MAKALAH TELAAH KURIKULUM MATEMATIKA SMP DISUSUN OLEH: KELOMPOK 1 OKTI ANGGUN PASESI (A1C013010) NISA SETIAWATI (A1C013012) MAISYAH RAHMA (A1C013030)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MAKALAH TELAAH KURIKULUM MATEMATIKA SMP DISUSUN OLEH: KELOMPOK 1 OKTI ANGGUN PASESI (A1C013010) NISA SETIAWATI (A1C013012) MAISYAH RAHMA (A1C013030)"

Transkripsi

1 MAKALAH TELAAH KURIKULUM MATEMATIKA SMP DISUSUN OLEH: KELOMPOK 1 OKTI ANGGUN PASESI (A1C013010) NISA SETIAWATI (A1C013012) MAISYAH RAHMA (A1C013030) MELI DWI JAYANTI (A1C013040) DESSY AGUSTINA (A1C013054) ANDI MUTIARA WATI (A1C013068) ADIKASUMA (A1C013070) PRODI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS BENGKULU TAHUN AJARAN

2 KATA PENGANTAR Alhamdulillah, segala puji bagi Allah SWT yang berkat rahmat-nyalah sehingga makalah Lingkaran ini dapat terselesaikan. Makalah ini ditulis dan disusun berdasarkan kebutuhan perkuliah yaitu sebagai tugas matakuliah Telaah Kurikulum Matematika SMP. Dalam pembuatan makalah ini tidak sedikit hambatan dan kesulitan yang kami alami, namun berkat dukungan dan dorongan dari orang terdekat sehingga kami mampu menyelesaikan makalah ini meskipun masih banyak sekali kekurangan, oleh karena itu kami mengucapkan terima kasih kepada pihak-pihak yang telah membantu terselesaikannya makalah ini. Kami menyadari bahwa masih banyak kekurangan dalam makalah ini. Oleh karena itu segala kritik dan saran yang membangun akan kami terima dengan baik. Akhir kata, semoga makalah ini dapat bermanfaat bagi kita semua. Bengkulu, 29 Mei 2014 Penulis ii

3 DAFTAR ISI HALAMAN JUDUL... KATA PENGANTAR... DAFTAR ISI... Halaman i ii iii BAB I PENDAHULUAN A. Latar Belakang... 1 B. Rumusan Masalah... 2 C. Tujuan... 2 BAB II ISI A. Pengertian Lingkaran... 3 B. Unsur-unsur Lingkaran... 3 C. Keliling dan Luas Lingkaran... 5 D. Sudut Pusat, Sudut Keliling, Panjang Busur, Luas Juring dan Luas Tembereng... 8 E. Garis Singgung Lingkaran F. Lingkaran Dalam dan Lingkaran Luar pada Segitiga BAB III PENUTUP A. Kesimpulan B. Saran LAMPIRAN-LAMPIRAN DAFTAR PUSTAKA iii

4 BAB I PENDAHULUAN A. Latar Belakang Geometri merupakan salah satu cabang matematika yang sangat penting sebagai ilmu dasar dan sudah dikenal anak-anak sejak kecil. Geometri telah dipelajari pada jenjang pendidikan dasar, pendidikan sekolah menengah, sampai pendidikan tinggi. Geometri berasal dari kata latin Geometria, Geo yang berarti tanah dan metria berarti pengukuran. Menurut sejarahnya geometri tumbuh pada zaman jauh sebelum Masehi karena keperluan pengukuran tanah setiap kali sesudah sungai Nil banjir. Dalam bahasa Indonesia Geometri dapat pula diterjemakan sebagai Ilmu Ukur. Banyak konsep geometri yang lebih mudah dipahami jika pengenalannya disajikan melalui benda-benda di sekitar lingkungannya yang memuat bentuk dan konsep geometri. Pada bagian lain geometri masih dianggap momok bagi kebanyakan peserta didik untuk setiap jenjang pendidikan. Sebagai ilmu dasar, maupun sebagai ilmu bantu dalam pelajaran lain dan begitu banyak kegunaannya dalam kehidupan sehari-hari, oleh sebab itu pengembangan geometri sangat diperlukan. Untuk hal tersebut penguasaan terhadap aplikasi geometri perlu diungkapkan. Selanjutnya agar dapat belajar geometri dengan baik dan benar, peserta didik dituntut untuk menguasai kemampuan dasar geometri, ketrampilan dalam pembuktian, ketrampilan membuat lukisan dasar geometri, dan mempunyai wawasan pandang ruang yang memadai. Konsep awal peserta didik sangat berpengaruh terhadap pembentukan konsep lainnya dan pemahaman terhadap materi yang menggunakan konsep tersebut, seperti pemahaman konsep bangun-bangun datar seperti segiempat, segitiga, dan lingkaran. Berdasarkan uraian tersebut di atas selanjutnya akan di kemukakan tentang materi matematika (geometri) khususnya materi Lingkaran. Pada jenjang pendidikan dasar (sekolah dasar) materi tentang lingkaran hanya sebatas pengenalan bentuk dan unsur-unsurnya, contohnya mudah ditemukan dalam kehidupan sehari-sehari. Selanjutnya meteri lingkaran di tingkat SMP sudah berada pada tingkatan yang lebih tinggi misalnya definisi lingkaran, garis singgung, bagian-bagian lingkaran dan sebagainya. Dengan demikian materi geometri tentang bangun datar yaitu lingkaran terdapat disetiap jenjang pendidikan mulai dari pendidikan dasar, pendidikan menengah sampai pada pendidikan tinggi dan merupakan dasar untuk setiap jenjang yang lebih tinggi baik pemahaman konsep lingkaran maupun penggunaan lingkaran dalam pemecahan masalah matematika. 1

