II METODE PENELITIAN 2.1 Tempat dan Waktu Penelitian

Ukuran: px
Mulai penontonan dengan halaman:

Download "II METODE PENELITIAN 2.1 Tempat dan Waktu Penelitian"

Transkripsi

1 7 II METODE PENELITIAN 2.1 Tempat dan Waktu Penelitian Penelitian dilaksanakan mulai Bulan Oktober 2010 sampai dengan April 2011, yang meliputi kegiatan persiapan penelitian, pelaksanaan penelitian, pengolahan dan analisis data. Lokasi penelitian di hutan hujan tropis (tropical rain forest) Kabupaten Dairi, Provinsi Sumatera Utara. Kondisi lokasi penelitian relatif datar, dengan demikian mengurangi efek topografi pada penelitian ini. Secara geografis, lokasi penelitian terletak pada koordinat 98 o BT sampai dengan 98 o BT dan 2 o LU sampai dengan 2 o LU dengan ketinggian rata-rata m dpl dengan kemiringan lereng datar dan landai. Peta lokasi penelitian disajikan pada Gambar 2. Pengolahan dan analisis data citra satelit dilakukan di Laboratorium Fisik Penginderaan Jauh dan Sistem Informasi Geografis, Fakultas Kehutanan Institut Pertanian Bogor. Lokasi penelitian berada pada hutan hujan tropis yang memiliki ciri pohon yang tinggi, rapat, hijau sepanjang tahun, dan memiliki musim kering yang pendek sampai tidak ada (Primack dan Corlett 2005). Hutan hujan tropis mempunyai suhu bulanan rata-rata 20 o C 50 o C dengan curah hujan dalam satu tahun antara 2000 mm dan 5000 mm (Arief 2001). Raymond et al. (2003) mencirikan hutan hujan tropis dengan struktur tajuk yang memiliki strata. Strata tajuk yang paling dominan merupakan pohon yang paling besar, selanjutnya strata tajuk lebih kecil dan strata tajuk semak belukar. Variasi strata tajuk ini disebabkan oleh perbedaan ukuran tumbuhan serta perbedaan waktu tumbuh. Tipe ekosistem hutan hujan tropis terdapat di wilayah yang memiliki tipe iklim A dan B (menurut klasifikasi iklim Schimidt dan Ferguson), atau dapat dikatakan bahwa tipe ekosistem tersebut berada pada daerah yang selalu basah, pada daerah yang memiliki jenis tanah Podsolik, Latosol, Aluvial dan Regosol dengan drainase yang baik, dan terletak jauh dari pantai (Santoso 1996, diacu dalam Indriyanto 2008)

2 8 Gambar 2 Peta lokasi penelitian.

3 9 2.2 Data, Hardware, Software dan Alat Data Penelitian Data primer yang dipergunakan adalah: (1) Citra ALOS PALSAR Provinsi Sumatera Utara liputan Juni tahun 2009 dengan resolusi spasial 50 meter dan 6,25 meter dan resolusi radiometric 16 bits per piksel. Citra ALOS PALSAR yang digunakan merupakan citra yang telah ortho rektifikasi; dan (2) data hasil pengukuran tegakan hutan pada lokasi penelitian. Sedangkan data sekunder terdiri dari Peta Rupa Bumi Indonesia skala 1 : dan Peta Penunjukan Kawasan Hutan Provinsi Sumatera Utara skala 1 : Citra ALOS PALSAR resolusi 6,25 meter dan resolusi 50 meter dengan polarisasi HH dan HV disajikan pada Gambar 3 dan Gambar 4. Citra ALOS PALSAR yang digunakan pada penelitian ini merupakan citra radar yang menggunakan gelombang mikro. Berdasarkan sifat sumber energi elektromagnetik yang digunakan, radar merupakan penginderaan jauh aktif (active remote sensing) yang memanfaatkan microwave dengan panjang gelombang antara 1 mm sampai dengan 1 m. Pada Tabel 1 disajikan tata nama band dan frekuensi yang digunakan pada radar. Tabel 1 Frekuensi standard dan tata nama band radar. Tata nama band yang umum digunakan dan yang digunakan yang digunakan NATO Band Frekuensi (GHz) Band NATO Frekuensi (GHz) UHF L S C X Ku (J) K Ka (Q) Sumber: Hoekman (1990) B C D E F G H I J K

4 10 (a) (b) Gambar 3 Citra ALOS PALSAR resolusi 6,25 meter, (a) polarisasi HH dan (b) polarisasi HV

5 11 (a) (b) Gambar 4 Citra ALOS PALSAR resolusi 50 meter, (a) polarisasi HH dan (b) polarisasi HV

6 12 Sifat sistem radar Sifat sistem radar dipengaruhi oleh: (1) Panjang gelombang dan kemampuan daya tembusnya terhadap atmosfer dan permukaan tanah, dan (2) Sudut depresi antena merupakan salah satu aspek geometrik pada citra radar dan penyebab terjadinya efek backscatter radar, efek bayangan pada objek (Purwadhi 2001). Daya tembus terhadap atmosfer paling baik pada panjang gelombang yang lebih besar karena tidak terpengaruh hambatan atmosfer, sedangkan daya tembus terhadap permukaan tanah tergantung panjang gelombang dan konstanta dielektrik objeknya. Daya tembus besar pada panjang gelombang lebih besar dan material penutup kurang dari 1/10 panjang gelombangnya (biasanya sekitar 2-3 meter), daya tembus kecil pada konstanta dielektrik tinggi (objek yang kelembabannya tinggi). Panjang gelombang radar lebih dari 3 cm hanya sedikit berpengaruh oleh awan, kabut tebal, asap dan kabut tipis, dan hanya panjang gelombang yang besar yang benar-benar mampu menembus hujan lebat. Pada panjang gelombang yang lebih kecil, pantulan radar oleh tetes-tetes air masih dapat berpengaruh sehingga memberikan faktor gangguan yang sangat tinggi. Panjang gelombang yang lebih besar akan menghasilkan informasi yang jauh lebih sedikit mengenai kekasaran permukaan vegetasi dibandingkan panjang gelombang yang lebih kecil, tetapi panjang gelombang yang lebih besar akan banyak memberikan informasi mengenai kondisi medan. Di bidang kehutanan, panjang gelombang yang kecil lebih disukai, sedangkan para ahli tanah dan geologi biasanya lebih menyukai panjang gelombang yang lebih besar, karena akan diperoleh lebih banyak informasi yang relevan (Howard 1996). Ukuran backscatter dari objek sama seperti reflectance dalam sistem optik adalah rasio antara sinyal emisi dengan sinyal yang diterima dan akan berlainan tergantung kepada jenis objeknya. Nilai ini sering disebut sebagai nilai radar cross section (σ o ) dan dinyatakan dalam besaran desibel (db). Intensitas atau kekuatan gelombang radar yang diterima kembali oleh sensor (backscatter) menentukan karakteristik spektral objek citra radar. Sebagai bagian dari dari topografi, kekasaran permukaan adalah sifat terrain yang paling berpengaruh terhadap nilai backscatter objek, tergantung kepada panjang

7 13 gelombang dan sudut pandang sensor. Sebuah permukaan dapat terlihat kasar apabila perbedaan tinggi mendekati panjang gelombangnya. Permukaan halus akan terlihat gelap sedangkan permukaan kasar akan terlihat cerah pada citra radar, hal ini merupakan perilaku scattering gelombang radar. Intensitas atau kekuatan gelombang pantulan pada citra radar dipengaruhi sifat objek dan sifat sistem radarnya (Purwadhi 2001). Pada penelitian ini akan dikaji pengaruh sifat objek terhadap nilai backscatter pada citra radar ALOS PALSAR. Tiga tipe backscatter yang dikenal adalah surface scattering, volume scattering, dan corner reflector. Jika permukaan objek seragam maka akan terjadi surface scattering (backscatter permukaan) dan surface scattering dapat terjadi dalam bentuk specular reflector (pantulan cermin) atau diffuse reflector (pantulan baur) tergantung dari panjang gelombang dan kekasaran permukaan objek. Pantulan baur yaitu pantulan kesegala arah termasuk yang kembali ke sensor yang menyebabkan rona cerah, hal ini terjadi pada objek yang memiliki permukaan kasar seperti daerah bebatuan, vegetasi yang heterogen dan air dengan ombak besar. Pantulan cermin (specular reflector) yaitu arah pantulan berlawanan dengan arah datangnya gelombang atau sensor menyebabkan rona gelap, hal ini terjadi pada objek yang memiliki permukaan halus, seperti permukaan air tenang, permukaan tanah yang diratakan atau diperkeras. Jika permukaan objek dengan dielektriknya tidak seragam maka akan terjadi volume scattering dimana gelombang radar penetrasi menembus permukaan dan pantulan gelombangnya berasal dari objek yang berada dibawah permukaan. Corner reflector atau pantulan sudut terjadi sebagai hasil dari bentuk sudut objek alami maupun objek buatan. Pantulan sudut menyebabkan pantulan gelombang kembali ke arah sensor yang menyebabkan rona sangat cerah. Objek yang bersudut siku-siku seperti gedung bertingkat dan lereng terjal. Tipe-tipe backscatter disajikan pada Gambar 5.

