BAB III METODOLOGI. 3.1 Waktu dan Tempat

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III METODOLOGI. 3.1 Waktu dan Tempat"

Transkripsi

1 BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian dilaksanakan di Sub-DAS Cibengang yang secara geografis terletak di ketinggian 1130 mdpl dengan koordinat 06º57 56,6 lintang selatan dan 107º53 23,2 bujur timur, dan secara administratif terletak di Desa Tanjung Sari, Kecamatan Cicalengka, Kabupaten Bandung. Pelaksanaan penelitian dilakukan dua tahap, yaitu tahap pertama pengambilan data di lapangan selama bulan Juli Agustus 2010 dan tahap kedua dilakukan di Laboratorium Hidrologi dan Pengelolaan DAS, Fakultas Kehutanan IPB, pada bulan Oktober Desember 2010 untuk menganalisis dan mengolah seluruh data yang diperoleh dari lapangan. 3.2 Alat dan Bahan Alat yang digunakan pada penelitian ini antara lain ARR (Automatic Rainfall Recorder), AWLR (Automatic Water Level Recorder), GPS, pelampung untuk mengukur kecepatan aliran air, turbiditymeter untuk mengukur besar sedimentasi, botol sample, meteran, stopwatch, kamera, kalkulator, alat tulis dan seperangkat komputer/laptop dengan beberapa software yaitu Tank Model, Arc View versi 3.2, Minitab 1.4 dan Microsoft Office. Bahan yang diperlukan dalam penelitian meliputi data primer dan sekunder yaitu data curah hujan dari ARR (Automatic Rainfall Recorder), sedimen sungai dari turbiditymeter, dan tinggi muka air dari AWLR (Automatic Water Level Recorder). Selain itu juga diperlukan data spatial berupa peta topografi Sub DAS Cibengang dan peta penutupan lahan Sub DAS Cibengang. 3.3 Tahapan Penelitian Penelitian ini dilaksanakan melalui beberapa tahapan yaitu pengumpulan data primer (tinggi muka air, konsentrasi sedimen, dan curah hujan) dengan cara melakukan pengukuran langsung dari lapangan (SPAS Cibengang). Pengukuran

2 9 debit aliran dilakukan terlebih dahulu dengan melakukan pengukuran bentuk bangunan SPAS, pengukuran tinggi muka air sungai dengan alat AWLR atau meteran, dan mengukur kecepatan aliran sungai menggunakan stopwatch dan pelampung dengan beberapa kali ulangan. Kemudian setelah didapatkan nilai debit, dilakukan analisis hubungan antara debit, tinggi muka air dan debit sedimen, setelah analisis mencari hubungan nilai korelasi dan rating curve, diantaranya hubungan antara debit air dan tinggi muka air dan hubungan antara debit air dan debit sedimen, serta hubungan antara curah hujan dan debit air. Selanjutnya membuat grafik dengan metoda unit hidrograf dengan mencari hubungan antara curah hujan menurut waktu terhadap aliran debit aliran (m 3 /detik), sehingga dapat diperoleh data pengolahan data curah hujan, evapotranpirasi, dan debit aliran sebagai data input Tank Model. Setelah didapatkan hasil output Tank Model, dilakukan perhitungan erosi dan sedimentasi dengan menggunakan metode MUSLE. Terakhir menduga neraca air dengan menggunakan hasil output Tank Model. 3.4 Analisis Data Analisis Curah Hujan Analisis data curah hujan dilakukan dengan melakukan tabulasi curah hujan bulanan rata-rata, curah hujan tahunan, menganalisis sebaran bulan basah dan bulan kering setiap tahun serta dilakukan analisis korelasi antara curah hujan dan debit untuk mengetahui sejauh mana curah hujan berpengaruh terhadap besar debit air Analisis Hubungan Tinggi Muka Air dengan Debit Aliran Dalam perhitungan debit aliran digunakan persamaan Manning yang menganggap suatu penampang melintang seragam, kekasaran dasar sungai yang tidak berubah dan menggunakan aliran tetap yang seragam. Debit aliran diperoleh dari hasil perkalian kecepatan aliran rata-rata (m 3 /s) dengan luas penampang sungai (m) yang dirumuskan sebagai berikut. Q =V m A...(1)

3 10 V m = 1 / N R 2/3 S 1/2... (2) R =A/P... (3) Q = Debit aliran (m 3 /detik) V m = Kecepatan aliran rata-rata maning (m/detik) A = Luas penampang melintang basah (m 2 ) R = Radius hidrolik (m) P = Keliling basah (m) S = Kemiringan saluran (%) N = Koefisien kekasaran Manning sebesar 0,025 (tembok atau di semen) Pengukuran debit aliran dilakukan dengan beberapa ulangan pada tinggi muka air yang berbeda sehingga diperoleh hubungan antara debit aliran dengan tinggi muka air dari penampang sungai tersebut dalam sebuah discharge rating curve atau lengkung aliran. Berdasarkan hubungan antara tinggi muka air dan debit aliran diperoleh persamaan sebagai berikut : Q = a TMA b... (4) Dimana ; Q = Debit aliran (m 3 /s) TMA = Tinggi muka air (m) a,b = Konstanta Analisis Hubungan Debit Aliran dengan Laju Sedimen Beban angkutan sedimen diturunkan dari data laju sedimen melalui persamaan yang menggambarkan hubungan antara debit aliran dengan beban angkutan sedimen yang nilainya di dapat berdasarkan pengukuran dengan alat turbiditymeter, dimana satuan untuk sedimen adalah ppm atau mg/liter. Dengan asumsi bahwa konsentrasi sedimen merata pada seluruh bagian penampang melintang sungai maka laju sedimen dapat dihitung sebagai hasil perkalian antara konsentrasi dengan debit aliran (Asdak 2002) yaitu : Qs = 0,0864 C Q... (5) Qs = Laju sedimen (ton/hari) Q = Debit aliran (m 3 /s) C = Konsentrasi sedimen (ppm atau mg/l)

4 11 Pengambilan sampel air sedimen dan pengukuran debit dilakukan berulang kali pada ketinggian muka air yang berbeda sehingga diperoleh hubungan antara debit aliran dengan angkutan sedimen. Berdasarkan hubungan tersebut diperoleh persamaan sebagai berikut : Qs = a Q b...(6) Qs = Laju sedimen (ton/hari) Q = Debit aliran (m 3 /s) a,b = Konstanta Analisis Hidrograf Bentuk hidrograf dapat ditandai dengan tiga sifat pokoknya, yaitu waktu naik (time of rise), debit puncak (peak discharge), dan waktu dasar (time of base). Waktu naik (Tp) adalah waktu yang diukur dari saat hidrograf mulai naik sampai waktu terjadinya debit puncak. Debit puncak adalah debit maksimum yang terjadi dalam suatu kasus tertentu. Waktu dasar (Tb) adalah waktu yang diukur dari saat hidrograf mulai naik sampai waktu dimana debit kembali pada suatu besaran yang ditetapkan. Prosedur penyusunan hidrograf satuan adalah: 1. Menentukan aliran dasar (base flow), aliran dasar yang dipakai adalah debit minimum (m 3 /s) pada saat debit sebelum mengalami kenaikan setelah hujan. 2. Menghitung volume direct runoff (DRO), dihitung dengan cara debit (m 3 /s) dikurangi base flow (m 3 /s) yaitu: DRO = Q BF... (7) DRO = Direct runoff (m 3 /s) Q = Debit (m 3 /s) BF = Aliran dasar (m 3 /s) 3. Menghitung volume aliran langsung sebagai berikut: VtotalDRO = DRO x t... (8) Keterangan : DRO = Jumlah debit aliran langsung (m 3 /s) t = Selang waktu (menit). 4. Menghitung tebal aliran langsung dihitung dengan persamaan:

