO GELOMBANG MILIMETER Mauludiyanto, Pemodelan ARIMA dan Deteksi Outlier Data Curah Hujan Sebagai Evaluasi Sistem Radio Gelombang Milimeter PEMODELAN ARIMA DAN DETEKSI OUTLIER DATA CURAH HUJAN SEBAGAI EVALUASI SISTEM RADIO GELOMBANG

Lebih terperinci

PEMODELAN ARIMA DAN DETEKSI OUTLIER DATA CURAH HUJAN SEBAGAI EVALUASI SISTEM RADIO GELOMBANG MILIMETER

PEMODELAN ARIMA DAN DETEKSI OUTLIER DATA CURAH HUJAN SEBAGAI EVALUASI SISTEM RADIO GELOMBANG MILIMETER Mauludiyanto, Pemodelan ARIMA dan Deteksi Outlier Data Curah Hujan Sebagai Evaluasi Sistem Radio Gelombang Milimeter PEMODELAN ARIMA DAN DETEKSI OUTLIER DATA CURAH HUJAN SEBAGAI EVALUASI SISTEM RADIO GELOMBANG

Lebih terperinci

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah Vol. 9, No., 9-5, Januari 013 Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah Fitriani, Erna Tri Herdiani, M. Saleh AF 1 Abstrak Dalam analisis deret waktu

Lebih terperinci

OUTLINE. Pendahuluan. Tinjauan Pustaka. Metodologi Penelitian. Analisis dan Pembahasan. Kesimpulan dan Saran

OUTLINE. Pendahuluan. Tinjauan Pustaka. Metodologi Penelitian. Analisis dan Pembahasan. Kesimpulan dan Saran OUTLINE Pendahuluan Tinjauan Pustaka Metodologi Penelitian Analisis dan Pembahasan Kesimpulan dan Saran LATAR BELAKANG Listrik elemen terpenting dalam kehidupan manusia Penelitian Sebelumnya Masyarakat

Lebih terperinci

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA Nur Hukim 2207100566 Institut Teknologi Sepuluh Nopember, Fakultas Teknologi Industri, Jurusan Teknik Elektro Kampus

Lebih terperinci

PERAMALAN PERMINTAAN PRODUK SARUNG TANGAN GOLF MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DI PT. ADI SATRIA ABADI ABSTRAK

PERAMALAN PERMINTAAN PRODUK SARUNG TANGAN GOLF MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DI PT. ADI SATRIA ABADI ABSTRAK PERAMALAN PERMINTAAN PRODUK SARUNG TANGAN GOLF MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DI PT. ADI SATRIA ABADI Trio Yonathan Teja Kusuma 1, Sandra Praharani Nur Asmoro 2 1,2)

Lebih terperinci

Diagnostik Model. Uji Ljung-Box-Pierce (modified Box-Pierce)

Diagnostik Model. Uji Ljung-Box-Pierce (modified Box-Pierce) Diagnostik Model Analisis Sisaan Sisaan = Nilai Aktual Nilai Prediksi Apabila model ARIMA(p, d, q) benar dan dugaan parameter sangat dekat ke nilai yang sebenarnya maka sisaan akan memiliki sifat seperti

Lebih terperinci

Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika. Baristand Industri Surabaya)

Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika. Baristand Industri Surabaya) Peramalan Permintaan Pengujian di Lab. Kimia dan Fisika (Aneke Rintiasti, Erna Hartati, Nunun Hilyatul M.) Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika Baristand Industri Surabaya

Lebih terperinci

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA Seminar Hasil Tugas Akhir Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Oleh : Defi Rachmawati 1311 105 007 Dosen Pembimbing :

Lebih terperinci

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia Oleh : Pomi Kartin Yunus 1306030040 Latar Belakang Industri manufaktur yang berkembang pesat

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman Lampiran 1. Data Tingkat Hunian Hotel di Propinsi DIY Tahun 1991-2003 48 49 Lampiran 1 Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun 1991-2003, Tahun Bulan Wisman 1991 1 27,00 1991 2 30,60