8 14 Pantulan cermin (backscatter rendah) Pantulan baur (backscatter tinggi) corner reflector (pantulan sudut) volume scattering Gambar 5 Tipe backscatter (Smith 2006). Kondisi topografi permukaan bumi sangat mempengaruhi backscatter. Variasi lokal medan mengakibatkan sudut datang gelombang radar yang berbedabeda. Variasi topografi mengakibatkan backscatter pada lereng yang menghadap ke sensor akan memantulkan gelombang yang lebih besar dibandingkan lereng sebaliknya, atau lereng yang membelakangi sensor. Kekuatan gelombang pantulan karena pengaruh kondisi topografi biasanya dikatakan sebagai efek geometri sensor radar terhadap medan. Kekuatan backscatter mempengaruhi rona pada citra radar. Citra radar bagian lereng depan akan lebih cerah dibandingkan dengan bagian lereng yang membelakangi sensor. Fisiognomi vegetasi berkayu sangat berpengaruh terhadap rona, dan tekstur citra radar yang terekam. Seringkali batas citra pada formasi tanaman, dan kadang-kadang juga batas subformasi atau tipe hutan dapat diidentifikasi secara tepat serta didelineasi, tergantung pada panjang gelombang radar yang digunakan, perekaman dapat berupa sinyal campuran yang dihasilkan oleh kekasaran permukaan tajuk pepohonan, vegetasi dibawahnya (understory), dan juga tekstur medan, yang kadang-kadang juga menyebabkan stratum kanopi utama justru tidak mempunyai pengaruh terbesar (Howard 1996).

9 15 ALOS PALSAR Advanced Land Observing Satelite (ALOS) adalah satelit milik Jepang yang merupakan satelit generasi lanjutan dari Japanese Earth Resources Satellite-1 (JERS-1) dan Advanced Earth Observing Satellite (ADEOS) yang dilengkapi dengan teknologi yang lebih maju. Satelit ALOS diluncurkan pada tanggal 24 Januari 2006 dengan menggunakan roket H-IIA milik Jepang dari stasiun peluncuran Tanegashima Space Center. Satelit ini di desain untuk dapat beroperasi selama tiga sampai lima tahun, dilengkapi dengan tiga instrumen penginderaan jauh yaitu Panchromatik Remote-sensing Instrument for Stereo Mapping (PRISM) dengan resolusi spasial 2,5 m yang dirancang untuk memperoleh data Digital Terrain Model (DTM), Advanced Visible and Near Infrared Radiometer type-2 (AVNIR-2) dengan resolusi spasial 10 m untuk pemantauan tutupan lahan secara lebih tepat, dan Phased Array type L-band Synthetic Apeture Radar (PALSAR) untuk pemantauan semua kondisi cuaca pada siang dan malam hari. Tabel 2 Karakteristik PALSAR Mode Fine ScanSAR Polarimetric (Experimental mode)*1 Center Frequency 1270 MHz(L-band) Chirp Bandwidth 28MHz 14MHz 14MHz,28MHz 14MHz HH or HH+HV or HH or VV HH+HV+VH+VV Polarization VV VV+VH 8 to 8 to 60deg. 18 to 43deg. 8 to 30deg. Incident angle 60deg. 100m Range Resolution 7 to 44m 14 to 88m (multi look) 24 to 89m 40 to 40 to 70km 250 to 350km 20 to 65km Observation Swath 70km Bit Length 5 bits 5 bits 5 bits 3 or 5bits Data rate 240Mbps 240Mbps 120Mbps,240Mb ps 240Mbps < -23dB (Swath Width 70km) NE sigma zero *2 < -25dB (Swath Width 60km) < -25dB < -29dB > 16dB (Swath Width 70km) S/A *2,*3 > 21dB (Swath Width 60km) > 21dB > 19dB Radiometric scene: 1dB / orbit: 1.5 db accuracy Sumber: Jaxa (2006)

10 16 Sensor PALSAR (Phased Array Type L-band Synthetic Aperture Radar) adalah sensor microwave yang aktif dengan menggunakan gelombang L-band yang dapat menembus lapisan awan dan dapat mengobservasi siang dan malam hari. Sensor PALSAR yang dipasang pada satelit ALOS, merupakan pengembangan lebih lanjut sensor SAR (synthetic aperture radar) yang dibawa oleh satelit pendahulunya JERS-1. Melalui salah satu mode observasinya, yaitu ScanSAR sensor ini memungkinkan untuk melakukan pengamatan permukaan bumi dengan cakupan area 250 km hingga 350 km. Hal ini merupakan cakupan pengamatan tiga sampai lima kali lebih luas dibandingkan citra SAR konvensional. Karakeristik PALSAR dapat dilihat pada Tabel Hardware, Software dan alat Hardware atau perangkat keras yang digunakan dalam penelitian ini adalah komputer dan printer, sedangkan alat yang digunakan adalah GPS (Global Positioning System), kompas, clinometer, phiband, tallysheet, kamera digital dengan lensa fish eye. Perangkat lunak atau software untuk pengolahan data digunakan ERDAS Imagine Ver 9.1, ArcView 3.3 (extension clustering), HemiVeiw 2.1 dan SPSS Statistic Tahapan Penelitian Penelitian ini dilakukan melalui beberapa tahapan penelitian yaitu: 1) persiapan, 2) pra pengolahan citra ALOS PALSAR, 3) pengolahan citra ALOS PALSAR, 4) desain penarikan contoh, 5) pengambilan data lapangan, 6) pengolahan data lapangan, dan 7) pemilihan peubah tegakan. Tahapan penelitian disajikan pada Gambar 6.

11 17 mulai Pra pengolahan citra ALOS PALSAR Clustering Data lapangan Dendrogram evaluasi Analisis Merging & labelling Peubah tegakan yang berpengaruh selesai Gambar 6 Tahapan penelitian Persiapan Kegiatan pada tahap persiapan adalah pengumpulan data digital berupa data vektor dan data raster, pembuatan tallysheet, dan pengolahan citra ALOS PALSAR agar dapat diolah dan dianalisis untuk keperluan penelitian Pra Pengolahan Citra Tahapan pra pengolahan citra ALOS PALSAR dimaksudkan untuk memperoleh citra ALOS PALSAR yang siap dianalisis. Kegiatan yang dilakukan pada tahap ini terdiri dari pemotongan citra (cropping) dan reduksi noise. (1) Pemotongan citra (cropping) Pemotongan citra dilakukan untuk membatasi citra sesuai dengan wilayah penelitian sehingga analisis dapat lebih fokus pada lokasi penelitian dan pemrosesan citra berlangsung lebih cepat. (2) Reduksi noise Noise terjadi akibat adanya interaksi sinyal balik yang beragam dari berbagai objek yang ada di area tersebut. Interaksi gelombang akan membuat

