USULAN GROUND MOTION UNTUK EMPAT KOTA BESAR DI WILAYAH SUMATERA BERDASARKAN HASIL ANALISIS SEISMIC HAZARD MENGGUNAKAN MODEL SUMBER GEMPA 3 DIMENSI

Ukuran: px
Mulai penontonan dengan halaman:

Download "USULAN GROUND MOTION UNTUK EMPAT KOTA BESAR DI WILAYAH SUMATERA BERDASARKAN HASIL ANALISIS SEISMIC HAZARD MENGGUNAKAN MODEL SUMBER GEMPA 3 DIMENSI"

Transkripsi

1 USULAN GROUND MOTION UNTUK EMPAT KOTA BESAR DI WILAYAH SUMATERA BERDASARKAN HASIL ANALISIS SEISMIC HAZARD MENGGUNAKAN MODEL SUMBER GEMPA 3 DIMENSI TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung Oleh RAKHINDRO PANDHU MAHESWORO NIM : Program Studi Rekayasa Geoteknik PROGRAM STUDI MAGISTER TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN INSTITUT TEKNOLOGI BANDUNG 2008

2 ABSTRAK USULAN GROUND MOTION UNTUK EMPAT KOTA BESAR DI WILAYAH SUMATERA BERDASARKAN HASIL ANALISIS SEISMIC HAZARD MENGGUNAKAN MODEL SUMBER GEMPA 3 DIMENSI Oleh Rakhindro Pandhu Mahesworo NIM : Getaran pada tanah yang diakibatkan oleh perambatan gelombang gempa dapat digambarkan melalui data ground motion dalam bentuk acceleration time histories yang tercatat pada instrumen di stasiun pencatatan. Dengan ground motion ini dampak kejadian gempa bumi di suatu daerah dapat diketahui secara obyektif dan terukur (kuantitatif). Untuk wilayah Indonesia khususnya Pulau Sumatera, data ground motion yang tersedia masih sangat terbatas. Data catatan gempa umumnya berbentuk informasi mengenai lokasi pusat gempa, magnitude, kedalaman serta mekanisme gempa. Studi ini berisi pembahasan mengenai metode pembuatan ground motion dan ground motion yang diusulkan untuk empat kota utama di Pulau Sumatera.yang memiliki sejarah kegempaan aktif, yaitu kota Banda Aceh, kota Padang, kota Bengkulu, dan kota Bandar Lampung. Studi diawali dengan identifikasi sumber gempa yang dilakukan berdasarkan data histori s kejadian gempa dalam radius jarak 500 km dari lokasi studi dimana pada jarak ini sumber gempa diasumsikan masih memberikan pengaruh yang signifikan. Pembuatan model zona sumber gempa dilakukan berdasarkan hasil identifikasi sumber gempa dan kajian seismotektonik dan geologi regional. Model zona sumber gempa dibedakan untuk mekanisme gempa subduksi dan gempa kerak dangkal (shallow crustal), dimana mekanisme gempa subduksi sendiri terbagi atas zona megathrust/interface pada kedalaman hiposenter kurang dari 60 km dan zona benioff/intraslab pada kedalaman hiposenter lebih dari 60 km. Pengolahan dengan metode statistik terhadap data historis kejadian gempa dilakukan untuk menghasilkan data yang independen yang diperlukan dalam penentuan parameter seismik. Pengolahan ini meliputi konversi skala magnitude, analisis pemilahan gempa utama (main shocks) dengan gempa awalan/susulan (foreshocks/aftershocks) serta analisis kelengkapan data gempa (completeness). Parameter seismik menggambarkan karakteristik dan aktifitas kegempaan di tiap zona sumber gempa dan diperlukan sebagai input dalam PSHA. Parameter ini meliputi reccurence rate dan b-value, magnitude maksimum, slip rate dan fungsi atenuasi. Dengan model sumber gempa 3 dimensi, PSHA menghasilkan nilai percepatan maksimum (peak ground acceleration/pga) dan response spectra di batuan dasar yang lebih akurat. PSHA dalam studi ini dilakukan untuk periode ulang gempa 500 tahun (9.5% probabilitas dalam 50 tahun). Response spectra di batuan dasar kemudian diskalakan untuk periode spektral T=0.2 detik dan T=1.0 detik guna mendapatkan target spectra. Analisis spectral matching dari response spectra gempa karakteristik terhadap target spectra menghasilkan scaled spectra

3 dan scaled acceleration time histories di batuan dasar yang diusulkan sebagai ground motion desain dalam studi ini. PSHA dan analisis spectral matching dalam studi ini dilakukan menggunakan program komputer EZ-FRISKTM Version 7.20 dari Risk Engineering Inc. Kata kunci : ground motion, acceleration time histories, PSHA, model sumber gempa 3 dimensi, target spectra, spectral matching, EZ-FRISK ABSTRACT

4 PROPOSED GROUND MOTION FOR FOUR CAPITAL CITIES IN SUMATERA REGION BASED ON SEISMIC HAZARD ANALYSIS RESULT USING 3-D FAULT SOURCE MODEL BY Rakhindro Pandhu Mahesworo NIM : Vibration of the ground due to seismic waves propagation can be clearly described by amounts of ground motion data in terms of acceleration time histories which is recorded at the station. Therefore, by interpretation of these ground motion data, evaluation of the effect of earthquake within a region can be conducted in objective and quantitative ways. Unfortunately, available recorded data for Indonesia and Sumatera region are mainly about the location of epicenter, magnitude, focal depth, and earthquake mechanism. Based on the condition, the study presents a method of developing proposed ground motion for four capital cities in Sumatera region which are seismically active i.e. Banda Aceh, Padang, Bengkulu, and Bandar Lampung. The study is discussed in the form of research methodology, and started with identification and collection of historical earthquake data within a radius of 500 km that significantly contributed to seismicity condition in site location of interest. By considering the seismotectonic and regional geologic aspects, the collected data are then used as a consideration in the making of earthquake source models. Distinction has been made to earthquake model as subduction model and shallow crustal model. Thus, subduction model itself are separated between megathrust zone, a zone with focal depth equal or less than 60 km, and benioff zone, a zone with focal depth more than 60 km. Several method which used in statistical operation of the data are magnitude scale conversion, analysis of dependency, and analysis of completeness. Seismic parameters illustrate characteristic and earthquake activity in every source of earthquake zone and needed as input in PSHA. This parameter covers recurrence rate and b-value, maximum magnitude, slip rate and attenuation function. Furthermore, analysis of seismic hazard for 500 years of return period is performed based on probabilistic concept using 3-dimensional source model which is derived from these earthquake models and seismic parameters. This analysis gives accurate results of peak ground acceleration and response spectra at bedrock. Response spectra at bed-rock afterwards put into scale for spectral period of 0.2 sec and 1.0 sec to obtain the target spectra. Analysis of spectral matching from characteristic earthquake response spectra to target spectra results the scaled spectra and the scaled acceleration time histories at bed-rock which is proposed as ground motion design in this study. PHSA and spectral matching analysis in this study is performed by using computer program EZ-FRISKTM Version 7.20 from Risk Engineering Inc. Keywords : ground motion, acceleration time histories, PSHA, 3-D fault source model, target spectra, spectral matching, EZ-FRISK

5 USULAN GROUND MOTION UNTUK EMPAT KOTA BESAR DI WILAYAH SUMATERA BERDASARKAN HASIL ANALISIS SEISMIC HAZARD MENGGUNAKAN MODEL SUMBER GEMPA 3 DIMENSI Oleh Rakhindro Pandhu Mahesworo

6 NIM : Program Studi Rekayasa Geoteknik Institut Teknologi Bandung Menyetujui, Pembimbing Tanggal 19 Mei 2008 (Ir. Masyhur Irsyam, MSE.Ph.D.) PEDOMAN PENGGUNAAN TESIS Tesis S2 yang tidak dipublikasikan terdaftar dan tersedia di Perpustakaan Institut Teknologi Bandung dan terbuka untuk umum dengan ketentuan bahwa hak cipta ada pada pengarang dengan mengikuti aturan HaKi yang berlaku di Institut Teknologi Bandung. Referensi kepustakaan diperkenankan dicatat, tetapi pengutipan atau peringkasan hanya dapat dilakukan seizin pengarang dan harus disertai dengan kebiasaan ilmiah untuk menyebutkan sumbernya.

7 Memperbanyak atau menerbitkan sebagian atau seluruh tesis haruslah seizin Direktur Program Pascasarjana, Institut Teknologi Bandung.

8 Dipersembahkan kepada Istriku Tercinta, alm.bapak dan Ibu, Papa dan Mama, serta Adik-adikku UCAPAN TERIMA KASIH Penulis haturkan terima kasih yang sebesar-besarnya kepada Ir. Masyhur Irsyam,MSE., Ph.D. selaku dosen pembimbing yang telah memberikan saran, bimbingan, terkait penulisan tesis ini. Terima kasih dihaturkan kepada Ir. Endra Susila, M.T., Ph.D., dan Ir. Hasbullah Nawir, M.T., Ph.D. selaku dosen penguji atas segala saran, nasihat, dan masukan teknis selama ujian seminar dan sidang tesis ini.

9 Penulis juga meghaturkan terima kasih yang sebesar-besarnya kepada : 1. Ir.Donny Triananda Dangkua, M.T. 2. Badan Meteorologi dan Geofisika Indonesia 3. Dr.P.J. Prih Harijadi, Badan Meteorologi dan Geofisika Indonesia 4. I Nyoman Sukanta, S.Si., M.T, Badan Meteorologi dan Geofisika Indonesia 5. Guswanto M.Si., Puslitbang Badan Meteorologi dan Geofisika Indonesia 6. Eko Heriyanto, S.T., Puslitbang Badan Meteorologi dan Geofisika Indonesia 7. Dr.Theo F.Najoan, Pusat SDA Departemen Pekerjaan Umum 8. Dr.Wahyu Triyoso, Departemen Meteorologi dan Geofisika, ITB 9. Ir. I Wayan Sengara, MSCE., Ph.D., PPAU-IR ITB 10. Ir. Engkon Kertapati, Badan Geologi Departemen ESDM 11. Staf Pengajar Pascasarjana Program Studi Teknik Sipil Rekayasa Geoteknik, Fakultas Teknik Sipil dan Lingkungan, ITB 12. Sahabat-sahabat Rumah C Engineering 13. Staf Tata Usaha S2 Teknik Sipil ITB 14. Staf Teknik Balai Geoteknik Pusat Jalan dan Jembatan Dep.PU, Fahmi, ST.MT., Desyanti, ST., Nu man, ST. 15. Geoteknik 2005 : Irwan Lie Keng, ST., MT., I Nengah Sukertha, ST.MT., Fritz Rudolph, ST., Inggrid Multirezeki, ST., A.Vari S., ST. 16. Rekan-rekan S2 dan S3 Geoteknik Angkatan 2004, 2006, Istriku tercinta, dr. Dneska Woro Andini 18. Eyang H.K.R.M.H. Sriyanto Kusumo sarimbit 19. Bapak dan Ibu, alm.ir.harijadi P.Ismojo dan Ir. Indrawati Soepardjo

10 20. Papa dan Mama, Ir.Harijono Moehardjo M.Sc. dan Ir, Sri Woro B.Harijono.M.Sc. 21. Adik-adikku, Ir. Rahindradi Puntho Dwi Sambodho, dr. Andino Zavtra, dan Ir. Rahtanti Widiasari 22. Kel.Besar Harijadi P.Ismojo dan Kel.Besar Indrawati Soepardjo 23. Kel. Besar Harijono Moehardjo dan Kel. Besar Sri Woro B.Harijono 24. Sahabat-sahabatku 25. Seluruh pihak yang tidak dapat disebutkan satu per satu Semoga tesis ini dapat bermanfaat dalam perkembangan ilmu rekayasa kegempaan. Kritik dan saran yang bermanfaat sangat diharapkan, sebagai koreksi dan masukan dalam studi ini. Bandung, Mei 2008