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

BAB III PERBANDINGAN MODEL ARIMA DAN MODEL VAR PADA PERAMALAN VOLUME PENJUALAN DAN HARGA INTI SAWIT

BAB III PERBANDINGAN MODEL ARIMA DAN MODEL VAR PADA PERAMALAN VOLUME PENJUALAN DAN HARGA INTI SAWIT BAB III PERBANDINGAN MODEL ARIMA DAN MODEL VAR PADA PERAMALAN VOLUME PENJUALAN DAN HARGA INTI SAWIT Pada bab ini, penulis akan membandingkan hasil peramalan menggunakan model ARIMA dan model VAR yang telah

Lebih terperinci

LAMPIRAN. Langkah-Langkah Penggunaan Program Minitab: nama kolom tepat diantara C1 dan angka penjualan pertama Jakarta Muscat

LAMPIRAN. Langkah-Langkah Penggunaan Program Minitab: nama kolom tepat diantara C1 dan angka penjualan pertama Jakarta Muscat L1 LAMPIRAN Langkah-Langkah Penggunaan Program Minitab: 1. Aktifakan program minitab kemudian copy yang diinginkan pada kolom C1. Beri nama kolom tepat diantara C1 dan angka penjualan pertama Jakarta Muscat

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA

PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA OLEH : 1. Triyono ( M0107086 ) 2. Nariswari S ( M0108022 ) 3. Ayunita C ( M0180034 ) 4. Ibnuhardi F.Ihsan ( M0108045 ) 5. Marvina P (

Lebih terperinci

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON (MODELS OF ARIMA TO PREDICT RISING SEA AND ITS IMPACT FOR THE WIDESPREAD DISTRIBUTION OF ROB

Lebih terperinci

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan SEMINAR PROPOSAL TUGAS AKHIR Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan OLEH: NAMA : MULAZIMATUS SYAFA AH NRP : 13.11.030.021 DOSEN PEmbimbing: Dr.

Lebih terperinci

Pemodelan ARIMA Non- Musim Musi am

Pemodelan ARIMA Non- Musim Musi am Pemodelan ARIMA Non- Musimam ARIMA ARIMA(Auto Regresif Integrated Moving Average) merupakan suatu metode analisis runtun waktu(time series) ARIMA(p,d,q) Dengan AR : p =orde dari proses autoreggresif I

Lebih terperinci

Peramalan merupakan alat bantu yang penting dalam penyusunan rencana yang efektif dan efisien. Pada

Peramalan merupakan alat bantu yang penting dalam penyusunan rencana yang efektif dan efisien. Pada Estimasi Parameter Autoregressive Integrated Moving Average (ARIMA) Menggunakan Algoritma Particle Swarm Optimization (PSO) (Studi Kasus: Peramalan Curah Hujan DAS Brangkal, Mojokerto) Meytaliana Factmawati,

Lebih terperinci

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Oleh : Dwi Listya Nurina 1311105022 Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Air Bersih BUMN Penyediaan air bersih untuk masyarakat mempunyai peranan yang sangat penting dalam meningkatkan kesehatan

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

Model Penjualan Plywood PT. Linggarjati Mahardika Mulia

Model Penjualan Plywood PT. Linggarjati Mahardika Mulia Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami) Vol., No., Juli 7, Hal. 52-57 p-issn: 25-4596; e-issn: 25-4X Halaman 52 Model Penjualan Plywood PT. Linggarjati Mahardika Mulia

Lebih terperinci

Penerapan Model ARIMA

Penerapan Model ARIMA Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 016 1 Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu: 1. Penentuan model tentatif (spesifikasi model)

Lebih terperinci

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q)

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) SIDANG TUGAS AKHIR KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) Disusun oleh : Ratna Evyka E.S.A NRP 1206.100.043 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

PENGENDALIAN KUALITAS DENGAN MENGGUNAKAN DIAGRAM KONTROL EWMA RESIDUAL (STUDI KASUS: PT. PJB UNIT PEMBANGKITAN GRESIK)

PENGENDALIAN KUALITAS DENGAN MENGGUNAKAN DIAGRAM KONTROL EWMA RESIDUAL (STUDI KASUS: PT. PJB UNIT PEMBANGKITAN GRESIK) PENGENDALIAN KUALITAS DENGAN MENGGUNAKAN DIAGRAM KONTROL EWMA RESIDUAL (STUDI KASUS: PT. PJB UNIT PEMBANGKITAN GRESIK) FITROH AMALIA (1306100073) Dosen Pembimbing: Drs. Haryono, MSIE PENGENDALIAN KUALITAS

Lebih terperinci

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH Tri Mulyaningsih ), Budi Nurani R ), Soemartini 3) ) Mahasiswa Program Magister Statistika Terapan Universitas Padjadjaran

Lebih terperinci

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran.