12 18 sinyal pancar balik tersebut menghilang atau malah diperkuat sehingga akan menghasilkan piksel yang cerah dan gelap yang disebut spekcle noise. Citra ALOS PALSAR resolusi 6.25 meter dilakukan reduksi noise, sedangkan pada citra ALOS PALSAR resolusi 50 meter tidak dilakukan reduksi noise karena tidak mengalami gangguan. Metode yang digunakan pada tahap ini adalah filter frost dengan window size 7 x 7. Filter frost akan mengganti nilai piksel yang menjadi prioritas dengan bobot dari jumlah nilai dalam window size (moving window) 7 x 7. Faktor bobot akan berkurang menurut jarak piksel dari piksel prioritas. Rumus yang digunakan adalah: DN = dimana nxn Kαe α t (Lopes et al. 1990) dan K Ī σ n σ α 4 nσ σ 2 = 2 2 = Konstanta = rata-rata lokal I = variance local = moving window size = image coefficient of avariation value σ = keragaman rata - rata t X 0,Y 0 X,Y = jarak = posisi piksel tujuan = posisi piksel ke-i terhadap piksel tujuan Pengolahan Citra (1) Konversi Digital Number Kegiatan ini mengkonversi digital number menjadi nilai backscatter citra ALOS PALSAR yang dilakukan pada setiap polarisasi HH dan HV baik untuk citra ALOS PALSAR resolusi 50 meter maupun pada citra ALOS PALSAR

13 19 resolusi 6,25 meter. Nilai backscatter tiap piksel dihitung dengan menggunakan persamaan di bawah ini (Shimada et al. 2009). σ =10 x log10 (DN 2 ) + CF Keterangan: σ = Koefisien backscatter dalam desibel (db) DN = Digital Number CF = Calibration Factor (-83) (2) Klasifikasi tidak terbimbing Klasifikasi tidak terbimbing atau klastering (clustering) merupakan suatu teknik klasifikasi yang merupakan serangkaian proses untuk mengelompokkan observasi (piksel) ke dalam suatu kelas atau klaster yang benar dalam suatu set kategori yang disusun (Jaya 2009). Jumlah klaster awal pada penelitian ini ditetapkan sebanyak 20 klaster. Proses klastering selanjutnya menggunakan metode rata-rata bergerak (migrating means) atau dikenal juga dengan istilah metode K-mean clustering. Agar memudahkan melakukan analisis pengkelasan berdasarkan tingkat kemiripan dari masing-masing ukuran klaster yang digunakan, maka diperlukan suatu teknik untuk menyusun urutan pengelompokan klaster, dari jumlah yang banyak sampai dengan jumlah yang kecil. Diagram yang menggambarkan pengelompokan ini dinamakan dendrogram. (3) Dendrogram Dendrogram adalah kurva yang menggambarkan pengelompokan klaster, untuk memudahkan analisis pengkelasan. Salah satu metode penggambarannya ialah metode tetangga terdekat (nearest neighbor method) yaitu metode penggambaran klaster berdasarkan pada jarak terdekat dari anggota klaster. Metode ini sering disebut dengan metode single linkage. (4) Merging Kelas yang memiliki jarak dekat dengan kelas lainnya digabungkan (merge) menjadi satu kelas yang sama Desain Penarikan Contoh Penentuan plot contoh dilakukan secara systematic sampling dengan area prioritas (area of interest) mempertimbangkan kemudahan aksesibilitas dan ketersebaran plot contoh di lokasi penelitian. Bentuk plot contoh berupa persegi

14 20 empat berukuran 50 m x 50 m dengan jumlah 45 plot contoh. Peta sebaran plot contoh disajikan pada Gambar 7. Gambar 7 Peta sebaran plot contoh.

15 Pengambilan Data Lapangan Pengambilan data di lapangan dimulai dengan tahapan sebagai berikut: (1) Penentuan Titik Pusat Plot Posisi titik pusat plot di lapangan ditentukan atas dasar gambaran titik pusat plot dipeta/citra. Titik pusat plot ditentukan koordinatnya dengan menggunakan GPS. (2) Pembuatan plot contoh Plot contoh berbentuk persegi empat dengan ukuran 50 m x 50 m untuk pengukuran pohon dengan diameter 20 cm ke atas, di dalamnya plot contoh dibuat sub plot contoh berukuran 10 m x 10 m untuk pengukuran tiang dengan diameter 10 cm sampai dengan diameter kurang dari 20 cm dan sub plot contoh berukuran 5 m x 5 m untuk pengukuran pancang dengan diameter 5 cm sampai dengan diameter kurang dari 10 cm. Gambar plot contoh disajikan pada Gambar m Kuadran IV Kuadran I 10m m 50 m Titik Pusat Plot Kuadran III Kuadran II Gambar 8 Plot contoh. (3) Pengambilan data lapangan Data lapangan yang dikumpulkan pada setiap plot contoh merupakan dimensi tegakan yang dapat mempengaruhi nilai backscatter citra ALOS PALSAR. Data-data plot contoh yang dikumpulkan adalah: a Titik koordinat pusat plot contoh; diambil dengan menggunakan GPS untuk mendapatkan posisi koordinat x dan y pusat plot di lapangan. b Diameter; diameter diukur pada setinggi dada (130 cm). (1) Tingkat pancang, diukur diameter 5 cm sampai dengan diameter < 10 cm, sub plot untuk pengukuran pancang berukuran 5 x 5 meter pada kuadran I.

16 22 (2) Tingkat tiang diukur diameter 10 cm sampai dengan diameter < 20 cm, sub plot untuk pengukuran pancang berukuran 10 x 10 meter pada kuadran I. (3) Pohon diukur pada diameter 20 cm, diukur pada plot contoh 50 x 50 m. c Tinggi total; diukur dari pangkal batang sampai ujung tajuk tanaman. d Diameter tajuk; merupakan diameter rata-rata tajuk yang diukur dua kali pada arah Utara-Selatan dan Timur-Barat. e Tebal tajuk; diukur dari pangkal bebas cabang sampai ujung tajuk. f Kemiringan lapangan (slope); merupakan beda tinggi pada pusat plot dengan kondisi di sekitarnya. g Arah kemiringan lapangan (Aspect) yang ditentukan dari pusat plot sampel. h LAI (leaf area index); diambil menggunakan kamera dengan lensa fish eye. i Gambar dokumentasi plot contoh Pengolahan Data Lapangan Data lapangan yang telah tercatat di tallysheet selanjutnya direkapitulasi dan dilakukan perhitungan untuk mengetahui data setiap plot contoh. (1) Posisi koordinat plot contoh dari GPS. (2) Nilai rata-rata diameter, rata-rata tinggi pohon, rata-rata lebar tajuk, dan ratarata tebal tajuk setiap plot. (3) Kerapatan pancang, tiang dan pohon setiap plot dalam hektar (ha). Rumus kerapatan sebagai berikut: keterangan: K = Kerapatan (pancang, tiang dan pohon setiap plot/sub plot dalam ha) (4) Luas bidang dasar per hektar (m 2 /ha) setiap plot contoh. n 2 ( 1/ 4). π. d i= LBDSj = 1 Lp keterangan: LBDSj = Luas Bidang Dasar (m 2 /ha) dari plot ke j π = 3.14 d = DBH (m) Lp = Luas plot/sub plot (ha)

17 23 (5) Luas tajuk per hektar (m 2 /ha) setiap plot contoh L Tjk = n = i = 1 L Tjk ¼. π.d Lp 2 tjk keterangan: L Tjk = Luas tajuk (m 2 /ha) π = 3.14 D tjk = diameter tajuk pohon (m) Lp = luas plot/sub plot (ha) (6) Penghitungan biomasa Pendugaan biomasa pohon di atas permukaan tanah pada hutan hujan tropis dengan ketinggian 1600 m di atas permukaan laut menggunakan allometric yang dikembangkan oleh Basuki et al. (2009) ln(tagb) = c + αln(d) keterangan: TAGB = total above-ground biomass c = α = d = diameter (7) Pengukuran LAI Pengukuran LAI dilakukan dengan menggunakan kamera berlensa fisheye. Pengambilan foto dilakukan di tengah plot mengarah ke atas dari lantai hutan. Posisi kamera foto pada tripot dengan ketinggian 150 cm. Penghitungan nilai LAI menggunakan software Hemiview Pemilihan Peubah Tegakan Pada penelitian ini, analisis diskriminan digunakan sebagai alat analisis untuk mengetahui peubah tegakan yang menjadi faktor pembeda kelas pada hutan hujan tropis. Peubah-peubah tegakan yang menjadi variabel independen dianalisis untuk mengetahui pengaruhnya terhadap nilai backscatter. Analisis diskriminan merupakan metode statistik untuk mengelompokkan atau mengklasifikasi sejumlah obyek ke dalam beberapa kelompok, berdasarkan beberapa peubah. Pada prinsipnya analisis diskriminan bertujuan untuk mengelompokkan setiap obyek ke dalam dua atau lebih kelompok berdasar pada