5 12 Tebal DRO =... (9) Keterangan : Tebal DRO = (m) Luas Sub DAS = (m 2 ) V DRO = (m 3 ) 5. Menghitung Koefisien Runoff, yaitu: Koefisien runoff =... (10) Curah hujan dalam satuan (mm) 6. Membangun hidrograf satuan setelah didapat harga unit hidrograf satuan. 3.5 Pengolahan Data Input Tank Model Data masukkan kedalam Tank Model adalah debit sungai (Q), evapotranspirasi (ETp) dan curah hujan (CH). Hasil keluaran dari Tank Model adalah memperoleh data surface flow, intermediate flow, sub-base flow, dan base flow. Selain memperoleh data aliran juga memperoleh nilai parameter Tank Model, indikator keandalan model, keseimbangan air, kurva hidrograf, regresi, dan aliran hitung. Semua disimpan dalam format data (*.txt). Gambar 1 Skema Standard Tank Model (Setiawan 2003). Dari Gambar 1 dapat dilihat model ini tersusun atas 4 (empat) reservoir vertical, yaitu bagian atas mempresentasikan surface reservoir (A), dibawahnya intermediate reservoir (B), kemudian sub-base reservoir (C), dan paling bawah base reservoir (D). Lubang outlet horizontal mencerminkan aliran air, yang terdiri dari surface flow (Y a2 ), sub-surface flow (Y a1 ), intermediate flow (Y b1 ), sub-base

6 13 flow (Y c1 ), dan base flow (Y d1 ). Infiltrasi yang melalui lubang outlet vertical dan aliran yang melalui lubang outlet horizontal tank dikuantifikasikan oleh parameter-parameter Tank Model. Aliran ini hanya terjadi bila tinggi air pada masing-masing reservoir (Ha, Hb, Hc, dan Hd) melebihi tinggi lubangnya (H a1, H a2, H b1, dan H c1 ). Data kejadian hujan per tiga puluh menit dari bulan Januari hingga Desember 2010 yang terekam pada ARR di outlet diolah menjadi data kejadian hujan harian. Data curah hujan dalam satuan mm/hari akan digunakan sebagai salah satu data input Tank Model. Setiawan (2003) menyatakan secara global persamaan keseimbangan air Tank Model adalah sebagai berikut : = P(t) ET(t) Y(t)...(11) Dimana, H adalah tinggi air (mm), P adalah hujan (mm/hari), ET adalah evapotranspirasi (mm/hari), Y adalah aliran total (mm/hari), dan t adalah waktu (hari). Pada standar tank model terdapat 4 tank, sehingga persamaan di atas dapat ditulis sebagai berikut : = +...(12) Aliran total merupakan penjumlahan dari komponen aliran yang dapat ditulis sebagai berikut: Y(t) = Ya(t) + Yb(t) + Yc(t) + Yd(t)... (13) Lebih rinci lagi keseimbangan air dalam setiap reservoir dapat ditulis sebagai berikut: = P(t) ET(t) Ya(t)...(14) = Ya o (t) Yb(t)... (15) = Yb o (t) Yc(t)... (16) = Yc o (t) Yd(t)... (17) Dimana Ya,Yb, Yc, dan Yd adalah komponen aliran horizontal dari setiap reservoir, dan Ya o, Yb o, dan Yc o adalah aliran vertikal (infiltrasi) setiap tank (A,B dan C).

7 Pengolahan Data Evapotranspirasi Metode Penman-Monteith adalah salah satu metode yang digunakan untuk menentukan besarnya evapotranspirasi potensial dari permukaan air terbuka dan permukaan vegetasi yang menjadi kajian. Model ini membutuhkan lima parameter iklim yaitu suhu, kelembaban relatif, kecepatan angin, tekanan uap jenuh dan radiasi netto. Model persamaan Penman-Monteith (Neitsch et all ) sebagai berikut: Etp = Δ Hnet G +ρ air.c p.[e z 0 e z ]/r a Δ+γ.(1+r c /r a ) Dimana ; ETp = Evapotranspirasi potensial (mm/hari) H net = Radiasi netto (MJ/m 2 /hari) = Slope fungsi tekanan uap jenuh (kpa/ºc) G = Aliran panas ke dalam tanah (MJ/m 2 /hari) γ = Konstanta psychometric (kpa/ºc) ρ air = Berat jenis udara (kg/m 3 ) C p = Panas pada tekanan konstan (MJ/kg/ºC) 0 e z = Tekanan uap jenuh udara (kpa) e z = Tekanan jenuh adara pada ketinggian z (kpa) r a = Resistensi aero dinamik (s/m) = Resisten tutupan kanopi (s/m) r c...(18) 3.7 Analisis Laju Erosi Model MUSLE (Modified Universal Soil Loss Equation) Adapun yang digunakan untuk menduga laju sedimen dalam penelitian ini adalah dengan menggunakan metode MUSLE. Metode MUSLE (Modified Universal Soil Loss Equation) merupakan sebuah metode yang digunakan untuk menduga laju sedimentasi yang merupakan metode yang dikembangkan dari metode yang sudah ada sebelumnya yakni metode USLE (Universal Soil Loss Equation). MUSLE tidak menggunakan faktor energi hujan sebagai trigger penyebab terjadinya erosi melainkan menggunakan faktor limpasan permukaan sehingga MUSLE tidak memerlukan faktor sediment delivery ratio (SDR). Faktor limpasan permukaan mewakili energi yang digunakan untuk penghancuran dan pengangkutan sedimen.

8 15 Menurut Neitsch et all. (2005) hasil dugaan erosi dengan metode MUSLE dapat dirumuskan sebagai berikut : Sed = 11,8. Q surf. q peak. area 0,56. K. LS. C. P... (19) Dimana ; Sed = sediment yield dari Sub DAS (ton) q peak = Puncak laju run-off (m 3 /s) Q surf = Spesifikasi Run- off (mm/ha) area = Luas Sub DAS (ha) K C P LS = Faktor erodibitas = Faktor pengelolaan tanaman = Faktor teknik konservasi tanah = Faktor panjang dan kemiringan lereng Aliran lateral dan base flow juga membawa sedimen masuk ke dalam sungai. Jumlah sedimentasi yang berasal dari aliran lateral dan base flow dihitung dengan persamaan sebagai berikut : Sed lat = Q lat +Q gw.area.conc sed (20) Sed lat = Sedimen aliran lateral dan base flow (ton) Q lat = Lateral flow (mm) Q gw = Base flow (mm) area = Luas Sub DAS (Km 2 ) conc sed = Konsentrasi sedimen yang berasal dari lateral dan base flow (mg/l)

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 9 BAB III METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian dilaksanakan pada bulan November 2011 sampai Januari 2012 di Stasiun Pengamat Arus Sungai (SPAS) Cikadu Kecamatan Arjasari Kabupaten

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Pengolahan data sekunder menggunakan hasil study screening dan laporan monitoring evaluasi BPDAS Brantas tahun 2009 2010. Analisis data dilakukan sejak bulan

Lebih terperinci

BAB III METODOLOGI 3.1 Waktu dan Tempat 3.2 Alat dan Bahan Alat-alat yang digunakan dalam penelitian yaitu:

BAB III METODOLOGI 3.1 Waktu dan Tempat 3.2 Alat dan Bahan Alat-alat yang digunakan dalam penelitian yaitu: BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian dilaksanakan pada bulan September sampai dengan Nopember 2011 di Stasiun Pengamat Arus Sungai Sub DAS Sibarasok Gadang, DAS Antokan, yang terletak di