5 B. Rumusan Masalah Rumusan masalah pada makalah ini, yaitu: 1. Apa yang dimaksud dengan lingkaran? 2. Apa saja unsur-unsur lingkaran? 3. Bagaimana cara menghitung Luas lingkaran, keliling lingkaran, sudut pusat, sudut keliling, luas juring, besar sudut dan luas tembereng pada lingkaran? 4. Apa yang dimaksud dengan garis singgung lingkaran dan bagaimana cara menghitungnya? 5. Apa yang dimaksud dengan lingkaran dalam segitiga dan bagaimana cara penghitungannya? 6. Apa yang dimaksud dengan lingkaran luar segitiga dan bagaimana cara penghitungannya? C. Tujuan Adapun tujuan pembuatan makalah ini, yaitu: 1. Makalah ini dibuat agar kita lebih mengerti tentang materi Lingkaran 2. Makalah ini dibuat untuk memenuhi tugas matakuliah TELAAH KURIKULUM MATEMATIKA SMP 2

6 BAB II ISI A. PENGERTIAN LINGKARAN Perhatikan gambar di bawah ini. Siapa yang tidak tahu ban mobil dan uang logam? Itu merupakan barang-barang yang mudah Anda temui dalam kehidupan sehari-hari. Ban mobil dan uang logam merupakan contoh benda-benda yang memiliki bentuk dasar lingkaran. Secara geometris, benda-benda tersebut dapat digambarkan seperti pada Gambar (a), C O B A (a) (b) Perhatikan Gambar (b) dengan saksama. Misalkan A, B, C merupakan tiga titik sebarang pada lingkaran yang berpusat di O. Dapat dilihat bahwa ketiga titik tersebut memiliki jarak yang sama terhadap titik O. Dengan demikian, lingkaran adalah kumpulan titik-titik yang membentuk lengkungan tertutup, di mana titik-titik pada lengkungan tersebut berjarak sama terhadap suatu titik tertentu. Titik tertentu itu disebut sebagai titik pusat lingkaran. Pada Gambar (b), jarak OA, OB, dan OC disebut jari-jari lingkaran. Jadi dapat disimpulkan bahwa lingkaran adalah kurva tertutup sederhana yang merupakan tempat kedudukan titik-titik yang berjarak sama terhadap suatu titik tertentu. Jarak yang sama tersebut disebut jari-jari lingkaran dan titik tertentu disebut pusat lingkaran. Garis lengkung tersebut kedua ujungnya saling bertemu membentuk keliling lingkaran dan daerah lingkaran (luas lingkaran). B. UNSUR-UNSUR LINGKARAN Setiap bangun datar memiliki unsur-unsur yang membangunnya, termasuk bangun datar yang berbentuk lingkaran. Ada beberapa bagian lingkaran yang termasuk dalam unsur-unsur sebuah lingkaran di antaranya titik pusat, jari-jari, diameter, busur, tali busur, tembereng, juring, apotema, sudut pusat, dan sudut lingkaran. Perhatikan gambar berikut ini. 3