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. BAB III METODE PENELITIAN 3.1 Jenis / Pendekatan Penelitian Penelitian dan ilmu pengetahuan mempunyai kaitan yang erat keduanya merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. Penelitian

Lebih terperinci

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010 Statistika, Vol., No., Mei PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI Reksa Nila Anityaloka, Atika Nurani Ambarwati Program Studi S Statistika Universitas Muhammadiyah

Lebih terperinci

Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode

Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode ARIMA Box Jenkins Oleh : Winda Eka Febriana 1307 030 002 Pembimbing : Dra. Wiwiek Setya Winahju, MS Latar Belakang PMI Merupakan

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

Pemodelan ARIMA Jumlah Pencapaian Peserta KB Baru IUD

Pemodelan ARIMA Jumlah Pencapaian Peserta KB Baru IUD Pemodelan ARIMA Jumlah Pencapaian Peserta KB Baru IUD Charisma Arianti, Arief Wibowo Departemen Biostatistika dan Kependudukan Fakultas Kesehatan Masyarakat Universitas Airlangga Surabaya Alamat Korespondensi:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

ANALISIS PERAMALAN ARIMA BOX-JENKINS PADA DATA PENGIRIMAN BARANG

ANALISIS PERAMALAN ARIMA BOX-JENKINS PADA DATA PENGIRIMAN BARANG ANALISIS PERAMALAN ARIMA BOX-JENKINS PADA DATA PENGIRIMAN BARANG Anik Rufaidah 1), Muhamad Afif Effindi 2) 1, 2) Sekolah Tinggi Teknik Qomaruddin Gresik Jalan Raya No. 01 Bungah Gresik 61152 e-mail: anikrufaidah99@gmail.com

Lebih terperinci

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer TUGAS AKHIR Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer Oleh : Fani Felani Farid (1306 100 047) Pembimbing : Drs. Kresnayana Yahya M.Sc Latar Belakang

Lebih terperinci

ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING

ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING Nama : Zahroh Atiqoh NRP : 1205 100 021 Dosen Pembimbing : 1. Dra. Nuri Wahyuningsih, MKes 2. Drs. Sulistiyo,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

PEMODELAN REDAMAN HUJAN BERBASIS ARIMA PADA LINTASAN RADIO 28 GHz UTARA-SELATAN

PEMODELAN REDAMAN HUJAN BERBASIS ARIMA PADA LINTASAN RADIO 28 GHz UTARA-SELATAN PEMODELAN REDAMAN HUJAN BERBASIS ARIMA PADA LINTASAN RADIO 28 GHz UTARA-SELATAN Valian Yoga Pudya Ardhana, Achmad Mauludiyanto Jurusan Teknik Elektro, Fakultas Teknik Industri, ITS-Surabaya Sukolilo, Surabaya

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI

PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI TUGAS AKHIR - ST 1325 PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI I G B ADI SUDIARSANA NRP 1303100058 Dosen Pembimbing Ir. Dwiatmono Agus Widodo,

Lebih terperinci

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer OLEH : DWI LISTYA NURINI 1311 105 021 DOSEN PEMBIMBING : DR. BRODJOL SUTIJO SU, M.SI Bursa saham atau Pasar

Lebih terperinci

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Jurnal UJMC, Volume 2, Nomor 1, Hal. 28-35 pissn : 2460-3333 eissn: 2579-907X PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Novita Eka Chandra 1 dan Sarinem 2 1 Universitas

Lebih terperinci

BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER

BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER 21 BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER 3.1 Model Variasi Kalender Liu (Kamil 2010: 10) menjelaskan bahwa untuk data runtun waktu yang mengandung efek variasi kalender, dituliskan pada persamaan

Lebih terperinci

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS Jurnal EKSPONENSIAL Volume 3, Nomor, Mei 2 ISSN 8-7829 Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2 Dengan Metode ARIMA BOX-JENKINS Forecasting The Number

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH Jurnal Matematika UNAND Vol. VI No. 1 Hal. 110 117 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

Lebih terperinci

Meytaliana F Dosen Pembimbing: Prof. Dr. Basuki Widodo, M.Sc. Dra. Nuri Wahyuningsih, M.Kes.

