= Tentukan jumlah dari : ( 1) ( jawaban boleh di faktorkan) 6. Tentukan semua penyelesaian system persamaan dari : =

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "= Tentukan jumlah dari : ( 1) ( jawaban boleh di faktorkan) 6. Tentukan semua penyelesaian system persamaan dari : ="

Transkripsi

1 1. Diberikan polynomial f(x) = x n + a 1x n a n-1 x + a 0 dengan koefisien a 1, a,...a n semua bilangan bulat dan ada 4 bilangan bulat berbeda a,b,c, dan d yang memenuhi f(a) = f(b) = f(c) = f(d) =5. Tunjukkan bahwa tidak ada bilangan bulat k yang memenuhi f(k)= 8.. Jika f(x) = x + x, buktikan bahwa 4 f(a) = f(b) tidak mempunyai solusi a dan b bilangan asli.. Tentukan semua paangan bilangan asli a dan b yang memenuhi persamaan a = b 4. Selesaikan persamaan : x + ( ) = 5. Tentukan jumlah dari : ( 1) ( jawaban boleh di faktorkan) 6. Tentukan semua penyelesaian system persamaan dari : = = = 7. Bilangan a, b, c adalah digit digit dari uatu bilangan yang memenuhi persamaan : 49a + 7b + c = 86 tentukan bilangan tiga angka ( 100a + 10b + c) 8. Misalkan a, b, c, dan p adalah bilangan real a, b, c semuanya berbeda dan memenuhi + = + = + =, maka tentukan semua kemungkinan nilai p. 9. Tunjukkan bahwa setiap bilangan bulat positif n maka 11 n 5 n n (-4) n habi di bagi 000 (British Mathematical Olimpiad Round 1) 10. Diketahui x,y dan N adalah bilangan asli. Jika terdapat tepat 005 pasangan (x,y) yang memenuhi persamaan : + =, tunjukkan bahwa N adalah bilangan kuadrat. (British Mathematical Olimpiad Round ) n n n a1 p1 a1 p a p a 11. Tunjukkan bahwa:, untuk setiap bilangan asli n n n n b1 p1 b1 p b p b 1. Tentukan semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika di tambahkan dengan hasil kali kedua bilangan yang lain hasilnya adalah. 1. Tunjukkan bahwa diantara lima bilangan bulat kita dapat memilih tiga di antaranya memiliki jumlah habis di bagi. 14. ABCD adalah persegi panjang, jika P adalah titik tengah AB dan Q adalah titik tengan PD sehingga CQ tegak lurus PD. Buktikan bahwa segitiga BQC sama kaki. (British Mathematical Olimpiad)

2 15. Tunjukkan bahwa sembarang segi empat tali busur yang di gambar pada lingkaran berjarijari 1,maka panjang sisi terpendek tidak akan lebih dari. Mathematical Olimpiad) (Canadian 16. Jika akar-akar dari persamaan x px = 0 adalah sin cos, maka tentukan nilai p. 17. Jika f(x) = a x b x 11 + c x 5 dan f(-009) = 009, maka nilai dari f(009) 18. Suatu fungsi f(x) = ( x + x x 5 ) 009, tentukan semua koefisien darix pangkat ganjilnya. 19. Dari bilangan-bilangan sampai , banyak bilangan yang mengandung angka 1 dan adalah. 0. Diketahui persegi panjang ABCD jika titik E terletak di dalam persegi panjang, sehingga AE= 6, CE = 5, dan DE = 7, maka tentukan panjang BE. 1. Pada suatu kubus ABCD.EFGH bila titik adalah titik tengah rusuk FG,tentukan panjang lintasan terpendek dari pada permukaan kubus dari A ke S.. Pada segitiga ABC yang tumpul di C, titik M adalah titik tengah AB melalui c di buat garis tegak lurus pada BC yang memotong AB di titik E dari M tarik garis memotong BC tegak lurus D. jika luas segitiga ABC = 54,maka tentukan luas segitiga BED.. Sebuah lingkaran berjari-jari 1, tentukan luas maksimum segitiga sama sisi yang terletak di dalam lingkaran. 4. Pada trapesium ABCD dengan AB dan rasio luas ABC dengan luas segitiga ACD adalah 1. Jika E dan F berturut-turut adalah titik tengah BC dan DA, maka tentukan rasio luas ABEF dan EFDC. 5. Jika bilangan real r memenuhi peramaan : = 006 Dengan tanda menyatakan bilangan bulat terkecil lebih dari atau sama dengan x. Contoh :,1 = ; 4, = -4 ; 7 = 7 ; = 4. Maka tentukan nilai dari Dua garis lurus membagi sebuah segitiga menjadi empat bagian dengang tiga diantaranya tertulis seperti pada gambar. Tentukan luas bagian keempat Jika sebuah bilangan dipilih secara acak dari bilangan-bilangan yang merupakan faktor dari 10 99, maka berapakah peluang bahwa bilangan tersebut habis di bagi 10 88? 8. Diketahui bahwa ax + bx + c bulat untuk x = 0, 1, dan. Buktikan bahwa ax + bx + c bulat untuk semua nilai x bulat.