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 7 BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian ini dilakukan berdasarkan data sekunder DAS Brantas tahun 2009-2010 dan observasi lapang pada bulan Februari Maret 2012 di Stasiun Pengamat

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.1 Analisis Data 5.1.1 Analisis Curah Hujan Hasil pengolahan data curah hujan di lokasi penelitian Sub-DAS Cibengang sangat berfluktuasi dari 1 Januari sampai dengan 31 Desember

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 24 BAB V HASIL DAN PEMBAHASAN 5.1 Analisis Curah Hujan Data curah hujan yang terekam pada alat di SPAS Cikadu diolah menjadi data kejadian hujan harian sebagai jumlah akumulasi curah hujan harian dengan

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.1 Analisis Curah Hujan Curah hujan diukur setiap hari dengan interval pengukuran dua puluh empat jam dengan satuan mm/hari. Pengukuran curah hujan dilakukan oleh Automatic

Lebih terperinci

PENDUGAAN NERACA AIR MENGGUNAKAN APLIKASI TANK MODEL DAN PERHITUNGAN EROSI SEDIMENTASI DENGAN METODE MUSLE DI SUB-DAS CIBENGANG KABUPATEN BANDUNG

PENDUGAAN NERACA AIR MENGGUNAKAN APLIKASI TANK MODEL DAN PERHITUNGAN EROSI SEDIMENTASI DENGAN METODE MUSLE DI SUB-DAS CIBENGANG KABUPATEN BANDUNG PENDUGAAN NERACA AIR MENGGUNAKAN APLIKASI TANK MODEL DAN PERHITUNGAN EROSI SEDIMENTASI DENGAN METODE MUSLE DI SUB-DAS CIBENGANG KABUPATEN BANDUNG ASEP DAHLAN FARID DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Hidrologi dan Neraca air Menurut Mori (2006) siklus air tidak merata dan dipengaruhi oleh kondisi meteorologi (suhu, tekanan atmosfir, angin, dan lain-lain) dan kondisi

Lebih terperinci

PENDUGAAN NERACA AIR, EROSI, DAN SEDIMENTASI MENGGUNAKAN APLIKASI TANK MODEL DAN METODE MUSLE DI SUB DAS CILEBAK KABUPATEN BANDUNG

PENDUGAAN NERACA AIR, EROSI, DAN SEDIMENTASI MENGGUNAKAN APLIKASI TANK MODEL DAN METODE MUSLE DI SUB DAS CILEBAK KABUPATEN BANDUNG PENDUGAAN NERACA AIR, EROSI, DAN SEDIMENTASI MENGGUNAKAN APLIKASI TANK MODEL DAN METODE MUSLE DI SUB DAS CILEBAK KABUPATEN BANDUNG CANDRA RAHMAT SAHAYANA DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tank Model Penerapan Tank Model dilakukan berdasarkan data harian berupa data curah hujan, evapotranspirasi dan debit aliran sungai. Data-data tersebut digunakan untuk menentukan

Lebih terperinci

PENERAPAN APLIKASI TANK MODEL DAN METODE MUSLE DALAM MENDUGA NERACA AIR, EROSI DAN SEDIMENTASI DI SUB-DAS CICANGKEDAN KABUPATEN SERANG

PENERAPAN APLIKASI TANK MODEL DAN METODE MUSLE DALAM MENDUGA NERACA AIR, EROSI DAN SEDIMENTASI DI SUB-DAS CICANGKEDAN KABUPATEN SERANG PENERAPAN APLIKASI TANK MODEL DAN METODE MUSLE DALAM MENDUGA NERACA AIR, EROSI DAN SEDIMENTASI DI SUB-DAS CICANGKEDAN KABUPATEN SERANG NOVRIADI ZULFIDA DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Presipitasi Persipitasi adalah proses pelepasan air dari atmosfer untuk mencapai permukaan bumi. Jumlah presipitasi yang jatuh pada suatu lokasi akan bervariasi secara spasial

Lebih terperinci

3.4.1 Analisis Data Debit Aliran Analisis Lengkung Aliran Analisis Hidrograf Aliran Analisis Aliran Langsung

3.4.1 Analisis Data Debit Aliran Analisis Lengkung Aliran Analisis Hidrograf Aliran Analisis Aliran Langsung DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii KATA PENGANTAR... iv DAFTAR ISI...v DAFTAR TABEL... vii DAFTAR GAMBAR... viii INTISARI...x ABSTRACT... xi BAB I PENDAHULUAN...1

Lebih terperinci

PENDUGAANN NERACA AIR, EROSI, DAN SEDIMENTASI MENGGUNAKAN APLIKASI TANK MODEL DAN SUB-SUB DAS CIKADU, KABUPATEN BANDUNG JAWA BARAT DINDA TALITHA

PENDUGAANN NERACA AIR, EROSI, DAN SEDIMENTASI MENGGUNAKAN APLIKASI TANK MODEL DAN SUB-SUB DAS CIKADU, KABUPATEN BANDUNG JAWA BARAT DINDA TALITHA PENDUGAANN NERACA AIR, EROSI, DAN SEDIMENTASI MENGGUNAKAN APLIKASI TANK MODEL DAN MUSLE DI SUB-SUB DAS CIKADU, KABUPATEN BANDUNG JAWA BARAT DINDA TALITHA DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT

Lebih terperinci

BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian 3.2 Alat dan Bahan

BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian 3.2 Alat dan Bahan 15 BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian Penelitian dilaksanakan di Sub-sub DAS Keyang, Slahung, dan Tempuran (KST); Sub DAS Kali Madiun, DAS Solo. Sebagian besar Sub-sub DAS KST secara administratif

Lebih terperinci

Lampiran 1 Analisis hubungan debit aliran dengan tinggi muka air di Sub DAS Melamon

Lampiran 1 Analisis hubungan debit aliran dengan tinggi muka air di Sub DAS Melamon LAMPIRAN 40 41 Lampiran 1 Analisis hubungan debit aliran dengan tinggi muka air di Sub DAS Melamon No Tanggal Hujan S t V air TMA A P Q ratarat (m) (m/s) (m) (m 2 ) (m) (m 3 /s) a N Beton (A/P) 2/3 S 0.5

Lebih terperinci

BAB V ANALISIS SEDIMEN DAN VOLUME KEHILANGAN AIR PADA EMBUNG

BAB V ANALISIS SEDIMEN DAN VOLUME KEHILANGAN AIR PADA EMBUNG V-1 BAB V ANALISIS SEDIMEN DAN VOLUME KEHILANGAN AIR PADA EMBUNG 5.1. Analisis Sedimen dengan Metode USLE Untuk memperkirakan laju sedimentasi pada DAS S. Grubugan digunakan metode Wischmeier dan Smith

Lebih terperinci

Tujuan: Peserta mengetahui metode estimasi Koefisien Aliran (Tahunan) dalam monev kinerja DAS

Tujuan: Peserta mengetahui metode estimasi Koefisien Aliran (Tahunan) dalam monev kinerja DAS MONEV TATA AIR DAS ESTIMASI KOEFISIEN ALIRAN Oleh: Agung B. Supangat Balai Penelitian Teknologi Kehutanan Pengelolaan DAS Jl. A.Yani-Pabelan PO Box 295 Surakarta Telp./fax. (0271)716709, email: maz_goenk@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Daerah Aliran Sungai (DAS) (catchment, basin, watershed) merupakan daerah dimana seluruh airnya mengalir ke dalam suatu sungai yang dimaksudkan. Daerah ini umumnya

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL... iii. LEMBAR PENGESAHAN... iii. PERNYATAAN... iii. KATA PENGANTAR... iv. DAFTAR ISI... v. DAFTAR TABEL...