7 Untuk lebih jelas, perhatikan uraian berikut ini. a. Titik Pusat Titik pusat lingkaran adalah titik yang terletak tepat di tengah-tengah lingkaran. Pada Gambar di atas, titik O merupakan titik pusat lingkaran, dengan demikian, lingkaran tersebut dinamakan lingkaran O. O b. Jari-Jari (r) Jari-jari lingkaran adalah garis dari titik pusat lingkaran ke lengkungan lingkaran (keliling lingkaran). Pada Gambar di atas, jarijari lingkaran ditunjukkan oleh garis OA, OB, OC, dan OD. r O c. Diameter (d) Diameter adalah garis lurus yang menghubungkan dua titik pada lengkungan lingkaran (keliling lingkaran) dan melalui titik pusat. Garis AB dan CD pada lingkaran O merupakan diameter lingkaran tersebut. Perhatikan bahwa AB = AO + OB. Dengan kata lain, nilai diameter lingkaran merupakan dua kali nilai jari-jari lingkaran, dapat ditulis secara matematis: d = 2r. A O B d. Busur Busur lingkaran merupakan garis lengkung yang terletak pada lengkungan lingkaran (keliling lingkaran) dan menghubungkan dua titik sebarang di lengkungan tersebut. Pada Gambar di atas, garis lengkung AC, garis lengkung CB, dan garis lengkung BD merupakan busur lingkaran O. Untuk memudahkan mengingatnya Anda dapat membayangkannya sebagai busur panah. C O A B e. Tali Busur Tali busur lingkaran adalah garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran dan tidak melalui pusat lingkaran. Tali busur yang melalui pusat lingkaran dinamakan dengan diameter lingkaran. Tali busur lingkaran tersebut ditunjukkan oleh garis lurus AD yang tidak melalui titik pusat seperti pada gambar di atas. Untuk memudahkan mengingatnya Anda dapat membayangkan seperti pada tali busur panah. O A B f. Tembereng Tembereng adalah luas daerah dalam lingkaran yang dibatasi oleh busur dan tali busur. Pada Gambar di atas, tembereng ditunjukkan oleh daerah yang diarsir dan dibatasi oleh busur AD dan tali busur AD. Jadi tembereng terbentuk dari gabungan antara busur lingkaran dengan tali busur lingkaran. 4

8 g. Juring Juring lingkaran adalah luas daerah dalam lingkaran yang dibatasi oleh dua buah jari-jari lingkaran dan sebuah busur yang diapit oleh kedua jari-jari lingkaran tersebut. Pada Gambar di atas, juring lingkaran ditunjukkan oleh daerah yang diarsir yang dibatasi oleh jarijari OC dan OB serta busur BC, dinamakan juring BOC. h. Apotema Apotema lingkaran merupakan garis yang menghubungkan titik pusat lingkaran dengan tali busur lingkaran tersebut. Garis yang dibentuk bersifat tegak lurus dengan tali busur. Coba perhatikan Gambar di atas secara seksama. Garis OF merupakan garis apotema pada lingkaran O. A O F B C. KELILING DAN LUAS LINGKARAN Pernahkah kamu mengamati gerak sebuah roda sepeda? Untuk mengetahui pengertian keliling lingkaran, coba kamu ambil roda sebuah sepeda. Tandai pada bagian tepi lingkaran dengan huruf A. Kemudian, gelindingkan roda tersebut dimulai dari titik A kembali ke titik A lagi. Lintasan yang dilalui roda dari A sampai kembali ke A lagi disebut satu putaran penuh atau satu keliling lingkaran. Sebelum kita menghitung keliling lingkaran, kita akan mencoba menemukan nilai π (pi). 1. Menemukan Pendekatan Nilai π (pi) Untuk menemukan pendekatan nilai π (pi), kita bisa lakukan percobaan sederhana berikut ini. Pertama, membuat lingkaran dengan jari- jari 1 cm, 1,5 cm, 2 cm, 2,5 cm, dan 3 cm. Kemudian mengukur diameter masing-masing lingkaran dengan menggunakan penggaris. Kedua, mengkur keliling masing-masing lingkaran menggunakan bantuan benang dengan cara menempelkan benang pada bagian tepi lingkaran, dan kemudian panjang benang diukur menggunakan penggaris. Terakhir hitung nilai π (phi) dengan cara keliling lingkaran dibagi dengan diameter lingkaran, kemudian catat hasilnya. Jika kegiatan tersebut kalian lakukan dengan cermat dan teliti maka nilai keliling dibagi diameter akan memberikan nilai yang mendekati 3,14. Untuk selanjutnya, nilai keliling per diameter disebut sebagai konstanta π (π dibaca: phi). Coba tekan tombol π pada kalkulator. Apakah Anda dapatkan bilangan desimal tak berhingga dan tak berulang? Bentuk desimal yang tak berhingga dan tak berulang bukan bilangan pecahan. Oleh karena itu, π bukan bilangan pecahan, namun bilangan irasional, yaitu bilangan yang tidak dapat dinyatakan dalam bentuk pecahan biasa a/b. Bilangan irasional berupa desimal tak berulang dan tak berhingga. Menurut penelitian yang cermat ternyata nilai π= 3, Jadi, nilai π hanyalah suatu pendekatan. Jika dalam suatu perhitungan hanya memerlukan ketelitian sampai dua tempat desimal, pendekatan untuk π adalah 3,14. Coba bandingkan nilai π dengan pecahan 22/7. Bilangan pecahan 22/7 jika dinyatakan dalam pecahan desimal adalah 3, Jadi, bilangan 22/7 dapat dipakai sebagai pendekatan untuk nilai π. 5