3 9. Misalkan n adalah bilangan bulat lebih dari 6. Buktikan bahwa jika n 1 dan n +1 keduanya dilangan prima maka n (n + 16) habis di bagi Andaikan f(x) suatu fungsi polynomial derajat 5 dan f(k) = k untuk k = 0, 1,,, 4, 5. Hitung nilai f(6). 1. Jika 8 =, tentukan nilai A.. Dua dadu dengan sisinya di cat merah atau biru. Dadu pertama dilempar terdiri dari 5 sisi merah dan 1 sisi biru. Ketika kedua dadu tersebut di lempar, peluang munculnya sisi dadu berwarna sama adalah 1. Ada berapa banyak sisi dadu yang keduanya berwarna merah.. Tentukan nilai terbesar z yang memenuhi x + y + z = 5 dan xy + yz + xz =. 4. Tentukan emua penyelesaian real dari peramaan 4x = 0 dengan tanda menyatakan bilangan bulat terbear kurang dari atau sama dengan x. 5. Segitiga ABC memiliki sisi AB = 17, AC = 41 dan BC = 00. Titik D terletak pada sisi BC sehingga lingkaran dalam dan lingkaran dalam menyinggung sisi AD di titik yang sama, yaitu E. tentukan panjang CD. 6. Sebuah trapezium DEFG dengan sebuah lingkarang dalam menyinggung keempat isinya dan berjari-jari, serta berpusat di C. sisi DE dan Gf adalah sisi yang sejajar dengan DE< GF dan DE =. Diketahui bahwa DEF = EFG = 90. Tentukan luas trapezium. 7. Segitiga ABC siku-siku di A. Titik P dan Q keduanya terletak pada sisi BC sehingga BP = PQ = QC. Jika diketahui AP = dan AQ = 4, tentukan panjang masing- masing. 8. Tali busur CD tegak luru diameterab dan berpotongan di titik H. Panjang AB merupakan bilangan bulat dua angka dan panjang CD juga merupakan bilangan angka dengan menukar posisi kedua angka AB. Sedangkan panjang OH merupakan bilangan raisional. Maka tentukan panjang AB. 9. Misalkan f(n) didefinisikan kuadrat dari penjumlahan digit n. misalkan juga f (n) di definisikan f(f(n)), f (n) di definisikan f(f(f(n))) dan seterusnya. Tentukan f 1988 (11). 40. Berapakah bilangan bulat positif terbear n yang memenuhi (n+10) ( + 100). Dengan ( " h ). 41. Ada berapa banyak bilangan bulat positif n, yang kurang dari 100 yang memenuhi 10 ( n 10 1)? 4. Jika menyaakan bilangan bulat terbear yang lebih kecil atau sama dengan bilangan real x, maka 5 = 4. Banyaknya soal matematika yang di kerjakan amin hari ini bertambah tepat 40% di bandingkan dengan yang di kerjakan kemari. Banyaknya soal yang di kerjakan amin hari ini paling sedikit... soal = 45. Misalkan N sebuah bilangan asli dua angka dan M adalah bilangan asli yang di peroleh dengan mempertukarkan kedua angka N. Bilangan prima yang selalu membagi habis N M 46. Tentukan himpunan penyelesaian dari persamaan x - x 1 = Misalkan a = 4, 4 b = 5, 5 c = 6, 6 d = 7, 7 e = 8, dan 8 f = 9. Berapakah hasil abcdef? 48. Ada berapa banyak persegi yang dapat di buat dalam persegi yang berukuran satuan?