DAFTAR ISI. HALAMAN JUDUL... iii. LEMBAR PENGESAHAN... iii. PERNYATAAN... iii. KATA PENGANTAR... iv. DAFTAR ISI... v. DAFTAR TABEL... DAFTAR ISI HALAMAN JUDUL... iii LEMBAR PENGESAHAN... iii PERNYATAAN... iii KATA PENGANTAR... iv DAFTAR ISI... v DAFTAR TABEL... viii DAFTAR GAMBAR... ix INTISARI... xi ABSTRACT... xii BAB 1 PENDAHULUAN...

Lebih terperinci

III. METODE PENELITIAN. Penelitian dilaksanakan di lingkungan Masjid Al-Wasi i Universitas Lampung

III. METODE PENELITIAN. Penelitian dilaksanakan di lingkungan Masjid Al-Wasi i Universitas Lampung III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian dilaksanakan di lingkungan Masjid Al-Wasi i Universitas Lampung pada bulan Juli - September 2011. 3.2 Alat dan Bahan Alat dan bahan yang

Lebih terperinci

APLIKASI MODEL TANGKI DAN PENDUGAAN EROSI DENGAN METODE MUSLE BERBASIS DATA SPAS DI SUB DAS SIBARASOK GADANG KABUPATEN PADANG PARIAMAN

APLIKASI MODEL TANGKI DAN PENDUGAAN EROSI DENGAN METODE MUSLE BERBASIS DATA SPAS DI SUB DAS SIBARASOK GADANG KABUPATEN PADANG PARIAMAN APLIKASI MODEL TANGKI DAN PENDUGAAN EROSI DENGAN METODE MUSLE BERBASIS DATA SPAS DI SUB DAS SIBARASOK GADANG KABUPATEN PADANG PARIAMAN ANDRIE RIDZKI P. DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN Analisis debit Sungai Cidanau dilakukan untuk mendapatkan ketersediaan air pada DAS Cidanau. Hal ini dilakukan untuk menggambarkan perubahan yang terjadi pada jumlah air yang

Lebih terperinci

BAB II METODOLOGI 2.1 Bagan Alir Perencanaan

BAB II METODOLOGI 2.1 Bagan Alir Perencanaan BAB II METODOLOGI 2.1 Bagan Alir Perencanaan Gambar 2.1. Gambar Bagan Alir Perencanaan 2.2 Penentuan Lokasi Embung Langkah awal yang harus dilaksanakan dalam merencanakan embung adalah menentukan lokasi

Lebih terperinci

APLIKASI MODEL TANGKI UNTUK PENDUGAAN NERACA AIR DAN LAJU SEDIMENTASI MENGGUNAKAN METODE MUSLE DI SUB DAS LAHAR KABUPATEN BLITAR RIAN SELAMET

APLIKASI MODEL TANGKI UNTUK PENDUGAAN NERACA AIR DAN LAJU SEDIMENTASI MENGGUNAKAN METODE MUSLE DI SUB DAS LAHAR KABUPATEN BLITAR RIAN SELAMET APLIKASI MODEL TANGKI UNTUK PENDUGAAN NERACA AIR DAN LAJU SEDIMENTASI MENGGUNAKAN METODE MUSLE DI SUB DAS LAHAR KABUPATEN BLITAR RIAN SELAMET DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN

Lebih terperinci

BAB III METODOLOGI. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir

BAB III METODOLOGI. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir III-1 BAB III METODOLOGI 3.1. Tinjauan Umum Metodologi yang digunakan dalam penyusunan Tugas Akhir dapat dilihat pada Gambar 3.1. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir III-2 Metodologi dalam perencanaan

Lebih terperinci

BAB III METODOLOGI Rancangan Penulisan

BAB III METODOLOGI Rancangan Penulisan BAB III METODOLOGI 3.1. Tinjauan Umum Metodologi penelitian adalah semacam latar belakang argumentatif yang dijadikan alasan mengapa suatu metode penelitian dipakai dalam suatu kegiatan penelitian. Metodologi

Lebih terperinci

Tujuan. Peserta memahami syarat-syarat pemilihan lokasi SPAS dan alat-alat yang dibutuhkan dalam pemantauan data hidrologi DAS

Tujuan. Peserta memahami syarat-syarat pemilihan lokasi SPAS dan alat-alat yang dibutuhkan dalam pemantauan data hidrologi DAS MONEV TATA AIR DAS PEMASANGAN SPAS & JENIS ALAT-ALATNYA ALATNYA Oleh: Agung B. Supangat Balai Penelitian Teknologi Kehutanan Pengelolaan DAS Jl. A.Yani-Pabelan PO Box 295 Surakarta Telp./fax. (0271)716709,

Lebih terperinci

(Oleh : Heru Ruhendi, S.Hut/ Fungsional PEH Pertama)

(Oleh : Heru Ruhendi, S.Hut/ Fungsional PEH Pertama) TEKNIK MONEV DAS PADA CATCHMENT AREA (CA) SPAS DI BPDAS CITARUM-CILIWUNG (Oleh : Heru Ruhendi, S.Hut/ Fungsional PEH Pertama) I. PENDAHULUAN A. Latar Belakang Stasiun Pengamat Arus Sungai (SPAS) merupakan

Lebih terperinci

PENDUGAAN NERACA AIR MENGGUNAKAN APLIKASI TANK MODEL DAN LAJU SEDIMEN DENGAN METODE MUSLE DI SUB DAS MELAMON KABUPATEN MALANG RAHMA AMALIA ISMANIAR

PENDUGAAN NERACA AIR MENGGUNAKAN APLIKASI TANK MODEL DAN LAJU SEDIMEN DENGAN METODE MUSLE DI SUB DAS MELAMON KABUPATEN MALANG RAHMA AMALIA ISMANIAR PENDUGAAN NERACA AIR MENGGUNAKAN APLIKASI TANK MODEL DAN LAJU SEDIMEN DENGAN METODE MUSLE DI SUB DAS MELAMON KABUPATEN MALANG RAHMA AMALIA ISMANIAR DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT

Lebih terperinci

Misal dgn andalan 90% diperoleh debit andalan 100 m 3 /det. Berarti akan dihadapi adanya debit-debit yg sama atau lebih besar dari 100 m 3 /det

Misal dgn andalan 90% diperoleh debit andalan 100 m 3 /det. Berarti akan dihadapi adanya debit-debit yg sama atau lebih besar dari 100 m 3 /det DEBIT ANDALAN Debit Andalan (dependable discharge) : debit yang berhubungan dgn probabilitas atau nilai kemungkinan terjadinya. Merupakan debit yg kemungkinan terjadinya sama atau melampaui dari yg diharapkan.