18 24 kriteria sejumlah peubah bebas. Pengelompokkan ini bersifat mutually exclusive, dalam artian jika obyek A sudah masuk kelompok 1, maka ia tidak mungkin juga dapat menjadi anggota kelompok 2. Analisis kemudian dapat dikembangkan pada peubah mana saja yang membuat kelompok 1 berbeda dengan kelompok 2, berapa persen yang masuk ke kelompok 1, berapa persen yang masuk ke kelompok 2. Ciri analisis diskriminan adalah jenis data dari peubah dependent bertipe nominal (kategori), seperti kode 0 dan 1, atau kode 1, 2 dan 3 serta kombinasi lainnya (Santoso et al. 2001). Model analisis diskriminan yang digunakan bentuknya sebagai berikut: D = b 0 + b 1 X 1 + b 2 X 2 + b 3 X b n X n dimana X 1 ~ X n prediktor atau peubah tegakan secara berturut-turut terdiri dari kerapatan pancang, kerapatan tiang, kerapatan pohon, diameter batang pancang, diameter batang tiang, diameter batang pohon, tinggi pancang, tinggi tiang, tinggi pohon, LBDS pancang, LBDS tiang, LBDS pohon, biomasa pancang, biomasa tiang, biomasa pohon, tebal tajuk pancang, tebal tajuk tiang, tebal tajuk pohon, diameter tajuk pancang, diameter tajuk tiang, diameter tajuk pohon, persentasi tutupan tajuk, dan Leaf Area Index (LAI). Metode analisis fungsi diskriminan pada penelitian ini adalah metode stepwise, yaitu dengan memasukkan semua peubah tegakan dalam analisis untuk menentukan peubah tegakan mana saja yang dapat membedakan kelas pada hutan hujan tropis. Setelah semua peubah tegakan dimasukkan dalam fungsi diskriminan, kemudian dilakukan evaluasi kontribusi dari masing-masing peubah tegakan dimana peubah tegakan yang tidak memberikan kontribusi dihilangkan, dan peubah tegakan yang memberikan kontribusi paling besar dalam membedakan kelas merupakan peubah tegakan yang mempengaruhi backscatter. Peubah tegakan yang memberikan kontribusi besar adalah peubah-peubah tegakan yang memiliki nilai F hitung yang lebih lebih besar. Untuk evaluasi keakuratan fungsi diskriminan dilakukan penghitungan hit ratio. Hit ratio merupakan persentase jumlah contoh yang kelasnya dapat diprediksi secara tepat keanggotaanya dengan menggunakan fungsi diskriminan.

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN 25 3.1 Eksplorasi Data Lapangan III HASIL DAN PEMBAHASAN Data lapangan yang dikumpulkan merupakan peubah-peubah tegakan yang terdiri dari peubah kerapatan pancang, kerapatan tiang, kerapatan pohon, diameter

Lebih terperinci

II METODOLOGI PENELITIAN

II METODOLOGI PENELITIAN 2.1 Waktu dan Tempat II METODOLOGI PENELITIAN Penelitian ini dilakukan pada bulan Oktober 2010 sampai dengan Mei 2011. Penelitian dilakukan di wilayah Kerja HTI PT Toba Pulp Lestari Sektor Tele Kecamatan

Lebih terperinci

II. BAHAN DAN METODE

II. BAHAN DAN METODE 9 II. BAHAN DAN METODE 2.1 Tempat dan Waktu Penelitian Penelitian ini dilaksanakan di wilayah Kabupaten Simalungun, Kabupaten Serdang Bedagai, Kabupaten Asahan dan Kota Pematang Siantar Provinsi Sumatera

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang 1 I PENDAHULUAN 1.1 Latar Belakang Luas kawasan hutan Indonesia berdasarkan Surat Keputusan Menteri Kehutanan tentang penunjukan kawasan hutan dan perairan provinsi adalah 133.300.543,98 ha (Kementerian

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan salah satu negara yang memiliki hutan tropis terbesar di dunia, dengan kondisi iklim basa yang peluang tutupan awannya sepanjang tahun cukup tinggi.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh merupakan tehnik dan seni untuk memperoleh informasi tentang suatu objek, wilayah atau fenomena dengan menganalisa data yang diperoleh

Lebih terperinci

Phased Array Type L-Band Synthetic Aperture Radar (PALSAR)

Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) LAMPIRAN 51 Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) Sensor PALSAR merupakan pengembangan dari sensor SAR yang dibawa oleh satelit pendahulunya, JERS-1. Sensor PALSAR adalah suatu sensor

Lebih terperinci

I. PENDAHULUAN 1.1 Latar Belakang

I. PENDAHULUAN 1.1 Latar Belakang 1 I. PENDAHULUAN 1.1 Latar Belakang Posisi Indonesia berada di daerah tropis mengakibatkan hampir sepanjang tahun selalu diliputi awan. Kondisi ini mempengaruhi kemampuan citra optik untuk menghasilkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh merupakan suatu teknik pengukuran atau perolehan informasi dari beberapa sifat obyek atau fenomena dengan menggunakan alat perekam yang secara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Penginderaan Jauh Penginderaan jauh merupakan ilmu dan seni untuk memperoleh informasi tentang suatu objek, daerah, atau fenomena melalui analisis data yang diperoleh dengan

Lebih terperinci

q Tujuan dari kegiatan ini diperolehnya peta penggunaan lahan yang up-to date Alat dan Bahan :

q Tujuan dari kegiatan ini diperolehnya peta penggunaan lahan yang up-to date Alat dan Bahan : MAKSUD DAN TUJUAN q Maksud dari kegiatan ini adalah memperoleh informasi yang upto date dari citra satelit untuk mendapatkan peta penggunaan lahan sedetail mungkin sebagai salah satu paramater dalam analisis

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. DEM ( Digital Elevation Model

II. TINJAUAN PUSTAKA 2.1. DEM ( Digital Elevation Model 15 II. TINJAUAN PUSTAKA 2.1. DEM (Digital Elevation Model) Digital Elevation Model (DEM) merupakan bentuk 3 dimensi dari permukaan bumi yang memberikan data berbagai morfologi permukaan bumi, seperti kemiringan

Lebih terperinci

BAB II METODE PENELITIAN 2.1 Waktu dan Tempat Penelitian ini dilaksanakan mulai bulan Agustus 2010 sampai bulan September 2011, diawali dengan tahap pengambilan data sampai dengan pengolahan dan penyusunan

Lebih terperinci

PENGOLAHAN CITRA SATELIT ALOS PALSAR MENGGUNAKAN METODE POLARIMETRI UNTUK KLASIFIKASI LAHAN WILAYAH KOTA PADANG ABSTRACT

PENGOLAHAN CITRA SATELIT ALOS PALSAR MENGGUNAKAN METODE POLARIMETRI UNTUK KLASIFIKASI LAHAN WILAYAH KOTA PADANG ABSTRACT Eksakta Vol. 18 No. 1, April 2017 http://eksakta.ppj.unp.ac.id E-ISSN : 2549-7464 P-ISSN : 1411-3724 PENGOLAHAN CITRA SATELIT ALOS PALSAR MENGGUNAKAN METODE POLARIMETRI UNTUK KLASIFIKASI LAHAN WILAYAH

Lebih terperinci

BAB II DASAR TEORI. 2.1 DEM (Digital elevation Model) Definisi DEM

BAB II DASAR TEORI. 2.1 DEM (Digital elevation Model) Definisi DEM BAB II DASAR TEORI 2.1 DEM (Digital elevation Model) 2.1.1 Definisi DEM Digital Elevation Model (DEM) merupakan bentuk penyajian ketinggian permukaan bumi secara digital. Dilihat dari distribusi titik

Lebih terperinci

BAB III METODOLOGI 3.1 Waktu dan Tempat 3.2 Alat dan Data 3.3 Tahapan Pelaksanaan

BAB III METODOLOGI 3.1 Waktu dan Tempat 3.2 Alat dan Data 3.3 Tahapan Pelaksanaan 15 BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian ini dilaksanakan mulai bulan Juli sampai dengan April 2011 dengan daerah penelitian di Kabupaten Bogor, Kabupaten Sukabumi, dan Kabupaten Cianjur,

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.1 Identifikasi Tutupan Lahan di Lapangan Berdasarkan hasil observasi lapangan yang telah dilakukan di Kabupaten Humbang Hasundutan, Kabupaten Tapanuli Utara, dan Kabupaten

Lebih terperinci

BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian 3.2 Bahan dan Alat

BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian 3.2 Bahan dan Alat 21 BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian Penelitian ini dilakukan di KPH Kebonharjo Perum Perhutani Unit I, Jawa Tengah. Meliputi Bagian Hutan (BH) Tuder dan Balo, pada Kelas Perusahaan Jati.