4 = 50. Berapakah sisa pembagian ( ) 01 (...) 01 (sebanyak 01 angka 9 dan 01 angka tiga) di bagi 11? 51. Jika 5 x = 8, hitunglah nilai 5 + x. 5. Tanggal 1 April 004 dan 9 November 099 adalah contoh tanggal-tanggal istimewa sebab perkalian tanggal dan bulan sama dengan dua digit terakhir dari tahun tersebut. 1 4 = 04 ;9 11 = 99. Ada berapa banyak tanggal istimewa dari tanggal 1 Januari 001 sampai dengan 1 Desember 009? 5. Mengingat bahwa : =,berapakah..? Andi sedang mengikut suatu perlombaan. Perlombaan tersebut terdiri dari beberapa tes. Setiap tes masing-masing peerta akan dinilai. Pada suatu tes, Andi mendapat nilai 185 yang mengakibatkan rata-ratanya naik dari 176 menjadi 177. Berapakah nilai yang harus dicapai Andi agar pada tes selanjutnya nilai rata-ratanya naik menjadi 178? buah bilangan positif disuun. Bilangan ke-4 adalah 4,sedangkan bilangan ke 1 adalah 1. Jumlah bilangan beruruta sama dengan 004. Tentukan bilangan ke Hitunglah nilai jika : S =, +,. +, +,. 57. Jika x + y = 1 dan x + y = 19, maka x + y = Jika > > = 6, 5 log 59. Persegi panjang ABCD memiliki panjang sisi AB = dan AD = 1 sesuai pada gambar dengan titik C terletak pada EF. Berapakah luas persegi panjang BDEF? 60. Tono setiap hari menyiapkan kelereng berturur=t-turut untuk hari pertama 5, hari kedua 6 dan seterusnya. Maka jentukan jumlah jumlah kelereng sampai hari ke Bila jumlah 009 bilangan bulat berurutan adalah 009dan n merupakan bilangan bulat terbesar. Maka tentukan nilai n. 6. Jika L n adalah luas segitiga sama sisi n untuk n = 1,,, 4...,10. Maka tentukan nilai dari L 1 + L L diketahui barisan dengan suku pertama U 1 = 15 dan memenuhi U n - U n+1 = n + 1 untuk, maka tentukan U 50 + U. 4

5 64. Jika U 1, U,...,U 5 adalah lima suku pertama dari deret Geometri memenuhi log U 1+ log U log U 5 = 5log dan U 4 = 1, maka tentukan nilai dari U y log(x-1), y log(x+1), y log(x-1) adalah barisan aritmetika dengan S = 6, maka tentukan nilai x + y. 66. Bila Tentukan banyaknya angka 1 jika banyaknya angka 9 pada sku ke-n adalah Tentukan nilai dari Hitunglah hasil dari, Rasionalkan bentuk berikut : 70. N adalah bilangan bulat terbesar dengan semua digitnya berbeda dan N merupakan bilangan kelipatan 8. Berapakah sisanya jika N di bagi 1000? 71. Jika x memenuhi persamaan + =, tentukan nilai Berapakah penjumlahan seluruh bilangan pada kotak-kotak berikut : Jika sebuah bilangan di pilih secara acak dari bilangan bilangan yang merupakan faktor dari maka berapakah peluang bahwa bilangan tersebut habis di bagi 10 88? 74. Persamaan 54(6 x ) + x = 6(18 x ) + 9 mempunyai penyelesaian x 1 dan x. Berapakah nilai (x 1x ) adalah? 75. Untuk a, b, x dan y bilangan real diketehui ax + by = ax + by = 7 ax + by = 16 ax 4 + by 4 = 4 tentukan nilai S jika S = ax 5 + by Tentukan nilai dari : Diberikan a = , maka hitung nilai dari Sebuah lingkaran L 1 : x + y x 6y + 9 = 0 dirotasikan oleh (0,90 ) sehingga di peroleh L selanjtnya lingkaran L dirotasikan kembali oleh (0,90 ) sehingga diperoleh lingkaran L. Jika ketiga pusat lingkaran di hubungkan maka luas bangun yang dibentuk 79. Kubus ABCD.EFGH mempunyai panjang rusuk a di titik K pada perpanjangan DA sehingga KA = KD. Jarak titik K ke bidang BDHF 80. Dalam kubus ABCD.EFDH titik S adalah titik tengah sisi Cd dan P adalah titik tengah diagonal ruang BH. Perbandingan volume antara limas P.BCS dan ABCD.EFGH 5