9 2. Menghitung Keliling Lingkaran Pada pembahasan di bagian depan diperoleh bahwa pada setiap lingkaran nilai perbandingan keliling (K) per diameter (d) menunjukkan bilangan yang sama atau tetap disebut π. Karena K/d=π, sehingga didapat K = π d. Karena panjang diameter adalah 2 x jari-jari atau d = 2r, maka K = 2πr. Jadi, didapat rumus keliling (K) lingkaran dengan diameter (d) atau jari-jari (r) adalah: Contoh soal Hitunglah keliling lingkaran jika diameter lingkaran 14 cm! Penyelesaian: d = 14 cm, sehingga: K = πd = 22/7 x 14 cm = 44 cm Jadi, keliling lingkaran adalah 44 cm. Hitunglah keliling lingkaran jika jari-jarinya 35cm! Penyelesaian: r = 35 cm, sehingga: K = 2πr = 2(22/7) 35 cm = 220 cm Jadi, keliling lingkaran = 220 cm. 3. Menghitung Luas Lingkaran Untuk menemukan rumus luas lingkaran, lakukan kegiatan dengan langkahlangkah berikut. 1. Buatlah lingkaran dengan jari-jari 10 cm. 2. Bagilah lingkaran tersebut menjadi dua bagian sama besar dan arsir satu bagian 3. Bagilah lingkaran tersebut menjadi 12 bagian sama besar dengan cara membuat 12 juring sama besar dengan sudut pusat 30 (Gambar (i)). 4. Bagilah salah satu juring yang tidak diarsir menjadi dua sama besar. 5. Gunting lingkaran beserta 12 juring tersebut. 6. Atur potongan-potongan juring dan susun setiap juring sehingga membentuk gambar mirip persegi panjang, seperti pada Gambar (ii) di samping. Jika lingkaran dibagi menjadi juring-juring yang tak terhingga banyaknya, kemudian juring-juring tersebut dipotong dan disusun seperti Gambar (ii) maka hasilnya akan mendekati bangun persegi panjang. Perhatikan bahwa bangun yang mendekati persegi panjang tersebut panjangnya sama dengan setengah keliling lingkaran (3,14 x 10 cm = 31,4 cm) dan lebarnya sama dengan jari-jari lingkaran (10 6

10 cm). Jadi, luas lingkaran dengan panjang jari-jari 10 cm = luas persegi panjang dengan p = 31,4 cm dan l = 10 cm. Luas lingkaran = p x l = 31,4 cm x 10 cm = 314 cm Dengan demikian, dapat kita katakan bahwa luas lingkaran dengan jari-jari r sama dengan luas persegi panjang dengan panjang πr dan lebar r, sehingga diperoleh: L = π rxr = π r 2 Karena r = ½d, maka L = π(½d) 2 = π (½d) 2 = ¼ π d 2 Jadi, dapat diambil kesimpulan bahwa luas lingkaran L dengan jari-jari r atau diameter d adalah: Contoh soal: Hitunglah luas lingkaran yang memiliki jari-jari 7cm! Penyelesaian: Jari-jari = 7 cm, maka r = 7 L = πr 2 = 22/7 x 7 2 = 154 Jadi, luas lingkaran = 154 cm 2. Hitunglah luas lingkaran dengan diameter 20cm! Penyelesaian: Diameter = 20 cm, maka d = 20 L = ¼ π d 2 = ¼ x 3,14 x 20 2 = 314 Jadi, luas lingkaran = 314 cm Hubungan Antara Keliling Dan Luas Lingkaran Untuk memahami hubungan antara keliling dengan luas lingkaran Anda harus paham dengan konsep keliling lingkaran dan luas lingkaran. Hubungan antara keliling dengan luas lingkaran cocok digunakan untuk menjawab soal-soal ulangan umum dan ujian nasional yang bentuk soalnya berupa pilihan ganda karena membutuhkan waktu yang singkat. 7