Meytaliana F Dosen Pembimbing: Prof. Dr. Basuki Widodo, M.Sc. Dra. Nuri Wahyuningsih, M.Kes. ESTIMASI PARAMETER AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MENGGUNAKAN ALGORITMA PARTICLE SWARM OPTIMIZATION (PSO) (STUDI KASUS PERAMALAN CURAH HUJAN DAS BRANGKAL MOJOKERTO) Meytaliana F. 1210100014

Lebih terperinci

PEMODELAN TRAFIK GSM DI AREA SURABAYA MENGGUNAKAN METODE ARIMA. Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Juli 2011

PEMODELAN TRAFIK GSM DI AREA SURABAYA MENGGUNAKAN METODE ARIMA. Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Juli 2011 PEMODELAN TRAFIK GSM DI AREA SURABAYA MENGGUNAKAN METODE ARIMA Fadil Rahman Hakim 22090502 Pembimbing D. I. Achmad Mauludiyanto, MT Fakultas Teknologi Industi Institut Teknologi Sepuluh Nopembe Juli 20

Lebih terperinci

PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION

PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION Oleh NYOMAN PANDU WIRADARMA (1308 100 052) Dosen Pembimbing 1

Lebih terperinci

99.9. Percent maka H 0 diterima, berarti residual normal

99.9. Percent maka H 0 diterima, berarti residual normal Uji residual white noise 2 Lag Q P value 6 3.5 9.49 0.5330 2 6.6 8.3 0.803 8 9.8 26.30 0.9059 24 9.3 33.92 0.6374 K p q Uji residual berdistribusi normal Percent 99.9 99 95 90 80 70 60 50 40 30 20 0 5

Lebih terperinci

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL E-Jurnal Matematika Vol. 5 (4), November 2016, pp. 183-193 ISSN: 2303-1751 PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL Ni Putu Mirah Sri Wahyuni 1, I Wayan Sumarjaya 2, I Gusti Ayu Made

Lebih terperinci

PEMODELAN NEURO-ARIMA UNTUK CURAH HUJAN DI KOTA SURABAYA

PEMODELAN NEURO-ARIMA UNTUK CURAH HUJAN DI KOTA SURABAYA PEMODELAN NEURO-ARIMA UNTUK CURAH HUJAN DI KOTA SURABAYA Oleh: Wiwinta Sutrisno 22 08 203 009 Pembimbing: Prof. Dr. Ir. Gamantyo Hendrantoro, M.Eng Hal 1 dari 28 Latar Belakang Curah Hujan sangat berpengaruh

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN Puji Rahayu 1), Rohmah Nur Istiqomah 2), Eminugroho Ratna Sari 3) 1)2)3) Matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR Seminar Nasional Matematika dan Aplikasinya, 21 Oktober 27 PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

Lebih terperinci

PERAMALAN BEBAN HARIAN PEMAKAIAN LISTRIK WILAYAH JAWA-BALI

PERAMALAN BEBAN HARIAN PEMAKAIAN LISTRIK WILAYAH JAWA-BALI PERAMALAN BEBAN HARIAN PEMAKAIAN LISTRIK WILAYAH JAWA-BALI Ibrahim Ali Marwan dan Drs. Kresnayana Yahya, M.Sc 2 Mahasiswa Jurusan Statistika, ITS, Surabaya 2 Dosen Pembimbing, Jurusan Statistika, ITS,

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP SKRIPSI Disusun oleh : DITA RULIANA SARI NIM. 24010211140084 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA (S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA Jimmy Ludin Mahasiswa Program Magister Jurusan Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 9 menguji kelayakan model sehingga model sementara tersebut cukup memadai. Salah satu caranya adalah dengan menganalisis galat (residual). Galat merupakan selisih antara data observasi dengan data hasil