6 81. Parabola = + 1 memotong sumbu Y dititik (0,p) serta memtotong sumbu x dititik (q,0) dan (r,0). Jika p, q, dan r membentuk barisan geometri yang jumlahnya 1 maka tentukan nilai K. 8. Jika s n menyatakan jumlah n suku pertama suatu deret aritmatika maka s n+ s n+ s n Jika xy = a, xz = b dan yz = c dengan tidak ada yang bernilai nol maka nilai x + y + z = ABCD adalah suatu persegi dengan sisi 10 cm bila suatu lingkaran melalui titik A dan D dengan menyinggung sisi BC tentukan luas lingkaran tersebut Tentukan semua pasangan bilangan bulat (a,b) yang memenuhi a b = Jika a679b adalah bilangan lima angka yang habis di bagi 7, tentukan nilai a dan b! 87. Bila f(x) = (5 p)x 6x + (p + 5) maka tentukanlah semua nilai p real sedemikian hingga f(x) 0 untuk semua nilai x poitif. 88. Diberikan a dan b adalah bilangan real yang berbeda sehingga + =.tentukan nilai. 89. Misalhan ABC adalah sebuah segitiga dengan sisi-sisinya a, b, dan c. garis bagi yang ditarik dari titik C memotong sisi AB di D. buktikan bahwa panjang CD = 90. Misalkan x dan y adalah bilangan-bilangan tidak nol yang memenuhi xy = = x y. Nilai x + y =... (-1/) (-1) 91. Jumlah sepuluh digit pertama dari bilangan hasil perkalian adalah 9. Di suatu kelas ada 5 siswa. A, B, C, D, dan E. Mereka harus memilih ekstrakurikuler,salah satu dari jenis olah raga : bola basket atau bola voli dan salah satu dati bidang kesenian : music atau melukis. Diantara mereka ada siswa yang memilih bola basket dan dua siswa memilih music. A dan C memilih jenis olahraga yang sama D dan E memilih jenis olahraga yang berbeda B dan E memilih bidang kesenian yang sama C dan D memilih bidang keseniam yang berbeda Jika ada informasi tambahan, C memilih melukis dan memilih bola basket, maka apa yang disim1pulkan mengenai pilihan D? 9. Jika....= maka nilai....= 94. Jika abc = 1, maka bentuk sederhana dari Suatu jam dinding selalu mengalami keterlambatan 8 menit untuk setiap jamnya. Jika saat sekarang jam tersebut menunjukkan waktu yang tepat, maka jam tersebut akan menunjukkan waktu yang tepat setelah... jam 96. Diketahui dengan AB = BC = AC = 0. Pada titik tengah masing-masing sisi AB, BC, dan AC dibuat titik A 1, B 1 dan C 1 sehingga terbentuk A 1B 1C 1. Demikian pula pada 6

7 titik tengah masing-masing sisi A 1B 1, B 1C 1, A 1C 1 dibuat A, B, C sehingga terbentuk A B C. Jumlah panjang keliling semua segitiga yang terbentuk. 97. Keliling sebuah segitiga adalah 8. Panjang sisi-sisinya adalah bilangan bulat, maka luas segitiga tersebut 98. Ada berapa banyak diagonal segi-10? 99. Sisa pembagian Tentukan semua bilangan bulat n yang menyebabkan merupakan bilangan bulat Tentukan semua bilangan prima yang terbentuk dari n + 1 untuk suatu bilangan asli n. 10. Banyak bilangan yang dapat di bentuk oleh angka 1,,, 4,,, 1 dengan syarat dilangan ganjil harus menempati posisi ganjil 10. Tentukan banyak solusi bilngan bulat non negative dati persamaan x 1 + x + x + x 4 = Jika terdapat 1 orang, berapa orang paling sedikitlahir pada bulan yang sama? Jika maka nilai dari x + y x 4y Persegi panjang ABCD dengan panjang 18 cm dan lebar 14 cm. jika F titik tengah BC hitunglah daerah yang di arsir BEF. A B 107. If x = FF D D E, so the value of 16x 0x is a76b adalah bilangan bulat yang habis dibagi 99. Banyak pasangan a dan b yang mungkin adalah 109. Diketahui bidang segi enam beraturan ABCD.EFGH dengan panjang rusuk satan. Jika P titik tengah, Q titik tengah, R titik tengah, dan adalah proyeksi pada bidang ABCD, maka panjang Bs satuan 110. Nilai dari Jika x adalah bilangan asli dan a x = c, x + b = a, a + x = b makanilai terbesar yang mungkin dari b + c a 11. Jika + = 7 maka nilai + = Nilai y x yang memenuhi persamaan x + y = 6 dan 5x y + = Rata-ratanilai Ayu dan Agus adalah 8,0. Jika perbandingan nilai Ayu dan Nilai Agus : 5, maka selisih nilai ayu dan agus 115. Banyaknya bilangan asli n sehingga bentuk juga merupakan bilangan asli adlah Digit terakhir dari Urutan bilangan 10060, 606, dari yang terkecil 118. Selisih bilangan terbesar dan terkecil pada kelompok ke-1 pada barisan bilangan (,7), (11,15,19), (,7,1,5) Sebuah persegi panjang memiliki panjang (x + 1) satuan panjang dan lebar (x +1) satuan panjang.jika luas persegi panjang tersebut 10 satuan luas, maka panjang diagonal persegi panjang tersebut 7