11 DAFTAR ISI Daftar Isi Daftar Gambar Daftar Tabel i iv xiii Bab I Pendahuluan I-1 I.1 Latar Belakang I-1 I.2 Tujuan Penelitian I-3 I.3 Lingkup Penelitian I-4 I.4 Metodologi Penelitian I-4 I.5 Sistematika Penulisan I-7 Bab II Tinjauan Pustaka II.1 Gempa Bumi dan Seismologi II.1.1 Gelombang Seismik II.1.2 Continental Drift dan Plate Tectonic II.1.3 Patahan II.1.4 Teori Elastic Rebound II.1.5 Notasi Geometrik II.1.6 Lokasi Gempa II.1.7 Ukuran Gempa II.2 Strong Ground Motion II.2.1 Pengukuran Strong Ground Motion II.2.2 Parameter Ground Motion II.3 Analisis Seismic Hazard II-1 II-1 II-2 II-4 II-10 II-12 II-13 II-14 II-15 II-21 II-22 II-23 II-27 II.3.1 Identifikasi dan Evaluasi Sumber-sumber Gempa II-27 II.3.2 Analisis Seismic Hazard Probabilistik II-28 II.3.3 Konsep Probabilistik Untuk Model Sumber Gempa Tiga Dimensi Dalam Program Komputer EZ-FRISK TM II-37 i

12 II.4 Pembuatan Ground Motion II.4.1 Spectral Matching Dalam Program Komputer EZ-FRISK TM Bab III Kondisi Seismotektonik Wilayah Sumatera III.1 Seismotektonik Indonesia III.2 Seismotektonik Pulau Sumatera dan Sekitarnya III.2.1 Zona Subduksi Sunda Arc Bagian Barat (Segmen Sumatera) III.2.2 Zona Transformasi Patahan Sumatera III.2.3 Patahan Dangkal Selat Sunda Bab IV Parameter Seismik IV.1 Pengumpulan dan Pengolahan Data Gempa IV.1.1 Konversi Skala Magnitude IV.1.2 Analisis Pemisahan Gempa Utama IV.1.3 Analisis Kelengkapan Data Gempa IV.2 Pemodelan Sumber Gempa dan Profil Hiposenter IV.3 b-value dan Annual Rate IV.4 Magnitude Maksimum dan Slip Rate IV.5 Fungsi Atenuasi II-40 II-41 III-1 III-1 III-8 III-10 III-13 III-17 IV-1 IV-1 IV-3 IV-4 IV-7 IV-11 IV-19 IV-23 IV-25 Bab V Hasil Analisis Seismic Hazard Dan Ground Motion Desain V-1 V.1 Logic Tree V-1 V.2 Analisis Seismic Hazard V-3 V.2.1 Seismic Hazard Exposure V-4 V.2.2 Probabilistic Hazard Spectra V-6 V.2.3 Hasil Analisis Seismic Hazard dengan Fungsi Atenuasi Next Generation Attenuation (NGA) V-19 V.2.4 Kurva Deagregasi dan Controlling Earthquake V-27 V.2.5 Target Spectra (Scaled Spectra) V-32 ii

13 V.3 Time Histories V-41 V.3.1 Spectral Matching V-41 V.3.2 Ground Motion Desain V-58 Bab VI Kesimpulan dan Saran VI.1 Kesimpulan VI.2 Saran VI-1 VI-1 VI-3 Daftar Pustaka xviii iii

14 DAFTAR GAMBAR Gambar I-1 Kerusakan yang ditimbulkan oleh fenomena akibat gempa bumi (dimodifikasi dari Wikipedia.org, 2007)... I-1 Gambar II-1Riwayat terjadinya gempa bumi (Tarbuck & Lutgens, 2001)... II-1 Gambar II-2 Gelombang seismik berupa gelombang badan (USGS, 2007)... II-2 Gambar II-3 Gelombang seismik berupa gelombang permukaan (USGS, 2007)... II-3 Gambar II-4 Teori continental drift (Wegener, 1912)... II-4 Gambar II-5 Major tectonic plates, mid-oceanic ridges, trenches, dan transform fault pada permukaan bumi, tanda panah menunjukkan arah pergerakan lempeng (Fowler, 1990)... II-5 Gambar II-6 Titik-titik merah menunjukkan sebaran episenter gempa yang menggambarkan aktifitas seismik. Gempa terjadi pada batas pertemuan lempeng (dimodifikasi dari IISE BRI Tsukuba, 2002)... II-6 Gambar II-7 Struktur bumi dan arus konveksi dalam selimut bumi (Noson,dkk., 1988) II-7 Gambar II-8 Spreading ridge pada kerak samudera (dimodifikasi dari )... II-8 Gambar II-9 Zona subduksi, kerak samudera menunjam ke bawah kerak benua (dimodifikasi dari )... II-9 Gambar II-10 Zona patahan transformasi pada kerak benua (dimodifikasi dari )... II-9 Gambar II-11 Gerakan patahan dengan mekanisme dip slip (dimodifikasi dari )... II-11 Gambar II-12 Gerakan patahan dengan mekanisme strike slip (dimodifikasi dari )... II-11 Gambar II-13 Oblique fault (Crystal Wicker, 2007)... II-12 Gambar II-14 Teori elastic rebound (Reid, 1911)... II-13 Gambar II-15 Notasi geometrik untuk menggambarkan lokasi gempa (Shakal & Bernreuter, 1981; Boore & Joyner, 1982)... II-14 Gambar II-16 Penentuan lokasi episenter dengan metode grafis (dimodifikasi dari Foster, 1988)... II-15 iv

15 Gambar II-17 Perbandingan berbagai skala intensitas gempa (Richter, 1958; Murphy & O Brien, 1977)... II-17 Gambar II-18 Penentuan skala lokal Richter berdasarkan amplitudo dan jarak episenter atau waktu tiba gelombang p-s (Richter, 1933)... II-18 Gambar II-19 Pencatatan ground motion dengan seismograf (dimodifikasi dari )... II-22 Gambar II-20 Prinsip kerja seismograf berdasarkan sistem derajat satu kebebasam dengan massa (mass), pegas (spring), dan peredam (damper) (Kramer, 1996).. II- 23 Gambar II-21 Data pencatatan ground motion berupa time histories terhadap percepatan, kecepatan, dan perpindahan (Kramer, 1996)... II-24 Gambar II-22 Kandungan frekuensi dalam respon spektra (Kramer, 1996)... II-26 Gambar II-23 Tahapan dalam analisis seismic hazard probabilistik (Kramer, 1996).. II-29 Gambar II-24 Geometri model sumber gempa (a) patahan pendek yang dimodelkan sebagai point source (b) patahan dangkal yang dimodelkan sebagai linear source (c) sumber gempa 3-dimensi (Kramer, 1996)... II-30 Gambar II-25 Distribusi probabilitas jarak untuk berbagai geometri sumber gempa (Kramer, 1996)... II-31 Gambar II-26 Gutenberg-Richter recurrence law (Kramer, 1996)... II-32 Gambar II-27 Recurrence law berdasarkan data seismik (Gutenberg-Richter law) dan data geologi (characteristic law ) (Kramer, 1996)... II-33 Gambar II-28 Contoh logic tree (Coppersmith & Youngs, 1986)... II-35 Gambar II-29 Contoh kurva deagregasi untuk menentukan controlling earthquake (Irsyam, dkk., 2006)... II-36 Gambar II-30 Karakteristik patahan dalam program komputer EZ-FRISK TM (Risk Engineering, 2007)... II-38 Gambar II-31 Definisi jarak pada patahan dalam program komputer EZ- FRISK TM (Risk Engineering, 2007)... II-40 Gambar III-1 Letak Indonesia pada pertemuan lempeng tektonik dunia (dimodifikasi dari Shah & Boen, 1996)... III-2 Gambar III-2 Lingkaran api Sirkum Pasifik yang melewati wilayah Indonesia (dimodifikasi dari )... III-2 Gambar III-3 Aktifitas gempa di wilayah Indonesia (USGS-NEIC, 2000)... III-3 v

16 Gambar III-4 Tipikal struktur busur kepulauan wilayah Indonesia (Encyclopedia Britannica, Inc., 1994)... III-3 Gambar III-5 Zona subduksi (Karig, 1971)... III-5 Gambar III-6 Zona transformasi (dimodifikasi dari )... III-7 Gambar III-7 Mekanisme fault pada zona transformasi (dimodifikasi dari )... III-7 Gambar III-8 Mekanisme back-arc thrust pada zona difusi (dimodifikasi dari )... III-8 Gambar III-9 Tatanan tektonik Pulau Sumatera dan sekitarnya (Natawidjaja, 2003)... III-9 Gambar III-10 Gempa-gempa historis yang pernah terjadi di wilayah Sumatera (Natawidjaja dkk., 2007)... III-10 Gambar III-11 Sumber gempa bumi megathrust di zona subduksi Sumatera (Natawidjaja, 2005)... III-11 Gambar III-12 Zona-zona rupture gempa di sepanjang segmen Sumatera (Newcomb dan McCAnn,1987)... III-13 Gambar III-13 Tatanan tektonik regional dan geometri patahan Sumatera. patahan Sumatera merupakan palung sejajar, bergerak dalam arah right-lateral strike slip, melewati hanging wall subduksi Sumatera dari Selat Sunda hingga pusat pemekaran di Laut Andaman (Sieh & Natawidjaja, 2000)... III-14 Gambar III-14 Segmen-segmen dalam Sistem Patahan Sesar Sumatera (Sieh & Natawidjaja, 2000)... III-15 Gambar IV-1 Sebaran episenter gempa di Indonesia. tahun pengamatan dengan magnitude minimum 5.0 dan kedalaman maksimum 250 km. IV-2 Gambar IV-2 Hubungan antar skala magnitude (Idriss, 1985)... IV-3 Gambar IV-3 Kriteria time windows untuk analisis pemisahan gempa utama... IV-5 Gambar IV-4 Kriteria distance windows untuk analisis pemisahan gempa utama... IV-5 Gambar IV-5 Sebaran episenter gempa utama di indonesia. tahun pengamatan dengan magnitude minimum 5.0 dan kedalaman maksimum 250 km. IV-6 Gambar IV-6 Sebaran episenter gempa utama di indonesia berdasarkan magnitude. tahun pengamatan dengan magnitude minimum 5.0 dan kedalaman maksimum 250 km... IV-6 vi

17 Gambar IV-7 Sebaran episenter gempa utama di pulau sumatera dan sekitarnya berdasarkan magnitude. tahun pengamatan dengan magnitude minimum 5.0 dan kedalaman maksimum 250 km... IV-7 Gambar IV-8 Hasil analisis kelengkapan data gempa dengan kriteria Stepp (1973)... IV-9 Gambar IV-9 Hasil analisis kelengkapan data gempa dengan kriteria Stepp (1973)... IV-10 Gambar IV-10 Model zona subduksi yang terdiri dari zona megathrust dan zona Benioff (Crouse, 1992)... IV-11 Gambar IV-11 Zona sumber gempa bumi indonesia (Kertapati, E.K., Sonny Mawardi. 2000)... IV-12 Gambar IV-12 Segmentasi dan potongan melintang profil hipisenter dalam zona gempa di wilayah Indonesia (Newcomb & McCAnn, 1987)... IV-13 Gambar IV-13 Sebaran episenter gempa di pulau sumatera dan sekitarnya berdasarkan mekanisme gempa... IV-14 Gambar IV-14 Zona sumber gempa subduksi megathrust dan benioff di pulau sumatera dan sekitarnya... IV-14 Gambar IV-15 Potongan melintang profil hiposenter segmen-1... IV-15 Gambar IV-16 Potongan melintang profil hiposenter segmen IV-15 Gambar IV-17 Potongan melintang profil hiposenter segmen IV-15 Gambar IV-18 Potongan melintang profil hiposenter segmen IV-16 Gambar IV-19 Potongan melintang profil hiposenter segmen IV-16 Gambar IV-20 Potongan melintang profil hiposenter segmen IV-16 Gambar IV-21 Potongan melintang profil hiposenter segmen IV-17 Gambar IV-22 Potongan melintang profil hiposenter segmen IV-17 Gambar IV-23 Potongan melintang profil hiposenter segmen IV-17 Gambar IV-24 Potongan melintang profil hiposenter segmen IV-18 Gambar IV-25 Frekuensi kejadian gempa tiap zona sumber gempa untuk Pulau Sumatera dan sekitarnya... IV-22 Gambar IV-26 Perbandingan berbagai fungsi atenuasi untuk gempa strike slip dan reverse slip (Firmansjah & Irsyam, 2000)... IV-26 vii