11 Jika Anda mampu menguasai materi tentang hubungan keliling lingkaran dengan luasnya, Anda tidak perlu mencari jari-jari atau diameternya jika yang diketahui keliling atau luasnya saja. Bagaimana caranya? Sekarang coba simak baik-baik pembahasan berikut ini. Kita gunakan rumus keliling lingkaran dengan mencari jari-jarinya, misalkan keliling lingkaran K dan luasnya L, maka: K = 2πr atau r = K/2π Sekarang substitusi persamaan jari-jari r ke rumus luas lingkaran, maka: L = πr 2 = π(k/2π) 2 = π(k 2 /4π 2 ) = K 2 /4π Dari persamaan hubungan antara keliling lingkaran dengan luasnya juga bisa dicari hubungan kebalikannya yaitu hubungan antara luas lingkaran dengan kelilingnya, yakni: L = K 2 /4π K 2 = 4πL K = (4πL) D. SUDUT PUSAT, SUDUT KELILING, PANJANG BUSUR, LUAS JURING DAN LUAS TEMBERENG 1. Sudut Pusat Coba perhatikan gambar di bawah dengan seksama! Sudut pusat adalah sudut yang dibentuk oleh perpotongan antara dua buah jari-jari lingkaran di titik pusat. Pada gambar di atas Garis OA dan OB merupakan jari-jari lingkaran yang berpotongan di titik pusat O membentuk sudut pusat, yaitu AOB. 2. Sudut Keliling Coba perhatikan lagi gambar di bawah dengan seksama! Sudut pusat merupakan sudut yang dibentuk oleh perpotongan antara dua buah tali busur di suatu titik pada keliling lingkaran. Pada gambar di atas garis AC dan BC merupakan tali busur yang berpotongan di titik C membentuk sudut keliling ACB. 3. Hubungan Sudut Pusat dan Sudut Keliling Jika Menghadap Busur yang Sama Coba perhatikan lagi gambar di bawah dengan seksama! 8

12 AOB merupakan sudut pusat lingkaran dan ACB merupakan sudut keliling lingkaran. Sudut pusat AOB dan sudut keliling ACB menghadap busur yang sama, yaitu AB. Untuk mengetahui hubungan antara sudut pusat dengan sudut keliling lingkaran yang menghadap busur yang sama, perhatikan terlebih dahulu gambar di bawah. Lingkaran di atas berpusat di titik O dan mempunyai jari-jari OA= OB= OC= OD= r. Misalkan AOC = α dan COB = β, maka AOB = α + β. Perhatikan ΔBOD! BOD pelurus bagi BOC, sehingga BOD = 180 β. ΔBOD segitiga sama kaki, karena OB = OD = r, sehingga ODB = OBD = ½ (180 - BOD) Karena BOD = 180 β, maka diperoleh ODB = OBD = ½ (180 - (180 β)) ODB = ½ β Sekarang perhatikan ΔAOD! AOD pelurus bagi AOC, sehingga AOD = 180 α. ΔAOD adalah segitiga sama kaki, karena OA = OD = r, sehingga ODA = OAD = ½ (180 - AOD) ODA = OAD = ½ (180 - (180 α)) ODA = OAD = ½ α Dengan demikian mengunakan persamaan ODB = ½β dan ODA = ½α, maka besar ADB dapat di cari: ADB = ODA + ODB ADB = ½β + ½α ADB = ½ (β + α) ADB = ½ AOB atau besar AOB = 2 x besar ADB. 9

13 Karena AOB adalah sudut pusat dan ADB adalah sudut keliling, di mana keduanya menghadap AB, maka dapat disimpulkan sebagai berikut. atau Besar sudut pusat = 2 x besar sudut keliling Besar sudut keliling = ½ x besar sudut pusat 4. Panjang Busur Busur adalah garis lengkung yang merupakan bagian dari keliling lingkaran, maka untuk menentukan panjang busur lingkaran digunakan perbandingan dengan keliling lingkarannya. Perhatikan gambar. Jika sudut pusat busur AC adalah AOC, dan sudut pusat keliling lingkaran adalah 360 o, maka akan terdapat perbandingan senilai, yaitu : 5. Luas Juring Sekarang coba perhatikan gambar di bawah ini! Pada gambar di atas terdapat juirng lingkaran AOB (luas yang diarsir) dengan sudut pusat α (baca: alfa) dan jar-jari r. Apa yang akan terjadi jika sudut pusat α diperbesar menjadi β (baca: betta) seperti gambar di bawah ini? 10