8 10. Suatu barisan berbentuk a, (a+ b), (a + b), (a + b), (a + 5b),.. jika suku ke tujuh barisan tersebut adalah 8. Tentukan rata-rata delapan suku pertama barisan tersebut. 11. Banyaknya pasangan bilangan bulat (x,y) yang memenuhi persamaan xy 5x + y = Pipa di samping masing-masing berdiameter 10cm. panjang tali minimum yang diperlukan untuk mengikat pipa agar terbentuk seperti pada gambar di samping 1. Ketiga lingkaran dibawah memiliki panjang jari-jari sama yaitu 10 c, dan saling bersinggungan. Luas daerah diantara ketiga lingkaran tersebut seperti diarsir 14. Seekor kupu-kupu terbang dari titik (0,0) menuju 1 unit ke atas (vertical), ½ unit kearah kanan (horizontal), ¼ unit turun (vertical), 1 / 8 unit ke kiri (horizontal), 1 / 16unit ke atas (vertical),dan seterusnya. Pada koordinat berapakah kupu-kupu tersebut berhenti? 15. Jika,, adalah akar-akar dari persamaan 1,maka nilai + + adalah 16. Suatu kede rahasia berupa bilangan lima angka. Angka nol mungkin berada di tempat pertama. Berapa banyak kode rahasia yang mungkin dapat di buat jika angka-angkanya menunjukkan barisan naik. 17. Misalkan limas ABCD segitiga beraturan, yaiyu bangun ruang berisi empat yang berpentuk segi empat sama sisi. Misalkan S adalah titik tengah rusuk Ab dan T titik tengah rusuk Cd, jika panjang rusuk ABCD adalah 1 satuan panjang, maka panjang ST adalah? 18. =.Nilai x yang memenuhi adalah 19. Ayu berangkat ke sekolah pukul setiap pagi. Bila Ayu mengendarai sepeda motor dengan kecepatan 40 km/jam, dia tiba di sekolah terlambat 0 menit. Bila kecepatannya 60 k/jam dia tiba 15 menit lebih awal. Di sekolah Ayu, pelajaran perta,ma di mulai pukul Seekor semut di A akan menuju ke sumber makanan yang terletak di B seperti tampak pada gambar. Semut tersebut dapat melangkah ke kanan, ke kiri, ke atas, dank e bawah. Banyak cara menuju B dari A dalam Sembilan langkah atau kurang tanpa melewati C C B 8

9 A 11. Jika m dan n adalah bilangan asli yang memenuhi mn + m + n = 71 dan m n + mn = 880,maka m + n = Terdapat suatu segitiga PQR. Titik S terletak pada PQ daan diketahui PR = 5 cm, PS =11 cm, dan RQ = RS = 1 cm. panjang sisi SQ 1. Jika = = maka nilai dari = 14. Seorang pedagan gmembeli barang dagangannya dengan harga tertentu. Karena sesuatu dan lain hal barang tersebut dijual dengan mengalami kerugian sebesar 5%. Jika barang tersebut dijual dengan harga Rp ,00maka harga beli barang tersebut Nilai x yang memenuhi persamaan = adalah 16. Kubus ABCD.EFGH mempunyai panjang rusuk 1. Jaraktitik F ke diagonah ruang BH cm 17. Jika rataan dari x 1,x, x,..., adalah a, maka jumlah dari +, + 5, + 7,, + ( + 1)adalah 18. Jika x y = xy = 1 x y maka nilai x + y -= Diketahui sebuah balok ABCD.EFGH dengan sisi AB = n, BC = n dan tinggi 1 mempunyai luas 54.jika n bilangan bulat maka panjang diagonal ruang balok tersebut 140. Nilai x yang memenuhi 4 x x < 0 adalah... 9

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SNMPTN 2010

Soal-soal dan Pembahasan Matematika Dasar SNMPTN 2010 Soal-soal dan Pembahasan Matematika Dasar SNMPTN 010 1. Pernyataan yang mempunyai nilai kebenaran sama dengan pernyataan, Jika bilangan ganjil sama dengan bilangan genap, maka 1 + bilangan ganjil adalah

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A SMP N Kalibagor Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. Pangkat ; Akar D.