18 Gambar IV-27 Perbandingan berbagai fungsi atenuasi untuk gempa subduksi (Firmansjah & Irsyam, 2000)... IV-27 Gambar V-1 Logic tree untuk zona gempa subduksi... V-2 Gambar V-2 Logic tree untuk zona gempa shallow crustal... V-3 Gambar V-3 Kurva seismic hazard exposure untuk kota Banda Aceh... V-4 Gambar V-4 Kurva seismic hazard exposure untuk kota Padang... V-5 Gambar V-5 Kurva seismic hazard exposure untuk kota Bengkulu... V-5 Gambar V-6 Kurva seismic hazard exposure untuk kota Bandar Lampung... V-6 Gambar V-7 Kurva seismic hazard exposure untuk seluruh kota... V-6 Gambar V-8 Probabilistic hazard spectra PGA untuk kota Banda Aceh... V-7 Gambar V-9 Probabilistic hazard spectra PGA untuk kota Padang... V-8 Gambar V-10 Probabilistic hazard spectra PGA untuk kota Bengkulu... V-8 Gambar V-11 Probabilistic hazard spectra PGA untuk kota Bandar Lampung... V-9 Gambar V-12 Perbandingan probabilistic hazard spectra PGA (all source) untuk seluruh kota... V-9 Gambar V-13 Perbandingan probabilistic hazard spectra PGA (megathrust) untuk seluruh kota... V-10 Gambar V-14 Perbandingan probabilistic hazard spectra PGA (benioff) untuk seluruh kota... V-10 Gambar V-15 Perbandingan probabilistic hazard spectra PGA (shallow crustal) untuk seluruh kota... V-11 Gambar V-16 Probabilistic hazard spectra T=0.2 detik untuk kota Banda Aceh... V-11 Gambar V-17 Probabilistic hazard spectra T=0.2 detik untuk kota Padang... V-12 Gambar V-18 Probabilistic hazard spectra T=0.2 detik untuk kota Bengkulu... V-12 Gambar V-19 Probabilistic hazard spectra T=0.2 detik untuk kota Bandar Lampung. V-13 Gambar V-20 Perbandingan probabilistic hazard spectra T=0,2 detik (all source) untuk seluruh kota... V-13 Gambar V-21 Perbandingan probabilistic hazard spectra T=0,2 detik (megathrust) untuk seluruh kota... V-14 viii

19 Gambar V-22 Perbandingan probabilistic hazard spectra T=0,2 detik (benioff) untuk seluruh kota... V-14 Gambar V-23 Perbandingan probabilistic hazard spectra T=0,2 detik (shallow crustal) untuk seluruh kota... V-15 Gambar V-24 Probabilistic hazard spectra T=1.0 detik untuk kota Banda Aceh... V-15 Gambar V-25 Probabilistic hazard spectra T=1.0 detik untuk kota Padang... V-16 Gambar V-26 Probabilistic hazard spectra T=1.0 detik untuk kota Bengkulu... V-16 Gambar V-27 Probabilistic hazard spectra T=1.0 detik untuk kota Bandar Lampung. V-17 Gambar V-28 Perbandingan probabilistic hazard spectra T=1.0 detik (all source) untuk seluruh kota... V-17 Gambar V-29 Perbandingan probabilistic hazard spectra T=1.0 detik (megathrust) untuk seluruh kota... V-18 Gambar V-30 Perbandingan probabilistic hazard spectra T=1.0 detik (benioff) untuk seluruh kota... V-18 Gambar V-31 Perbandingan probabilistic hazard spectra T=1.0 detik (shallow crustal) untuk seluruh kota... V-19 Gambar V-32 Perbandingan kurva seismic hazard exposure untuk seluruh kota berdasarkan hasil analisis seismic hazard dengan fungsi atenuasi dalam studi ini dan fungsi atenuasi NGA... V-20 Gambar V-33 Perbandingan probabilistic hazard spectra PGA untuk kota Banda Aceh berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA V-21 Gambar V-34 Perbandingan probabilistic hazard spectra T=0,2 detik untuk kota Banda Aceh berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA... V-21 Gambar V-35 Perbandingan probabilistic hazard spectra T=1.0 detik untuk kota Banda Aceh berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA... V-22 Gambar V-36 Perbandingan probabilistic hazard spectra PGA untuk kota Padang berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA V-22 Gambar V-37 Perbandingan probabilistic hazard spectra T=0.2 detik untuk kota Padang berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA V-23 Gambar V-38 Perbandingan probabilistic hazard spectra T=1.0 detik untuk kota Padang berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA V-23 ix

20 Gambar V-39 Perbandingan probabilistic hazard spectra PGA untuk kota Bengkulu berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA V-24 Gambar V-40 Perbandingan probabilistic hazard spectra T=0.2 detik untuk kota Bengkulu berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA... V-24 Gambar V-41 Perbandingan probabilistic hazard spectra T=1.0 detik untuk kota Bengkulu berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA... V-25 Gambar V-42 Perbandingan probabilistic hazard spectra PGA untuk kota Bandar Lampung berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA... V-25 Gambar V-43 Perbandingan probabilistic hazard spectra T=0.2 detik untuk kota Bandar Lampung berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA... V-26 Gambar V-44 Perbandingan probabilistic hazard spectra T=1.0 detik untuk kota Bandar Lampung berdasarkan fungsi atenuasi dalam stud ini dan fungsi atenuasi NGA... V-26 Gambar V-45 Kurva deagregasi T=0.2 detik untuk kota Banda Aceh... V-28 Gambar V-46 Kurva deagregasi T=0.2 detik untuk kota Padang... V-28 Gambar V-47 Kurva deagregasi T=0.2 detik untuk kota Bengkulu... V-29 Gambar V-48 Kurva deagregasi T=0.2 detik untuk kota Bandar Lampung... V-29 Gambar V-49 Kurva deagregasi T=1.0 detik untuk kota Banda Aceh... V-30 Gambar V-50 Kurva deagregasi T=1.0 detik untuk kota Padang... V-30 Gambar V-51 Kurva deagregasi T=1.0 detik untuk kota Bengkulu... V-31 Gambar V-52 Kurva deagregasi T=1.0 detik untuk kota Bandar Lampung... V-31 Gambar V-53 Scaled spectra pada T=0.2 detik untuk kota Banda Aceh... V-33 Gambar V-54 Scaled spectra pada T=0.2 detik untuk kota Padang... V-33 Gambar V-55 Scaled spectra pada T=0.2 detik untuk kota Bengkulu... V-34 Gambar V-56 Scaled spectra pada T=0.2 detik untuk kota Bandar Lampung... V-34 Gambar V-57 Scaled spectra pada T=1.0 detik untuk kota Banda Aceh... V-35 Gambar V-58 Scaled spectra pada T=1.0 detik untuk kota Padang... V-35 x

21 Gambar V-59 Scaled spectra pada T=1.0 detik untuk kota Bengkulu... V-36 Gambar V-60 Scaled spectra pada T=1.0 detik untuk kota Bandar Lampung... V-36 Gambar V-61 Scaled spectra untuk seluruh kota dengan mekasnime gempa all source dan T=0.2 detik... V-37 Gambar V-62 Scaled spectra untuk seluruh kota dengan mekasnime gempa megathrust dan T=0.2 detik... V-37 Gambar V-63 Scaled spectra untuk seluruh kota dengan mekasnime gempa benioff dan T=0.2 detik... V-38 Gambar V-64 Scaled spectra untuk seluruh kota dengan mekasnime gempa shallow crustal dan T=0.2 detik... V-38 Gambar V-65 Scaled spectra untuk seluruh kota dengan mekasnime gempa all source dan T=1.0 detik... V-39 Gambar V-66 Scaled spectra untuk seluruh kota dengan mekasnime gempa megathrust dan T=1.0 detik... V-39 Gambar V-67 Scaled spectra untuk seluruh kota dengan mekasnime gempa benioff dan T=1.0 detik... V-40 Gambar V-68 Scaled spectra untuk seluruh kota dengan mekasnime gempa shallow crustal dan T=1.0 detik... V-40 Gambar V-69 Hasil spectral matching untuk kota Banda Aceh dengan mekanisme gempa all source dan T=0.2 detik... V-42 Gambar V-70 Hasil spectral matching untuk kota Banda Aceh dengan mekanisme gempa megathrust dan T=0.2 detik... V-43 Gambar V-71 Hasil spectral matching untuk kota Banda Aceh dengan mekanisme gempa benioff dan T=0.2 detik... V-43 Gambar V-72 Hasil spectral matching untuk kota Banda Aceh dengan mekanisme gempa shallow crustal dan T=0.2 detik... V-44 Gambar V-73 Hasil spectral matching untuk kota Padang dengan mekanisme gempa all source dan T=0.2 detik... V-44 Gambar V-74 Hasil spectral matching untuk kota Padang dengan mekanisme gempa megathrust dan T=0.2 detik... V-45 Gambar V-75 Hasil spectral matching untuk kota Padang dengan mekanisme gempa benioff dan T=0.2 detik... V-45 Gambar V-76 Hasil spectral matching untuk kota Padang dengan mekanisme gempa shallow crustal dan T=0.2 detik... V-46 xi

22 Gambar V-77 Hasil spectral matching untuk kota Bengkulu dengan mekanisme gempa all source dan T=0.2 detik... V-46 Gambar V-78 Hasil spectral matching untuk kota Bengkulu dengan mekanisme gempa megathrust dan T=0.2 detik... V-47 Gambar V-79 Hasil spectral matching untuk kota Bengkulu dengan mekanisme gempa benioff dan T=0.2 detik... V-47 Gambar V-80 Hasil spectral matching untuk kota Bengkulu dengan mekanisme gempa shallow crustal dan T=0.2 detik... V-48 Gambar V-81 Hasil spectral matching untuk kota Bandar Lampung dengan mekanisme gempa all source dan T=0.2 detik... V-48 Gambar V-82 Hasil spectral matching untuk kota Bandar Lampung dengan mekanisme gempa megathrust dan T=0.2 detik... V-49 Gambar V-83 Hasil spectral matching untuk kota Bandar Lampung dengan mekanisme gempa benioff dan T=0.2 detik... V-49 Gambar V-84 Hasil spectral matching untuk kota Bandar Lampung dengan mekanisme gempa shallow crustal dan T=0.2 detik... V-50 Gambar V-85 Hasil spectral matching untuk kota Banda Aceh dengan mekanisme gempa all source dan T=1.0 detik... V-50 Gambar V-86 Hasil spectral matching untuk kota Banda Aceh dengan mekanisme gempa megathrust dan T=1.0 detik... V-51 Gambar V-87 Hasil spectral matching untuk kota Banda Aceh dengan mekanisme gempa benioff dan T=1.0 detik... V-51 Gambar V-88 Hasil spectral matching untuk kota Banda Aceh dengan mekanisme gempa shallow crustal dan T=1.0 detik... V-52 Gambar V-89 Hasil spectral matching untuk kota Padang dengan mekanisme gempa all source dan T=1.0 detik... V-52 Gambar V-90 Hasil spectral matching untuk kota Padang dengan mekanisme gempa megathrust dan T=1.0 detik... V-53 Gambar V-91 Hasil spectral matching untuk kota Padang dengan mekanisme gempa benioff dan T=1.0 detik... V-53 Gambar V-92 Hasil spectral matching untuk kota Padang dengan mekanisme gempa shallow crustal dan T=1.0 detik... V-54 Gambar V-93 Hasil spectral matching untuk kota Bengkulu dengan mekanisme gempa all source dan T=1.0 detik... V-54 xii

23 Gambar V-94 Hasil spectral matching untuk kota Bengkulu dengan mekanisme gempa megathrust dan T=1.0 detik... V-55 Gambar V-95 Hasil spectral matching untuk kota Bengkulu dengan mekanisme gempa benioff dan T=1.0 detik... V-55 Gambar V-96 Hasil spectral matching untuk kota Bengkulu dengan mekanisme gempa shallow crustal dan T=1.0 detik... V-56 Gambar V-97 Hasil spectral matching untuk kota Bandar Lampung dengan mekanisme gempa all source dan T=1.0 detik... V-56 Gambar V-98 Hasil spectral matching untuk kota Bandar Lampung dengan mekanisme gempa megathrust dan T=1.0 detik... V-57 Gambar V-99 Hasil spectral matching untuk kota Bandar Lampung dengan mekanisme gempa benioff dan T=1.0 detik... V-57 Gambar V-100 Hasil spectral matching untuk kota Bandar Lampung dengan mekanisme gempa shallow crustal dan T=1.0 detik... V-58 Gambar V-101 Ground motion desain untuk kota Banda Aceh dengan mekasnime gempa all source dan T=0.2 detik... V-59 Gambar V-102 Ground motion desain untuk kota Banda Aceh dengan mekasnime gempa megathrust dan T=0.2 detik... V-60 Gambar V-103 Ground motion desain untuk kota Banda Aceh dengan mekasnime gempa benioff dan T=0.2 detik... V-61 Gambar V-104 Ground motion desain untuk kota Banda Aceh dengan mekasnime gempa shallow crustal dan T=0.2 detik... V-62 Gambar V-105 Ground motion desain untuk kota Padang dengan mekasnime gempa all source dan T=0.2 detik... V-63 Gambar V-106 Ground motion desain untuk kota Padang dengan mekasnime gempa megathrust dan T=0.2 detik... V-64 Gambar V-107 Ground motion desain untuk kota Padang dengan mekasnime gempa benioff dan T=0.2 detik... V-65 Gambar V-108 Ground motion desain untuk kota Padang dengan mekasnime gempa shallow crustal dan T=0.2 detik... V-66 Gambar V-109 Ground motion desain untuk kota Bengkulu dengan mekasnime gempa all source dan T=0.2 detik... V-67 Gambar V-110 Ground motion desain untuk kota Bengkulu dengan mekasnime gempa megathrust dan T=0.2 detik... V-68 xiii

24 Gambar V-111 Ground motion desain untuk kota Bengkulu dengan mekasnime gempa benioff dan T=0.2 detik... V-69 Gambar V-112 Ground motion desain untuk kota Bengkulu dengan mekasnime gempa shallow crustal dan T=0.2 detik... V-70 Gambar V-113 Ground motion desain untuk kota Bandar Lampung dengan mekasnime gempa all source dan T=0.2 detik... V-71 Gambar V-114 Ground motion desain untuk kota Bandar Lampung dengan mekasnime gempa megathrust dan T=0.2 detik... V-72 Gambar V-115 Ground motion desain untuk kota Bandar Lampung dengan mekasnime gempa benioff dan T=0.2 detik... V-73 Gambar V-116 Ground motion desain untuk kota Bandar Lampung dengan mekasnime gempa shallow crustal dan T=0.2 detik... V-74 Gambar V-117 Ground motion desain untuk kota Banda Aceh dengan mekasnime gempa all source dan T=1.0 detik... V-75 Gambar V-118 Ground motion desain untuk kota Banda Aceh dengan mekasnime gempa megathrust dan T=1.0 detik... V-76 Gambar V-119 Ground motion desain untuk kota Banda Aceh dengan mekasnime gempa benioff dan T=1.0 detik... V-77 Gambar V-120 Ground motion desain untuk kota Banda Aceh dengan mekasnime gempa shallow crustal dan T=1.0 detik... V-78 Gambar V-121 Ground motion desain untuk kota Padang dengan mekasnime gempa all source dan T=1.0 detik... V-79 Gambar V-122 Ground motion desain untuk kota Padang dengan mekasnime gempa megathrust dan T=1.0 detik... V-80 Gambar V-123 Ground motion desain untuk kota Padang dengan mekasnime gempa benioff dan T=1.0 detik... V-81 Gambar V-124 Ground motion desain untuk kota Padang dengan mekasnime gempa shallow crustal dan T=1.0 detik... V-82 Gambar V-125 Ground motion desain untuk kota Bengkulu dengan mekasnime gempa all source dan T=1.0 detik... V-83 Gambar V-126 Ground motion desain untuk kota Bengkulu dengan mekasnime megathrust dan T=1.0 detik... V-84 Gambar V-127 Ground motion desain untuk kota Bengkulu dengan mekasnime gempa benioff dan T=1.0 detik... V-85 xiv

25 Gambar V-128 Ground motion desain untuk kota Bengkulu dengan mekasnime shallow crustal dan T=1.0 detik... V-86 Gambar V-129 Ground motion desain untuk kota Bandar Lampung dengan mekasnime gempa all source dan T=1.0 detik... V-87 Gambar V-130 Ground motion desain untuk kota Bandar Lampung dengan mekasnime gempa megathrust dan T=1.0 detik... V-88 Gambar V-131 Ground motion desain untuk kota Bandar Lampung dengan mekasnime gempa benioff dan T=1.0 detik... V-89 Gambar V-132 Ground motion desain untuk kota Bandar Lampung dengan mekasnime gempa shallow crustal dan T=1.0 detik... V-90 xv

26 DAFTAR TABEL Tabel I-1 Gempa-gempa besar di Sumatera dan sekitarnya dalam lima tahun terakhir, tahun (USGS, 2007)... I-2 Tabel II-1 Skala intensitas Modified Mercalli (dimodifikasi dari )... II-16 Tabel II-2 Hubungan antara skala intensitas Modified Mercalli dengan skala magnitude Richter (dimodifikasi dari )... II-18 Tabel II-3 Hubungan empiris antara magnitude momen (M w ), panjang keruntuhan, L (km), luas area keruntuhan, A (km 2 ), dan perpindahan maksimum di permukaan, D (m) (Wells & Coppersmith, 1994)... II-28 Tabel II-4 Konstanta panjang zona keruntuhan (Wells & Coppersmith, 1994)... II-39 Tabel III-1 Panjang segmen dan gempa historis dalam sistem patahan sesar Sumatera (Sieh & Natawidjaja dkk., 2000)... III-16 Tabel IV-1 Sudut penunjaman tiap zona pada zona subduksi megathrust dan benioff pulau sumatera dan sekitarnya... IV-18 Tabel IV-2 b-value dan annual rate untuk Pulau Sumatera dan sekitarnya... IV-23 Tabel IV-3 Magnitude maksimum untuk Pulau Sumatera dan sekitarnya... IV-24 Tabel IV-4 Slip rate untuk Pulau Sumatera dan sekitarnya (Sieh & Natawidjaja, 2000; Petersen, dkk., 2004)... IV-24 Tabel IV-5 Standard error dari fungsi atenuasi untuk mekanisme gempa reverse slip (Firmansjah & Irsyam, 2000)... IV-25 Tabel IV-6 Standard error dari fungsi atenuasi untuk mekanisme gempa strike slip (Firmansjah & Irsyam, 2000)... IV-26 Tabel IV-7 Standard error dari fungsi atenuasi untuk mekanisme gempa subduksi (Firmansjah & Irsyam, 2000)... IV-26 Tabel IV-8 Koefisien yang digunakan dalam fungsi atenuasi Youngs (1997) untuk menentukan pseudo acceleration response spectra dengan 5% damping untuk rock Site... IV-28 Tabel IV-9 Koefisien yang digunakan dalam fungsi atenuasi Boore et.al. (1997) untuk menentukan pseudo acceleration response spectra dengan 5% damping... IV-29 xvi

27 Tabel IV-10 Rekomendasi nilai kecepatan geser rata-rata untuk digunakan dalam fungsi atenuasi Boore et.al (Boore, Joyner, Fumal, 1997)... IV-29 Tabel IV-11 Koefisien yang digunakan dalam fungsi atenuasi Sadigh (1997) untuk M< IV-30 Tabel IV-12 Koefisien yang digunakan dalam fungsi atenuasi Sadigh (1997) untuk M> IV-31 Tabel V-1 Controlling magnitude dan controlling distance hasil deagregasi untuk periode spektral T=0.2 detik dan periode spektral T=1.0 detik... V-32 Tabel V-2 Karakteristik data pencatatan ground motion yang digunakan dalam spectral matching untuk periode spektral T=0.2 detik... V-41 Tabel V-3 Karakteristik data pencatatan ground motion yang digunakan dalam spectral matching untuk periode spektral T=1.0 detik... V-42 xvii

Bab I Pendahuluan. I.1 Latar Belakang

Bab I Pendahuluan. I.1 Latar Belakang Bab I Pendahuluan I.1 Latar Belakang Selama peradaban manusia, gempa bumi telah dikenal sebagai fenomena alam yang menimbulkan efek bencana yang terbesar, baik secara moril maupun materiil. Suatu gempa

Lebih terperinci

HALAMAN PERSETUJUAN TESIS PETA DEAGREGASI HAZARD GEMPA WILAYAH JAWA DAN REKOMENDASI GROUND MOTION DI EMPAT DAERAH

HALAMAN PERSETUJUAN TESIS PETA DEAGREGASI HAZARD GEMPA WILAYAH JAWA DAN REKOMENDASI GROUND MOTION DI EMPAT DAERAH HALAMAN PERSETUJUAN TESIS PETA DEAGREGASI HAZARD GEMPA WILAYAH JAWA DAN REKOMENDASI GROUND MOTION DI EMPAT DAERAH ii HALAMAN PENGESAHAN PETA DEAGREGASI HAZARD GEMPA WILAYAH JAWA DAN REKOMENDASI GROUND

Lebih terperinci

ANALISA RESIKO GEMPA DENGAN TEOREMA PROBABILITAS TOTAL UNTUK KOTA-KOTA DI INDONESIA YANG AKTIFITAS SEISMIKNYA TINGGI

ANALISA RESIKO GEMPA DENGAN TEOREMA PROBABILITAS TOTAL UNTUK KOTA-KOTA DI INDONESIA YANG AKTIFITAS SEISMIKNYA TINGGI ANALISA RESIKO GEMPA DENGAN TEOREMA PROBABILITAS TOTAL UNTUK KOTA-KOTA DI INDONESIA YANG AKTIFITAS SEISMIKNYA TINGGI Helmy Darjanto 1 Adhi Muhtadi 2 1 Dosen & Praktisi, Anggota Himpunan Ahli Teknik Tanah

Lebih terperinci

RESIKO GEMPA PULAU SUMATRA DENGAN METODA PROBABILISTIC SEISMIC HAZARD ANAL YSIS (PSHA) THESIS MAGISTER OLEH: D. PRAHERDIAN PUTRA

RESIKO GEMPA PULAU SUMATRA DENGAN METODA PROBABILISTIC SEISMIC HAZARD ANAL YSIS (PSHA) THESIS MAGISTER OLEH: D. PRAHERDIAN PUTRA RESIKO GEMPA PULAU SUMATRA DENGAN METODA PROBABILISTIC SEISMIC HAZARD ANAL YSIS (PSHA) THESIS MAGISTER OLEH: D. PRAHERDIAN PUTRA 250 96 034 BIDANG KHUSUS REKAYASA GEOTEKNIK PROGRAM STUDI TEKNIK SIPIL,

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMA PERNYATAAN KATAPENGANTAR ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL BAB I.

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMA PERNYATAAN KATAPENGANTAR ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL BAB I. DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMA PERNYATAAN... iii KATAPENGANTAR... iv ABSTRAK... v ABSTRACT... vi DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xiii BAB I. PENDAHULUAN

Lebih terperinci

MIKROZONASI GEMPA UNTUK KOTA SEMARANG TESIS MAGISTER. Oleh : OKKY AHMAD PURWANA

MIKROZONASI GEMPA UNTUK KOTA SEMARANG TESIS MAGISTER. Oleh : OKKY AHMAD PURWANA MIKROZONASI GEMPA UNTUK KOTA SEMARANG TESIS MAGISTER Oleh : OKKY AHMAD PURWANA 25099088 BIDANG KHUSUS GEOTEKNIK PROGRAM STUDI REKAYASA SIPIL PROGRAM PASCASARJANA INSTITUT TEKNOLOGI BANDUNG 2001 ABSTRAK

Lebih terperinci

DEAGREGASI SEISMIC HAZARD KOTA SURAKARTA`

DEAGREGASI SEISMIC HAZARD KOTA SURAKARTA` DEAGREGASI SEISMIC HAZARD KOTA SURAKARTA` Deaggregation Seismic Hazard of Surakarta City SKRIPSI Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Teknik Program Studi Teknik Sipil Fakultas

Lebih terperinci

Bab IV Parameter Seismik

Bab IV Parameter Seismik Bab IV Parameter Seismik Faktor yang menentukan dalam PSHA adalah input parameter yang berupa seismic hazard parameter. Seismic hazard parameter yang diperlukan meliputi recurrence rate b-value, magnitude

Lebih terperinci

Time Histories Dari Ground Motion 1000 Tahun Periode Ulang Untuk Kota Surabaya

Time Histories Dari Ground Motion 1000 Tahun Periode Ulang Untuk Kota Surabaya Time Histories Dari Ground Motion 1000 Tahun Periode Ulang Untuk Kota Surabaya Helmy Darjanto 1,3 HATTI (Himpunan Ahli Teknik Tanah Indonesia), Sertifikasi G1, email : h.darjanto@consultant.com Mahasiswa

Lebih terperinci

MIKROZONASI GEMPA KOTA BONTANG KALIMANTAN TIMUR TESIS MAGISTER. Oleh: MOHAMAD WAHYONO

MIKROZONASI GEMPA KOTA BONTANG KALIMANTAN TIMUR TESIS MAGISTER. Oleh: MOHAMAD WAHYONO MIKROZONASI GEMPA KOTA BONTANG KALIMANTAN TIMUR TESIS MAGISTER Oleh: MOHAMAD WAHYONO 25000084 BIDANG KHUSUS GEOTEKNIK PROGRAM STUDI REKAYASA SIPIL PROGRAM PASCASARJANA INSTITUT TEKNOLOGI BANDUNG 2003 ABSTRAK

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii KATAPENGANTAR... iv ABSTRAK... v ABSTRACT... vi DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xiii DAFTAR SINGKATAN

Lebih terperinci

Bab III Kondisi Seismotektonik Wilayah Sumatera

Bab III Kondisi Seismotektonik Wilayah Sumatera Bab III Kondisi Seismotektonik Wilayah Sumatera III.1 Seismotektonik Indonesia Aktifitas kegempaan di Indonesia dipengaruhi oleh letak Indonesia yang berada pada pertemuan empat lempeng tektonik dunia.