14 Ternyata setelah sudut pusat α diperbesar menjadi β maka luas juring AOB juga semakin membesar. Ini sesuai dengan konsep perbandingan senilai atau seharga, di mana jika sudut pusat lingkaran diperbesar maka luas juring lingkaran tersebut juga ikut menjadi tambah besar, begitu juga sebaliknya jika sudut pusat lingkaran diperkecil maka luas juring lingkaran juga akan mengecil. Sekarang bagaimana kalau sudut α tersebut diubah menjadi satu lingkaran penuh (360 )? Jika sudut pusat diubah menjadi satu lingkaran penuh maka luas juringnya menjadi luas lingkaran. Dari pernyataan tersebut dapat ditarik kesimpulan bahwa hubungan antara besar sudut pusat, luas juring, dan luas lingkaran yakni luas juring per luas lingkaran sama dengan sudut pusat per sudut satu lingkaran penuh (360 ) Secara matematis pernyataan tersebut dapat dirumuskan: = Luas Juring AOB = Luas Juring AOB = 6. Luas Tembereng Pemahaman dasar yang harus anda kuasai untuk bisa menghitung luas tembereng suatu lingkaran yakni pengertian tembereng dan juring lingkaran (merupakan unsur atau bagian lingkaran), cara menghitung luas segitiga, cara menghitung luaslingkaran, dan hubungan antara sudut pusat dengan luas juring lingkaran. Tanpa konsep dasar tersebut Anda tidak akan mampu menghitung luas tembereng suatu lingkaran. Jadi pastikan diri Anda sudah menguasai konsep dasar tersebut. Tembereng merupakan luas daerah dalam lingkaran yang dibatasi oleh busur dan tali busur, seperti contoh gambar di bawah ini. 11

15 Tembereng pada gambar di atas (yang diarsir) dibatasi oleh busur AB (garis lengkung AB) dan tali busur AB (garis lurus AB), terlihat bahwa luas yang diarsir (tembereng) sama dengan luas juring AOB dikurangi dengan luas segitiga AOB. Jadi secara matematis mencari luas tembereng dapat ditulis: Tembereng = Luas Juring Luas Segitiga E. GARIS SINGGUNG LINGKARAN 1) Pengertian Garis Singgung Lingkaran Untuk memahami pengertian garis singgung lingkaran, perhatikan Gambar di bawah ini. Lingkaran pusat di O dengan diameter AB tegak lurus dengan diameter CD (garis k). Jika garis k digeser ke kanan sedikit demi sedikit sejajar k maka: pada posisi k1 memotong lingkaran di dua titik (titik E dan F) dengan k1 OB. pada posisi k2 memotong lingkaran di dua titik (titik G dan H) dengan k2 OB. pada posisi k3 memotong lingkaran di satu titik, yaitu titik B (menyinggung lingkaran di B). Selanjutnya, garis k3 disebut garis singgung lingkaran. Sekarang perhatikan Gambar di bawah ini! Jika garis k diputar dengan pusat perputaran titik A ke arah busur AB yang lebih kecil dari busur AB maka kita peroleh ΔOAB sama kaki, karena OAB = OB A = ½ x ( 180 AOB ) Jika kita terus memutar garis k ke arah busur yang lebih kecil dan lebih kecil lagi maka OAB = OB A akan makin besar dan AOB makin kecil. Pada suatu saat 12

16 garis k akan menyinggung lingkaran di titik A dengan titik B berimpit dengan titik A dan saat itu berlaku: OAB = OB A = ½ (180 - AOB ) OAB = OB A = ½ (180-0 ) OAB = OB A = 90 Hal ini menunjukkan bahwa jari-jari OA tegak lurus dengan garis singgung K dititik A. Jadi, garis singgung lingkaran adalah garis yang memotong suatu lingkaran di satu titik dan berpotongan tegak lurus dengan jari-jari di titik singgungnya. Perhatikan gambar di bawah ini. Pada Gambar di atas tampak bahwa garis k tegak lurus dengan jari-jari OA. Garis k adalah garis singgung lingkaran di titik A, sedangkan A disebut titik singgung lingkaran. Karena garis k OA, hal ini berarti sudut yang dibentuk kedua garis tersebut besarnya 90. Dengan demikian secara umum dapat dikatakan bahwa setiap sudut yang dibentuk oleh garis yang melalui titik pusat dan garis singgung lingkaran besarnya 90. Gambar di atas merupakan lingkaran yang berpusat di O. Lingkaran tersebut bersinggungan dengan garis g dan h. Garis g memotong lingkaran di satu titik, yaitu di titik A. Sedangkan garis h memotong lingkaran di satu titik, yaitu di titik B. Garis g dan h inilah yang dinamakan garis singgung. Sedangkan titik B dan titik A dinamakan titik singgung. Jadi yang dimaksud dengan garis singgung lingkaran adalah suatu garis yang memotong lingkaran tepat di satu titik. 13