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

ANALISIS POLA HUBUNGAN REDAMAN HUJAN RADIO 28 GHz DENGAN CURAH HUJAN PARSIVEL DISDROMETER SEBAGAI DATA PEMODELAN ARIMA

ANALISIS POLA HUBUNGAN REDAMAN HUJAN RADIO 28 GHz DENGAN CURAH HUJAN PARSIVEL DISDROMETER SEBAGAI DATA PEMODELAN ARIMA ANALISIS POLA HUBUNGAN REDAMAN HUJAN RADIO 28 GHz DENGAN CURAH HUJAN PARSIVEL DISDROMETER SEBAGAI DATA PEMODELAN ARIMA Ridho Ariawan 226 1 37 Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember

Lebih terperinci

PEMODELAN REDAMAN HUJAN MENGGUNAKAN STAR (SPACE-TIME AUTOREGRESSIVE) DI SURABAYA

PEMODELAN REDAMAN HUJAN MENGGUNAKAN STAR (SPACE-TIME AUTOREGRESSIVE) DI SURABAYA PEMODELAN REDAMAN HUJAN MENGGUNAKAN STAR (SPACE-TIME AUTOREGRESSIVE) DI SURABAYA Abdu Rofi Darodjatul Walidaen, Gamantyo Hendrantoro, Achmad Mauludiyanto Institut Teknologi Sepuluh Nopember, Fakultas Teknologi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

Peramalan Penjualan Pipa di PT X

Peramalan Penjualan Pipa di PT X Elviani, et al. / Peramalan Penjualan Pipa di PT X / Jurnal Titra, Vol.. 2, No. 2, Juni 2014, pp. 55-60 Peramalan Penjualan Pipa di PT X Cicely Elviani 1, Siana Halim 1 Abstract: In this thesis we modeled

Lebih terperinci

Abstrak. Kata kunci : Redaman hujan, GSTAR, VARIMA.

Abstrak. Kata kunci : Redaman hujan, GSTAR, VARIMA. Pemodelan Multivariate untuk Curah Hujan dan Redaman Hujan di Surabaya Indra Subrata 2207 100 628 Institut Teknologi Sepuluh Nopember, Fakultas Teknologi Industri, Jurusan Teknik Elektro Kampus ITS Sukolilo,

Lebih terperinci

PENDEKATAN MODEL EKONOMETRIKA UNTUK MEMPREDIKSI INDEKS SAHAM SYARIAH INDONESIA

PENDEKATAN MODEL EKONOMETRIKA UNTUK MEMPREDIKSI INDEKS SAHAM SYARIAH INDONESIA PENDEKATAN MODEL EKONOMETRIKA UNTUK MEMPREDIKSI INDEKS SAHAM SYARIAH INDONESIA Nuri Wahyuningsih 1), Daryono Budi U. 2), R.A. Diva Zatadini 3) 1)2))3) Departemen Matematika FMIPA ITS Kampus ITS Keputih,

Lebih terperinci

PERAMALAN TRAFIK SMS AREA JABOTABEK DENGAN METODE ARIMA

PERAMALAN TRAFIK SMS AREA JABOTABEK DENGAN METODE ARIMA JURNAL TEKNIK POMITS Vol. 1, No. 1, (212) 1-6 1 PERAMALAN TRAFIK SMS AREA JABOTABEK DENGAN METODE ARIMA Lusi Alvina Tofani, Achmad Mauludiyanto Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember

Lebih terperinci

ANALISA BOX JENKINS PADA PEMBENTUKAN MODEL PRODUKSI PREMI ASURANSI KENDARAAN BERMOTOR RODA EMPAT

ANALISA BOX JENKINS PADA PEMBENTUKAN MODEL PRODUKSI PREMI ASURANSI KENDARAAN BERMOTOR RODA EMPAT ANALISA BOX JENKINS PADA PEMBENTUKAN MODEL PRODUKSI PREMI ASURANSI KENDARAAN BERMOTOR RODA EMPAT Mei Taripar Pardamean S.,SKom Jl. Makmur No.1 Ciracas Jakarta Timur mtp95@yahoo.com ABSTRAK Tujuan dari