Lebih terperinci

KARAKTERISTIK BACKSCATTER CITRA ALOS PALSAR PADA TEGAKAN HUTAN TANAMAN

KARAKTERISTIK BACKSCATTER CITRA ALOS PALSAR PADA TEGAKAN HUTAN TANAMAN KARAKTERISTIK BACKSCATTER CITRA ALOS PALSAR PADA TEGAKAN HUTAN TANAMAN Eucalyptus grandis AYUB WOISIRI SEKOLAH PASCASARJANA INSTITUT PERTANIANN BOGOR BOGOR 2011 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian ini dilaksanakan di KPH Banyumas Barat (Bagian Hutan Dayeuluhur, Majenang dan Lumbir). Penelitian ini dilakukan dengan mengolah dan menganalisis

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA . II. TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh merupakan ilmu dan seni untuk memperoleh informasi tentang objek, daerah atau gejala dengan jalan menganalisis data yang diperoleh dengan

Lebih terperinci

1. BAB I PENDAHULUAN PENDAHULUAN

1. BAB I PENDAHULUAN PENDAHULUAN 1. BAB I PENDAHULUAN PENDAHULUAN 1.1. Latar Belakang Peta menggambarkan data spasial (keruangan) yang merupakan data yang berkenaan dengan lokasi atau atribut dari suatu objek atau fenomena di permukaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh (Remote Sensing) Penginderaan jauh (remote sensing) merupakan ilmu dan seni pengukuran untuk mendapatkan informasi dan pada suatu obyek atau fenomena, dengan

Lebih terperinci

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002)

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002) BAB III METODA 3.1 Penginderaan Jauh Pertanian Pada penginderaan jauh pertanian, total intensitas yang diterima sensor radar (radar backscattering) merupakan energi elektromagnetik yang terpantul dari

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 14 III. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini dilakukan sejak bulan April 2009 sampai November 2009 di Laboratorium Penginderaan Jauh dan Interpretasi Citra, Departemen Ilmu

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.. Variasi NDVI Citra AVNIR- Citra AVNIR- yang digunakan pada penelitian ini diakuisisi pada tanggal Desember 008 dan 0 Juni 009. Pada citra AVNIR- yang diakuisisi tanggal Desember

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli-November Penelitian ini

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli-November Penelitian ini METODE PENELITIAN Waktu dan Tempat Penelitian ini dilaksanakan pada bulan Juli-November 2012. Penelitian ini dilaksanakan di lahan sebaran agroforestri yaitu di Kecamatan Sei Bingai, Kecamatan Bahorok,

Lebih terperinci

Kegiatan konversi hutan menjadi lahan pertambangan melepaskan cadangan

Kegiatan konversi hutan menjadi lahan pertambangan melepaskan cadangan Kegiatan konversi hutan menjadi lahan pertambangan melepaskan cadangan karbon ke atmosfir dalam jumlah yang cukup berarti. Namun jumlah tersebut tidak memberikan dampak yang berarti terhadap jumlah CO

Lebih terperinci

KARAKTERISKTIK BACKSCATTER CITRA ALOS PALSAR POLARISASI HH DAN HV TERHADAP PARAMETER BIOFISIK HUTAN DI SEBAGIAN TAMAN NASIONAL KERINCI SEBLAT

KARAKTERISKTIK BACKSCATTER CITRA ALOS PALSAR POLARISASI HH DAN HV TERHADAP PARAMETER BIOFISIK HUTAN DI SEBAGIAN TAMAN NASIONAL KERINCI SEBLAT KARAKTERISKTIK BACKSCATTER CITRA ALOS PALSAR POLARISASI HH DAN HV TERHADAP PARAMETER BIOFISIK HUTAN DI SEBAGIAN TAMAN NASIONAL KERINCI SEBLAT Nirmawana Simarmata 1, Hartono 2, Sigit Heru Murti 3 1 Program

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Pemantauan Padi dengan SAR Polarisasi Tunggal Pada awal perkembangannya, sensor SAR hanya menyediakan satu pilihan polarisasi saja. Masalah daya di satelit, kapasitas pengiriman

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 11 BAB III METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian ini dilaksanakan selama dua bulan yaitu bulan Juli-Agustus 2010 dengan pemilihan lokasi di Kota Denpasar. Pengolahan data dilakukan di Laboratorium

Lebih terperinci

BAB I PENDAHULUAN 1. Latar Belakang

BAB I PENDAHULUAN 1. Latar Belakang BAB I PENDAHULUAN 1. Latar Belakang Indonesia memiliki kekayaan vegetasi yang beraneka ragam dan melimpah di seluruh wilayah Indonesia. Setiap saat perubahan lahan vegetasi seperti hutan, pertanian, perkebunan

Lebih terperinci

PERBEDAAN INTERPRETASI CITRA RADAR DENGAN CITRA FOTO UDARA

PERBEDAAN INTERPRETASI CITRA RADAR DENGAN CITRA FOTO UDARA PERBEDAAN INTERPRETASI CITRA RADAR DENGAN CITRA FOTO UDARA I. Citra Foto Udara Kegiatan pengindraan jauh memberikan produk atau hasil berupa keluaran atau citra. Citra adalah gambaran suatu objek yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Permukaan bumi yang tidak rata membuat para pengguna SIG (Sistem Informasi Geografis) ingin memodelkan berbagai macam model permukaan bumi. Pembuat peta memikirkan

Lebih terperinci

Legenda: Sungai Jalan Blok sawah PT. Sang Hyang Seri Kabupaten Subang

Legenda: Sungai Jalan Blok sawah PT. Sang Hyang Seri Kabupaten Subang 17 III. METODOLOGI 3.1. Waktu dan Tempat Penelitian Penelitian ini dimulai pada bulan Oktober 2010 dan berakhir pada bulan Juni 2011. Wilayah penelitian berlokasi di Kabupaten Subang, Jawa Barat (Gambar

Lebih terperinci

BAB II METODE PENELITIAN

BAB II METODE PENELITIAN BAB II METODE PENELITIAN 2.1 Waktu dan Tempat Penelitian ini dimulai pada bulan Agustus 2010 sampai dengan bulan Nopember 2010. Lokasi penelitian terletak di Kabupaten Simalungun dan sekitarnya, Provinsi

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang 1 BAB I PENDAHULUAN I.1. Latar Belakang Kota Semarang merupakan ibukota Propinsi Jawa Tengah. Sebagai ibukota propinsi, Kota Semarang menjadi parameter kemajuan kota-kota lain di Propinsi Jawa Tengah.