17 Perhatikan kembali gambar di atas. Garis g dan garis h tegak lurus OB dan OA, sedangkan OB dan OA adalah jari-jari lingkaran. Jadi, garis singgung lingkaran akan tegak lurus dengan jari-jari lingkaran yang melalui titik singgungnya. Namun bagaimanapun caranya, kita tidak akan bisa membuat garis singgung yang lain di titik A dan di titik B. Dengan demikian, kita hanya dapat membuat satu garis singgung lingkaran dari satu titik pada sebuah lingkaran. Perhatikan gambar di bawah ini! Garis c, e, dan f adalah garis singgung lingkaran karena memotong lingkaran di satu titik dan tegak lurus dengan jari-jari melalui titik singgungnya. Sedangkan garis a, b, d, g, dan h bukan garis singgung lingkaran karena jika garisnya di perpanjang, akan memotong lingkaran di dua titik. 2) Menentukan Panjang Garis Singgung Lingkaran dari Satu Titik di Luar Lingkaran Untuk dapat menentukan panjang garis singgung lingkaran, Anda harus menguasai teorema Pythagoras. Sekarang perhatikan gambar di bawah ini. Pada gambar di atas, lingkaran berpusat di titik O dengan jari-jari OB dan OB garis AB. Garis AB adalah garis singgung lingkaran melalui titik A di luar lingkaran. Perhatikan segitiga siku-siku ABO. Dengan teorema Pythagoras berlaku OB 2 = AB 2 + OA 2 AB 2 = OB 2 - OA 2 AB 2 = (OB 2 - OA 2 ) Jadi, panjang garis singgung lingkaran (AB) = (OA 2 - OB 2 ) 14

18 3) Kedudukan Dua Lingkaran Jika terdapat dua lingkaran masing-masing lingkaran L1 berpusat di P dengan jari-jari R dan lingkaran L2 berpusat di Q dengan jari-jari r di mana R > r maka terdapat beberapa kedudukan lingkaran sebagai berikut. 1. L2 terletak di dalam L1 dengan P dan Q berimpit, sehingga panjang PQ = 0. Dalam hal ini dikatakan L2 terletak di dalam L1 dan konsentris (setitik pusat). 2. L2 terletak di dalam L1 dan PQ < r < R. Dalam hal ini dikatakan L2 terletak di dalam L1 dan tidak konsentris. 3. L2 terletak di dalam L1 dan PQ = r = ½ R, sehingga L1 dan L2 bersinggungan di dalam. 4. L1 berpotongan dengan L2 dan r < PQ < R. 15

19 5. L1 berpotongan dengan L2 dan r < PQ < R + r. 6. L1 terletak di luar L2 dan PQ = R + r, sehingga L1 dan L2 bersinggungan di luar. 7. L1 terletak di luar L2 dan PQ > R + r, sehingga L1 dan L2 saling terpisah. Pada beberapa kedudukan lingkaran seperti tersebut di atas, dapat dibuat garis singgung persekutuan dua lingkaran. Garis singgung persekutuan adalah garis yang menyinggung dua buah lingkaran sekaligus. Apakah untuk setiap dua lingkaran selalu dapat dibuat garis singgung persekutuan? Perhatikan kemungkinan berikut. 1. Pada Gambar di bawah ini, kedua lingkaran tidak mempunyai garis singgung persekutuan. 16

20 2. Pada Gambar di bawah ini, kedua lingkaran mempunyai satu garis singgung persekutuan. 3. Pada Gambar di bawah ini, kedua lingkaran mempunyai dua garis singgung persekutuan. 4. Pada Gambar di bawah ini, kedua lingkaran mempunyai tiga garis singgung persekutuan. 5. Pada Gambar di bawah ini, kedua lingkaran mempunyai empat garis singgung persekutuan. 17

21 4) Panjang Garis Singgung Persekutuan Dalam Dua Lingkaran Untuk menentukan panjang garis singgung persekutuan dalam dua lingkaran, Anda harus paham dengan teorema Pythagoras. Sekarang perhatikan gambar di bawah ini. Pada Gambar di atas, dua buah lingkaran L 1 dan L 2 berpusat di P dan Q, berjarijari R dan r. Dari gambar tersebut diperoleh: 1) jari-jari lingkaran P = R; 2) jari-jari lingkaran Q = r; 3) garis singgung persekutuan dalam = AB = d; 4) jarak titik pusat kedua lingkaran = PQ = p. Jika garis AB digeser sejajar ke atas sejauh BQ maka diperoleh garis SQ. Garis SQ sejajar AB, sehingga PSQ = PAB = 90 (sehadap). Perhatikan segi empat ABQS. Garis AB//SQ, AS//BQ, dan PSQ = PAB = 90. Jadi, segi empat ABQS merupakan persegi panjang dengan panjang AB = d dan lebar BQ = r. Perhatikan bahwa PQS siku-siku di titik S. Dengan menggunakan teorema Pythagoras diperoleh: QS 2 = PQ 2 - PS 2 QS = (PQ 2 - PS 2 ) QS = (PQ 2 (R + r) 2 ) Karena panjang QS = AB, maka rumus panjang garis singgung persekutuan dalam dua lingkaran (d) dengan jarak kedua titik pusat p, jari-jari lingkaran besar R, dan jarijari lingkaran kecil r adalah 18