Lebih terperinci

1267, No Undang-Undang Nomor 4 Tahun 2011 tentang Informasi Geospasial (Lembaran Negara Republik Indonesia Tahun 2011 Nomor 49, Tambahan Lem

1267, No Undang-Undang Nomor 4 Tahun 2011 tentang Informasi Geospasial (Lembaran Negara Republik Indonesia Tahun 2011 Nomor 49, Tambahan Lem BERITA NEGARA REPUBLIK INDONESIA No.1267, 2014 KEMENHUT. Pengelolaan. Daerah Aliran Sungai. Evaluasi. Monitoring. PERATURAN MENTERI KEHUTANAN REPUBLIK INDONESIA NOMOR P. 61 /Menhut-II/2014 TENTANG MONITORING

Lebih terperinci

PENDUGAAN TINGKAT SEDIMEN DI DUA SUB DAS DENGAN PERSENTASE LUAS PENUTUPAN HUTAN YANG BERBEDA

PENDUGAAN TINGKAT SEDIMEN DI DUA SUB DAS DENGAN PERSENTASE LUAS PENUTUPAN HUTAN YANG BERBEDA Prosiding Seminar Nasional Geografi UMS 217 ISBN: 978 62 361 72-3 PENDUGAAN TINGKAT SEDIMEN DI DUA SUB DAS DENGAN PERSENTASE LUAS PENUTUPAN HUTAN YANG BERBEDA Esa Bagus Nugrahanto Balai Penelitian dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Aliran Sungai Dalam konteksnya sebagai sistem hidrologi, Daerah Aliran Sungai didefinisikan sebagai kawasan yang terletak di atas suatu titik pada suatu sungai yang oleh

Lebih terperinci

DAFTAR ISI. Halaman HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI DEDIKASI KATA PENGANTAR

DAFTAR ISI. Halaman HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI DEDIKASI KATA PENGANTAR DAFTAR ISI Halaman HALAMAN JUDUL i HALAMAN PENGESAHAN ii PERNYATAAN BEBAS PLAGIASI iii MOTTO iv DEDIKASI v KATA PENGANTAR vi DAFTAR ISI viii DAFTAR TABEL xi DAFTAR GAMBAR xii DAFTAR LAMPIRAN xiv DAFTAR

Lebih terperinci

HASIL DAN PEMBAHASAN. Curah Hujan. Tabel 7. Hujan Harian Maksimum di DAS Ciliwung Hulu

HASIL DAN PEMBAHASAN. Curah Hujan. Tabel 7. Hujan Harian Maksimum di DAS Ciliwung Hulu HASIL DAN PEMBAHASAN Curah Hujan Hujan Harian Maksimum Hujan harian maksimum yang terjadi di DAS Ciliwung Hulu diperoleh dari beberapa stasiun pencatat hujan yang terdapat di wilayah tersebut dengan panjang

Lebih terperinci

MONITORING DAN EVALUASI TATA AIR

MONITORING DAN EVALUASI TATA AIR MONITORING DAN EVALUASI TATA AIR Rahardyan Nugroho Adi BPTKPDAS Pengertian Pengertian : Air adalah semua air yang terdapat di atas, ataupun di bawah permukaan tanah, termasuk dalam pengertian ini air permukaan,

Lebih terperinci

III. METODE PENELITIAN. Lokasi penelitian ini adalah di saluran drainase Antasari, Kecamatan. Sukarame, kota Bandar Lampung, Provinsi Lampung.

III. METODE PENELITIAN. Lokasi penelitian ini adalah di saluran drainase Antasari, Kecamatan. Sukarame, kota Bandar Lampung, Provinsi Lampung. 37 III. METODE PENELITIAN A. Lokasi Penelitian Lokasi penelitian ini adalah di saluran drainase Antasari, Kecamatan Sukarame, kota Bandar Lampung, Provinsi Lampung. Gambar 8. Lokasi Penelitian 38 B. Bahan

Lebih terperinci

ANALISIS DEBIT ANDALAN

ANALISIS DEBIT ANDALAN ANALISIS DEBIT ANDALAN A. METODE FJ MOCK Dr. F.J. Mock dalam makalahnya Land Capability-Appraisal Indonesia Water Availability Appraisal, UNDP FAO, Bogor, memperkenalkan cara perhitungan aliran sungai

Lebih terperinci

KEADAAN UMUM DAERAH PENELITIAN. Letak Geografis. Daerah penelitian terletak pada BT dan

KEADAAN UMUM DAERAH PENELITIAN. Letak Geografis. Daerah penelitian terletak pada BT dan KEADAAN UMUM DAERAH PENELITIAN Letak Geografis Daerah penelitian terletak pada 15 7 55.5 BT - 15 8 2.4 dan 5 17 1.6 LS - 5 17 27.6 LS. Secara administratif lokasi penelitian termasuk ke dalam wilayah Desa

Lebih terperinci

VOLUME 4 No. 2, 22 Juni 2015 Halaman

VOLUME 4 No. 2, 22 Juni 2015 Halaman VOLUME 4 No. 2, 22 Juni 2015 Halaman 101-198 APLIKASI TANK MODEL DAN KESEIMBANGAN NERACA AIR STUDI KASUS MODEL DAS MIKRO (MDM),SUB-DAS CISAMPORA, DAS CIMANUK, KABUPATEN MAJALENGKA PROVINSI JAWA BARAT Syampadzi

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan Curah hujan adalah volume air yang jatuh pada suatu areal tertentu (Arsyad, 2010). Menurut Tjasyono (2004), curah hujan yaitu jumlah air hujan yang turun pada

Lebih terperinci

BAB V ANALISA DATA. Dalam bab ini ada beberapa analisa data yang dilakukan, yaitu :

BAB V ANALISA DATA. Dalam bab ini ada beberapa analisa data yang dilakukan, yaitu : 37 BAB V ANALISA DATA Dalam bab ini ada beberapa analisa data yang dilakukan, yaitu : 5.1 METODE RASIONAL 5.1.1 Analisa Curah Hujan Dalam menganalisa curah hujan, stasiun yang dipakai adalah stasiun yang

Lebih terperinci

Rahardyan Nugroho Adi BPTKPDAS

Rahardyan Nugroho Adi BPTKPDAS Rahardyan Nugroho Adi dd11lb@yahoo.com BPTKPDAS PENGERTIAN Sedimentasi adalah proses perpindahan dan pengendapan erosi tanah, khususnya hasil erosi permukaan dan erosi parit. Sedimentasi menggambarkan

Lebih terperinci

III. METODE PENELITIAN. Lokasi penelitian ini adalah di saluran Ramanuju Hilir, Kecamatan Kotabumi, Kabupaten Lampung Utara, Provinsi Lampung.

III. METODE PENELITIAN. Lokasi penelitian ini adalah di saluran Ramanuju Hilir, Kecamatan Kotabumi, Kabupaten Lampung Utara, Provinsi Lampung. 39 III. METODE PENELITIAN A. Lokasi Penelitian Lokasi penelitian ini adalah di saluran Ramanuju Hilir, Kecamatan Kotabumi, Kabupaten Lampung Utara, Provinsi Lampung. PETA LOKASI PENELITIAN Gambar 7. Lokasi

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi

II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Siklus hidrologi dapat digambarkan sebagai proses sirkulasi air dari lahan, tanaman, sungai, danau, laut serta badan air lainnya yang ada di permukaan bumi menuju

Lebih terperinci

BAB X PEMBUATAN LENGKUNG ALIRAN DEBIT

BAB X PEMBUATAN LENGKUNG ALIRAN DEBIT BAB X PEMBUATAN LENGKUNG ALIRAN DEBIT 10.1 Deskripsi Singkat Lengkung aliran debit (Discharge Rating Curve), adalah kurva yang menunjukkan hubungan antara tinggi muka air dan debit pada lokasi penampang

Lebih terperinci

3 METODE PENELITIAN. Tempat dan Waktu Penelitian

3 METODE PENELITIAN. Tempat dan Waktu Penelitian 8 3 METODE PENELITIAN Tempat dan Waktu Penelitian Penelitian dilaksanakan pada lahan kebun pala milik pengurus Forum Pala Aceh di Kecamatan Tapak Tuan, Kabupaten Aceh Selatan, Provinsi Aceh, Indonesia.

Lebih terperinci

BAB III PROSEDUR PENELITIAN. Lokasi penelitan ini dilakukan di wilayah Sub Daerah Aliran Ci Keruh.