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P. D APRIL 2008 SMA NEGERI 1 PEKANBARU Jl. Sulthan Syarif Qasim 159 Pekanbaru

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

B. 26 September 1996 D. 28 September 1996

B. 26 September 1996 D. 28 September 1996 1. Ditentukan A = {2, 3, 5, 7, 8, 11} Himpunan semesta yang mungkin adalah... A.{bilangan ganjil yang kurang dari 12} B.{bilangan asli yang kurang dari 12} C.{bilangan prima yang kurang dari 12} D.{bilangan

Lebih terperinci

Soal Babak Penyisihan OMITS 2008

Soal Babak Penyisihan OMITS 2008 Soal Babak Penyisihan OMITS 008. Banyak pembagi positif dari.50.000 adalah..... a. 05 b. 0 c. 75 d. 0 e.5. Jari-jari masing-masing lingkaran adalah 5 cm. Tentukan panjang busur ketiga lingkaran tersebut.....

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 Pembahasan UN 0 A3 by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A3 Hasil dari 5 + [6 : ( 3)] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung

Lebih terperinci

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO DIURUTKAN BERDASARKAN TAHUN DAN DIKUMPULKAN BERDASARKAN TOPIK MATERI BILANGAN 2011 1. Jika x adalah jumlah 99 bilangan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat! Pembahasan UN 0 C by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : C NO SOAL PEMBAHASAN Hasil dari 6 adalah... A. 48. a = a a a B. 7. = C. 08. = D. 6 6 = 6 = 6 = 6 = 6 Hasil dari 8 adalah... A.

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA 1) Sebuah barisan baru diperoleh dari barisan bilangan bulat positif 1, 2, 3, 4, dengan menghilangkan bilangan kuadrat yang ada di dalam barisan tersebut.

Lebih terperinci

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati!

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati! PEMANTAPAN UJIAN NASIONAL 203 Kerjakan dengan sungguh-sungguh dengan kejujuran hati!. Hasil dari (-5 7) : 4 x (-5) + 8 adalah. A. -26 B. -23 C. 23 D. 26 2. Perbandingan banyak kelereng Taris dan Fauzan

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMA Minggu, 0 Oktober HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 200

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut Kode: P8 MATEMATIKA IX SMP SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P8). Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut (A) 7 dan. (C) 8 dan 8. dan 7. (D) 8 dan

Lebih terperinci

Soal Babak Penyisihan MIC LOGIKA 2011

Soal Babak Penyisihan MIC LOGIKA 2011 Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang

Lebih terperinci

PEMANTAPAN UJIAN NASIONAL 2013 (SOAL DAN PENYELESAIAN)

PEMANTAPAN UJIAN NASIONAL 2013 (SOAL DAN PENYELESAIAN) PEMANTAPAN UJIAN NASIONAL 03 (SOAL DAN PENYELESAIAN) Kerjakan dengan sungguh-sungguh dan penuh kejujuran!. Dalam sebuah ruangan terdapat 5 baris kursi. Banyaknya kursi pada baris ke tiga terdapat 34 buah,

Lebih terperinci

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 BAGIAN A : PILIHAN GANDA SOAL 1 Pernyataan yang benar diantara pernyataan-pernyataan berikut adalah : A. {Ø} Ø D. {a,b} {a, b, {{a,b}}} B. {Ø} Ø E. {a,ø}

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA 1. ABC adalah segitiga sama

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 003-300-011-0 Hak Cipta 2014 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, atau D pada jawaban yang benar! 1. Nilai dari 20 + 10 ( 5) ( 20) : 10 adalah.... A. 7 C. 68 B. 5 D. 72 2. Dea

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

Kontes Terbuka Olimpiade Matematika

Kontes Terbuka Olimpiade Matematika Kontes Terbuka Olimpiade Matematika Kontes Bulanan Januari 2017 20 23 Januari 2017 Berkas Soal Definisi dan Notasi Berikut ini adalah daftar definisi yang digunakan di dokumen soal ini. 1. Notasi N menyatakan

Lebih terperinci

KUMPULAN SOAL-SOAL OMITS

KUMPULAN SOAL-SOAL OMITS KUMPULAN SOAL-SOAL OMITS SOAL Babak Penyisihan Olimpiade Matematika ITS 2011 (OMITS 11) Tingkst SMP Se-derajat BAGIAN I.PILIHAN GANDA 1. Berapa banyak faktor positif/pembagi dari 2011? A. 1 B. 2 C. 3 D.