Lebih terperinci

STUDI KARAKTERISTIK GETARAN GEMPA DI YOGYAKARTA UNTUK MENGEMBANGKAN KRITERIA DESAIN SEISMIK DI YOGYAKARTA

STUDI KARAKTERISTIK GETARAN GEMPA DI YOGYAKARTA UNTUK MENGEMBANGKAN KRITERIA DESAIN SEISMIK DI YOGYAKARTA STUDI KARAKTERISTIK GETARAN GEMPA DI YOGYAKARTA UNTUK MENGEMBANGKAN KRITERIA DESAIN SEISMIK DI YOGYAKARTA TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM

Lebih terperinci

Analisis Bahaya Kegempaan di Wilayah Malang Menggunakan Pendekatan Probabilistik

Analisis Bahaya Kegempaan di Wilayah Malang Menggunakan Pendekatan Probabilistik B0 Analisis Bahaya Kegempaan di Wilayah Malang Menggunakan Pendekatan Probabilistik Pambayun Purbandini 1, Bagus Jaya Santosa 1, dan Bambang Sunardi 1 Departemen Fisika, Fakultas MIPA, Institut Teknologi

Lebih terperinci

PENGEMBANGAN PROGRAM ANALISIS SEISMIC HAZARD DENGAN TEOREMA PROBABILITAS TOTAL TUGAS AKHIR

PENGEMBANGAN PROGRAM ANALISIS SEISMIC HAZARD DENGAN TEOREMA PROBABILITAS TOTAL TUGAS AKHIR PENGEMBANGAN PROGRAM ANALISIS SEISMIC HAZARD DENGAN TEOREMA PROBABILITAS TOTAL TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM STUDI TEKNIK SIPIL oleh : IPAN

Lebih terperinci

BAB III METODOLOGI. Ms = 1.33 Mb (3.1) Mw = 1.10 Ms 0.64 (3.2)

BAB III METODOLOGI. Ms = 1.33 Mb (3.1) Mw = 1.10 Ms 0.64 (3.2) BAB III METODOLOGI 3.1 PENGUMPULAN DATA GEMPA Penghitungan analisis resiko gempa pada daerah Yogyakarta membutuhkan rekaman data gempa yang pernah terjadi pada daerah tersebut. Pada studi ini, sejarah

Lebih terperinci

Bab II Tinjauan Pustaka

Bab II Tinjauan Pustaka Bab II Tinjauan Pustaka II.1 Gempa Bumi dan Seismologi Lempeng-lempeng tektonik yang bergerak relatif satu sama lain dengan arah dan kecepatan yang berbeda mengakibatkan penumpukan tegangan geser (shear

Lebih terperinci

Analisa Resiko Gempa Kasus : Proyek Pengeboran Minyak Di Tiaka Field. Helmy Darjanto, Ir, MT

Analisa Resiko Gempa Kasus : Proyek Pengeboran Minyak Di Tiaka Field. Helmy Darjanto, Ir, MT Analisa Resiko Gempa di Pengeboran Minyak Tiaka Field (Helmy D) 69 Analisa Resiko Gempa Kasus : Proyek Pengeboran Minyak Di Tiaka Field Helmy Darjanto, Ir, MT ABSTRAK Tiaka field terletak di zona gempa

Lebih terperinci

STUDI ANALISIS RESIKO GEMPA DAN MIKROZONASI KOTA JAKARTA TESIS MAGISTER. Oleh: HENDRIYAWAN

STUDI ANALISIS RESIKO GEMPA DAN MIKROZONASI KOTA JAKARTA TESIS MAGISTER. Oleh: HENDRIYAWAN STUDI ANALISIS RESIKO GEMPA DAN MIKROZONASI KOTA JAKARTA TESIS MAGISTER Oleh: HENDRIYAWAN 25098051 BIDANG KHUSUS GEOTEKNIK PROGRAM STUDI REKAYASA SIPIL PROGRAM PASCASARJANA INSTITUT TEKNOLOGI BANDUNG 2000

Lebih terperinci

ANALISIS HAZARD GEMPA DKI JAKARTA METODE PROBABILISTIK DENGAN PEMODELAN SUMBER GEMPA 3 DIMENSI

ANALISIS HAZARD GEMPA DKI JAKARTA METODE PROBABILISTIK DENGAN PEMODELAN SUMBER GEMPA 3 DIMENSI ANALISIS HAZARD GEMPA DKI JAKARTA METODE PROBABILISTIK DENGAN PEMODELAN SUMBER GEMPA 3 DIMENSI Yunalia Muntafi 1, Widodo 2, Lalu Makrup 3 1 Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan,

Lebih terperinci

RESPONS SPEKTRA GEMPA BUMI DI BATUAN DASAR KOTA BITUNG SULAWESI UTARA PADA PERIODE ULANG 2500 TAHUN

RESPONS SPEKTRA GEMPA BUMI DI BATUAN DASAR KOTA BITUNG SULAWESI UTARA PADA PERIODE ULANG 2500 TAHUN RESPONS SPEKTRA GEMPA BUMI DI BATUAN DASAR KOTA BITUNG SULAWESI UTARA PADA PERIODE ULANG 2500 TAHUN Guntur Pasau 1) 1) Program Studi Fisika FMIPA Universitas Sam Ratulangi Manado, 95115 e-mail: pasaujunior@gmail.com

Lebih terperinci

Pengembangan Ground Motion Synthetic Berdasarkan Metode Probabilistic Seismic Hazard Analysis Model Sumber Gempa 3D Teluk Bayur, Padang (Indonesia)

Pengembangan Ground Motion Synthetic Berdasarkan Metode Probabilistic Seismic Hazard Analysis Model Sumber Gempa 3D Teluk Bayur, Padang (Indonesia) Pengembangan Ground Motion Synthetic Berdasarkan Metode Probabilistic Seismic Hazard Analysis Model Sumber Gempa 3D Teluk Bayur, Padang (Indonesia) Merley Misriani 1), Monika Natalia 2), Zulfira Mirani

Lebih terperinci

Deagregasi Hazard Kegempaan Provinsi Sumatera Barat

Deagregasi Hazard Kegempaan Provinsi Sumatera Barat Delfebriyadi ISSN 0853-2982 Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil Deagregasi Hazard Kegempaan Provinsi Sumatera Barat Delfebriyadi Jurusan Teknik Sipil Universitas Andalas, Kampus Unand Limau

Lebih terperinci

BAB IV ANALISIS SEISMIC HAZARD

BAB IV ANALISIS SEISMIC HAZARD BAB IV ANALISIS SEISMIC HAZARD Analisis Seismic Hazard dilakukan pada wilayah Indonesia bagian timur yang meliputi: Sulawesi, Nusa Tenggara, Maluku Papua dan pulau-pulau kecil lainnya. Di bawah akan dijelasakan

Lebih terperinci

PENGUKURAN RESPONS SPEKTRA KOTA PADANG MENGGUNAKAN METODA PROBABILITAS ABSTRAK

PENGUKURAN RESPONS SPEKTRA KOTA PADANG MENGGUNAKAN METODA PROBABILITAS ABSTRAK VOLUME 7 NO. 2, OKTOBER 2011 PENGUKURAN RESPONS SPEKTRA KOTA PADANG MENGGUNAKAN METODA PROBABILITAS Delfebriyadi 1, Rudy Ferial 2, Agasi Yudha Bestolova 3 ABSTRAK Makalah ini memaparkan hasil studi hazard

Lebih terperinci

Ground Motion Modeling Wilayah Sumatera Selatan Berdasarkan Analisis Bahaya Gempa Probabilistik

Ground Motion Modeling Wilayah Sumatera Selatan Berdasarkan Analisis Bahaya Gempa Probabilistik JURNAL SAINS DAN SENI ITS Vol. 5 No. 2 (2016) 2337-3520 (2301-928X Print) B-129 Ground Motion Modeling Wilayah Sumatera Selatan Berdasarkan Analisis Bahaya Gempa Probabilistik Samsul Aprillianto 1, Bagus

Lebih terperinci

DEAGREGASI BAHAYA GEMPABUMI UNTUK DAERAH ISTIMEWA YOGYAKARTA

DEAGREGASI BAHAYA GEMPABUMI UNTUK DAERAH ISTIMEWA YOGYAKARTA DEAGREGASI BAHAYA GEMPABUMI UNTUK DAERAH ISTIMEWA YOGYAKARTA Bambang Sunardi *, Sulastri Pusat Penelitian dan Pengembangan BMKG, Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat 10720 Email: b.sunardi@gmail.com,

Lebih terperinci

RESPONS SPEKTRA WILAYAH BUKITTINGGI UNTUK STUDI PERENCANAAN JEMBATAN CABLE STAYED NGARAI SIANOK

RESPONS SPEKTRA WILAYAH BUKITTINGGI UNTUK STUDI PERENCANAAN JEMBATAN CABLE STAYED NGARAI SIANOK RESPONS SPEKTRA WILAYAH BUKITTINGGI UNTUK STUDI PERENCANAAN JEMBATAN CABLE STAYED NGARAI SIANOK Delfebriyadi Jurusan Teknik Sipil, Universitas Andalas Email :delfebri @ ft.unand.ac.id ABSTRAK Peraturan

Lebih terperinci

PEMETAAN DAERAH RENTAN GEMPA BUMI SEBAGAI DASAR PERENCANAAN TATA RUANG DAN WILAYAH DI PROVINSI SULAWESI BARAT

PEMETAAN DAERAH RENTAN GEMPA BUMI SEBAGAI DASAR PERENCANAAN TATA RUANG DAN WILAYAH DI PROVINSI SULAWESI BARAT KURVATEK Vol.1. No. 2, November 2016, pp. 41-47 ISSN: 2477-7870 41 PEMETAAN DAERAH RENTAN GEMPA BUMI SEBAGAI DASAR PERENCANAAN TATA RUANG DAN WILAYAH DI PROVINSI SULAWESI BARAT Marinda Noor Eva, Riski

Lebih terperinci

ANALISA HAZARD GEMPA DENGAN GEOMETRI SUMBER GEMPA TIGA DIMENSI UNTUK PULAU IRIAN TESIS MAGISTER. Oleh : Arvila Delitriana

ANALISA HAZARD GEMPA DENGAN GEOMETRI SUMBER GEMPA TIGA DIMENSI UNTUK PULAU IRIAN TESIS MAGISTER. Oleh : Arvila Delitriana ANALISA HAZARD GEMPA DENGAN GEOMETRI SUMBER GEMPA TIGA DIMENSI UNTUK PULAU IRIAN TESIS MAGISTER Oleh : Arvila Delitriana DEPARTEMEN TEKNIK SIPIL PROGRAM PASCASARJANA INSTITUT TEKNOLOGI BANDUNG 2003 ABSTRAK

Lebih terperinci

Edy Santoso, Sri Widiyantoro, I Nyoman Sukanta Bidang Seismologi Teknik BMKG, Jl Angkasa 1 No.2 Kemayoran Jakarta Pusat 10720

Edy Santoso, Sri Widiyantoro, I Nyoman Sukanta Bidang Seismologi Teknik BMKG, Jl Angkasa 1 No.2 Kemayoran Jakarta Pusat 10720 STUDI HAZARD SEISMIK DAN HUBUNGANNYA DENGAN INTENSITAS SEISMIK DI PULAU SUMATERA DAN SEKITARNYA SEISMIC HAZARD STUDIES AND ITS CORRELATION WITH SEISMIC INTENSITY IN SUMATERA AND ITS SURROUNDING 1 2 1 Edy

Lebih terperinci

EVALUASI BAHAYA GEMPA (SEISMIC HAZARD) DENGAN MENGGUNAKAN METODE POINT SOURCE DAN PENENTUAN RESPONS SPEKTRA DESAIN KOTA KUPANG