BAB III PROSEDUR PENELITIAN. Lokasi penelitan ini dilakukan di wilayah Sub Daerah Aliran Ci Keruh. 50 BAB III PROSEDUR PENELITIAN A. Lokasi Penelitian Lokasi penelitan ini dilakukan di wilayah Sub Daerah Aliran Ci Keruh. Wilayah Sub Daerah Aliran Ci Keruh ini meliputi Kabupaten Bandung yaitu Kecamatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Hasil Penelitian Terdahulu 1. Penelitian sejenis mengenai Kajian Kebutuhan Air Irigasi Pada Jaringan Irigasi sebelumnya pernah ditulis oleh (Oktawirawan, 2015) dengan judul Kajian

Lebih terperinci

SIMULASI PENGARUH SEDIMENTASI DAN KENAIKAN CURAH HUJAN TERHADAP TERJADINYA BENCANA BANJIR. Disusun Oleh: Kelompok 4 Rizka Permatayakti R.

SIMULASI PENGARUH SEDIMENTASI DAN KENAIKAN CURAH HUJAN TERHADAP TERJADINYA BENCANA BANJIR. Disusun Oleh: Kelompok 4 Rizka Permatayakti R. SIMULASI PENGARUH SEDIMENTASI DAN KENAIKAN CURAH HUJAN TERHADAP TERJADINYA BENCANA BANJIR Disusun Oleh: Kelompok 4 Rizka Permatayakti R.N Galuh Ajeng Septaria Indri Setyawanti Dyah Puspita Laksmi Tari

Lebih terperinci

BAB IV PEMBAHASAN DAN HASIL

BAB IV PEMBAHASAN DAN HASIL BAB IV PEMBAHASAN DAN HASIL 4.1. Analisis Curah Hujan 4.1.1. Ketersediaan Data Curah Hujan Untuk mendapatkan hasil yang memiliki akurasi tinggi, dibutuhkan ketersediaan data yang secara kuantitas dan kualitas

Lebih terperinci

APLIKASI TANK MODEL DAN ANALISIS EROSI BERBASIS DATA SPAS DI SUB-SUB DAS CIMANUK HULU KABUPATEN GARUT ASWIN RAHADIAN

APLIKASI TANK MODEL DAN ANALISIS EROSI BERBASIS DATA SPAS DI SUB-SUB DAS CIMANUK HULU KABUPATEN GARUT ASWIN RAHADIAN APLIKASI TANK MODEL DAN ANALISIS EROSI BERBASIS DATA SPAS DI SUB-SUB DAS CIMANUK HULU KABUPATEN GARUT ASWIN RAHADIAN DEPARTEMEN MANAJEMEN HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR 2010 APLIKASI

Lebih terperinci

V. SIMULASI LUAS HUTAN TERHADAP HASIL AIR

V. SIMULASI LUAS HUTAN TERHADAP HASIL AIR V. SIMULASI LUAS HUTAN TERHADAP HASIL AIR 5.1. Simulasi di Sub DAS Cisadane Hulu Validasi model dilakukan dengan menggunakan data debit sungai harian tahun 2008 2010. Selanjutnya disusun 10 alternatif

Lebih terperinci

Bab I Pendahuluan. I.1 Latar Belakang

Bab I Pendahuluan. I.1 Latar Belakang 1 Bab I Pendahuluan I.1 Latar Belakang Erosi adalah proses terkikis dan terangkutnya tanah atau bagian bagian tanah oleh media alami yang berupa air. Tanah dan bagian bagian tanah yang terangkut dari suatu

Lebih terperinci

TINJAUAN PUSTAKA. Gambaran umum Daerah Irigasi Ular Di Kawasan Buluh. Samosir dan Kabupaten Serdang Bedagai pada 18 Desember 2003, semasa

TINJAUAN PUSTAKA. Gambaran umum Daerah Irigasi Ular Di Kawasan Buluh. Samosir dan Kabupaten Serdang Bedagai pada 18 Desember 2003, semasa TINJAUAN PUSTAKA Gambaran umum Daerah Irigasi Ular Di Kawasan Buluh Kabupaten Serdang Bedagai yang beribukota Sei Rampah adalah kabupaten yang baru dimekarkan dari Kabupaten Deli Serdang sesuai dengan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Embung merupakan bangunan air yang menampung, mengalirkan air menuju hilir embung. Embung menerima sedimen yang terjadi akibat erosi lahan dari wilayah tangkapan airnya

Lebih terperinci

BAB V ANALISIS DAN PEMBAHASAN. A. Analisis Karakter Daerah Tangkapan Air Merden

BAB V ANALISIS DAN PEMBAHASAN. A. Analisis Karakter Daerah Tangkapan Air Merden BAB V ANALISIS DAN PEMBAHASAN A. Analisis Karakter Daerah Tangkapan Air Merden 1. Luas DTA (Daerah Tangkapan Air) Merden Dari hasil pengukuran menggunakan aplikasi ArcGis 10.3 menunjukan bahwa luas DTA

Lebih terperinci

Dr. Ir. Robert J. Kodoatie, M. Eng 2012 BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR

Dr. Ir. Robert J. Kodoatie, M. Eng 2012 BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR 3.1. Kebutuhan Air Untuk Irigasi BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR Kebutuhan air irigasi adalah jumlah volume air yang diperlukan untuk memenuhi kebutuhan evapotranspirasi, kehilangan

Lebih terperinci

Lengkung Aliran Debit (Discharge Rating Curve)

Lengkung Aliran Debit (Discharge Rating Curve) Lengkung Aliran Debit (Discharge Rating Curve) Lengkung aliran debit (Discharge Rating Curve) adalah kurva yang menunjukkan hubungan antara tinggi muka air (TMA) dan debit pada lokasi penampang sungai

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 35 BAB V HASIL DAN PEMBAHASAN 5.1 Curah Hujan Data curah hujan yang terjadi di lokasi penelitian selama 5 tahun, yaitu Januari 2006 hingga Desember 2010 disajikan dalam Gambar 5.1. CH (mm) 600 500 400

Lebih terperinci

Tabel 4.31 Kebutuhan Air Tanaman Padi

Tabel 4.31 Kebutuhan Air Tanaman Padi Tabel 4.31 Kebutuhan Air Tanaman Padi Kebutuhan Tanaman Padi UNIT JAN FEB MAR APR MEI JUNI JULI AGST SEPT OKT NOV DES Evapotranspirasi (Eto) mm/hr 3,53 3,42 3,55 3,42 3,46 2,91 2,94 3,33 3,57 3,75 3,51

Lebih terperinci

BAB 4 ANALISIS DATA DAN PEMBAHASAN

BAB 4 ANALISIS DATA DAN PEMBAHASAN BAB 4 ANALISIS DATA DAN PEMBAHASAN 4.1. Data Penelitian ini menggunakan data curah hujan, data evapotranspirasi, dan peta DAS Bah Bolon. Data curah hujan yang digunakan yaitu data curah hujan tahun 2000-2012.