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Hasil sensus jumlah penduduk di Indonesia, dengan luas wilayah kurang lebih 1.904.569 km 2 menunjukkan adanya peningkatan jumlah penduduk, dari tahun 2010 jumlah penduduknya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Perubahan Penggunaan Lahan Pengertian lahan berbeda dengan tanah, namun dalam kenyataan sering terjadi kekeliruan dalam memberikan batasan pada kedua istilah tersebut. Tanah

Lebih terperinci

PERANAN CITRA SATELIT ALOS UNTUK BERBAGAI APLIKASI TEKNIK GEODESI DAN GEOMATIKA DI INDONESIA

PERANAN CITRA SATELIT ALOS UNTUK BERBAGAI APLIKASI TEKNIK GEODESI DAN GEOMATIKA DI INDONESIA PERANAN CITRA SATELIT ALOS UNTUK BERBAGAI APLIKASI TEKNIK GEODESI DAN GEOMATIKA DI INDONESIA Atriyon Julzarika Alumni Teknik Geodesi dan Geomatika, FT-Universitas Gadjah Mada, Angkatan 2003 Lembaga Penerbangan

Lebih terperinci

SENSOR DAN PLATFORM. Kuliah ketiga ICD

SENSOR DAN PLATFORM. Kuliah ketiga ICD SENSOR DAN PLATFORM Kuliah ketiga ICD SENSOR Sensor adalah : alat perekam obyek bumi. Dipasang pada wahana (platform) Bertugas untuk merekam radiasi elektromagnetik yang merupakan hasil interaksi antara

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli 2011 sampai dengan Januari 2012 dengan daerah penelitian di Desa Sawohan, Kecamatan Buduran, Kabupaten

Lebih terperinci

III. METODOLOGI. Gambar 1. Peta Administrasi Kota Palembang.

III. METODOLOGI. Gambar 1. Peta Administrasi Kota Palembang. III. METODOLOGI 3.1 Waktu dan Tempat Penelitian dilaksanakan pada bulan Juli-Oktober 2010. Lokasi penelitian di Kota Palembang dan Laboratorium Analisis Spasial Lingkungan, Departemen Konservasi Sumberdaya

Lebih terperinci

BAB III APLIKASI PEMANFAATAN BAND YANG BERBEDA PADA INSAR

BAB III APLIKASI PEMANFAATAN BAND YANG BERBEDA PADA INSAR BAB III APLIKASI PEMANFAATAN BAND YANG BERBEDA PADA INSAR III.1 Model Tinggi Digital (Digital Terrain Model-DTM) Model Tinggi Digital (Digital Terrain Model-DTM) atau sering juga disebut DEM, merupakan

Lebih terperinci

Gambar 1. Peta Lokasi Penelitian

Gambar 1. Peta Lokasi Penelitian 10 BAB III BAHAN DAN METODE 3.1. Waktu dan Tempat Penelitian Penelitian ini dimulai pada bulan Maret 2011 dan berakhir pada bulan Oktober 2011. Penelitian ini terdiri atas pengamatan di lapang dan analisis

Lebih terperinci

III. BAHAN DAN METODE

III. BAHAN DAN METODE 10 III. BAHAN DAN METODE 3.1. Tempat Dan Waktu Penelitian Penelitian dilakukan di laboratorium dan di lapang. Pengolahan citra dilakukan di Bagian Penginderaan Jauh dan Informasi Spasial dan penentuan

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN 27 V. HASIL DAN PEMBAHASAN 5.1. Penampilan Citra Dual Polarimetry PALSAR / ALOS Penampilan citra dual polarimetry : HH dan HV level 1. 5 PALSAR/ALOS masing-masing dapat dilihat pada ENVI 4. 5 dalam bentuk

Lebih terperinci

Gambar 11. Citra ALOS AVNIR-2 dengan Citra Komposit RGB 321

Gambar 11. Citra ALOS AVNIR-2 dengan Citra Komposit RGB 321 V. HASIL DAN PEMBAHASAN 5.1. Analisis Spektral Citra yang digunakan pada penelitian ini adalah Citra ALOS AVNIR-2 yang diakuisisi pada tanggal 30 Juni 2009 seperti yang tampak pada Gambar 11. Untuk dapat

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 6 II. TINJAUAN PUSTAKA 2.1. Geomorfologi Geomorfologi merupakan salah satu cabang ilmu kebumian (earth sciences) yang mempelajari tentang bentuk permukaan bumi atau bentuklahan (landform). Perhatian geomorfologi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 11 BAB III METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian ini dilaksanakan pada Juni Juli 2012 di area Ijin Usaha Pemanfaatan Hasil Hutan Kayu-Hutan Alam (IUPHHK-HA) PT. Mamberamo Alasmandiri,

Lebih terperinci

DETEKSI EKOSISTEM MANGROVE DI CILACAP, JAWA TENGAH DENGAN CITRA SATELIT ALOS

DETEKSI EKOSISTEM MANGROVE DI CILACAP, JAWA TENGAH DENGAN CITRA SATELIT ALOS DETEKSI EKOSISTEM MANGROVE DI CILACAP, JAWA TENGAH DENGAN CITRA SATELIT ALOS Oleh : Tresna Sukmawati Suhartini C64104020 PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT

Lebih terperinci

BAB I PENDAHULUAN. global, sehingga terjadi penyimpangan pemanfaatan fungsi hutan dapat merusak

BAB I PENDAHULUAN. global, sehingga terjadi penyimpangan pemanfaatan fungsi hutan dapat merusak BAB I PENDAHULUAN 1.1. Latar Belakang Hutan merupakan kesatuan ekosistem berupa hamparan lahan berisi sumber daya alam hayati yang didominasi pepohonan dalam komunitas alam lingkungannya dan tidak dapat

Lebih terperinci

IV. HASIL DAN PEMBAHASAN 4.1 Kondisi Geografis Kabupaten Bekasi dan Sekitarnya

IV. HASIL DAN PEMBAHASAN 4.1 Kondisi Geografis Kabupaten Bekasi dan Sekitarnya IV. HASIL DAN PEMBAHASAN 4.1 Kondisi Geografis Kabupaten Bekasi dan Sekitarnya Gambar 4 Keadaan geografis daerah Kabupaten Bekasi dan sekitarnya tahun 29 (sumber : // http: www. googlemaps. com) Kajian

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini dilakukan mulai bulan Febuari 2009 sampai Januari 2010, mengambil lokasi di Kabupaten Bogor, Jawa Barat. Pengolahan dan Analisis

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Aktivitas gunung api dapat dipelajari dengan pengamatan deformasi. Pemantauan deformasi gunung api dapat digolongkan menjadi tiga kategori berbeda dari aktifitas gunung

Lebih terperinci

BAB I PENDAHULUAN 1.1.Latar Belakang

BAB I PENDAHULUAN 1.1.Latar Belakang BAB I PENDAHULUAN 1.1.Latar Belakang Sumberdaya alam ialah segala sesuatu yang muncul secara alami yang dapat digunakan untuk pemenuhan kebutuhan manusia pada umumnya. Hutan termasuk kedalam sumber daya

Lebih terperinci

Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997

Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997 LAMPIRAN Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997 17 Lampiran 2. Peta klasifikasi penutup lahan Kodya Bogor tahun 2006 18 Lampiran 3. Peta sebaran suhu permukaan Kodya Bogor tahun

Lebih terperinci

ESTIMASI BIOMASSA PADA DAERAH REKLAMASI MENGGUNAKAN DATA CITRA ALOS PALSAR : Studi Kasus Wilayah Kerja Pertambangan Batubara di Kalimantan Timur

ESTIMASI BIOMASSA PADA DAERAH REKLAMASI MENGGUNAKAN DATA CITRA ALOS PALSAR : Studi Kasus Wilayah Kerja Pertambangan Batubara di Kalimantan Timur ESTIMASI BIOMASSA PADA DAERAH REKLAMASI MENGGUNAKAN DATA CITRA ALOS PALSAR : Studi Kasus Wilayah Kerja Pertambangan Batubara di Kalimantan Timur M. Lutfi & Harry Tetra Antono Pusat Penelitian dan Pengembangan

Lebih terperinci

II. METODOLOGI. A. Metode survei

II. METODOLOGI. A. Metode survei II. METODOLOGI A. Metode survei Pelaksanaan kegiatan inventarisasi hutan di KPHP Maria Donggomassa wilayah Donggomasa menggunakan sistem plot, dengan tahapan pelaksaan sebagai berikut : 1. Stratifikasi

Lebih terperinci

METODOLOGI. Gambar 4. Peta Lokasi Penelitian

METODOLOGI. Gambar 4. Peta Lokasi Penelitian 22 METODOLOGI Tempat dan Waktu Penelitian Penelitian dilakukan di Kota Sukabumi, Jawa Barat pada 7 wilayah kecamatan dengan waktu penelitian pada bulan Juni sampai November 2009. Pada lokasi penelitian