EVALUASI BAHAYA GEMPA (SEISMIC HAZARD) DENGAN MENGGUNAKAN METODE POINT SOURCE DAN PENENTUAN RESPONS SPEKTRA DESAIN KOTA KUPANG EVALUASI BAHAYA GEMPA (SEISMIC HAZARD) DENGAN MENGGUNAKAN METODE POINT SOURCE DAN PENENTUAN RESPONS SPEKTRA DESAIN KOTA KUPANG Dantje Sina *) (dantje_sina@yahoo.com) Abstrak Gempa yang terjadi pada suatu

Lebih terperinci

RESPONS SPEKTRUM WILAYAH KOTA PADANG UNTUK PERENCANAAN BANGUNAN GEDUNG TAHAN GEMPA

RESPONS SPEKTRUM WILAYAH KOTA PADANG UNTUK PERENCANAAN BANGUNAN GEDUNG TAHAN GEMPA RESPONS SPEKTRUM WILAYAH KOTA PADANG UNTUK PERENCANAAN BANGUNAN GEDUNG TAHAN GEMPA Delfebriyadi Laboratorium Komputasi Jurusan Teknik Sipil, Universitas Andalas delfebri @ ft.unand.ac.id ABSTRAK Gempa

Lebih terperinci

BAB III METODOLOGI. Pada bab ini membahas metodologi yang secara garis besar digambarkan pada bagan di bawah ini:

BAB III METODOLOGI. Pada bab ini membahas metodologi yang secara garis besar digambarkan pada bagan di bawah ini: BAB III METODOLOGI Pada bab ini membahas metodologi yang secara garis besar digambarkan pada bagan di bawah ini: Gambar 3. 1 Metodologi Tugas Akhir 3.1 PENENTUAN LOKASI STUDI Lokasi studi ditentukan pada

Lebih terperinci

Soil Ln (PGA) = M ln (R e 0.617M ) h Zt (2.8) Dimana: R = jarak terdekat ke bidang patahan (km)

Soil Ln (PGA) = M ln (R e 0.617M ) h Zt (2.8) Dimana: R = jarak terdekat ke bidang patahan (km) σ = standar deviasi = 0.5 PGA dalam gal 2. Crouse (1991) Ln (PGA) = 6.36 + 1.76 M 2.73 ln (R + 1.58 e 0.608M ) + 0.00916h (2.6) R = hiposenter (km) M = momen magnitude (M W ) H = kedalaman pusat gempa

Lebih terperinci

BAB I PENDAHULUAN. tembok bangunan maupun atap bangunan merupakan salah satu faktor yang dapat

BAB I PENDAHULUAN. tembok bangunan maupun atap bangunan merupakan salah satu faktor yang dapat BAB I PENDAHULUAN 1.1. Latar Belakang Gempabumi merupakan salah satu bencana alam yang berpotensi menimbulkan kerusakan parah di permukaan Bumi. Sebagian besar korban akibat gempabumi disebabkan oleh kerusakan

Lebih terperinci

ANALISIS RESIKO GEMPA DAN RESPON SPEKTRA DESAIN KOTA JAKARTA DENGAN PEMODELAN SUMBER GEMPA 3-DIMENSI. TESIS MAGISTER Oleh : PRAMONO ARIEF PUJITO

ANALISIS RESIKO GEMPA DAN RESPON SPEKTRA DESAIN KOTA JAKARTA DENGAN PEMODELAN SUMBER GEMPA 3-DIMENSI. TESIS MAGISTER Oleh : PRAMONO ARIEF PUJITO ANALISIS RESIKO GEMPA DAN RESPON SPEKTRA DESAIN KOTA JAKARTA DENGAN PEMODELAN SUMBER GEMPA 3-DIMENSI TESIS MAGISTER Oleh : PRAMONO ARIEF PUJITO 25000087 BIDANG KHUSUS GEOTEKNIK PROGRAM STUDI REKAYASA SIPIL

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 84 BAB V HASIL DAN PEMBAHASAN 5.1 Analisa Hazard Gempa Pengolahan data dalam penelitian ini menggunakan software Ez-Frisk dan menghasilkan peta hazard yang dibedakan berdasarkan sumber-sumber gempa yaitu

Lebih terperinci

ANALISIS SEISMIC MENGGUNAKAN PROGRAM SHAKE UNTUK TANAH LUNAK, SEDANG DAN KERAS

ANALISIS SEISMIC MENGGUNAKAN PROGRAM SHAKE UNTUK TANAH LUNAK, SEDANG DAN KERAS ANALISIS SEISMIC MENGGUNAKAN... (MICHEL S. PANSAWIRA, DKK) ANALISIS SEISMIC MENGGUNAKAN PROGRAM SHAKE UNTUK TANAH LUNAK, SEDANG DAN KERAS Michel S. Pansawira 1, Paulus P. Rahardjo 2 Fakultas Teknik Universitas

Lebih terperinci

Bab I PENDAHULUAN. Bab II METODOLOGI

Bab I PENDAHULUAN. Bab II METODOLOGI Usulan Ground Motion untuk Batuan Dasar Kota Jakarta dengan Periode Ulang Gempa 500 Tahun untuk Analisis Site Specific Response Spectra Masyhur Irsyam, Hendriyawan, Donny T. Dangkua 1, Engkon Kertapati

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. Kondisi Geologi dan Kegempaan Indonesia Indonesia merupakan salah satu wilayah dibumi ini yang merupakan tempat bertemunya lempeng-lempeng yang ada dibumi ini. Antara lain di

Lebih terperinci

Sulawesi. Dari pencatatan yang ada selama satu abad ini rata-rata sepuluh gempa

Sulawesi. Dari pencatatan yang ada selama satu abad ini rata-rata sepuluh gempa BAB I PENDAHULUAN 1.1 Latar Belakang Gempa bumi merupakan satu bencana alam yang disebabkan kerusakan kerak bumi yang terjadi secara tiba-tiba dan umumnya diikuti dengan terjadinya patahan atau sesar.

Lebih terperinci

BAB I PENDAHULUAN. lempeng Indo-Australia dan lempeng Pasifik, serta lempeng mikro yakni lempeng

BAB I PENDAHULUAN. lempeng Indo-Australia dan lempeng Pasifik, serta lempeng mikro yakni lempeng 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terletak pada kerangka tektonik yang didominasi oleh interaksi dari tiga lempeng utama (kerak samudera dan kerak benua) yaitu lempeng Eurasia, lempeng Indo-Australia

Lebih terperinci

RIWAYAT WAKTU PERCEPATAN SINTETIK SUMBER GEMPA SUBDUKSI UNTUK KOTA PADANG DENGAN PERIODE ULANG DESAIN GEMPA 500 TAHUN.

RIWAYAT WAKTU PERCEPATAN SINTETIK SUMBER GEMPA SUBDUKSI UNTUK KOTA PADANG DENGAN PERIODE ULANG DESAIN GEMPA 500 TAHUN. RIWAYAT WAKTU PERCEPATAN SINTETIK SUMBER GEMPA SUBDUKSI UNTUK KOTA PADANG DENGAN PERIODE ULANG DESAIN GEMPA 500 TAHUN Delfebriyadi Laboratorium Komputasi Jurusan Teknik Sipil, Universitas Andalas ; delfebri

Lebih terperinci

ANALISIS RESIKO GEMPA KOTA LARANTUKA DI FLORES DENGAN MENGGUNAKAN METODE PROBABILISTIC SEISMIC HAZARD

ANALISIS RESIKO GEMPA KOTA LARANTUKA DI FLORES DENGAN MENGGUNAKAN METODE PROBABILISTIC SEISMIC HAZARD ANALISIS RESIKO GEMPA KOTA LARANTUKA DI FLORES DENGAN MENGGUNAKAN METODE PROBABILISTIC SEISMIC HAZARD Yohanes Laka Suku 1 ; F. X. Maradona Manteiro 1 ; Emilianus Evaristus 2 1 Program Studi Teknik Sipil

Lebih terperinci

PEMETAAN GROUND ACCELERATION MENGGUNAKAN METODE PROBABILISTIC SEISMIC HAZARD ANALYSIS DI PROPINSI NUSA TENGGARA BARATPADA ZONA MEGATHRUST

PEMETAAN GROUND ACCELERATION MENGGUNAKAN METODE PROBABILISTIC SEISMIC HAZARD ANALYSIS DI PROPINSI NUSA TENGGARA BARATPADA ZONA MEGATHRUST Seminar Nasional Teknologi Informasi dan Kedirgantaraan (SENATIK) Vol. III, 21 Desember 2017, P-ISSN: 2337-3881, E-ISSN: 2528-1666 DOI: http://dx.doi.org/10.28989/senatik.v3i0.114 PEMETAAN GROUND ACCELERATION

Lebih terperinci

Berkala Fisika ISSN : Vol. 18, No. 1, Januari 2015, hal 25-42

Berkala Fisika ISSN : Vol. 18, No. 1, Januari 2015, hal 25-42 Berkala Fisika ISSN : 1410-9662 Vol. 18, No. 1, Januari 2015, hal 25-42 STUDI PROBABILITAS GEMPA DAN PERBANDINGAN ATENUASI PERCEPATAN TANAH METODE JOYNER DAN BOORE (1988), CROUSE (1991) DAN SADIGH (1997)

Lebih terperinci

Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun Dengan Menggunakan Rumusan Mcguire

Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun Dengan Menggunakan Rumusan Mcguire Estimasi Nilai Percepatan Tanah Maksimum Provinsi Aceh Berdasarkan Data Gempa Segmen Tripa Tahun 1976 2016 Dengan Menggunakan Rumusan Mcguire Rido Nofaslah *, Dwi Pujiastuti Laboratorium Fisika Bumi, Jurusan

Lebih terperinci

BAB 1 PENDAHULUAN. manusia, lingkungan dan metode yang dapat digunakan untuk mengurangi

BAB 1 PENDAHULUAN. manusia, lingkungan dan metode yang dapat digunakan untuk mengurangi BAB 1 PENDAHULUAN 1.1. Latar Belakang Rekayasa gempa berhubungan dengan pengaruh gempa bumi terhadap manusia, lingkungan dan metode yang dapat digunakan untuk mengurangi pengaruhnya. Gempa bumi merupakan

Lebih terperinci

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS. Bayu Baskara

PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS. Bayu Baskara PEMETAAN BAHAYA GEMPA BUMI DAN POTENSI TSUNAMI DI BALI BERDASARKAN NILAI SESMISITAS Bayu Baskara ABSTRAK Bali merupakan salah satu daerah rawan bencana gempa bumi dan tsunami karena berada di wilayah pertemuan

Lebih terperinci

Peta Respons Spektrum Provinsi Sumatera Barat untuk Perencanaan Bangunan Gedung Tahan Gempa

Peta Respons Spektrum Provinsi Sumatera Barat untuk Perencanaan Bangunan Gedung Tahan Gempa Delfebriyadi ISSN 0853-2982 Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil Abstrak Gempa aceh pada bulan Desember 2004 silam telah membuktikan zona sumber gempa subduksi Sumatera mampu menghasilkan

Lebih terperinci

Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014)

Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014) Jurnal Fisika Unand Vol. 5, No. 1, Januari 2016 ISSN 2302-8491 Analisis Percepatan Tanah Maksimum Wilayah Sumatera Barat (Studi Kasus Gempa Bumi 8 Maret 1977 dan 11 September 2014) Marlisa 1,*, Dwi Pujiastuti

Lebih terperinci

ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON

ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON ANALISIS PROBABILITAS GEMPABUMI DAERAH BALI DENGAN DISTRIBUSI POISSON Hapsoro Agung Nugroho Stasiun Geofisika Sanglah Denpasar soro_dnp@yahoo.co.id ABSTRACT Bali is located on the boundaries of the two

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA A ULASAN GUNCANGAN TANAH AKIBAT GEMPA DELISERDANG SUMATRA UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI DELISERDANG SUMATRA UTARA Oleh Fajar Budi Utomo*, Trisnawati*, Nur Hidayati Oktavia*, Ariska Rudyanto*,

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Batasan Masalah Tujuan Sistematika Penulisan...