Lebih terperinci

PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS. Oleh: Suryana*)

PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS. Oleh: Suryana*) PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS Oleh: Suryana*) Abstrak Pengelolaan Daerah Aliran Sungai (DAS) dilakukan secara integratif dari komponen biofisik dan sosial budaya

Lebih terperinci

PENERAPAN SISTEM AGROFORESTRY PADA PENGGUNAAN LAHAN DI DAS CISADANE HULU: MAMPUKAH MEMPERBAIKI FUNGSI HIDROLOGI DAS? Oleh : Edy Junaidi ABSTRAK

PENERAPAN SISTEM AGROFORESTRY PADA PENGGUNAAN LAHAN DI DAS CISADANE HULU: MAMPUKAH MEMPERBAIKI FUNGSI HIDROLOGI DAS? Oleh : Edy Junaidi ABSTRAK PENERAPAN SISTEM AGROFORESTRY PADA PENGGUNAAN LAHAN DI DAS CISADANE HULU: MAMPUKAH MEMPERBAIKI FUNGSI HIDROLOGI DAS? Oleh : Edy Junaidi ABSTRAK DAS Cisadane Hulu merupakan salah satu sub DAS Cisadane yang

Lebih terperinci

PENDAHULUAN. Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan

PENDAHULUAN. Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan PENDAHULUAN Latar Belakang Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan gletser (2,15%), air artesis (0,62%) dan air lainnya (0,03%). Air lainnya ini meliputi danau air tawar

Lebih terperinci

DR. IR. AFANDI, M.P. PANDUAN PRAKTEK KONSERVASI TANAH DAN AIR

DR. IR. AFANDI, M.P. PANDUAN PRAKTEK KONSERVASI TANAH DAN AIR DR. IR. AFANDI, M.P. PANDUAN PRAKTEK KONSERVASI TANAH DAN AIR PANDUAN PRAKTEK KONSERVASI TANAH DAN AIR DR. IR. AFANDI, M.P. JURUSAN ILMU TANAH FAKULTAS PERTANIAN UNIVERSITAS LAMPUNG BANDAR LAMPUNG, 2008

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Samudera, Danau atau Laut, atau ke Sungai yang lain. Pada beberapa

BAB I PENDAHULUAN. A. Latar Belakang. Samudera, Danau atau Laut, atau ke Sungai yang lain. Pada beberapa BAB I PENDAHULUAN A. Latar Belakang Sungai merupakan jalan air alami yang mengalir menuju Samudera, Danau atau Laut, atau ke Sungai yang lain. Pada beberapa kasus, sebuah sungai secara sederhana mengalir

Lebih terperinci

BAB IV METODE PENELITIAN. A. Lokasi Penelitian

BAB IV METODE PENELITIAN. A. Lokasi Penelitian BAB IV METODE PENELITIAN A. Lokasi Penelitian Lokasi penelitian berada pada Daerah Tangkapan Air Banjarnegara, wilayah DAS Serayu, beberapa kabupaten yang masuk kedalam kawasan Daerah Tangkapan Air Banjarnegara

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN METODOLOGI PENELITIAN Tempat dan Waktu Penelitian Penelitian ini dilakukan di DAS Ciliwung Hulu. Penelitian dilakukan selama 7 bulan dimulai pada bulan September 2005 hingga bulan Maret 2006. Bahan dan

Lebih terperinci

BAB V PEMBAHASAN. menentukan tingkat kemantapan suatu lereng dengan membuat model pada

BAB V PEMBAHASAN. menentukan tingkat kemantapan suatu lereng dengan membuat model pada BAB V PEMBAHASAN 5.1 Kajian Geoteknik Analisis kemantapan lereng keseluruhan bertujuan untuk menentukan tingkat kemantapan suatu lereng dengan membuat model pada sudut dan tinggi tertentu. Hasil dari analisis

Lebih terperinci

TINJAUAN PUSTAKA. Gambar 1. Siklus hidrologi

TINJAUAN PUSTAKA. Gambar 1. Siklus hidrologi TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Asdak (2002), mendefinisikan hidrologi sebagai suatu kajian ilmu yang memelajari tentang air (pada fase gas, fase cair maupun fase padat) yang berada di dalam tanah

Lebih terperinci

DAFTAR ISI. Halaman JUDUL PENGESAHAN PERSEMBAHAN ABSTRAK KATA PENGANTAR

DAFTAR ISI. Halaman JUDUL PENGESAHAN PERSEMBAHAN ABSTRAK KATA PENGANTAR ix DAFTAR ISI Halaman JUDUL i PENGESAHAN iii MOTTO iv PERSEMBAHAN v ABSTRAK vi KATA PENGANTAR viii DAFTAR ISI ix DAFTAR TABEL xiii DAFTAR GAMBAR xvi DAFTAR LAMPIRAN xvii DAFTAR NOTASI xviii BAB 1 PENDAHULUAN

Lebih terperinci

BAB III LANDASAN TEORI. A. Metode MUSLE

BAB III LANDASAN TEORI. A. Metode MUSLE BAB III LANDASAN TEORI A. Metode MUSLE Metode MUSLE (Modify Universal Soil Loss Equation) adalah modifikasi dari metode USLE (Soil Loss Equation), yaitu dengan mengganti faktor erosivitas hujan (R) dengan

Lebih terperinci

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air BAB I PENDAHULUAN I. Umum Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air laut, 1,75% berbentuk es dan 0,73% berada di daratan sebagai air sungai, air danau, air tanah dan sebagainya.

Lebih terperinci

1.4. Manfaat Penelitian Manfaat dari penelitian mengenai sebaran bahaya erosi serta respon aliran ini adalah :

1.4. Manfaat Penelitian Manfaat dari penelitian mengenai sebaran bahaya erosi serta respon aliran ini adalah : BAB I PENDAHULUAN 1.1 Latar Belakang Daerah Aliran Sungai (DAS) merupakan salah satu batasan proses dalam siklus hidrologi. Sebagai salah satu batasan dalam suatu siklus, DAS memiliki input (hujan dan

Lebih terperinci

MODEL HIDROGRAF SATUAN SINTETIK MENGGUNAKAN PARAMETER MORFOMETRI (STUDI KASUS DI DAS CILIWUNG HULU) BEJO SLAMET

MODEL HIDROGRAF SATUAN SINTETIK MENGGUNAKAN PARAMETER MORFOMETRI (STUDI KASUS DI DAS CILIWUNG HULU) BEJO SLAMET MODEL HIDROGRAF SATUAN SINTETIK MENGGUNAKAN PARAMETER MORFOMETRI (STUDI KASUS DI DAS CILIWUNG HULU) BEJO SLAMET SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2006 SURAT PERNYATAAN Dengan ini saya

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 Kondisi Umum Daerah aliran sungai (DAS) Cilamaya secara geografis terletak pada 107 0 31 107 0 41 BT dan 06 0 12-06 0 44 LS. Sub DAS Cilamaya mempunyai luas sebesar ± 33591.29

Lebih terperinci

BAB I PENDAHULUAN. Evaluasi Ketersediaan dan Kebutuhan Air Daerah Irigasi Namu Sira-sira.

BAB I PENDAHULUAN. Evaluasi Ketersediaan dan Kebutuhan Air Daerah Irigasi Namu Sira-sira. BAB I PENDAHULUAN 1.1 Latar Belakang Ketersediaan air (dependable flow) suatu Daerah Pengaliran Sungai (DPS) relatif konstan, sebaliknya kebutuhan air bagi kepentingan manusia semakin meningkat, sehingga

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1. Metode Penelitian Metode yang digunakan dalam penelitian ini adalah penelitian deskriptif kuantitatif dengan membandingkan hasil transformasi hujan-debit dan GR2M dengan debit

Lebih terperinci

MONEV E T ATA A IR D AS PERHITUNGAN AN SEDIME M N

MONEV E T ATA A IR D AS PERHITUNGAN AN SEDIME M N MONEV TATA AIR DAS PERHITUNGAN SEDIMEN Oleh: Agung B. Supangat Balai Penelitian Teknologi Kehutanan Pengelolaan DAS Jl. A.Yani-Pabelan PO Box 295 Surakarta Telp./fax. (0271)716709, email: maz_goenk@yahoo.com

Lebih terperinci

BAB V ANALISIS DAN PEMBAHASAN. A. Analisis karakteristik DTA(Daerah Tangkapan Air ) Opak

BAB V ANALISIS DAN PEMBAHASAN. A. Analisis karakteristik DTA(Daerah Tangkapan Air ) Opak BAB V ANALISIS DAN PEMBAHASAN A. Analisis karakteristik DTA(Daerah Tangkapan Air ) Opak 1. Luas DTA (Daerah Tangkapan Air) Opak Dari hasil pengukuran menggunakan aplikasi ArcGis 10.1 menunjukan bahwa luas