Lebih terperinci

SOAL BRILLIANT COMPETITION 2013

SOAL BRILLIANT COMPETITION 2013 PILIHAN GANDA. Pada suatu segitiga ABC, titik D berada di AC sehingga AD : DC = 4 :. Titik E berada di BC sehingga BE : EC = : 3. Titik F adalah titik perpotongan antara garis BD dan garis AE. Jika luas

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

SIAP UJIAN NASIONAL (UCUN MANDIRI)

SIAP UJIAN NASIONAL (UCUN MANDIRI) PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SMP NEGERI 196 JAKARTA Jalan Mabes TNI, Pondok Ranggon, Cipayung, Jakarta Timur, Telp/Fax : 844198/021849992 SIAP UJIAN NASIONAL (UCUN

Lebih terperinci

C. 9 orang B. 7 orang

C. 9 orang B. 7 orang 1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN BOGOR SOAL DAN SOLUSI TRY OUT BERSAMA

DINAS PENDIDIKAN KABUPATEN BOGOR SOAL DAN SOLUSI TRY OUT BERSAMA DINAS PENDIDIKAN KABUPATEN BOGOR SOAL DAN SOLUSI TRY OUT BERSAMA Jumat, Pebruari 0. Fungsi kudarat yang persamaannya dinyatakan dalam y m n 6 mempunyai nilai minimum memotong sumbu X di titik A dan B.

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014 PETUNJUK UNTUK PESERTA 1. Tuliskan nama lengkap, kelas, asal sekolah, alamat sekolah lengkap dengan nomor telepon, faximile, email sekolah dan nama guru Matematika di tempat yang telah disediakan.. Tes

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-25 Babak Penyisihan Tingkat SMA Minggu, 9 November 20 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2008

SOAL UN DAN PENYELESAIANNYA 2008 1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika Tutur Widodo Pembahasan OSP Matematika SMA 011 Pembahasan OSN Tingkat Provinsi Tahun 011 Jenjang SMA Bidang Matematika Bagian A : Soal Isian Singkat 1. Diberikan segitiga sama kaki ABC dengan AB = AC.

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab :

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab : 3 2 1. Diketahui suatu polynomial 15 A B 3C D. Berapakah koefisien dari 5 15 6 2 2 A B C D Jawab :? 2. Diberikan polinomial f(x) = x n + a 1 x n-1 + a 2 x n-2 + + a n-1 x + a n dengan koefisien a 1, a

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E.

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E. f x f mempunyai sifat f x f x untuk setiap x. Jika f, maka nilai fungsi f 06. Diketahui fungsi : 06 06. Perhatikan gambar berikut ini! Berapakah ukuran luas daerah yang diarsir jika diketahui ukuran luas

Lebih terperinci

SOAL PREDIKSI MATEMATIKA TAHUN

SOAL PREDIKSI MATEMATIKA TAHUN SOAL PREDIKSI MATEMATIKA TAHUN 2014 PAKET 1. Hasil dari 5 2 7-21 4 : 31 2 adalah... A. 3 3 14 B. 3 9 14 C. 4 3 14 D. 4 9 14 2. Dalam kompetisi matematika, setiap jawaban benar diberi skor 3, jawaban salah

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

Pembahasan Matematika SMP IX

Pembahasan Matematika SMP IX Pembahasan Matematika SMP IX Matematika SMP Kelas IX Bab Pembahasan dan Kunci Jawaban Ulangan Harian Pokok Bahasan : Kesebangunan Kelas/Semester : IX/ A. Pembahasan soal pilihan ganda. Bangun yang tidak

Lebih terperinci

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat SOAL Babak Penyisihan Olimpiade Matematika ITS 01 (7 th OMITS) Tingkst SMP Se-derajat SOAL PILIHAN GANDA 1) Sebuah bilangan sempurna adalah sebuah bilangan bulat yang sama dengan jumlah semua pembagi positifnya,

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

MATEMATIKA (Paket 2) Waktu : 120 Menit

MATEMATIKA (Paket 2) Waktu : 120 Menit MATEMATIKA (Paket 2) Waktu : 20 Menit (025) 77 2606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari A. B. D. 8 5 8 2 2 8 2 adalah. 2. Hasil dari A. B. D. 8 adalah.. Bentuk sederhana dari A. 2

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D45 NO SOAL PEMBAHASAN 5 Hasil dari 8 adalah... 5. a = a a a a a A. 0 B. 5. = C.. = D. 64 Hasil dari 8 adalah... A. 6 B. 8 C. 6 D. 4 6 4 Hasil dari 7 ( ( 8)) adalah...