DAFTAR ISI. BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Batasan Masalah Tujuan Sistematika Penulisan... DAFTAR ISI HALAMAN JUDUL... LEMBAR KEASLIAN SKRIPSI... ii LEMBAR PERSETUJUAN... iii LEMBAR PENGESAHAN... iv LEMBAR PERSEMBAHAN... v ABSTRAK... vi ABSTRACT... vii KATA PENGANTAR... viii DAFTAR ISI... x

Lebih terperinci

MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH

MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH MELIHAT POTENSI SUMBER GEMPABUMI DAN TSUNAMI ACEH Oleh Abdi Jihad dan Vrieslend Haris Banyunegoro PMG Stasiun Geofisika Mata Ie Banda Aceh disampaikan dalam Workshop II Tsunami Drill Aceh 2017 Ditinjau

Lebih terperinci

Analisis Hazard Gempa dan Usulan Ground Motion pada Batuan Dasar untuk Kota Jakarta

Analisis Hazard Gempa dan Usulan Ground Motion pada Batuan Dasar untuk Kota Jakarta Hutapea & Mangape ISSN 0853-2982 Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil Analisis Hazard Gempa dan Usulan Ground Motion pada Batuan Dasar untuk Kota Jakarta Bigman Marihat Hutapea Kelompok Keahlian

Lebih terperinci

STUDI PENGEMBANGAN PETA ZONA GEMPA UNTUK WILAYAH PULAU SUMATRA,JAWA DAN BALI (INDONESIA BAGIAN BARAT)

STUDI PENGEMBANGAN PETA ZONA GEMPA UNTUK WILAYAH PULAU SUMATRA,JAWA DAN BALI (INDONESIA BAGIAN BARAT) STUDI PENGEMBANGAN PETA ZONA GEMPA UNTUK WILAYAH PULAU SUMATRA,JAWA DAN BALI (INDONESIA BAGIAN BARAT) Dudi Udayana NRP : 0221017 Pembimbing : Theodore F. Najoan, Ir.,M.Eng FAKULTAS TEKNIK JURUSAN TEKNIK

Lebih terperinci

RELOKASI DAN KLASIFIKASI GEMPABUMI UNTUK DATABASE STRONG GROUND MOTION DI WILAYAH JAWA TIMUR

RELOKASI DAN KLASIFIKASI GEMPABUMI UNTUK DATABASE STRONG GROUND MOTION DI WILAYAH JAWA TIMUR RELOKASI DAN KLASIFIKASI GEMPABUMI UNTUK DATABASE STRONG GROUND MOTION DI WILAYAH JAWA TIMUR Rian Mahendra 1*, Supriyanto 2, Ariska Rudyanto 2 1 Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Jakarta

Lebih terperinci

Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan.

Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan. 1.1 Apakah Gempa Itu? Gempa atau gempa bumi didefinisikan sebagai getaran yang terjadi pada lokasi tertentu pada permukaan bumi, dan sifatnya tidak berkelanjutan. Getaran tersebut disebabkan oleh pergerakan

Lebih terperinci

BAB III PROGRAM ANALISIS RESIKO GEMPA

BAB III PROGRAM ANALISIS RESIKO GEMPA BAB III PROGRAM ANALISIS RESIKO GEMPA Sesuai dengan tujuannya maka program komputer pada tugas akhir ini adalah mengembangkan dua program komputer yang telah ada yaitu: 1. SHAP (Seismic Hazard Assesment

Lebih terperinci

ANALISIS NILAI PGA (PEAK GROUND ACCELERATION) UNTUK SELURUH WILAYAH KABUPATEN DAN KOTA DI JAWA TIMUR

ANALISIS NILAI PGA (PEAK GROUND ACCELERATION) UNTUK SELURUH WILAYAH KABUPATEN DAN KOTA DI JAWA TIMUR ANALISIS NILAI PGA (PEAK GROUND ACCELERATION) UNTUK SELURUH WILAYAH KABUPATEN DAN KOTA DI JAWA TIMUR Siti Ayu Kumala 1, Wahyudi 2 1,2 Jurusan Fisika, Fakultas Matematika dan Imu Pengetahuan Alam, Universitas

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA TENGGARA DENPASAR BALI 22 MARET 2017

ULASAN GUNCANGAN TANAH AKIBAT GEMPA TENGGARA DENPASAR BALI 22 MARET 2017 ULASAN GUNCANGAN TANAH AKIBAT GEMPA TENGGARA DENPASAR BALI 22 MARET 2017 ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI TENGGARA DENPASAR BALI Oleh Trisnawati*, Moehajirin*, Furqon Dawwam R*,Ariska Rudyanto*,

Lebih terperinci

PENENTUAN KOEFISIEN DAN KONSTANTA FORMULA EMPIRIS PERCEPATAN GETARAN TANAH DI DAERAH DENPASAR SKRIPSI. (Bidang Minat Fisika Kebumian)

PENENTUAN KOEFISIEN DAN KONSTANTA FORMULA EMPIRIS PERCEPATAN GETARAN TANAH DI DAERAH DENPASAR SKRIPSI. (Bidang Minat Fisika Kebumian) PENENTUAN KOEFISIEN DAN KONSTANTA FORMULA EMPIRIS PERCEPATAN GETARAN TANAH DI DAERAH DENPASAR SKRIPSI (Bidang Minat Fisika Kebumian) DWI KARYADI PRIYANTO JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

STUDI PENGEMBANGAN PETA ZONA GEMPA UNTUK WILAYAH PULAU KALIMANTAN, NUSA TENGGARA, MALUKU, SULAWESI DAN IRIAN JAYA (INDONESIA BAGIAN TIMUR)

STUDI PENGEMBANGAN PETA ZONA GEMPA UNTUK WILAYAH PULAU KALIMANTAN, NUSA TENGGARA, MALUKU, SULAWESI DAN IRIAN JAYA (INDONESIA BAGIAN TIMUR) STUDI PENGEMBANGAN PETA ZONA GEMPA UNTUK WILAYAH PULAU KALIMANTAN, NUSA TENGGARA, MALUKU, SULAWESI DAN IRIAN JAYA (INDONESIA BAGIAN TIMUR) Nama : Desi Setiawan NRP : 0221009 Pembimbing : Theodore F. Najoan,

Lebih terperinci

TINJAUAN KOEFISIEN GEMPA DASAR DAN PERENCANAAN GESER BALOK PADA BANGUNAN BERDAKTILITAS PENUH DI INDONESIA TESIS. oleh

TINJAUAN KOEFISIEN GEMPA DASAR DAN PERENCANAAN GESER BALOK PADA BANGUNAN BERDAKTILITAS PENUH DI INDONESIA TESIS. oleh TINJAUAN KOEFISIEN GEMPA DASAR DAN PERENCANAAN GESER BALOK PADA BANGUNAN BERDAKTILITAS PENUH DI INDONESIA TESIS Disusun sebagai salah satu persyaratan untuk menyelesaikan pendidikan Program Magister di

Lebih terperinci

HALAMAN JUDUL ANALISIS BAHAYA KEGEMPAAN DI WILAYAH MALANG MENGGUNAKAN PENDEKATAN PROBABILISTIK

HALAMAN JUDUL ANALISIS BAHAYA KEGEMPAAN DI WILAYAH MALANG MENGGUNAKAN PENDEKATAN PROBABILISTIK i HALAMAN JUDUL TUGAS AKHIR - SF 141501 ANALISIS BAHAYA KEGEMPAAN DI WILAYAH MALANG MENGGUNAKAN PENDEKATAN PROBABILISTIK PAMBAYUN PURBANDINI NRP 1113 100 096 Dosen Pembimbing Prof. Dr. rer. nat. Bagus

Lebih terperinci

SEISMIC HAZARD UNTUK INDONESIA

SEISMIC HAZARD UNTUK INDONESIA SEISMIC HAZARD UNTUK INDONESIA Penulis: Dr. Lalu Makrup Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian

Lebih terperinci

PEMBUATAN PETA HAZARD GEMPA DENGAN SOFTWARE USGS DAN PEMODELAN SUMBER BACKGROUND M. ASRURIFAK

PEMBUATAN PETA HAZARD GEMPA DENGAN SOFTWARE USGS DAN PEMODELAN SUMBER BACKGROUND M. ASRURIFAK PEMBUATAN PETA HAZARD GEMPA DENGAN SOFTWARE USGS DAN PEMODELAN SUMBER BACKGROUND MASYHUR IRSYAM BAMBANG BUDIONO WAHYU TRIYOSO M. ASRURIFAK SRI WIDIYANTORO ENGKON KERTAPATI WORKSHOP Peta Zonasi Gempa Indonesia

Lebih terperinci

Oleh : DAMAR KURNIA Dosen Konsultasi : Tavio, ST., M.T., Ph.D Ir. Iman Wimbadi, M.S

Oleh : DAMAR KURNIA Dosen Konsultasi : Tavio, ST., M.T., Ph.D Ir. Iman Wimbadi, M.S Oleh : DAMAR KURNIA 3107100064 Dosen Konsultasi : Tavio, ST., M.T., Ph.D Ir. Iman Wimbadi, M.S PENDAHULUAN Indonesia merupakan negara kepulauan dengan intensitas gempa yang tinggi hal ini disebabkan karena

Lebih terperinci

PERSIAPAN PERENCANAAN JEMBATAN SELAT SUNDA

PERSIAPAN PERENCANAAN JEMBATAN SELAT SUNDA PERSIAPAN PERENCANAAN JEMBATAN SELAT SUNDA Rencana Tol Lampung- Terbanggi Besar Tol Jakarta - Merak Jembatan Selat Sunda Lingkar Selatan Serang KONEKTIVITAS JEMBATAN SELAT SUNDA DENGAN TOL YANG ADA Studi

Lebih terperinci

Percepatan Tanah Sintetis Kota Yogyakarta Berdasarkan Deagregasi Bahaya Gempa

Percepatan Tanah Sintetis Kota Yogyakarta Berdasarkan Deagregasi Bahaya Gempa JLBG JURNAL LINGKUNGAN DAN BENCANA GEOLOGI Journal of Environment and Geological Hazards ISSN: 2086-7794 Akreditasi LIPI No. 692/AU/P2MI-LIPI/07/2015 e-mail: jlbg_geo@yahoo.com Percepatan Tanah Sintetis

Lebih terperinci

KAJIAN AWAL KONDISI KEGEMPAAN PROVINSI KEPULAUAN BANGKA BELITUNG SEBAGAI CALON TAPAK PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

KAJIAN AWAL KONDISI KEGEMPAAN PROVINSI KEPULAUAN BANGKA BELITUNG SEBAGAI CALON TAPAK PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) KAJIAN AWAL KONDISI KEGEMPAAN PROVINSI KEPULAUAN BANGKA BELITUNG SEBAGAI CALON TAPAK PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Kurnia Anzhar, Sunarko Jl. Kuningan Barat, Mampang Prapatan, Jakarta kurnia_a@batan.go.id;sunarko@batan.go.id

Lebih terperinci

PENGARUH PEMILIHAN TARGET SPEKTRA PADA ANALISIS RESIKO GEMPA BENDUNGAN LEUWIKERIS, PROVINSI JAWA BARAT

PENGARUH PEMILIHAN TARGET SPEKTRA PADA ANALISIS RESIKO GEMPA BENDUNGAN LEUWIKERIS, PROVINSI JAWA BARAT Konferensi Nasional Teknik Sipil 11 Universitas Tarumanagara, 26-27 Oktober 2017 PENGARUH PEMILIHAN TARGET SPEKTRA PADA ANALISIS RESIKO GEMPA BENDUNGAN LEUWIKERIS, PROVINSI JAWA BARAT Fioliza Ariyandi

Lebih terperinci

PEMODELAN SUMBER GEMPA DI WILAYAH SULAWESI UTARA SEBAGAI UPAYA MITIGASI BENCANA GEMPA BUMI 1)

PEMODELAN SUMBER GEMPA DI WILAYAH SULAWESI UTARA SEBAGAI UPAYA MITIGASI BENCANA GEMPA BUMI 1) PEMODELAN SUMBER GEMPA DI WILAYAH SULAWESI UTARA SEBAGAI UPAYA MITIGASI BENCANA GEMPA BUMI 1) Guntur Pasau 2) dan Adey Tanauma 2) e-mail: pasaujunior@gmail.com 1) Penelitian IPTEK dan Seni dengan Biaya

Lebih terperinci

KAJIAN TREND GEMPABUMI DIRASAKAN WILAYAH PROVINSI ACEH BERDASARKAN ZONA SEISMOTEKTONIK PERIODE 01 JANUARI DESEMBER 2017

KAJIAN TREND GEMPABUMI DIRASAKAN WILAYAH PROVINSI ACEH BERDASARKAN ZONA SEISMOTEKTONIK PERIODE 01 JANUARI DESEMBER 2017 KAJIAN TREND GEMPABUMI DIRASAKAN WILAYAH PROVINSI ACEH BERDASARKAN ZONA SEISMOTEKTONIK PERIODE 01 JANUARI 2016 15 DESEMBER 2017 Oleh ZULHAM. S, S.Tr 1, RILZA NUR AKBAR, ST 1, LORI AGUNG SATRIA, A.Md 1