Lebih terperinci

Kebutuhan Informasi Perencanaan Sumberdaya Air dan Keandalan Ketersediaan Air yang Berkelanjutan di Kawasan Perdesaan

Kebutuhan Informasi Perencanaan Sumberdaya Air dan Keandalan Ketersediaan Air yang Berkelanjutan di Kawasan Perdesaan Kebutuhan Informasi Perencanaan Sumberdaya Air dan Keandalan Ketersediaan Air yang Berkelanjutan di Kawasan Perdesaan M. Yanuar J. Purwanto a dan Sutoyo b Departemen Teknik Sipil dan Lingkungan Fakultas

Lebih terperinci

BIOFISIK DAS. LIMPASAN PERMUKAAN dan SUNGAI

BIOFISIK DAS. LIMPASAN PERMUKAAN dan SUNGAI BIOFISIK DAS LIMPASAN PERMUKAAN dan SUNGAI SUNGAI Air yang mengalir di sungai berasal dari : ALIRAN PERMUKAAN ( (surface runoff) ) ALIRAN BAWAH PERMUKAAN ( (interflow = subsurface flow) ALIRAN AIR TANAH

Lebih terperinci

Tahun Penelitian 2005

Tahun Penelitian 2005 Sabtu, 1 Februari 27 :55 - Terakhir Diupdate Senin, 1 Oktober 214 11:41 Tahun Penelitian 25 Adanya peningkatan intensitas perubahan alih fungsi lahan akan berpengaruh negatif terhadap kondisi hidrologis

Lebih terperinci

BAB III METODOLOGI. dan terorganisasi untuk menyelidiki masalah tertentu yang memerlukan jawaban.

BAB III METODOLOGI. dan terorganisasi untuk menyelidiki masalah tertentu yang memerlukan jawaban. BAB III METODOLOGI 3.1 Umum Metodologi merupakan suatu penyelidikan yang sistematis untuk meningkatkan sejumlah pengetahuan, juga merupakan suatu usaha yang sistematis dan terorganisasi untuk menyelidiki

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada bulan Juli sampai dengan Agustus 2013 di

METODE PENELITIAN. Penelitian ini dilakukan pada bulan Juli sampai dengan Agustus 2013 di III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian ini dilakukan pada bulan Juli sampai dengan Agustus 2013 di Laboratorium Sumber Daya Air dan Lahan Jurusan Teknik Pertanian dan Laboratorium Ilmu

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Perbandingan Evapotranspirasi Tanaman Acuan Persyaratan air tanaman bervariasi selama masa pertumbuhan tanaman, terutama variasi tanaman dan iklim yang terkait dalam metode

Lebih terperinci

Surface Runoff Flow Kuliah -3

Surface Runoff Flow Kuliah -3 Surface Runoff Flow Kuliah -3 Limpasan (runoff) gabungan antara aliran permukaan, aliran yang tertunda ada cekungan-cekungan dan aliran bawah permukaan (subsurface flow) Air hujan yang turun dari atmosfir

Lebih terperinci

EXECUTIVE SUMMARY PENELITIAN KARAKTERISTIK HIDROLOGI DAN LAJU EROSI SEBAGAI FUNGSI PERUBAHAN TATA GUNA LAHAN

EXECUTIVE SUMMARY PENELITIAN KARAKTERISTIK HIDROLOGI DAN LAJU EROSI SEBAGAI FUNGSI PERUBAHAN TATA GUNA LAHAN EXECUTIVE SUMMARY PENELITIAN KARAKTERISTIK HIDROLOGI DAN LAJU EROSI SEBAGAI FUNGSI PERUBAHAN TATA GUNA LAHAN DESEMBER, 2014 KATA PENGANTAR Sesuai Peraturan Menteri Pekerjaan Umum Nomor : 21/PRT/M/2010

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 35 BAB V HASIL DAN PEMBAHASAN 5.1 Morfometri Sungai Berdasarkan hasil pengukuran morfometri DAS menggunakan software Arc-GIS 9.3 diperoleh panjang total sungai di Sub-sub DAS Keyang, Slahung, dan Sekayu

Lebih terperinci

PENGENDALIAN TRANSPOR SEDIMEN SUNGAI SEBAGAI UPAYAPENGENDALIAN BANJIR DI KOTA GORONTALO. Ringkasan

PENGENDALIAN TRANSPOR SEDIMEN SUNGAI SEBAGAI UPAYAPENGENDALIAN BANJIR DI KOTA GORONTALO. Ringkasan PENGENDALIAN TRANSPOR SEDIMEN SUNGAI SEBAGAI UPAYAPENGENDALIAN BANJIR DI KOTA GORONTALO Komang Arya Utama, Rawiyah Husnan Ringkasan Erosi dan sedimentasi adalah hal yang kontinyu terjadi di DAS Bolango-Bone.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh BAB II TINJAUAN PUSTAKA. Pengertian pengertian Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh penulis, adalah sebagai berikut :. Hujan adalah butiran yang jatuh dari gumpalan

Lebih terperinci

BAB IV KONDISI UMUM LOKASI PENELITIAN

BAB IV KONDISI UMUM LOKASI PENELITIAN BAB IV KONDISI UMUM LOKASI PENELITIAN 4.1 Letak dan Luas DAS/ Sub DAS Stasiun Pengamatan Arus Sungai (SPAS) yang dijadikan objek penelitian adalah Stasiun Pengamatan Jedong yang terletak di titik 7 59

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Erosi Erosi adalah lepasnya material dasar dari tebing sungai, erosi yang dilakukan oleh air dapat dilakukan dengan berbagai cara, yaitu : a. Quarrying, yaitu pendongkelan batuan

Lebih terperinci

DAFTAR ISI. ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... iv DAFTAR TABEL... ix DAFTAR GAMBAR xiii BAB I PENDAHULUAN... 1

DAFTAR ISI. ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... iv DAFTAR TABEL... ix DAFTAR GAMBAR xiii BAB I PENDAHULUAN... 1 DAFTAR ISI ABSTRAK... i KATA PENGANTAR..... ii DAFTAR ISI...... iv DAFTAR TABEL..... ix DAFTAR GAMBAR xiii BAB I PENDAHULUAN.... 1 A. Latar Belakang Masalah 1 B. Rumusan Masalah. 7 C. Tujuan Penelitian......

Lebih terperinci

KAJIAN HUBUNGAN SIFAT HUJAN DENGAN ALIRAN LANGSUNG DI SUB DAS TAPAN KARANGANYAR JAWA TENGAH :

KAJIAN HUBUNGAN SIFAT HUJAN DENGAN ALIRAN LANGSUNG DI SUB DAS TAPAN KARANGANYAR JAWA TENGAH : KAJIAN HUBUNGAN SIFAT HUJAN DENGAN ALIRAN LANGSUNG DI SUB DAS TAPAN KARANGANYAR JAWA TENGAH : Oleh : Ugro Hari Murtiono Balai Penelitian Teknologi Kehutanan Pengelolaan DAS (BPTKP DAS) Seminar Nasional

Lebih terperinci

Analisis Kondisi Hidrologi Daerah Aliran Sungai Kedurus untuk Mengurangi Banjir Menggunakan Model Hidrologi SWAT

Analisis Kondisi Hidrologi Daerah Aliran Sungai Kedurus untuk Mengurangi Banjir Menggunakan Model Hidrologi SWAT JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN : 2337-3539 (2301-9271 Print) C-107 Analisis Kondisi Hidrologi Daerah Aliran Sungai Kedurus untuk Mengurangi Banjir Menggunakan Model Hidrologi SWAT Santika

Lebih terperinci