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

ABSTRAK. Kata kunci : Data Runtun Waktu, Indeks Harga Konsumen, ARIMA, Analisis Intervensi, Fungsi Step, Peramalan. I Pendahuluan

ABSTRAK. Kata kunci : Data Runtun Waktu, Indeks Harga Konsumen, ARIMA, Analisis Intervensi, Fungsi Step, Peramalan. I Pendahuluan Analisis Model Intervensi Fungsi Step Terhadap Indeks Harga Konsumen (IHK) Zuhairini Azzahra A 1, Suyono 2, Ria Arafiyah 3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

Peramalan Indeks Harga Saham di Indonesia dan Dunia dengan Model Univariate dan Multivariate Time Series

Peramalan Indeks Harga Saham di Indonesia dan Dunia dengan Model Univariate dan Multivariate Time Series Peramalan Indeks Harga Saham di Indonesia dan Dunia dengan Model Univariate dan Multivariate Time Series Silvia Roshita Dewi, Agus Suharsono, dan Suhartono Statistika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA Saintia Matematika ISSN: 2337-9197 Vol. 2, No. 1 (2014), pp. 55 69. PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA John Putra S Tampubolon, Normalina Napitupulu, Asima Manurung Abstrak.

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

Jurnal EKSPONENSIAL Volume 8, Nomor 1, Mei 2017 ISSN

Jurnal EKSPONENSIAL Volume 8, Nomor 1, Mei 2017 ISSN Jurnal EKSPONENSIAL Volume 8, Nomor, Mei 07 ISSN 085-789 Peramalan dengan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) di Bidang Ekonomi (Studi Kasus: Inflasi Indonesia) Forecasting

Lebih terperinci

Peramalan Jumlah Kunjungan Wisatawan Mancanegara (Wisman) ke Bali Tahun 2019: Metode ARIMA

Peramalan Jumlah Kunjungan Wisatawan Mancanegara (Wisman) ke Bali Tahun 2019: Metode ARIMA JEKT 8 [2] : 136-141 ISSN : 2301-8968 Peramalan Jumlah Kunjungan Wisatawan Mancanegara (Wisman) ke Bali Tahun 2019: Metode ARIMA Rukini *) Putu Simpen Arini Esthisatari Nawangsih Badan Pusat Statistik

Lebih terperinci

Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman.

Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman. Definisi Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman. Musiman berarti kecenderungan mengulangi pola tingkah gerak dalam periode musim, biasanya satu tahun untuk data bulanan. Karena

Lebih terperinci

DAFTAR ISI. Halaman Konsep Ketersediaan Air dan Model Prakiraan Kesesuaian Model ARIMA untuk Prakiraan Ketersediaan Air 10

DAFTAR ISI. Halaman Konsep Ketersediaan Air dan Model Prakiraan Kesesuaian Model ARIMA untuk Prakiraan Ketersediaan Air 10 DAFTAR ISI Halaman HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN PRAKATA DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN INTISARI ABSTRACT i ii iii iv vi ix xii xiv xv xvi BAB I. PENDAHULUAN

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

DAFTAR ISI ABSTRAK... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN...

DAFTAR ISI ABSTRAK... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... DAFTAR ISI Halaman ABSTRAK... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... i ii iii v ix x xi BAB I PENDAHULUAN... 1 1.1 Latar Belakang Masalah...

Lebih terperinci

PERAMALAN PEMAKAIAN AIR BERSIH DI PDAM SUMBER POCONG KABUPATEN BANGKALAN

PERAMALAN PEMAKAIAN AIR BERSIH DI PDAM SUMBER POCONG KABUPATEN BANGKALAN TUGAS AKHIR SS 145561 PERAMALAN PEMAKAIAN AIR BERSIH DI PDAM SUMBER POCONG KABUPATEN BANGKALAN MOH. ZAINUR ROFIK NRP 1314 030 050 Dosen Pembimbing Dr. Wahyu Wibowo, S.Si., M.Si Iis Dewi Ratih, S.Si., M.Si

Lebih terperinci

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 Boy A Lumban Gaol 1, Tumpal Parulian Nababan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci