PERANCANGAN TABUNG IMPEDANSI DAN KAJIAN EKSPERIMENTAL KOEFISIEN SERAP BUNYI PADUAN ALUMINIUM-MAGNESIUM

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERANCANGAN TABUNG IMPEDANSI DAN KAJIAN EKSPERIMENTAL KOEFISIEN SERAP BUNYI PADUAN ALUMINIUM-MAGNESIUM"

Transkripsi

1 PERANCANGAN TABUNG IMPEDANSI DAN KAJIAN EKSPERIMENTAL KOEFISIEN SERAP BUNYI PADUAN ALUMINIUM-MAGNESIUM Felix Asade 1, Ikhwansyah Isranuri 2 1,2 Departemen Teknik Mesin, Universitas Sumatera Utara, Jln.Almamater Kampus USU Medan Medan Indonesia asadefelix@gmail.com Abstrak Manusia tidak suka akan kebisingan. Kebisingan didefinisikan sebagai suara yang tidak diinginkan. Teknik pengendalian kebisingan memainkan peranan penting untuk menciptakan suasana lingkungan akustik yang nyaman. Ini dapat tercapai ketika intensitas suara diturunkan ke level yang tidak mengganggu pendengaran manusia. Pencapaian lingkungan akustik yang nyaman ini dapat diperoleh dengan menggunakan beragam tehnik. Salah satu tehnik tersebut adalah dengan menyerap suara. Penilitian ini menunjukkan bagaimana pengaruh penambahan magnesium terhadap sifat penyerapan suara dari aluminium. Sehingga paduan aluminiummagnesium ini dapat dijadikan sebagai material akustik untuk penanggulangan kebisingan. Hasil penilitian ini menunjukkan peningkatan nilai penyerapan suara dengan bertambahnya kandungan magnesium. Nilai koefisien absorpsi paling baik pada paduan aluminiummagnesium terjadi pada frekuensi menengah dan tinggi. Kata kunci: tabung impedansi, koefisien serap bunyi, material akustik, aluminium-magnesium. Abstract People do not like noise. By definition, it is unwanted sound. Noise control play an important role in creating an acoustically pleasing environtment. This can be achieved when the intensity of sound is brought down to a level that is not harmful to human ears. Achieving a pleasing environment can be obtained by using various techniques. One such technique is by absorbing the sound. This paper review how the influence by adding magnesium can change the absorption behavior of aluminium. So that aluminium-magnesium alloy can be used as acoustic materials to reduce noise. The result showed the increase of sound absorption value as the composition of magnesium increased. Sound absorption coeficient of aluminium-magnesium alloy show a good result in the middle and higher frequency. Keywords: impedance tube, sound absorption coefficient, acoustic materials, aluminiummagnesium 1. Pendahuluan Seiring dengan berkembangnya teknologi, kebisingan merupakan salah satu masalah yang sangat penting untuk diatasi, karena jelas mengganggu aktivitas maupun kesehatan pada manusia. Salah satu cara untuk mencegah perambatan/radiasi kebisingan pada komponen/struktur mesin, ruangan/bangunan serta dalam kebisingan industri, ialah dengan penggunaan material akustik yang bersifat menyerap atau meredam bunyi sehingga bising yang terjadi dapat direduksi [1]. Faktor yang penting dalam memilih aluminium (Al) dan paduaannya adalah kekuatan tinggi untuk rasio berat, ketahanan terhadap korosi oleh banyak bahan kimia, konduktivitas termal dan listrik yang tinggi, penampilan, dan kemudahan mampu bentuk (formability) dan mampu mesin (machinability). Magnesium (Mg) adalah logam teknik ringan yang ada, dan memiliki karakteristik meredam getaran yang baik. Paduan ini digunakan dalam aplikasi struktural dan non-struktural dimana berat sangat diutamakan. Magnesium juga merupakan unsur paduan dalam berbagai jenis logam non-ferrous. Hasil paduan dari kedua unsur ini lebih ringan dibandingkan dengan besi atau baja, ketahanan korosi yang baik, mengurangi kebisingan (low noise) dan mampu mesin yang baik [2]. Paduan aluminium-magnesium banyak 90

2 digunakan untuk konstruksi bangunan, transportasi (pesawat dan aplikasi ruang angkasa, bus, mobil, gerbong kereta api, dan kapal laut), dan penciptaan mesin yang digunakan dalam manufaktur. 2. Tinjauan Pustaka 2.1 Gelombang Gelombang adalah suatu getaran, gangguan atau energi yang merambat. Dalam hal ini yang merambat adalah getarannya, bukan medium perantaranya. Satu gelombang terdiri dari satu lembah dan satu bukit (untuk gelombang transversal) atau satu renggangan dan satu rapatan (untuk gelombang longitudinal). Besaran-besaran yang digunakan untuk mendiskripsikan gelombang antara lain panjang gelombang (λ) adalah jarak antara dua puncak yang berurutan, frekuensi (ƒ) adalah banyaknya gelombang yang melewati suatu titik tiap satuan waktu, periode (T) adalah waktu yang diperlukan oleh gelombang melewati suatu titik, amplitudo (A) adalah simpangan maksimum dari titik setimbang, kecepatan gelombang (v) adalah kecepatan dimana puncak gelombang (atau bagian lain dari gelombang) bergerak [3]. 2.2 Bunyi Bunyi adalah suatu bentuk gelombang longitudinal yang merambat secara perapatan dan perenggangan terbentuk oleh partikel zat perantara serta ditimbulkan oleh sumber bunyi yang mengalami getaran. Rambatan gelombang bunyi disebabkan oleh lapisan perapatan dan peregangan partikel-partikel udara yang bergerak ke luar, yaitu karena penyimpangan tekanan. Hal serupa juga terjadi pada penyebaran gelombang air pada permukaan suatu kolam dari titik dimana batu dijatuhkan [4]. Bunyi mempunyai beberapa sifat seperti: 1. Asal dan perambatan bunyi Semua benda yang dapat bergetar mempunyai kecenderungan untuk menghasilkan bunyi. Bila ditinjau dari arah getarnya, bunyi termasuk gelombang longitudinal dan bila dilihat dari medium perambatannya, bunyi termasuk gelombang mekanik. 2. Frekuensi bunyi Frekuensi adalah ukuran jumlah putaran ulang per peristiwa dalam selang waktu yang diberikan. Besarnya frekuensi ditentukan dengan rumus: f = 1/T...(1) f = Frekuensi (Hz) T = Waktu (detik) 3. Cepat rambat bunyi Cepat rambat bunyi di udara lebih kecil daripada cepat rambat cahaya di udara. Karena bunyi juga termasuk gelombang, Hubungan antara cepat rambat bunyi (c), frekuensi (f) dan panjang gelombang (λ) adalah: c = f λ...(2) c = Cepat rambat bunyi (m/s) f = Frekuensi (Hz) λ = Panjang gelombang (m) 4. Panjang gelombang Panjang suatu gelombang bunyi dapat didefinisikan sebagai jarak yang ditempuh oleh perambatan bunyi selama tiap siklus. Hubungan antara panjang gelombang, frekuensi, dan cepat rambat bunyi dapat ditulis sebagai berikut: λ = c/f...(3) λ = Panjang gelombang bunyi (m) c = Cepat rambat bunyi (m/s) f = Frekuensi (Hz) 5. Intensitas bunyi Intensitas bunyi adalah aliran energi yang dibawa gelombang udara dalam suatu daerah per satuan luas. Intensitas bunyi dalam arah tertentu di suatu titik adalah laju energi bunyi rata-rata yang ditransmisikan dalam arah tersebut melewati satu-satuan luasan yang tegak lurus arah tersebut di titik bersangkutan [4]. Untuk tujuan praktis dalam dalam pengendalian kebisingan lingkungan, tingkat tekanan bunyi sama dengan tingkat intensitas bunyi. Intesitas bunyi pada tiap titik dari sumber dinyatakan dengan: I = W/A...(4) 91

3 I = Intensitas bunyi (W/m 2 ) W = Daya akustik (Watt) A = Luas area yang ditembus tegak lurus oleh gelombang bunyi (m 2 ) 2.3 Aluminium Aluminium diambil dari bahasa Latin: alumen, alum. Orang-orang Yunani dan Romawi kuno menggunakan alum sebagai cairan penutup pori-pori dan bahan penajam proses pewarnaan. Adapun sifat-sifat aluminium antara lain sebagai berikut: 1. Ringan 2. Tahan terhadap korosi 3. Kuat 4. Mudah dibentuk 5. Konduktor listrik 6. Konduktor panas 7. Non magnetik 8. Tak beracun 9. Memiliki ketangguhan yang baik 10. Mampu diproses ulang 2.4 Magnesium Magnesium merupakan logam yang ringan, putih keperak-perakan dan cukup kuat. Ia mudah ternoda di udara,dan magnesium yang terbelah-belah secara halus dapat dengan mudah terbakar di udara dan mengeluarkan lidah api putih yang menakjubkan. Magnesium sepertiga lebih ringan dibanding aluminium dan dalam campuran logam digunakan sebagai bahan konstruksi pesawat dan missile. Logam ini memperbaiki karakter mekanik fabrikasi dan las aluminium ketika digunakan sebagai alloying agent. Magnesium digunakan dalam memproduksi grafit dalam cast iron, dan digunakan sebagai bahan tambahan conventional propellants. 2.5 Paduan Aluminium-Magnesium Aluminium lebih banyak dipakai sebagai paduan daripada logam murni sebab tidak kehilangan sifat ringan dan sifat-sifat mekanisnya serta mampu cornya diperbaiki dengan menambah unsur-unsur lain. Unsurunsur paduan yang tidak ditambahkan pada aluminium murni selain dapat menambah kekuatan mekaniknya juga dapat memberikan sifat-sifat baik lainnya seperti ketahanan korosi dan ketahanan aus. Keberadaan magnesium hingga 15,35% dapat menurunkan titik lebur logam paduan yang cukup drastis, dari 660 o C hingga 450 o C. Namun, hal ini tidak menjadikan aluminium paduan dapat ditempa menggunakan panas dengan mudah karena korosi akan terjadi pada suhu di atas 60 o C. Keberadaan magnesium juga menjadikan logam paduan dapat bekerja dengan baik pada temperatur yang sangat rendah, di mana kebanyakan logam akan mengalami failure pada temperatur tersebut. Paduan magnesium (Mg) merupakan logam yang paling ringan dalam hal berat jenisnya. Magnesium mempunyai sifat yang cukup baik seperti alumunium, hanya saja tidak tahan terhadap korosi. Magnesium tidak dapat dipakai pada suhu diatas 150 C karena kekuatannya akan berkurang dengan naiknya suhu. Sedangkan pada suhu rendah kekuatan magnesium tetap tinggi. Diagram fasa paduan aluminium-magnesium dapat dilihat pada gambar 1. Gambar 1. Diagram fasa paduan Al-Mg. Keberadaan magnesium dapat mempengaruhi sifat akustik paduan karena akan menyebabkan menurunnya nilai impedansi akustik paduan tersebut. Dengan penurunan impedansi/ hambatan akustik tersebut maka propagasi gelombang bunyi lebih besar. Tabel 1 berikut menunjukkan perbedaan nilai impedansi akustik dari kedua material. 92

4 Tabel 1. Acoustic properties aluminium dan magnesium [5]. Metals Density g/cm 3 Acoustic Impedance g/cm 2 -sec x10 5 Aluminum Magnesium Sifat Akustik Kata akustik berasal dari bahasa Yunani yaitu akoustikos, yang artinya segala sesuatu yang bersangkutan dengan pendengaran pada suatu kondisi ruang yang dapat mempengaruhi mutu bunyi [6]. Fenomena absorpsi suara seperti terlihat pada gambar 2. Gambar 2. Fenomena absorpsi suara oleh suatu permukaan bahan. Fenomena suara yang terjadi akibat adanya berkas suara yang bertemu atau menumbuk bidang permukaan bahan, maka suara tersebut akan dipantulkan (reflected), diserap (absorb), dan diteruskan (transmitted) atau dengan ditransmisikan oleh bahan tersebut [6]. 2.7 Koefisien Absorbsi Koefisien absorbsi atau penyerapan suara (sound absorption) merupakan perubahan energi dari energi suara menjadi energi panas atau kalor. Kualitas dari bahan peredam suara ditunjukkan dengan harga α (koefisien penyerapan bahan terhadap bunyi), semakin besar α maka semakin baik digunakan sebagai peredam suara. Nilai α berkisar dari 0 sampai 1. Jika α bernilai 0, artinya tidak ada bunyi yang diserap sedangkan jika α bernilai 1, artinya 100% bunyi yang dating diserap oleh bahan [7]. Besarnya energi suara yang dipantulkan, diserap, atau diteruskan bergantung pada jenis dan sifat dari bahan atau material tersebut. Pada umumnya bahan yang berpori (porous material) akan menyerap energi suara yang lebih besar dibandingkan dengan jenis bahan lainnya. Adanya pori-pori menyebabkan gelombang suara dapat masuk kedalam material tersebut. Energi suara yang diserap oleh bahan akan dikonversikan menjadi bentuk energi lainnya, pada umumnya diubah ke energi kalor [8]. Perbandingan antara energi suara yang diserap oleh suatu bahan dengan energi suara yang datang pada permukaan bahan tersebut didefinisikan sebagai koefisien penyerap suara atau koefisien absorbsi (α). α = (5) 2.8 Material Akustik Material akustik adalah material teknik yang fungsi utamanya adalah untuk menyerap suara/bising. Material akustik adalah suatu bahan yang dapat menyerap energi suara yang datang dari sumber suara. Pada dasarnya semua bahan dapat menyerap energi suara, namun besarnya energi yang diserap berbeda-beda untuk tiap bahan. Energi suara tersebut dikonversi menjadi energi panas, yang merupakan hasil dari friksi dan resistansi dari berbagai material untuk bergerak dan berdeformasi. Peredam suara merupakan suatu hal penting didalam desain akustik, dan dapat diklasifikasikan menjadi 4 bagian yaitu: 1. Material berpori (porous materials) 2. Membran penyerap (panel absorbers) 3. Rongga penyerap (cavity resonators) 4. Manusia dan furnitur. 2.9 Metode Pengukuran Koefisien Absorpsi Menggunakan Tabung Impedansi Ada dua metode standar yang digunakan untuk mengukur koefisien serap bunyi untuk sampel berukuran kecil yaitu menggunakan metode rasio gelombang tegak (ISO ) dan metode transfer fungsi (ISO ). Kedua metode dirancang untuk pengukuran pada sampel kecil. Metode rasio gelombang tegak mapan, tapi lambat sehingga diganti dengan 93

5 metode transfer fungsi karena kecepatan dan akurasinya dalam pengukuran Metode Transfer Fungsi (ISO :1998) Metode ini menggunakan dua buah mikropon yaitu pada posisi x 1 dan x 2 [9]. Tekanan bunyi pada posisi ini masingmasing adalah:...(6)...(7) Tabung impedansi yang menggunakan metode ini diilustrasikan pada gambar 3. Dinding tabung harus kuat dan cukup tebal untuk mencegah vibrasi yang muncul akibat pemancaran sinyal bunyi. Ketebalan yang di rekomendasikan pada tabung impedansi yaitu 5% dari diameter tabung. Mikropon di letakkan pada area gelombang bunyi dengan jarak minimum sebesar diameter tabung dari sumber bunyi. Batas atas frekuensi f u dapat di tentukan dari besar diameter tabung yang dipilih dengan kondisi berikut: d < 0,58 λ u...(11) Batas bawah frekuensi ditentukan pada jarak antara mikropon s 0 dengan kondisi berikut: s 0 > 0,05 λ 1... (12) Gambar 3. Tabung Impedansi untuk pengukuran koefisien serap bunyi. A dan B adalah amplitudo tegangan (Volt) k adalah nomor gelombang (m -1 ) x 1 adalah jarak antara sampel dan mikropon terjauh (m) x 2 adalah jarak antara sampel dan mikropon terdekat (m) sehingga transfer fungsi akustik kompleks anatara kedua mikropon ini yaitu:...(8) dan faktor refleksinya:...(9) (jarak kedua mikropon) maka koefisien serap bunyi dapat ditentukan melalui persamaan berikut:...(10) 2.11 Konstruksi Tabung Impedansi Untuk Metode Transfer Fungsi (ISO : 1998) Permukaan tabung harus rata, tidak berpori-pori dan tidak berlubang (kecuali pada posisi mikropon yang akan dipasang). Sehingga batas atas frekuensi untuk s 0 ditentukan dengan kondisi berikut: f u s 0 < 0,45 c 0... (13) Dimensi pada tabung impedansi dapat terlihat jelas pada gambar 4. Gambar 4. Dimensi tabung impedansi. Jarak antara sumber bunyi dengan mikropon x dan jarak antara bahan uji dengan mikropon terdekat x 2 ditentukan dengan kondisi berikut: x > 3 d... (14) x 2 2 d... (15) Maka panjang tabung impedansi untuk pengukuran koefisien serap bunyi yaitu: l = x 2 + x + s 0... (16) 3. Metodologi Penelitian 3.1 Perancangan Tabung Impedansi Tabung impedansi harus rata, mulus dan tidak berlubang. Dinding tabung harus cukup tebal dan kuat untuk menahan getaran yang timbul oleh sinyal bunyi yang dihasilkan noise generator. 94

6 Menurut persamaan (11) batas atas frekuensi f u untuk diameter tabung 100 mm yaitu: d < 0,58 0,1m < 0,58 Sehingga diperoleh batas atas frekuensi f u = 2 khz. Batas bawah frekuensi f 1 ditentukan oleh jarak antara mikrofon s 0. Sesuai dengan persamaan (12) maka untuk jarak s 0 = 150 mm diperoleh: s 0 > 0,05 λ 1 s 0 > 0,05 0,15m > 0,05 f 1 = 114 Hz Dan batas atas frekuensi untuk s 0 =150 mm dengan persamaan (13) yaitu: f u s 0 < 0,45 c 0 f u 0,15 < 0, f u = 1029 Hz Perlu diperhatikan bahwa semakin besar jarak antara kedua mikropon maka semakin akurat pengukurannya. Jarak antara sumber bunyi dan mikropon x menurut ISO sesuai dengan persamaan (14) yaitu: x > 3 d >300mm Sehingga dipilih x = 350 mm. Jarak x 2 antara sampel dan mikropon terdekat ditentukan oleh persamaan (15) yaitu: x 2 2 d Sehingga dipilih x 2 = 200 mm. Maka panjang tabung untuk pengujian koefisien serap bunyi adalah: l = x 2 + x + s 0 = 700 mm Skematis perancangan tabung impedansi untuk pengukuran koefisien absorpsi ditunjukkan pada gambar 5. Untuk pengukuran frekuensi tinggi, jarak mikropon yang lebih dekat s digunakan. Pada tabung impedansi ini diambil nilai s = 75 mm. Sesuai dengan persamaan (12) dan (13) untuk s = 75 mm maka batas frekuensinya adalah: f u < 2058 Hz f 1 >228 Hz Dan untuk s 0 = 150 mm batas frekuensinya: f u < 1029 Hz f 1 >114 Hz Dapat disimpulkan bahwa konstruksi tabung impedansi ini untuk pengukuran koefisien serap bunyi dan transmission loss memiliki batas frekuensi berdasarkan ISO dan ASTM E-2611 yaitu dari 114 Hz sampai 2 khz. 3.2 Alat Adapun peralatan yang di pergunakan selama penelitian ini adalah: 1. Laptop 2. LabJack U3-LV 3. Amplifier 4. Speaker 5. Mikropon 6. Tabung impedansi 3.3 Bahan Adapun bahan spesimen yang digunakan dalam penelitian ini adalah Aluminium-Magnesium (Al-Mg) dengan ketebalan 10 mm. Variasi spesimen yang digunakan didalam penelitian ditunjukkan pada gambar 6. (1) (2) (3) Gambar 6. Spesimen Al-Mg: (1) Paduan Al 98%-Mg 2% (2) Paduan Al 96%-Mg 4% (3) Paduan Al 94%-Mg 6%. Gambar 5. Skematis tabung impedansi untuk pengukuran koefisien absorsi. 95

7 3.3 Experimental Set Up Secara eksperimental, pengujian dan pengambilan data untuk mendapatkan koefisien serap bunyi dari material dilakukan dengan menggunakan tabung impedansi dan alat-alat pendukung lainnya. Skematis dan set up alat untuk pengujian koefisien serap bunyi ditunjukkan pada gambar 7. Gambar 7. Skema alat uji tabung impedansi. 3.4 Prosedur Pengujian Prosedur pengujian yang dilakukan adalah sebagai berikut: 1. Siapkan semua peralatan uji dengan diatur sesuai gambar set up peralatan pengujian. 2. Masukkan spesimen uji dalam tabung impedansi, yaitu ditengah ruang uji dengan posisi tegak lurus terhadap arah ruang tabung. 3. Pengukuran dilakukan pada frekuensi 125Hz, 250Hz, 500Hz, 1000Hz, 1500Hz, dan 2000 Hz. 4. Hubungkan mikropon 1 dan mikropon 2 pada pre-amp mic channel 1 dan 2. Untuk frekuensi dibawah 228Hz yaitu frekuensi 125Hz dipakai mikropon 1 dan Hubungkan output chanel pre-amp mic ke chanel 1 dan chanel 2 pada labjack. 6. Hubungkan Labjack ke port USB pada Laptop lalu buka Software DAQFaqtory untuk menganalisis sinyal. 7. Pada DAQFaqtory buka program Sound Recorder 4ch. 8. Untuk membangkitkan sinyal bunyi, buka program ToneGen. Bunyi yang dikeluarkan berupa pure tone. 9. Atur frekuensi pada ToneGen lalu buka kembali DAQFaqtory untuk melihat grafik tegangan suara pada masingmasing mikropon. 10. Klik Start/Stop Save untuk Logging data. Data grafik akan otomatis tersimpan dalam drive (D:) pada laptop. 11. Ambil nilai tegangan rata-rata pada masing-masing mikropon (A dan B) untuk dihitung koefisien absorpsinya dengan bantuan MATLAB. 12. Hitung tekanan suara pada masingmasing mikropon. 13. Hitung faktor Refleksi dan koefisien serap bunyi. 14. Ulangi prosedur diatas untuk frekuensi dan sampel yang berbeda. 4. Hasil dan Pembahasan 4.1 Hasil Berikut ini adalah data hasil pengujian koefisien serap bunyi untuk berbagai variasi paduan aluminium-magnesium. 1. Paduan Al 98%-Mg 2% Nilai koefisien serap bunyi paduan Al 98%-Mg 2% dapat dilihat pada tabel 2. Tabel 2. Tabel koefisien serap bunyi paduan Al 98%-Mg 2%. Frekuensi (Hz) α Dalam bentuk grafik, koefisien serap bunyi paduan Al 98%-Mg 2% dapat dilihat pada gambar 8. Gambar 8. Grafik koefisien serap bunyi paduan Al 98%-Mg 2%. 96

8 2. Paduan Al 96%-Mg 4% Nilai koefisien serap bunyi paduan Al 96%-Mg 4% dapat dilihat pada tabel 3. Tabel 3. Tabel koefisien serap bunyi paduan Al 96%-Mg 4%. Frekuensi (Hz) α Dalam bentuk grafik, koefisien serap bunyi paduan Al 96%-Mg 4% dapat dilihat pada gambar 9. Gambar 10. Grafik koefisien serap bunyi paduan Al 94%-Mg 6%. 4.2 Pembahasan Setelah melakukan pengukuran dan pengolahan data maka didapatlah grafik hasil perbandingan dari variasi paduan Al 98%-Mg 2%, Al 96%-Mg 4%, dan Al 94%- Mg 6% yang dapat dilihat pada gambar 11. Gambar 11. Grafik perbandingan koefisien serap bunyi paduan Al-Mg. Gambar 9. Grafik koefisien serap bunyi paduan Al 96%-Mg 4%. 3. Paduan Al 94%-Mg 6% Nilai koefisien serap bunyi paduan Al 94%-Mg 6% dapat dilihat pada tabel 4. Tabel 4. Tabel koefisien serap bunyi paduan Al 94%-Mg 6%. Frekuensi (Hz) α Dalam bentuk grafik, koefisien serap bunyi paduan Al 94%-Mg 6% dapat dilihat pada gambar 10. Gambar 11 menunjukkan grafik rekapitulasi hasil pengujian paduan Aluminium-Magnesium. Dari grafik tersebut dapat disimpulkan bahwa semakin tinggi kadar magnesium pada material paduan maka semakin naik kemampuan serap bunyinya. Pada paduan Al 96% - Mg 4% dan Al 94% - Mg 6% kenaikan koefisien absorpsinya tidak terlalu signifikan pada frekuensi 125 Hz, 250 Hz, 1500 Hz dan 2000 Hz. Dari grafik juga dapat dilihat bahwa penyerepan bunyi pada paduan aluminiummagnesium lebih baik pada frekuensi menengah dan tinggi. 5. Kesimpulan Dari seluruh kegiatan penelitian mulai dari perancangan, pembuatan alat uji dan pengujian spesimen, maka penulis dapat menyimpulkan beberapa kesimpulan, yaitu: 1. Telah didesain sebuah alat uji akustik berupa tabung impedansi sesuai standar ISO :1998 dengan 97

9 batas frekuensi pengujian 114 Hz sampai 2 khz. 2. Dalam penelitian ini dapat diketahui bahwa semakin tinggi kadar magnesium pada material paduan aluminiummagnesium maka semakin baik kemampuan serap bunyinya. Diperoleh nilai koefisien serap bunyi tertinggi pada spesimen Al 94% - Mg 6% yatu sebesar 0, Frekuensi yang paling baik diserap oleh paduan Aluminium-Magnesium yaitu pada frekuensi menengah dan tinggi. Untuk paduan Al 98% - Mg 2% nilai koefisien absorpsi paling tinggi sebesar yaitu pada frekuensi 1000 Hz sedangkan pada paduan Al 96% - Mg 4% nilai koefisien absorpsi paling tinggi sebesar 0,3147 pada frekuensi 1500 Hz dan pada paduan Al 94% - Mg 6% nilai koefisien absorpsi paling tinggi sebesar 0,3586 pada frekuensi 1000 Hz. [7] Khuriati A, Komaruddin E dan Nur M. Disain Peredan Suara Berbahan Dasar Serabut Kelapa dan pengukuran Koefisien penyerapan Bunyinya. Berkala Fisika 9(1): [8] Wirajaya A. Karakteristik Komposit Sandwich Serat Alami sebagai Absorber Suara. Tesis Master, ITB, [9] British Standards Acoustics Determination of sound absorption coefficient and impedance in impedance tubes Part 2: Transfer Fuction Method, BS EN ISO Daftar Pustaka [1] Suhada, Khairul. Kajian Koefisien Absorpsi Bunyi dari Material Komposit Serat Gergajian Batang Sawit dan Gypsum Sebagai Material Penyerap Suara Menggunakan Metode Impedance Tube. Tesis Master, USU, [2] Nasution, Muhammad Syahreza. Pengaruh Penambahan Kadar Magnesium pada Aluminium terhadap Kekuatan Tarik dan Struktur Mikro. Tugas Skripsi, USU, [3] Harahap, Raja Naposo. Kajian Eksperimental Karakteristik Material Akustik dari Campuran Serat Batang Kelapa Sawit dan Polyurethane dengan Metode Impedance Tube. Tugas Skripsi, USU, [4] Doelle, Leslie L. Evironment Acoustics. New York: McGraw-Hill Company, Inc [5] s/materialproperties/ut/ut_matlprop_ metals.htm (diakses 17 maret 2013) [6] Suptandar JP. Faktor Akustik dalam Perancangan Disain Interior. Jakarta: Ikrar Mandiriabadi

KAJIAN EKSPERIMENTAL PENGUKURAN TRANSMISSION LOSS DARI PADUAN ALUMINIUM-MAGNESIUM MENGGUNAKAN METODE IMPEDANCE TUBE

KAJIAN EKSPERIMENTAL PENGUKURAN TRANSMISSION LOSS DARI PADUAN ALUMINIUM-MAGNESIUM MENGGUNAKAN METODE IMPEDANCE TUBE KAJIAN EKSPERIMENTAL PENGUKURAN TRANSMISSION LOSS DARI PADUAN ALUMINIUM-MAGNESIUM MENGGUNAKAN METODE IMPEDANCE TUBE Fahrul Rozzy 1, Ikhwansyah Isranuri 2 1,2 Departemen Teknik Mesin, Universitas Sumatera

Lebih terperinci

KAJIAN EKSPERIMENTAL PENGUKURAN TRANSMISSION LOSS DARI PADUAN ALUMINIUM-MAGNESIUM MENGGUNAKAN METODE IMPEDANCE TUBE SKRIPSI

KAJIAN EKSPERIMENTAL PENGUKURAN TRANSMISSION LOSS DARI PADUAN ALUMINIUM-MAGNESIUM MENGGUNAKAN METODE IMPEDANCE TUBE SKRIPSI KAJIAN EKSPERIMENTAL PENGUKURAN TRANSMISSION LOSS DARI PADUAN ALUMINIUM-MAGNESIUM MENGGUNAKAN METODE IMPEDANCE TUBE SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

BAB 3. METODE PENELITIAN

BAB 3. METODE PENELITIAN BAB 3. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini direncanakan selama sepuluh bulan yang dimulai dari bulan Februari sampai dengan November 2015. Penelitian ini dilaksanakan di Laboratorium

Lebih terperinci

BAB II DASAR TEORI. 2.1 Dasar Teori Serat Alami

BAB II DASAR TEORI. 2.1 Dasar Teori Serat Alami BAB II DASAR TEORI 2.1 Dasar Teori Serat Alami Secara umum serat alami yang berasal dari tumbuhan dapat dikelompokan berdasarkan bagian tumbuhan yang diambil seratnya. Berdasarkan hal tersebut pengelompokan

Lebih terperinci

PENGARUH JUMLAH CELAH PERMUKAAN BAHAN KAYU LAPIS (PLYWOOD) TERHADAP KOEFISIEN ABSORPSI BUNYI DAN IMPEDANSI AKUSTIK

PENGARUH JUMLAH CELAH PERMUKAAN BAHAN KAYU LAPIS (PLYWOOD) TERHADAP KOEFISIEN ABSORPSI BUNYI DAN IMPEDANSI AKUSTIK PENGARUH JUMLAH CELAH PERMUKAAN BAHAN KAYU LAPIS (PLYWOOD) TERHADAP KOEFISIEN ABSORPSI BUNYI DAN IMPEDANSI AKUSTIK Ade Oktavia, Elvaswer Jurusan Fisika FMIPA Universitas Andalas Kampus Unand, Limau Manis,

Lebih terperinci

PENGUKURAN KOEFISIEN ABSORBSI MATERIAL AKUSTIK DARI SERAT ALAM AMPAS TEBU SEBAGAI PENGENDALI KEBISINGAN

PENGUKURAN KOEFISIEN ABSORBSI MATERIAL AKUSTIK DARI SERAT ALAM AMPAS TEBU SEBAGAI PENGENDALI KEBISINGAN PENGUKURAN KOEFISIEN ABSORBSI MATERIAL AKUSTIK DARI SERAT ALAM AMPAS TEBU SEBAGAI PENGENDALI KEBISINGAN Fajri Ridhola, Elvaswer Laboratorium Fisika Material, Jurusan Fisika FMIPA Universitas Andalas Kampus

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Perkembangan teknologi selain membawa dampak positif dalam kehidupan manusia juga banyak menimbulkan dampak negatif yang merugikan manusia seperti di antaranya polusi

Lebih terperinci

UNIVERSITAS MEDAN AREA. Gambar 2.1 Fenomena absorpsi suara pada permukaan bahan

UNIVERSITAS MEDAN AREA. Gambar 2.1 Fenomena absorpsi suara pada permukaan bahan BAB 2. TINJAUAN PUSTAKA 2.1. Sifat-Sifat Akustik Kata akustik berasal dari bahasa Yunani yaitu akoustikos, yang artinya segala sesuatu yang bersangkutan dengan pendengaran pada suatu kondisi ruang yang

Lebih terperinci

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI LIMBAH BATANG KELAPA SAWIT. Krisman, Defrianto, Debora M Sinaga ABSTRACT

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI LIMBAH BATANG KELAPA SAWIT. Krisman, Defrianto, Debora M Sinaga ABSTRACT PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI LIMBAH BATANG KELAPA SAWIT Krisman, Defrianto, Debora M Sinaga Jurusan Fisika-Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Gelombang dan Bunyi Pada bagian ini akan diberikan beberapa definisi dan pengertian dasar mengenai gelombang dan bunyi serta hal-hal yang berkaitan dengan teori ini. 2.1.1

Lebih terperinci

PENGARUH CELAH PERMUKAAN BAHAN KAYU LAPIS (PLYWOOD) TERHADAP KOEFISIEN ABSORPSI BUNYI DAN IMPEDANSI AKUSTIK SKRIPSI

PENGARUH CELAH PERMUKAAN BAHAN KAYU LAPIS (PLYWOOD) TERHADAP KOEFISIEN ABSORPSI BUNYI DAN IMPEDANSI AKUSTIK SKRIPSI PENGARUH CELAH PERMUKAAN BAHAN KAYU LAPIS (PLYWOOD) TERHADAP KOEFISIEN ABSORPSI BUNYI DAN IMPEDANSI AKUSTIK SKRIPSI ADE OKTAVIA 0810443049 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

KAJIAN EKSPERIMENTAL KARAKTERISTIK MATERIAL AKUSTIK DARI CAMPURAN SERAT BATANG KELAPA SAWIT DAN POLYURETHANE DENGAN METODE IMPEDANCE TUBE

KAJIAN EKSPERIMENTAL KARAKTERISTIK MATERIAL AKUSTIK DARI CAMPURAN SERAT BATANG KELAPA SAWIT DAN POLYURETHANE DENGAN METODE IMPEDANCE TUBE A KAJIAN EKSPERIMENTAL KARAKTERISTIK MATERIAL AKUSTIK DARI CAMPURAN SERAT BATANG KELAPA SAWIT DAN POLYURETHANE DENGAN METODE IMPEDANCE TUBE SKRIPSI Skripsi Yang Diajukan Untuk Memenuhi Syarat Memperoleh

Lebih terperinci

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa 2 Metode yang sering digunakan untuk menentukan koefisien serap bunyi pada bahan akustik adalah metode ruang gaung dan metode tabung impedansi. Metode tabung impedansi ini masih dibedakan menjadi beberapa

Lebih terperinci

PENENTUAN KOEFISIEN ABSORBSI DAN IMPEDANSI MATERIAL AKUSTIK RESONATOR PANEL KAYU LAPIS (PLYWOOD) BERLUBANG DENGAN MENGGUNAKAN METODE TABUNG

PENENTUAN KOEFISIEN ABSORBSI DAN IMPEDANSI MATERIAL AKUSTIK RESONATOR PANEL KAYU LAPIS (PLYWOOD) BERLUBANG DENGAN MENGGUNAKAN METODE TABUNG PENENTUAN KOEFISIEN ABSORBSI DAN IMPEDANSI MATERIAL AKUSTIK RESONATOR PANEL KAYU LAPIS (PLYWOOD) BERLUBANG DENGAN MENGGUNAKAN METODE TABUNG Sonya Yuliantika, Elvaswer Laboratorium Fisika Material, Jurusan

Lebih terperinci

ANALISA KOEFISIEN ABSORPSI BUNYI MATERIAL SERAT BATANG KELAPA SAWIT DENGAN GYPSUM MENGGUNAKAN SONIC WAVE ANALYZER

ANALISA KOEFISIEN ABSORPSI BUNYI MATERIAL SERAT BATANG KELAPA SAWIT DENGAN GYPSUM MENGGUNAKAN SONIC WAVE ANALYZER ANALISA KOEFISIEN ABSORPSI BUNYI MATERIAL SERAT BATANG KELAPA SAWIT DENGAN GYPSUM MENGGUNAKAN SONIC WAVE ANALYZER Qory Gunanda, Riad Syech, Muhammad Edisar Program Studi S1 Fisika Fakultas Matematika dan

Lebih terperinci

DATA HASIL PENGUJIAN DAN ANALISIS

DATA HASIL PENGUJIAN DAN ANALISIS BAB IV DATA HASIL PENGUJIAN DAN ANALISIS Pada bab ini akan ditampilkan data-data hasil pengujian dari material uji, yang akan ditampilkan dalam bentuk grafik atau kurva. Grafik grafik ini menyatakan hubungan

Lebih terperinci

DINDING PEREDAM SUARA BERBAHAN DAMEN DAN SERABUT KELAPA

DINDING PEREDAM SUARA BERBAHAN DAMEN DAN SERABUT KELAPA DINDING PEREDAM SUARA BERBAHAN DAMEN DAN SERABUT KELAPA Kristofel Ade Wiyono Pangalila 1, Prasetio Sudjarwo 2, Januar Buntoro 3 ABSTRAK: Penelitian ini bertujuan untuk menganalisa kombinasi campuran material

Lebih terperinci

DESAIN PEREDAM SUARA TABUNG KACA DENGAN SAMPEL CAMPURAN SERBUK KAYU MERANTI DAN PAPAN TELUR UNTUK MENGUKUR KOEFISIEN ABSORBSI BUNYI

DESAIN PEREDAM SUARA TABUNG KACA DENGAN SAMPEL CAMPURAN SERBUK KAYU MERANTI DAN PAPAN TELUR UNTUK MENGUKUR KOEFISIEN ABSORBSI BUNYI DESAIN PEREDAM SUARA TABUNG KACA DENGAN SAMPEL CAMPURAN SERBUK KAYU MERANTI DAN PAPAN TELUR UNTUK MENGUKUR KOEFISIEN ABSORBSI BUNYI Riad Syech 1), Krisman 2), Angeline Stefani Saragih 3) Jurusan Fisika

Lebih terperinci

PENENTUAN KOEFISIEN ABSORBSI BUNYI DAN IMPEDANSI AKUSTIK DARI SERAT ALAM ECENG GONDOK (EICHHORNIA CRASSIPES) DENGAN MENGGUNAKAN METODE TABUNG

PENENTUAN KOEFISIEN ABSORBSI BUNYI DAN IMPEDANSI AKUSTIK DARI SERAT ALAM ECENG GONDOK (EICHHORNIA CRASSIPES) DENGAN MENGGUNAKAN METODE TABUNG PENENTUAN KOEFISIEN ABSORBSI BUNYI DAN IMPEDANSI AKUSTIK DARI SERAT ALAM ECENG GONDOK (EICHHORNIA CRASSIPES) DENGAN MENGGUNAKAN METODE TABUNG Vonny Febrita, Elvaswer Jurusan Fisika FMIPA Universitas Andalas

Lebih terperinci

ANALISIS GELOMBANG AKUSTIK PADA PAPAN SERAT KELAPA SAWIT SEBAGAI PENGENDALI KEBISINGAN

ANALISIS GELOMBANG AKUSTIK PADA PAPAN SERAT KELAPA SAWIT SEBAGAI PENGENDALI KEBISINGAN ANALISIS GELOMBANG AKUSTIK PADA PAPAN SERAT KELAPA SAWIT SEBAGAI PENGENDALI KEBISINGAN Elvaswer, Rudi Pratama dan Afdhal Muttaqin Jurusan Fisika, FMIPA, Universitas Andalas, Kampus Unand Limau Manis, Padang,

Lebih terperinci

PEMBUATAN ALAT UKUR DAYA ISOLASI BAHAN

PEMBUATAN ALAT UKUR DAYA ISOLASI BAHAN PEMBUATAN ALAT UKUR DAYA ISOLASI BAHAN Ferdy Ansarullah 1), Lila Yuwana, M.Si 2) Dra. Lea Prasetio, M.Sc 3) Jurusan Fisika Fakultas Metematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 19 BAB IV HASIL DAN PEMBAHASAN 4.1 Sifat Akustik Papan Partikel Sengon 4.1.1 Koefisien Absorbsi suara Apabila ada gelombang suara bersumber dari bahan lain mengenai bahan kayu, maka sebagian dari energi

Lebih terperinci

Pengertian Kebisingan. Alat Ukur Kebisingan. Sumber Kebisingan

Pengertian Kebisingan. Alat Ukur Kebisingan. Sumber Kebisingan Pengertian Kebisingan Kebisingan merupakan suara yang tidak dikehendaki, kebisingan yaitu bunyi yang tidak diinginkan dari usaha atau kegiatan dalam tingkat dan waktu tertentu yang dapat menimbulkan gangguan

Lebih terperinci

BAB 1 PENDAHULUAN. Kelapa Sawit yang sudah tidak produktif. Indonesia, khususnya Sumatera Utara,

BAB 1 PENDAHULUAN. Kelapa Sawit yang sudah tidak produktif. Indonesia, khususnya Sumatera Utara, BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini dunia mendapatkan tantangan besar dalam mengolah limbah pohon Kelapa Sawit yang sudah tidak produktif. Indonesia, khususnya Sumatera Utara, memiliki banyak

Lebih terperinci

Pemanfaatan Limbah Kulit Pinang (Areca catechu L.) sebagai Filler Papan Komposit Penyerap Bunyi

Pemanfaatan Limbah Kulit Pinang (Areca catechu L.) sebagai Filler Papan Komposit Penyerap Bunyi Pemanfaatan Limbah Kulit Pinang (Areca catechu L.) sebagai Filler Papan Komposit Penyerap Bunyi Fatimah1,a), Widayani2,b) 1 Laboratorium Sintesis dan Fungsionalisai Nanomaterial, Kelompok Keilmuan Fisika

Lebih terperinci

PEMBUATAN DAN KARAKTERISASI PAPAN AKUSTIK DARI CAMPURAN SERAT KULIT ROTAN DAN PEREKATPOLIVINIL ASETAT SKRIPSI AMALUDDIN NASUTION

PEMBUATAN DAN KARAKTERISASI PAPAN AKUSTIK DARI CAMPURAN SERAT KULIT ROTAN DAN PEREKATPOLIVINIL ASETAT SKRIPSI AMALUDDIN NASUTION 1 PEMBUATAN DAN KARAKTERISASI PAPAN AKUSTIK DARI CAMPURAN SERAT KULIT ROTAN DAN PEREKATPOLIVINIL ASETAT SKRIPSI AMALUDDIN NASUTION 100801030 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Gelombang Bunyi Gelombang bunyi merupakan gelombang longitudinal yang terjadi sebagai hasil dari fluktuasi tekanan karena perapatan dan perenggangan dalam media elastis. Sinyal

Lebih terperinci

Pembuatan dan Pengujian Bahan Peredam Suara dari Berbagai Serbuk Kayu

Pembuatan dan Pengujian Bahan Peredam Suara dari Berbagai Serbuk Kayu Pembuatan dan Pengujian Bahan Peredam Suara dari Berbagai Serbuk Kayu Pradana Adi Wibowo*, Rahmawan Wicaksono, AgusYulianto Email*: prapradana1320@yahoo.com Jurusan Fisika, Universitas Negeri Semarang

Lebih terperinci

KARAKTERISTIK ABSORBSI DAN IMPEDANSI MATERIAL AKUSTIK SERAT ALAM AMPAS TAHU (GLYCINE MAX) MENGGUNAKAN METODE TABUNG

KARAKTERISTIK ABSORBSI DAN IMPEDANSI MATERIAL AKUSTIK SERAT ALAM AMPAS TAHU (GLYCINE MAX) MENGGUNAKAN METODE TABUNG KARAKTERISTIK ABSORBSI DAN IMPEDANSI MATERIAL AKUSTIK SERAT ALAM AMPAS TAHU (GLYCINE MAX) MENGGUNAKAN METODE TABUNG Arlindo Rizal 1), Elvaswer 2), Yulia Fitri 1) 1). Jurusan Fisika, FMIPA dan Kesehatan,

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA M E D A N 2008

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA M E D A N 2008 TUGAS SARJANA TEKNIK PENGENDALIAN KEBISINGAN MODIFIKASI DESIGN DAN UJI EKSPERIMENTAL SILENCER DENGAN DOUBLE SALURAN PADA KNALPOT TOYOTA KIJANG 7K YANG TERBUAT DARI MATERIAL KOMPOSIT O L E H : NAMA : PANCA

Lebih terperinci

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI LIMBAH BATANG KELAPA SAWIT. Debora M Sinaga 1, Krisman 2, Defrianto 2

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI LIMBAH BATANG KELAPA SAWIT. Debora M Sinaga 1, Krisman 2, Defrianto 2 PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI LIMBAH BATANG KELAPA SAWIT Debora M Sinaga 1, Krisman 2, Defrianto 2 e-mail: Deborasinaga66@yahoo.co.id 1 Mahasiswa Program S1 Fisika FMIPA- Universitas Riau 2

Lebih terperinci

PERANCANGAN KNALPOT BERBAHAN ALUMINIUM UNTUK MENGURANGI KEBISINGAN PADA SEPADA MOTOR

PERANCANGAN KNALPOT BERBAHAN ALUMINIUM UNTUK MENGURANGI KEBISINGAN PADA SEPADA MOTOR PERANCANGAN KNALPOT BERBAHAN ALUMINIUM UNTUK MENGURANGI KEBISINGAN PADA SEPADA MOTOR TUGAS SARJANA Tugas Sarjana Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik CHANDRA SIMARMATA

Lebih terperinci

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini.

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. SNMPTN 2011 FISIKA Kode Soal 999 Doc. Name: SNMPTN2011FIS999 Version: 2012-10 halaman 1 01. Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. Percepatan ketika mobil bergerak semakin

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN 4.1 Pengaruh Gangguan Pada Audio Generator Terhadap Amplitudo Gelombang Audio Yang Dipancarkan Pengukuran amplitudo gelombang audio yang dipancarkan pada berbagai tingkat audio generator

Lebih terperinci

Pengaruh Penambahan Serat Sabut Kelapa (Cocofiber) Terhadap Campuran Beton Sebagai Peredam Suara

Pengaruh Penambahan Serat Sabut Kelapa (Cocofiber) Terhadap Campuran Beton Sebagai Peredam Suara JCEBT, Vol 1 (No. 1) (217) p-issn: 2549-6379 e-issn: 2549-6387 Journal of Civil Engineering, Building and Transportation Available online http://ojs.uma.ac.id/index.php/jcebt Pengaruh Penambahan Serat

Lebih terperinci

5. Satu periode adalah waktu yang diperlukan bandul untuk bergerak dari titik. a. A O B O A b. A O B O c. O A O B d. A O (C3)

5. Satu periode adalah waktu yang diperlukan bandul untuk bergerak dari titik. a. A O B O A b. A O B O c. O A O B d. A O (C3) 1. Simpangan terjauh pada suatu benda bergetar disebut. a. Amplitudo c. Periode b. Frekuensi d. Keseimbangan 2. Berikut ini adalah sebuah contoh getaran. a. Roda yang berputar pada sumbunya b. Gerak buah

Lebih terperinci

KAJIAN KINERJA SERAPAN BISING SEL AKUSTIK DARI BAHAN KAYU OLAHAN (ENGINEERING WOOD)

KAJIAN KINERJA SERAPAN BISING SEL AKUSTIK DARI BAHAN KAYU OLAHAN (ENGINEERING WOOD) KAJIAN KINERJA SERAPAN BISING SEL AKUSTIK DARI BAHAN KAYU OLAHAN (ENGINEERING WOOD) Ferriawan Yudhanto 1) Dosen Program Vokasi Teknik Mesin Otomotif dan Manufaktur Universitas Muhammadiyah Yogyakarta 1)

Lebih terperinci

BAB 1 PENDAHULUAN. manusia semakin meningkat. Baik peralatan tersebut berupa sarana informasi,

BAB 1 PENDAHULUAN. manusia semakin meningkat. Baik peralatan tersebut berupa sarana informasi, BAB 1 PENDAHULUAN 1.1. Latar Belakang Dengan semakin majunya teknologi, perkembangan peralatan yang digunakan manusia semakin meningkat. Baik peralatan tersebut berupa sarana informasi, komunikasi, produksi,

Lebih terperinci

PENGARUH PANJANG PIPA, POSISI STACK DAN INPUT FREKWENSI ACOUSTIC DRIVER/AUDIO SPEAKER PADA RANCANG BANGUN SISTEM REFRIGERASI THERMOAKUSTIK

PENGARUH PANJANG PIPA, POSISI STACK DAN INPUT FREKWENSI ACOUSTIC DRIVER/AUDIO SPEAKER PADA RANCANG BANGUN SISTEM REFRIGERASI THERMOAKUSTIK PENGARUH PANJANG PIPA, POSISI STACK DAN INPUT FREKWENSI ACOUSTIC DRIVER/AUDIO SPEAKER PADA RANCANG BANGUN SISTEM REFRIGERASI THERMOAKUSTIK Arda Rahardja Lukitobudi Jurusan Teknik Refrigerasi dan Tata Udara

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Pada bab ini akan dijelaskan bagaimana alur kerja dan proses pembuatan material komposit sandwich serat alami serta proses pengujian material tersebut untuk karakteristik

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Karakteristik Termal Kayu Meranti (Shorea Leprosula Miq.) Karakteristik termal menunjukkan pengaruh perlakuan suhu pada bahan (Welty,1950). Dengan mengetahui karakteristik termal

Lebih terperinci

TINGKAT REDAM BUNYI SUATU BAHAN (TRIPLEK, GYPSUM DAN STYROFOAM)

TINGKAT REDAM BUNYI SUATU BAHAN (TRIPLEK, GYPSUM DAN STYROFOAM) 138 M. A. Fatkhurrohman et al., Tingkat Redam Bunyi Suatu Bahan TINGKAT REDAM BUNYI SUATU BAHAN (TRIPLEK, GYPSUM DAN STYROFOAM) M. Aji Fatkhurrohman*, Supriyadi Jurusan Pendidikan IPA Konsentrasi Fisika,

Lebih terperinci

Jenis dan Sifat Gelombang

Jenis dan Sifat Gelombang Jenis dan Sifat Gelombang Gelombang Transversal, Gelombang Longitudinal, Gelombang Permukaan Gelombang Transversal Gelombang transversal merupakan gelombang yang arah pergerakan partikel pada medium (arah

Lebih terperinci

UNIVERSITAS MUHAMMADIYAH SURAKARTA PUBLIKASI ILMIAH

UNIVERSITAS MUHAMMADIYAH SURAKARTA PUBLIKASI ILMIAH KARAKTERISTIK KOMPOSIT SERBUK KAYU JATI DENGAN FRAKSI VOLUME 25%, 30%, 35% TERHADAP UJI BENDING, UJI TARIK DAN DAYA SERAP BUNYI UNTUK DINDING PEREDAM SUARA UNIVERSITAS MUHAMMADIYAH SURAKARTA PUBLIKASI

Lebih terperinci

Komposit Serat Batang Pisang (SBP) Epoksi Sebagai Bahan Penyerap Bunyi

Komposit Serat Batang Pisang (SBP) Epoksi Sebagai Bahan Penyerap Bunyi 322 NATURAL B, Vol. 2, No. 4, Oktober 2014 Komposit Serat Batang Pisang (SBP) Epoksi Sebagai Bahan Penyerap Bunyi Khusnul Khotimah 1)*, Susilawati 1), Harry Soeprianto 1) 1) Program Studi Magister Pendidikan

Lebih terperinci

(6.38) Memasukkan ini ke persamaan (6.14) (dengan θ = 0) membawa kita ke faktor refleksi dari lapisan

(6.38) Memasukkan ini ke persamaan (6.14) (dengan θ = 0) membawa kita ke faktor refleksi dari lapisan 6.6.3 Penyerapan oleh lapisan berpori Selanjutnya kita mempertimbangkan penyerapan suara oleh lapisan tipis berpori, misalnya, dengan selembar kain seperti tirai, atau dengan pelat tipis dengan perforasi

Lebih terperinci

PENGARUH PENAMBAHAN JARAK TERHADAP SUMBER BUNYI BIDANG DATAR BERBENTUK LINGKARAN

PENGARUH PENAMBAHAN JARAK TERHADAP SUMBER BUNYI BIDANG DATAR BERBENTUK LINGKARAN PENGARUH PENAMBAHAN JARAK TERHADAP SUMBER BUNYI BIDANG DATAR BERBENTUK LINGKARAN Agus Martono 1, Nur Aji Wibowo 1,2, Adita Sutresno 1,2,* 1 Program Studi Pendidikan Fisika, Fakultas Sains dan Matematika

Lebih terperinci

PENGARUH ORIENTASI SERAT TERHADAP REDAMAN SUARA KOMPOSIT BERPENGUAT SERAT PINANG

PENGARUH ORIENTASI SERAT TERHADAP REDAMAN SUARA KOMPOSIT BERPENGUAT SERAT PINANG PENGARUH ORIENTASI SERAT TERHADAP REDAMAN SUARA KOMPOSIT BERPENGUAT SERAT PINANG Putri Pratiwi Fakultas Teknologi Industri, Program Studi Teknik Mesin Institut Teknologi Padang Email: pratiwi009@gmail.com

Lebih terperinci

BAB II DASAR TEORI 2.1. Prinsip Kerja Penyerapan Bunyi

BAB II DASAR TEORI 2.1. Prinsip Kerja Penyerapan Bunyi BAB II DASAR TEORI 2.1. Prinsip Kerja Penyerapan Bunyi Hukum konservasi energi mengatakan bahwa energi tidak dapat diciptakan dan dimusnahkan. Energi hanya bisa diubah bentuk dari bentuk satu ke bentuk

Lebih terperinci

Seminar Nasional IENACO ISSN: DESAIN KUALITAS PERANCANGAN PRODUK LIMBAH PLAT ALUMUNIUM MENGGUNAKAN METODE EKSPERIMENT

Seminar Nasional IENACO ISSN: DESAIN KUALITAS PERANCANGAN PRODUK LIMBAH PLAT ALUMUNIUM MENGGUNAKAN METODE EKSPERIMENT DESAIN KUALITAS PERANCANGAN PRODUK LIMBAH PLAT ALUMUNIUM MENGGUNAKAN METODE EKSPERIMENT Saufik Luthfianto 1, Zulfah 2, M. Fajar Nurwildani 3 1,2,3 Program Studi Teknik Industri, Fakultas Teknik, Universitas

Lebih terperinci

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M0207025 Di terjemahkan dalam bahasa Indonesia dari An introduction by Heinrich Kuttruff Bagian 6.6 6.6.4 6.6 Penyerapan Bunyi Oleh

Lebih terperinci

PENENTUAN KOEFISIEN SERAP BUNYI PAPAN PARTIKEL DARI LIMBAH TONGKOL JAGUNG

PENENTUAN KOEFISIEN SERAP BUNYI PAPAN PARTIKEL DARI LIMBAH TONGKOL JAGUNG Jurnal Fisika Vol. 4 No. 1, Mei 014 11 PENENTUAN KOEFISIEN SERAP BUNYI PAPAN PARTIKEL DARI LIMBAH TONGKOL JAGUNG Obimita Ika Permatasari 1 *, Masturi 1 Program Studi IPA, PPS Universitas Negeri Semarang

Lebih terperinci

SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay

SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay A. PILIHAN GANDA Petunjuk: Pilih satu jawaban yang paling benar. 1. Grafik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Gelombang dan Bunyi Pada bagian ini akan diberikan beberapa definisi dan pengertian dasar mengenai gelombang dan bunyi serta hal-hal yang berkaitan dengan teori ini. 2.1.1

Lebih terperinci

Pengaruh Penambahan Bahan Redam pada Kebocoran Alat Ukur Daya Isolasi Bahan

Pengaruh Penambahan Bahan Redam pada Kebocoran Alat Ukur Daya Isolasi Bahan JURNAL FISIKA DAN APLIKASINYA VOLUME 9, NOMOR 2 JUNI 2013 Pengaruh Penambahan Bahan Redam pada Kebocoran Alat Ukur Daya Isolasi Bahan Didiek Basuki Rahmat, Alpha Hambally Armen, dan Gontjang Prajitno Jurusan

Lebih terperinci

KARAKTERISTIK AKUSTIK PAPAN KOMPOSIT SERAT SABUT KELAPA BERMATRIK KERAMIK

KARAKTERISTIK AKUSTIK PAPAN KOMPOSIT SERAT SABUT KELAPA BERMATRIK KERAMIK KARAKTERISTIK AKUSTIK PAPAN KOMPOSIT SERAT SABUT KELAPA BERMATRIK KERAMIK Yusril Irwan Jurusan Teknik Mesin, Fakultas Teknologi Industri Institut Teknologi Nasional Jl. PKH. Mustapa. No.23, Bandung 40124

Lebih terperinci

Pengendalian Bising. Oleh Gede H. Cahyana

Pengendalian Bising. Oleh Gede H. Cahyana Pengendalian Bising Oleh Gede H. Cahyana Bunyi dapat didefinisikan dari segi objektif yaitu perubahan tekanan udara akibat gelombang tekanan dan secara subjektif adalah tanggapan pendengaran yang diterima

Lebih terperinci

BAB IV. HASIL DAN PEMBAHASAN. Penelitian ini bertujuan untuk mengetahui pengaruh batako beton ringan sekam

BAB IV. HASIL DAN PEMBAHASAN. Penelitian ini bertujuan untuk mengetahui pengaruh batako beton ringan sekam 43 BAB IV. HASIL DAN PEMBAHASAN Penelitian ini bertujuan untuk mengetahui pengaruh batako beton ringan sekam padi terhadap kekuatan komposit beton ringan tersebut dan untuk mengetahui seberapa besar pengaruh

Lebih terperinci

SUHARDIMAN / TM

SUHARDIMAN / TM PENYELIDIKAN KARAKTERISTIK AKUSTIK (ACOUSTICAL PROPERTIES) MATERIAL KOMPOSIT POLIMER YANG TERBUAT DARI SERAT BATANG KELAPA SAWIT MENGGUNAKAN VARIABEL KOMPOSISI DAN KETEBALAN TESIS Oleh SUHARDIMAN 077015002

Lebih terperinci

GELOMBANG. Lampiran I.2

GELOMBANG. Lampiran I.2 GELOMBANG 1. Pengertian Gelombang Pernahkah kamu pergi ke pantai? Tentu sangat menyenangkan, bukan? Demikian indahnya ciptaan Tuhan. Di pantai kamu bisa melihat ombak. Ombak tersebut terlihat bergelombang

Lebih terperinci

KARAKTERISASI KOEFISIEN ABSORBSI BUNYI DAN IMPEDANSI AKUSTIK DARI LIMBAH SERAT KAYU MERANTI MERAH (SHOREA PINANGA) DENGAN MENGGUNAKAN METODE TABUNG

KARAKTERISASI KOEFISIEN ABSORBSI BUNYI DAN IMPEDANSI AKUSTIK DARI LIMBAH SERAT KAYU MERANTI MERAH (SHOREA PINANGA) DENGAN MENGGUNAKAN METODE TABUNG KARAKTERISASI KOEFISIEN ABSORBSI BUNYI DAN IMPEDANSI AKUSTIK DARI LIMBAH SERAT KAYU MERANTI MERAH (SHOREA PINANGA) DENGAN MENGGUNAKAN METODE TABUNG Sonya Yuliantika*, Elvaswer Laboratorium Fisika Material,

Lebih terperinci

BAB 11 GETARAN DAN GELOMBANG

BAB 11 GETARAN DAN GELOMBANG BAB 11 GETARAN DAN GELOMBANG A. Getaran Benda Getaran adalah gerakan bolak balik terhadap titik keseimbangan. - Penggaris melakukan getaran dari posisi 1 2 1 3 1 - Bandul melakukan gerak bolak balik dari

Lebih terperinci

Pengaruh core campuran sampah daun kering, kertas koran dan plastik hdpe pada komposit sandwich UPRS Cantula 3D terhadap nilai sound transmission loss

Pengaruh core campuran sampah daun kering, kertas koran dan plastik hdpe pada komposit sandwich UPRS Cantula 3D terhadap nilai sound transmission loss Pengaruh core campuran sampah daun kering, kertas koran dan plastik hdpe pada komposit sandwich UPRS Cantula 3D terhadap nilai sound transmission loss Oleh : Edwin Yusrizal NIM. I.1406024 BAB I PENDAHULUAN

Lebih terperinci

PERNYATAAN. Mahasiswa

PERNYATAAN. Mahasiswa iii PERNYATAAN Dengan ini saya menyatakan bahwa dalam skripsi ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan disuatu Perguruan Tinggi dan sepanjang pengetahuan saya, juga

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

DAFTAR ISI BAB I PENDAHULUAN... 1 BAB II LANDASAN TEORI... 5

DAFTAR ISI BAB I PENDAHULUAN... 1 BAB II LANDASAN TEORI... 5 DAFTAR ISI Halaman Judul... Lembar Pengesahan Dosen Pembimbing... Lembar Pengesahan Dosen Penguji... Halaman Persembahan... Halaman Motto... Kata Pengantar... Abstraksi... Daftar Isi... Daftar Tabel...

Lebih terperinci

PENGARUH PUTARAN TERHADAP LAJU KEAUSAN Al-Si ALLOY MENGGUNAKAN METODE PIN ON DISK TEST

PENGARUH PUTARAN TERHADAP LAJU KEAUSAN Al-Si ALLOY MENGGUNAKAN METODE PIN ON DISK TEST PENGARUH PUTARAN TERHADAP LAJU KEAUSAN Al-Si ALLOY MENGGUNAKAN METODE PIN ON DISK TEST Ikwansyah Isranuri (1),Jamil (2),Suprianto (3) (1),(2),(3) Departemen Teknik Mesin Fakultas Teknik USU Jl. Almamater,

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

PROGRAM MAGISTER TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

PROGRAM MAGISTER TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 KAJIAN KOEFISIEN ABSORPSI BUNYI DARI MATERIAL KOMPOSIT SERAT GERGAJIAN BATANG SAWIT DAN GYPSUM SEBAGAI MATERIAL PENYERAP SUARA MENGGUNAKAN METODE IMPEDANCE TUBE TESIS Oleh : KHAIRUL SUHADA 077015005 /

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Komposit Komposit adalah penggabungan dari bahan yang dipilih berdasarkan kombinasi sifat fisik masing-masing material penyusun untuk menghasilkan material baru dengan sifat

Lebih terperinci

Desain Sumber Bunyi Titik

Desain Sumber Bunyi Titik Desain Sumber Bunyi Titik Yogo Widi Prakoso 1, Made Rai Suci Santi 1,2, Adita Sutresno 1,2* 1 Program Studi Pendidikan Fisika, Fakultas Sains dan Matematika 2 Program Studi Fisika, Fakultas Sains dan Matematika

Lebih terperinci

2. Dasar Teori 2.1 Pengertian Bunyi 2.2 Sumber bunyi garis yang tidak terbatas ( line source of infinite length

2. Dasar Teori 2.1 Pengertian Bunyi 2.2 Sumber bunyi garis yang tidak terbatas ( line source of infinite length dilakukan penggandaan jarak antara pendengar dengan sumber bunyi [4]. Dalam kehidupan sehari-hari sumber bunyi garis menjadi tidak menguntungkan karena hanya mengalami penurunan sebesar 3 db saat penggandaan

Lebih terperinci

Gelombang Bunyi. Keterangan: γ = konstanta Laplace R = tetapan umum gas (8,31 J/mol K)

Gelombang Bunyi. Keterangan: γ = konstanta Laplace R = tetapan umum gas (8,31 J/mol K) Gelombang Bunyi Bunyi termasuk gelombang mekanik, karena dalam perambatannya bunyi memerlukan medium perantara. Ada tiga syarat agar terjadi bunyi yaitu ada sumber bunyi, medium, dan pendengar. Bunyi dihasilkan

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG - GELOMBANG

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG - GELOMBANG LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Nama : Kelas/No : / Gelombang - - GELOMBANG - GELOMBANG ------------------------------- 1 Gelombang Gelombang Berjalan

Lebih terperinci

ALAT YANG DIPERLUKAN TALI SLINKI PEGAS

ALAT YANG DIPERLUKAN TALI SLINKI PEGAS Getaran dan Gelombang ALAT YANG DIPERLUKAN TALI SLINKI PEGAS BANDUL Amplitudo Amplitudo (A) Amplitudo adalah posisi maksimum benda relatif terhadap posisi kesetimbangan Ketika tidak ada gaya gesekan, sebuah

Lebih terperinci

STUDI TENTANG PENGARUH PROSENTASE LUBANG TERHADAP DAYA ABSORPSI BUNYI

STUDI TENTANG PENGARUH PROSENTASE LUBANG TERHADAP DAYA ABSORPSI BUNYI STUDI TENTANG PENGARUH PROSENTASE LUBANG TERHADAP DAYA ABSORPSI BUNYI Lea Prasetio, Suyatno, Rista Dwi Permana Sari Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh

Lebih terperinci

Latihan Soal UAS Fisika Panas dan Gelombang

Latihan Soal UAS Fisika Panas dan Gelombang Latihan Soal UAS Fisika Panas dan Gelombang 1. Grafik antara tekanan gas y yang massanya tertentu pada volume tetap sebagai fungsi dari suhu mutlak x adalah... a. d. b. e. c. Menurut Hukum Gay Lussac menyatakan

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

MATERIAL AKUSTIK SERAT PELEPAH PISANG (Musa acuminax balbasiana calla) SEBAGAI PENGENDALI POLUSI BUNYI

MATERIAL AKUSTIK SERAT PELEPAH PISANG (Musa acuminax balbasiana calla) SEBAGAI PENGENDALI POLUSI BUNYI MATERIAL AKUSTIK SERAT PELEPAH PISANG (Musa acuminax balbasiana calla) SEBAGAI PENGENDALI POLUSI BUNYI Adella Kusmala Dewi,Elvaswer Jurusan Fisika FMIPA Universitas Andalas Kampus Unand, Limau Manis, Padang,

Lebih terperinci

HANDOUT MATA KULIAH KONSEP DASAR FISIKA DI SD. Disusun Oleh: Hana Yunansah, S.Si., M.Pd.