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D49 Hasil dari 5 + [( ) 4] adalah... Urutan pengerjaan operasi hitung A. 3 Operasi hitung Urutan pengerjaan B. 3 Dalam kurung C. 3 Pangkat ; Akar D. 3 Kali ; Bagi

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 01 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 0 soal isian singkat dan tes

Lebih terperinci

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017 SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 06 / 07 MATA PELAJARAN : Matematika KELOMPOK : TEKNIK (RPL, TKJ). Bentuk sederhana dari p q r 0 0 0 0 p q r 8 0 p q r 8 pqr 6 5 5 p q r p q r p q r 5 adalah....

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 01 BAGIAN

Lebih terperinci

PREDIKSI SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs DAN PEMBAHASAN

PREDIKSI SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs DAN PEMBAHASAN PREDIKSI SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs DAN PEMBAHASAN. * Indikator SKL : Menyelesaikan masalah yang berkaitan dengan operasi tambah, kurang, kali, atau bagi pada bilangan. * Indikator Soal : Menentukan

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 00 Mata Pelajaran : Matematika Kelas : XII IPA Alokasi Waktu : 0

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

SIMAK UI 2015 Matematika Dasar

SIMAK UI 2015 Matematika Dasar SIMAK UI 015 Matematika Dasar Soal Doc. Name: SIMAKUI015MATDAS999 Version: 016-05 halaman 1 01. Pernyataan berikut yang BENAR mengenai perkalian matriks (A) Jika A dan B adalah matriks persegi, maka (A+B)(A

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D49 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D49 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D49 SMP N Kalibagor Hasil dari 5 + [( ) 4] adalah... Urutan pengerjaan operasi hitung A. Operasi hitung Urutan pengerjaan B. Dalam kurung C. Pangkat ; Akar D. Kali

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : B5 1 Hasil dari 17 (3 ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 41 Dalam kurung 1 C. 7 Pangkat ; Akar D. 41 Kali

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMP Minggu, 0 Oktober 2016 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL A. Diberikan premis-premis berikut : ) Politik tidak sehat atau Negara tentram dan damai ) Jika Negara tentram dan damai maka

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

e. 238 a. -2 b. -1 c. 0 d. 1 e Bilangan bulat ganjil positip disusun sebagai berikut Angka yang terletak pada baris 40, kolom 20 adalah

e. 238 a. -2 b. -1 c. 0 d. 1 e Bilangan bulat ganjil positip disusun sebagai berikut Angka yang terletak pada baris 40, kolom 20 adalah Soal Babak Penyisihan OMITS 007. Jikaf R R dengan R bilangan real. Jikaf x + x = x + x maka nilai f 5. Nilaidari a. 5 5 4 5 5 d. 5 e. 5 k= 4 k +.5 k+ + 7 k a. 0 5 9 d. 40 e. 45. Sukubanyakx + 5x + x dan

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275)

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275) KODE : 02 B / TUC /206 MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo 544 Telepon/Fax (0275) 2405 UJI COBA KE UJIAN NASIONAL 206 SMP Se KABUPATEN

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B29 NO SOAL PEMBAHASAN 362 = 362 = 36 = 6 3 = 216. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B29 NO SOAL PEMBAHASAN 362 = 362 = 36 = 6 3 = 216. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B9 NO SOAL PEMBAHASAN Hasil dari 6 adalah... A. 48. a = a a a B. 7. = C. 08. = D. 6 6 = 6 = 6 = 6 = 6 Hasil dari 6 8 adalah... A. 6 B. 4 C. 4 D. 4 6 4 Hasil dari

Lebih terperinci

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu, 20 Nopember 2013 : 120 menit : 40 Pilihan Ganda 1D Petunjuk :

Lebih terperinci

LATIHAN SOAL PROFESIONAL

LATIHAN SOAL PROFESIONAL LATIHAN SOAL PROFESIONAL 1. Jika 7 x = 8; maka 7 +x =. A. 686 B. 512 C. 4 D. 256 E. 178 7 x = 2 (7 x ) = 2 7 x = 2 7 x+ = 7. 7 x = 7. 2 = 4. 2 = 686 2. Panjang sisi miring segitiga siku-siku sama kaki

Lebih terperinci

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI SUNGAI TARAB. Dari argumentasi berikut : Premis : Jika Ibu tidak pergi maka adik senang. Premis : Jika adik senang maka dia tersenyum. Kesimpulan

Lebih terperinci