Lebih terperinci

MODEL PENDUGA BIOMASSA MENGGUNAKAN CITRA LANDSAT DI HUTAN PENDIDIKAN GUNUNG WALAT HARLYN HARLINDA

MODEL PENDUGA BIOMASSA MENGGUNAKAN CITRA LANDSAT DI HUTAN PENDIDIKAN GUNUNG WALAT HARLYN HARLINDA MODEL PENDUGA BIOMASSA MENGGUNAKAN CITRA LANDSAT DI HUTAN PENDIDIKAN GUNUNG WALAT HARLYN HARLINDA DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR BOGOR 2015 PERNYATAAN MENGENAI

Lebih terperinci

ULANGAN HARIAN PENGINDERAAN JAUH

ULANGAN HARIAN PENGINDERAAN JAUH ULANGAN HARIAN PENGINDERAAN JAUH 01. Teknologi yang terkait dengan pengamatan permukaan bumi dalam jangkauan yang sangat luas untuk mendapatkan informasi tentang objek dipermukaan bumi tanpa bersentuhan

Lebih terperinci

Spektrum Gelombang. Penginderaan Elektromagnetik. Gelombang Mikro - Pasif. Pengantar Synthetic Aperture Radar

Spektrum Gelombang. Penginderaan Elektromagnetik. Gelombang Mikro - Pasif. Pengantar Synthetic Aperture Radar Spektrum Gelombang Pengantar Synthetic Aperture Radar Bambang H. Trisasongko Department of Soil Science and Land Resources, Bogor Agricultural University. Bogor 16680. Indonesia. Email: trisasongko@live.it

Lebih terperinci

BAB II TINJAUAN PUSTAKA 2.1 Sistem Informasi Geografis (SIG) SIG dirancang untuk mengumpulkan, menyimpan, dan menganalisis objekobjek serta fenomena

BAB II TINJAUAN PUSTAKA 2.1 Sistem Informasi Geografis (SIG) SIG dirancang untuk mengumpulkan, menyimpan, dan menganalisis objekobjek serta fenomena 3 BAB II TINJAUAN PUSTAKA 2.1 Sistem Informasi Geografis (SIG) SIG dirancang untuk mengumpulkan, menyimpan, dan menganalisis objekobjek serta fenomena dimana lokasi geografi merupakan karakteristik yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sumatera Utara memiliki luas total sebesar 181.860,65 Km² yang terdiri dari luas daratan sebesar 71.680,68 Km² atau 3,73 % dari luas wilayah Republik Indonesia. Secara

Lebih terperinci

III. METODOLOGI. 3.1 Waktu dan Lokasi Penelitian

III. METODOLOGI. 3.1 Waktu dan Lokasi Penelitian III. METODOLOGI 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan sejak Juli 2010 sampai dengan Mei 2011. Lokasi penelitian terletak di wilayah Kabupaten Indramayu, Provinsi Jawa Barat. Pengolahan

Lebih terperinci

BAHAN DAN METODE. Penelitian dilakukan pada tegakan Hevea brasiliensis yang terdapat di

BAHAN DAN METODE. Penelitian dilakukan pada tegakan Hevea brasiliensis yang terdapat di BAHAN DAN METODE Tempat dan Waktu Penelitian Penelitian dilakukan pada tegakan Hevea brasiliensis yang terdapat di perkebunan rakyat Desa Huta II Tumorang, kabupaten Simalungun Propinsi Sumatera Utara.

Lebih terperinci

Nilai Io diasumsikan sebagai nilai R s

Nilai Io diasumsikan sebagai nilai R s 11 Nilai Io diasumsikan sebagai nilai R s, dan nilai I diperoleh berdasarkan hasil penghitungan nilai radiasi yang transmisikan oleh kanopi tumbuhan, sedangkan nilai koefisien pemadaman berkisar antara

Lebih terperinci

Hasil klasifikasi citra ALOS PALSAR filterisasi Kuan. dengan ukuran kernel size 9x dengan ukuran kernel size 3x

Hasil klasifikasi citra ALOS PALSAR filterisasi Kuan. dengan ukuran kernel size 9x dengan ukuran kernel size 3x DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... v HALAMAN PERNYATAAN... vi HALAMAN PERSEMBAHAN... vii INTISARI... viii ABSTRACT... ix KATA PENGANTAR... x DAFTAR ISI... xii DAFTAR GAMBAR... xv DAFTAR

Lebih terperinci

BAHAN DAN METODE. Gambar 1 Peta Lokasi Penelitian

BAHAN DAN METODE. Gambar 1 Peta Lokasi Penelitian III. BAHAN DAN METODE 3.1 Waktu dan Lokasi Penelitian Lokasi yang dipilih untuk penelitian ini adalah Kabupaten Indramayu, Jawa Barat (Gambar 1). Penelitian dimulai dari bulan Juli 2010 sampai Januari

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Pembatasan Masalah Penelitian Keanekaragaman Jenis Burung di Berbagai Tipe Daerah Tepi (Edges) Taman Hutan Raya Sultan Syarif Hasyim Propinsi Riau selama 6 bulan adalah untuk

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 22 BAB III METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian mengenai analisis data Landsat 7 untuk estimasi umur tanaman kelapa sawit mengambil daerah studi kasus di areal perkebunan PTPN VIII

Lebih terperinci

Gambar 7. Lokasi Penelitian

Gambar 7. Lokasi Penelitian III. METODOLOGI PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian ini mengambil lokasi Kabupaten Garut Provinsi Jawa Barat sebagai daerah penelitian yang terletak pada 6 56'49''-7 45'00'' Lintang Selatan

Lebih terperinci

11/25/2009. Sebuah gambar mengandung informasi dari obyek berupa: Posisi. Introduction to Remote Sensing Campbell, James B. Bab I

11/25/2009. Sebuah gambar mengandung informasi dari obyek berupa: Posisi. Introduction to Remote Sensing Campbell, James B. Bab I Introduction to Remote Sensing Campbell, James B. Bab I Sebuah gambar mengandung informasi dari obyek berupa: Posisi Ukuran Hubungan antar obyek Informasi spasial dari obyek Pengambilan data fisik dari

Lebih terperinci

III. METODOLOGI. Gambar 2. Peta Orientasi Wilayah Penelitian. Kota Yogyakarta. Kota Medan. Kota Banjarmasin

III. METODOLOGI. Gambar 2. Peta Orientasi Wilayah Penelitian. Kota Yogyakarta. Kota Medan. Kota Banjarmasin III. METODOLOGI 3.1. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan mulai dari bulan Maret sampai bulan November 2009. Objek penelitian difokuskan pada wilayah Kota Banjarmasin, Yogyakarta, dan

Lebih terperinci

ISTILAH DI NEGARA LAIN

ISTILAH DI NEGARA LAIN Geografi PENGERTIAN Ilmu atau seni untuk memperoleh informasi tentang obyek, daerah atau gejala dengan jalan menganalisis data yang diperoleh dengan menggunakan alat tanpa kontak langsung terhadap obyek

Lebih terperinci

BAB I PENDAHULUAN Perumusan Masalah

BAB I PENDAHULUAN Perumusan Masalah 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pertumbuhan jumlah penduduk yang cukup tinggi di dunia khususnya Indonesia memiliki banyak dampak. Dampak yang paling mudah dijumpai adalah kekurangan lahan. Hal

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 19 BAB III METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian Limbah Pemanenan Kayu, Faktor Eksploitasi dan Karbon Tersimpan pada Limbah Pemanenan Kayu ini dilaksanakan di IUPHHK PT. Indexim

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian Penelitian tentang karakteristik habitat Macaca nigra dilakukan di CA Tangkoko yang terletak di Kecamatan Bitung Utara, Kotamadya Bitung, Sulawesi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Teknologi Penginderaan Jauh Penginderaan jauh adalah ilmu dan seni untuk memperoleh informasi tentang suatu objek, daerah, atau fenomena melalui analisis data yang diperoleh