HANDOUT MATA KULIAH KONSEP DASAR FISIKA DI SD. Disusun Oleh: Hana Yunansah, S.Si., M.Pd. HANDOUT MATA KULIAH KONSEP DASAR FISIKA DI SD Disusun Oleh: Hana Yunansah, S.Si., M.Pd. UNIVERSITAS PENDIDIKAN INDONESIA KAMPUS CIBIRU 2013 HandOut Mata Kuliah Konsep Dasar Fisika Prodi. PGSD Semester

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar belakang

BAB I PENDAHULUAN I.1 Latar belakang BAB I PENDAHULUAN I.1 Latar belakang Dengan meningkatnya perkembangan industri otomotif dan manufaktur di Indonesia, dan terbatasnya sumber energi mendorong para rekayasawan berusaha menurunkan berat mesin,

Lebih terperinci

Gelombang Transversal Dan Longitudinal

Gelombang Transversal Dan Longitudinal Gelombang Transversal Dan Longitudinal Pada gelombang yang merambat di atas permukaan air, air bergerak naik dan turun pada saat gelombang merambat, tetapi partikel air pada umumnya tidak bergerak maju

Lebih terperinci

sepanjang lintasan: i) A-B adalah 1/4 getaran ii) A-B-C-B-A adalah 4/4 atau 1 getaran iii) A-B-C-B-A-B adalah 5/4 atau 1,25 getaran

sepanjang lintasan: i) A-B adalah 1/4 getaran ii) A-B-C-B-A adalah 4/4 atau 1 getaran iii) A-B-C-B-A-B adalah 5/4 atau 1,25 getaran contoh soal dan pembahasan jawaban getaran dan gelombang, materi fisika SMP Kelas 8 (VIII), tercakup amplitudo, frekuensi, periode dari getaran dan gelombang, panjang gelombang, cepat rambat suatu gelombang

Lebih terperinci

PENGETAHUAN (C1) SYARIFAH RAISA Reguler A Tugas Evaluasi

PENGETAHUAN (C1) SYARIFAH RAISA Reguler A Tugas Evaluasi SYARIFAH RAISA 1006103030009 Reguler A Tugas Evaluasi PENGETAHUAN (C1) Pengetahuan adalah aspek yang paling dasar dalam taksonomi Bloom. Sering kali disebut juga aspek ingatan (recall). Contoh soal yang

Lebih terperinci

penetrant dan developer. Umumnya warna yang digunakan adalah putih untuk developer dan merah untuk penetrant.

penetrant dan developer. Umumnya warna yang digunakan adalah putih untuk developer dan merah untuk penetrant. penetrant dan developer. Umumnya warna yang digunakan adalah putih untuk developer dan merah untuk penetrant. Metode yang lain adalah menggunakan penetrant bercahaya/fluoresens. Langkah-langkah inspeksinya

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. spektrofotometer UV-Vis dan hasil uji serapan panjang gelombang sampel dapat

BAB IV HASIL DAN PEMBAHASAN. spektrofotometer UV-Vis dan hasil uji serapan panjang gelombang sampel dapat BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Penelitian Penelitian diawali dengan pembuatan sampel untuk uji serapan panjang gelombang sampel. Sampel yang digunakan pada uji serapan panjang gelombang sampel adalah

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ( X Print) B-101

JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ( X Print) B-101 JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) 2337-3520 (2301-928X Print) B-101 Kebisingan di Dalam Kabin Masinis Lokomotif Tipe CC201 Tri Sujarwanto, Gontjang Prajitno, dan Lila Yuwana Jurusan Fisika,

Lebih terperinci

Kinerja Akustik dan Mekanik Panel Sandwich Berbasis Ampas Tebu dan Bambu

Kinerja Akustik dan Mekanik Panel Sandwich Berbasis Ampas Tebu dan Bambu JURNAL FISIKA DAN APLIKASINYA VOLUME 12, NOMOR 2 JUNI 2016 Kinerja Akustik dan Mekanik Panel Sandwich Berbasis Ampas Tebu dan Bambu Dian Yulia Sari, Aris Minardi, Restu Kristiani, Iwan Yahya, dan Harjana

Lebih terperinci

PRISMA FISIKA, Vol. IV, No. 02 (2016), Hal ISSN :

PRISMA FISIKA, Vol. IV, No. 02 (2016), Hal ISSN : Rancang Bangun Kotak Peredam Generator Set (Genset) dengan Beberapa Variabel Bahan dalam Skala Rumah Tangga Ulvi Loly Amanda a, Nurhasanah a *, Dwiria Wahyuni a a Jurusan Fisika, FMIPA Universitas Tanjungpura,

Lebih terperinci

SNMPTN 2011 Fisika KODE: 559

SNMPTN 2011 Fisika KODE: 559 SNMPTN 2011 Fisika KODE: 559 SOAL PEMBAHASAN 1. Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. 1. Jawaban: DDD Percepatan ketika mobil bergerak semakin cepat adalah. (A) 0,5

Lebih terperinci

3. Resonansi. 1. Tujuan Menentukan cepat rambat bunyi di udara

3. Resonansi. 1. Tujuan Menentukan cepat rambat bunyi di udara 1. Tujuan Menentukan cepat rambat bunyi di udara 3. Resonansi 2. Alat dan Bahan 1. Statip dengan tinggi 100 cm dan diameter 1.8 cm 1 buah 2. Capit buaya (logam) 2 buah 3. Tabung kaca resonansi berskala,

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN. Waktu penelitian ini direncanakan selama tiga bulan yang dimulai dari

BAB 3 METODOLOGI PENELITIAN. Waktu penelitian ini direncanakan selama tiga bulan yang dimulai dari BAB 3 METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Waktu penelitian ini direncanakan selama tiga bulan yang dimulai dari bulan Januari sampai dengan Maret 2016. Tempat dilaksanakannya penelitian

Lebih terperinci

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS )

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) LEMBARAN SOAL Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) PETUNJUK UMUM 1. Tulis nomor dan nama Anda pada lembar jawaban yang disediakan 2. Periksa dan bacalah

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI BAHAN AMPAS TEBU DENGAN METODE RUANG AKUSTIK KECIL. Oleh: Arif Widihantoro NIM: TUGAS AKHIR

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI BAHAN AMPAS TEBU DENGAN METODE RUANG AKUSTIK KECIL. Oleh: Arif Widihantoro NIM: TUGAS AKHIR PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI BAHAN AMPAS TEBU DENGAN METODE RUANG AKUSTIK KECIL Oleh: Arif Widihantoro NIM: 192008023 TUGAS AKHIR Diajukan kepada Program Studi Pendidikan Fisika, Fakultas Sains

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Diharjo dkk (2007) melakukan penelitian pada pengaruh penambahan acoustic fill serat kenaf di rongga resonator terhadap karakteristik nilai Koefisien Serapan

Lebih terperinci

BAB V KESIMPULAN DAN SARAN

BAB V KESIMPULAN DAN SARAN 75 BAB V KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan keseluruhan data penelitian yang telah diolah, penulis menemukan hal-hal sebagai berikut : 1. Miskonsepsi yang terungkap melalui penelitian ini adalah

Lebih terperinci

FISIKA. 2 SKS By : Sri Rezeki Candra Nursari

FISIKA. 2 SKS By : Sri Rezeki Candra Nursari FISIKA 2 SKS By : Sri Rezeki Candra Nursari MATERI Satuan besaran Fisika Gerak dalam satu dimensi Gerak dalam dua dan tiga dimensi Gelombang berdasarkan medium (gelombang mekanik dan elektromagnetik) Gelombang

Lebih terperinci

PERBANDINGAN RESAPAN BISING PANEL AKUSTIK LIMBAH BONGGOL JAGUNG DENGAN AMPAS TEBU. Sebelas Maret Surakarta

PERBANDINGAN RESAPAN BISING PANEL AKUSTIK LIMBAH BONGGOL JAGUNG DENGAN AMPAS TEBU. Sebelas Maret Surakarta PERBANDINGAN RESAPAN BISING PANEL AKUSTIK LIMBAH BONGGOL JAGUNG DENGAN AMPAS TEBU Suranto Wahyu Nugroho 1,2, Sutrisno 1,3, Akhmad Fajar Adi 1 1. Program Studi Magister Teknik Mesin. Program Pasca Sarjana

Lebih terperinci

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK Sepertinya bunyi dalam padatan hanya berperan kecil dibandingkan bunyi dalam zat alir, terutama, di udara. Kesan ini mungkin timbul karena kita tidak dapat

Lebih terperinci