Lebih terperinci

ANALISIS RESPON SPEKTRA KOTA MANADO

ANALISIS RESPON SPEKTRA KOTA MANADO ANALISIS RESPON SPEKTRA KOTA MANADO Lanny Dian Kusuma Manaroinsong Alumni Program Pascasarjana S2 Teknik Sipil Universitas Sam Ratulangi H. Manalip, Sjachrul Balamba Dosen Pascasarjana Universitas Sam

Lebih terperinci

ANALISIS HAZARD GEMPA DAN ISOSEISMAL UNTUK WILAYAH JAWA-BALI-NTB

ANALISIS HAZARD GEMPA DAN ISOSEISMAL UNTUK WILAYAH JAWA-BALI-NTB ANALISIS HAZARD GEMPA DAN ISOSEISMAL UNTUK WILAYAH JAWA-BALI-NTB (SEISMIC HAZARD ANALYSIS AND ISOSEISMAL FOR JAVA-BALI-NTB) 1* 2,3 1 3 Jimmi Nugraha, Guntur Pasau, Bambang Sunardi, Sri Widiyantoro 1 Badan

Lebih terperinci

Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu

Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu 364 Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu Rahmad Aperus 1,*, Dwi Pujiastuti 1, Rachmad Billyanto 2 Jurusan

Lebih terperinci

ANALISIS RISIKO GEMPA DI KOTA SURAKARTA DENGAN PENDEKATAN METODE GUMBEL

ANALISIS RISIKO GEMPA DI KOTA SURAKARTA DENGAN PENDEKATAN METODE GUMBEL ANALISIS RISIKO GEMPA DI KOTA SURAKARTA DENGAN PENDEKATAN METODE GUMBEL Unwanus Sa adah 1) Yusep Muslih Purwana 2) Noegroho Djarwanti 3) 1) Mahasiswa Jurusan Teknik Sipil, Universitas Sebelas Maret Surakarta

Lebih terperinci

Jurnal Fisika Unand Vol. 4, No. 4, Oktober 2015 ISSN

Jurnal Fisika Unand Vol. 4, No. 4, Oktober 2015 ISSN ESTIMASI NILAI PERCEPATAN TANAH MAKSIMUM DI SUMATERA BARAT BERDASARKAN SKENARIO GEMPA BUMI DI WILAYAH SIBERUT DENGAN MENGGUNAKAN RUMUSAN SI AND MIDORIKAWA (1999) Denisa Syafriana 1, Dwi Pujiastuti 1, Andiyansyah

Lebih terperinci

Pengembangan Program Analisis Seismic Hazard dengan Teorema Probabilitas Total Bab I Pendahuluan BAB I PENDAHULUAN

Pengembangan Program Analisis Seismic Hazard dengan Teorema Probabilitas Total Bab I Pendahuluan BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Umum Gempa bumi adalah peristiwa bergeraknya permukaan bumi atau permukaan tanah secara tiba-tiba yang diakibatkan oleh pergerakan dari lempenglempeng bumi. Menurut M.T. Zein gempa

Lebih terperinci

BAB I PENDAHULUAN. yang sangat tinggi. Hal ini karena Indonesia terletak pada pertemuan tiga lempeng

BAB I PENDAHULUAN. yang sangat tinggi. Hal ini karena Indonesia terletak pada pertemuan tiga lempeng BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan suatu wilayah yang memiliki aktivitas kegempaan yang sangat tinggi. Hal ini karena Indonesia terletak pada pertemuan tiga lempeng tektonik utama.

Lebih terperinci

TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM STUDI TEKNIK SIPIL. Oleh : NIM NIM.

TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM STUDI TEKNIK SIPIL. Oleh : NIM NIM. EVALUASI SEISMIC HAZARD PADA BATUAN DASAR UNTUK WILAYAH INDONESIA BAGIAN TIMUR (SULAWESI-NUSA TENGGARA-IRIAN-DAN SEKITARNYA) DENGAN PERIODE ULANG 500 TAHUN TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN

Lebih terperinci

EVALUASI GEMPA DAERAH SULAWESI UTARA DENGAN STATISTIKA EKSTRIM TIPE I

EVALUASI GEMPA DAERAH SULAWESI UTARA DENGAN STATISTIKA EKSTRIM TIPE I Jurnal Ilmiah MEDIA ENGINEERING Vol., No., Maret 0 ISSN 087-9 (-) EVALUASI GEMPA DAERAH SULAWESI UTARA DENGAN STATISTIKA EKSTRIM TIPE I Julius E. Tenda Staf Pengajar Jurusan Teknik Sipil Politeknik Negeri

Lebih terperinci

Teknik, 36 (1), 2015, PERSEPSI PENGEMBANGAN PETA RAWAN GEMPA KOTA SEMARANG MELALUI PENELITIAN HAZARD GEMPA DETERMINISTIK

Teknik, 36 (1), 2015, PERSEPSI PENGEMBANGAN PETA RAWAN GEMPA KOTA SEMARANG MELALUI PENELITIAN HAZARD GEMPA DETERMINISTIK Tersedia online di: http://ejournal.undip.ac.id/index.php/teknik Teknik, 36 (1), 2015, 24-31 PERSEPSI PENGEMBANGAN PETA RAWAN GEMPA KOTA SEMARANG MELALUI PENELITIAN HAZARD GEMPA DETERMINISTIK Windu Partono

Lebih terperinci

PENENTUAN KELAS SITUS GEMPA, PERCEPATAN TANAH MAKSIMUM DAN ANALISIS POTENSI RESIKO KEGEMPAAN KOTA SURAKARTA `

PENENTUAN KELAS SITUS GEMPA, PERCEPATAN TANAH MAKSIMUM DAN ANALISIS POTENSI RESIKO KEGEMPAAN KOTA SURAKARTA ` PENENTUAN KELAS SITUS GEMPA, PERCEPATAN TANAH MAKSIMUM DAN ANALISIS POTENSI RESIKO KEGEMPAAN KOTA SURAKARTA ` DETERMINATION OF EARTHQUAKE SITE CLASS, PEAK GROUND ACCELERATION AND ANALYSIS OF SEISMIC RISK

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia menempati zona tektonik yang sangat aktif karena tiga lempeng besar dunia (Indo-Australia, Pasifik dan Eurasia) dan sembilan lempeng kecil lainnya saling

Lebih terperinci

Implikasi Sesar Kendeng terhadap Bahaya Gempa dan Pemodelan Percepatan Tanah di Permukaan di Wilayah Surabaya

Implikasi Sesar Kendeng terhadap Bahaya Gempa dan Pemodelan Percepatan Tanah di Permukaan di Wilayah Surabaya B65 Implikasi Sesar Kendeng terhadap Bahaya Gempa dan Pemodelan Percepatan Tanah di Permukaan di Wilayah Surabaya Vidya Amalia Harnindra 1, Bambang Sunardi 2, dan Bagus Jaya Santosa 1 1 Departemen Fisika,

Lebih terperinci

ANALISIS PERCEPATAN TANAH MAKSIMUM DENGAN MENGGUNAKAN RUMUSAN ESTEVA DAN DONOVAN (Studi Kasus Pada Semenanjung Utara Pulau Sulawesi)

ANALISIS PERCEPATAN TANAH MAKSIMUM DENGAN MENGGUNAKAN RUMUSAN ESTEVA DAN DONOVAN (Studi Kasus Pada Semenanjung Utara Pulau Sulawesi) ANALISIS PERCEPATAN TANAH MAKSIMUM DENGAN MENGGUNAKAN RUMUSAN ESTEVA DAN DONOVAN (Studi Kasus Pada Semenanjung Utara Pulau Sulawesi) Cloudya Gabriella Kapojos 1), Gerald Tamuntuan 1), Guntur Pasau 1) 1)

Lebih terperinci

KEMENTERIAN PEKERJAAN UMUM

KEMENTERIAN PEKERJAAN UMUM PETA HAZARD GEMPA INDONESIA 2010 SEBAGAI ACUAN DASAR PERENCANAAAN DAN PERANCANGAN INFRASTRUKTUR TAHAN GEMPA Jakarta, Juli 2010 KEMENTERIAN PEKERJAAN UMUM Didukung oleh : SAMBUTAN MENTERI PEKERJAAN UMUM

Lebih terperinci

STUDI HAZARD KEGEMPAAN WILAYAH PROPINSI BANTEN DAN DKI JAKARTA

STUDI HAZARD KEGEMPAAN WILAYAH PROPINSI BANTEN DAN DKI JAKARTA STUDI HAZARD KEGEMPAAN WILAYAH PROPINSI BANTEN DAN DKI JAKARTA Delfebriyadi Jurusan Teknik Sipil, Universitas Andalas Email: delfebri@ft.unand.ac.id ABSTRAK Indonesia merupakan salah satu negara dengan

Lebih terperinci

Ir. Masyhur Irsyam, MSE, PhD

Ir. Masyhur Irsyam, MSE, PhD ANALISIS SEISMIC HAZARD PADA BATUAN DASAR UNTUK INDONESIA BAGIAN TIMUR PADA T = 0, T = 0.2 DAN T = 1 DETIK DENGAN PERIODE ULANG 500 TAHUN TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN

Lebih terperinci

Analisis Daerah Dugaan Seismic Gap di Sulawesi Utara dan sekitarnya

Analisis Daerah Dugaan Seismic Gap di Sulawesi Utara dan sekitarnya JURNAL MIPA UNSRAT ONLINE 3 (1) 53-57 dapat diakses melalui http://ejournal.unsrat.ac.id/index.php/jmuo Analisis Daerah Dugaan Seismic Gap di Sulawesi Utara dan sekitarnya Sandy Nur Eko Wibowo a,b*, As

Lebih terperinci

ANALISIS PERBANDINGAN MODEL RESPON SPEKTRA DESAIN SNI , RSNI 2010 DAN METODE PSHA. Suyadi 1)

ANALISIS PERBANDINGAN MODEL RESPON SPEKTRA DESAIN SNI , RSNI 2010 DAN METODE PSHA. Suyadi 1) ANALISIS PERBANDINGAN MODEL RESPON SPEKTRA DESAIN SNI 03-1726-2002, RSNI 2010 DAN METODE PSHA Suyadi 1) Abstract Seismic load rules for the building as outlined in the SNI 03-1726-2002 which divided Indonesian

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI BARAT LAUT KEP. SANGIHE SULAWESI UTARA Oleh Artadi Pria Sakti*, Robby Wallansha*, Ariska

Lebih terperinci

ANALISA TINGKAT RISIKO BENCANA GEMPABUMI DI WILAYAH NUSA TENGGARA BARAT SKRIPSI MELKI ADI KURNIAWAN NIM

ANALISA TINGKAT RISIKO BENCANA GEMPABUMI DI WILAYAH NUSA TENGGARA BARAT SKRIPSI MELKI ADI KURNIAWAN NIM ANALISA TINGKAT RISIKO BENCANA GEMPABUMI DI WILAYAH NUSA TENGGARA BARAT SKRIPSI MELKI ADI KURNIAWAN NIM. 1008205017 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 2016

Lebih terperinci

Metodologi Penelitian

Metodologi Penelitian Bab III Metodologi Penelitian III.1 Pendahuluan Beban gempa dari batuan dasar (Peak Base Acceleration, PBA) akan dirambatkan ke permukaan tanah melalui media lapisan tanah, pondasi bangunan dan konstruksi

Lebih terperinci

batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik.

batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik. BAB I PENDAHULUAN 1.1 Latar Belakang Gempa bumi merupakan peristiwa bergetarnya bumi karena pergeseran batuan pada kulit bumi secara tiba-tiba akibat pergerakaan lempeng tektonik. Pergerakan tiba-tiba

Lebih terperinci

EVALUASI KINERJA STRUKTUR GEDUNG BERTINGKAT DENGAN ANALISIS DINAMIK TIME HISTORY MENGGUNAKAN ETABS STUDI KASUS : HOTEL DI KARANGANYAR SKRIPSI

EVALUASI KINERJA STRUKTUR GEDUNG BERTINGKAT DENGAN ANALISIS DINAMIK TIME HISTORY MENGGUNAKAN ETABS STUDI KASUS : HOTEL DI KARANGANYAR SKRIPSI EVALUASI KINERJA STRUKTUR GEDUNG BERTINGKAT DENGAN ANALISIS DINAMIK TIME HISTORY MENGGUNAKAN ETABS STUDI KASUS : HOTEL DI KARANGANYAR Performance Evaluation of Multistoried Building Structure with Dynamic

Lebih terperinci