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi penginderaan jauh (remote sensing) dikenal sebagai teknologi yang memiliki manfaat yang luas. Pemanfaatan yang tepat dari teknologi ini berpotensi meningkatkan

Lebih terperinci

Analisis Separabilitas Untuk mengetahui tingkat keterpisahan tiap klaster dari hasil klastering (Tabel 5) digunakan analisis separabilitas. B

Analisis Separabilitas Untuk mengetahui tingkat keterpisahan tiap klaster dari hasil klastering (Tabel 5) digunakan analisis separabilitas. B Tabel 5 Matriks Transformed Divergence (TD) 25 klaster dengan klasifikasi tidak terbimbing 35 36 4.1.2 Analisis Separabilitas Untuk mengetahui tingkat keterpisahan tiap klaster dari hasil klastering (Tabel

Lebih terperinci

GEOGRAFI. Sesi PENGINDERAAN JAUH : 5. A. IDENTIFIKASI CITRA PENGINDERAAN JAUH a. Identifikasi Fisik

GEOGRAFI. Sesi PENGINDERAAN JAUH : 5. A. IDENTIFIKASI CITRA PENGINDERAAN JAUH a. Identifikasi Fisik GEOGRAFI KELAS XII IPS - KURIKULUM GABUNGAN 12 Sesi NGAN PENGINDERAAN JAUH : 5 A. IDENTIFIKASI CITRA PENGINDERAAN JAUH a. Identifikasi Fisik 1. Hutan Hujan Tropis Rona gelap Pohon bertajuk, terdiri dari

Lebih terperinci

INTERPRETASI CITRA SATELIT LANDSAT

INTERPRETASI CITRA SATELIT LANDSAT INTERPRETASI CITRA SATELIT LANDSAT Tujuan: Mahasiswa dapat mengidentifikasi objek yang ada pada citra landsat Mahasiswa dapat mendelineasi hasil interpretasi citra landsat secara teliti Mahasiswa dapat

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Era Teknologi merupakan era dimana informasi serta data dapat didapatkan dan ditransfer secara lebih efektif. Perkembangan ilmu dan teknologi menyebabkan kemajuan

Lebih terperinci

III. METODOLOGI 3.1. Lokasi dan Waktu Penelitian 3.2. Bahan dan Alat Penelitian 3.3. Metode Penelitian

III. METODOLOGI 3.1. Lokasi dan Waktu Penelitian 3.2. Bahan dan Alat Penelitian 3.3. Metode Penelitian 19 III. METODOLOGI 3.1. Lokasi dan Waktu Penelitian Lokasi penelitian meliputi wilayah G. Guntur yang secara administratif berada di wilayah Desa Sirnajaya, Kecamatan Tarogong, Kabupaten Garut, Provinsi

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 24 BAB V HASIL DAN PEMBAHASAN 5.1 Hasil Pengolahan data Biomassa Penelitian ini dilakukan di dua bagian hutan yaitu bagian Hutan Balo dan Tuder. Berdasarkan hasil pengolahan data lapangan diperoleh dari

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, Telkom University sedang mengembangkan satelit mikro yang mengorbit pada ketinggian 600-700 km untuk wahana pembelajaran space engineering. Sebelum satelit

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Kegiatan penelitian ini dilaksanakan di IUPHHK HA PT. Salaki Summa Sejahtera, Pulau Siberut, Propinsi Sumatera Barat. Penelitian dilakukan pada bulan Nopember

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Lokasi dan Waktu Penelitian ini dilakukan pada daerah kajian Provinsi Kalimantan Barat. Pengolahan dan analisis data dilakukan di Laboratorium Fisik Remote Sensing dan Sistem

Lebih terperinci

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut :

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut : Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut : NDVI=(band4 band3)/(band4+band3).18 Nilai-nilai indeks vegetasi di deteksi oleh instrument pada

Lebih terperinci

KAJIAN CITRA ALOS PALSAR RESOLUSI RENDAH UNTUK KLASIFIKASI TUTUPAN HUTAN DAN LAHAN SKALA REGIONAL PULAU JAWA IMAS NANIK HENDRAYANTI

KAJIAN CITRA ALOS PALSAR RESOLUSI RENDAH UNTUK KLASIFIKASI TUTUPAN HUTAN DAN LAHAN SKALA REGIONAL PULAU JAWA IMAS NANIK HENDRAYANTI 1 KAJIAN CITRA ALOS PALSAR RESOLUSI RENDAH UNTUK KLASIFIKASI TUTUPAN HUTAN DAN LAHAN SKALA REGIONAL PULAU JAWA IMAS NANIK HENDRAYANTI DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR

Lebih terperinci

3. BAHAN DAN METODE. Penelitian yang meliputi pengolahan data citra dilakukan pada bulan Mei

3. BAHAN DAN METODE. Penelitian yang meliputi pengolahan data citra dilakukan pada bulan Mei 3. BAHAN DAN METODE 3.1. Waktu dan Tempat Penelitian yang meliputi pengolahan data citra dilakukan pada bulan Mei sampai September 2010. Lokasi penelitian di sekitar Perairan Pulau Pari, Kepulauan Seribu,

Lebih terperinci

METODE PENELITIAN. Lokasi dan Waktu Penelitian

METODE PENELITIAN. Lokasi dan Waktu Penelitian METODE PENELITIAN Lokasi dan Waktu Penelitian Penelitian dilakukan di dalam areal Hak Pengusahaan Hutan (HPH) PT. Sari Bumi Kusuma, Unit S. Seruyan, Kalimantan Tengah. Areal hutan yang dipilih untuk penelitian

Lebih terperinci

III. METODOLOGI 3.1 Waktu Penelitian 3.2 Lokasi Penelitian

III. METODOLOGI 3.1 Waktu Penelitian 3.2 Lokasi Penelitian III. METODOLOGI 3.1 Waktu Penelitian Penelitian ini dilakukan dari bulan Februari sampai September 2011. Kegiatan penelitian ini meliputi tahap prapenelitian (persiapan, survei), Inventarisasi (pengumpulan

Lebih terperinci

+ MODEL SPASIAL PENDUGAAN DAN PEMETAAN BIOMASSA DI ATAS PERMUKAAN TANAH MENGGUNAKAN CITRA ALOS PALSAR RESOLUSI 12.5 M MITRA ELISA HUTAGALUNG

+ MODEL SPASIAL PENDUGAAN DAN PEMETAAN BIOMASSA DI ATAS PERMUKAAN TANAH MENGGUNAKAN CITRA ALOS PALSAR RESOLUSI 12.5 M MITRA ELISA HUTAGALUNG + MODEL SPASIAL PENDUGAAN DAN PEMETAAN BIOMASSA DI ATAS PERMUKAAN TANAH MENGGUNAKAN CITRA ALOS PALSAR RESOLUSI 12.5 M MITRA ELISA HUTAGALUNG DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 23 BAB V HASIL DAN PEMBAHASAN 5.1 Leaf Index Area (LAI) Lokasi Sampel Kerapatan daun atau kerindangan, biasa diukur dengan nilai indeks luas daun atau Leaf Area Index (LAI) (Chen & Black 1992 diacu dalam

Lebih terperinci

Gambar 2 Peta lokasi penelitian.

Gambar 2 Peta lokasi penelitian. 0 IV. METODE PENELITIAN A. Lokasi dan Waktu Penelitian ini dilaksanakan di wilayah Bidang Pengelolaan Wilayah III Bengkulu dan Sumatera Selatan, SPTN V Lubuk Linggau, Sumatera Selatan, Taman Nasional Kerinci

Lebih terperinci

Manfaat METODE. Lokasi dan Waktu Penelitian

Manfaat METODE. Lokasi dan Waktu Penelitian 2 Manfaat Penelitian ini diharapkan menjadi sumber data dan informasi untuk menentukan langkah-langkah perencanaan dan pengelolaan kawasan dalam hal pemanfaatan bagi masyarakat sekitar. METODE Lokasi dan

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN 3.1. Tempat dan Waktu Penelitian dilakukan di kawasan perkotaan Kabupaten Kuningan, Jawa Barat. Pada bulan Juni sampai dengan bulan Desember 2008. Gambar 3. Citra IKONOS Wilayah

Lebih terperinci