22 5) Panjang Garis Singgung Persekutuan Luar Dua Lingkaran Perhatikan Gambar di bawah ini. Dari gambar tersebut diperoleh bahwa: 1) jari-jari lingkaran P = R; 2) jari-jari lingkaran Q = r; 3) garis singgung persekutuan luar = AB = d; 4) jarak titik pusat kedua lingkaran = PQ = p. Jika garis AB kita geser sejajar ke bawah sejauh BQ maka diperoleh garis SQ. Garis AB sejajar SQ, sehingga PSQ = PAB = 90 (sehadap). Perhatikan segi empat ABQS. Garis AB//SQ, AS//BQ, dan PSQ = PAB = 90. PQS siku-siku di S, sehingga berlaku QS 2 = PQ 2 - PS 2 QS = (PQ 2 - PS 2 ) QS = (PQ 2 (R - r) 2 ) Karena QS = AB = d, maka rumus panjang garis singgung persekutuan luar dua lingkaran (d) dengan jarak kedua titik pusat p, jari-jari lingkaran besar R, dan jari-jari lingkaran kecil r adalah F. LINGKARAN DALAM DAN LINGKARAN LUAR PADA SEGITIGA 1) Lingkaran Dalam Segitiga Lingkaran dalam segitiga merupakan lingkaran yang memiliki titik pusat di perpotongan garis bagi dari ketiga sisi suatu segitiga. Sifat dari lingkaran dalam segitiga adalah bahwa lingkaran tersebut memotong masing-masing sisi segitiga tepat pada satu titik potong. 19

23 Melukiskan Lingkaran Dalam Segitiga Untuk melukis lingkaran dalam segitiga, perhatikan gambar berikut ini. Lingkaran O adalah lingkaran dalam dari segitiga ABC. Sekarang perhatikan bahwa EO = DO dan OA = OA, sehingga segitiga AEO dan segitiga ADO merupakan segitiga-segitiga yang kongruen. Sehingga sudut-sudut yang bersesuaian, yaitu sudut OAE dan sudut OAD sama besar. Oleh karena itu, garis AO merupakan garis bagi sudut DAE. Dari uraian di atas, titik pusat lingkaran dalam segitiga merupakan perpotongan dari garis-garis bagi dari semua sudut segitiga tersebut. Berikut ini langkah-langkah dalam melukis lingkaran dalam segitiga. 1. Lukislah garis bagi dari dua sudut dalam segitiga. Titik perpotongan garis-garis bagi tersebut merupakan titik pusat dari lingkaran dalam segitiga tersebut. 2. Dari titik pusat tersebut, buatlah garis yang tegak lurus dengan salah satu sisi segitiga. 3. Dan selanjutnya, lukislah lingkaran yang berpusat di titik yang diperoleh pada langkah 1 dan melalui titik perpotongan antara garis yang diperoleh pada poin 2 dan sisi segitiga yang tegak lurus dengan garis tersebut. 20

24 Menemukan Rumus Jari-jari Lingkaran Dalam Segitiga Diberikan suatu segitiga yang panjang ketiga sisinya adalah a, b, dan c. Untuk menentukan jari-jari lingkaran dalam segitiga tersebut, perhatikan gambar berikut. Luas dari segitiga paling kanan dapat ditentukan dengan dua cara. i. Cara pertama dengan menggunakan rumus L = [s(s a)(s b)(s c)] dengan s adalah setengah keliling segitiga atau s = (a + b + c)/2. ii. Cara kedua adalah dengan menjumlahkan daerah warna orange, hijau, dan biru. Luas daerah warna orange adalah (a r)/2, Luas daerah warna hijau adalah (b r)/2, sedangkan luas daerah warna biru adalah (c r)/2. Sehingga, Sehingga, untuk sembarang segitiga yang memiliki panjang sisi a, b, dan c, serta s adalah setengah dari kelilingnya, maka jari-jari lingkaran dalamnya dapat ditentukan sebagai berikut. 21

25 2) Lingkaran Luar segitiga segitiga. Lingkaran luar segitiga merupakan lingkaran yang melalui ketiga titik sudut Melukis Lingkaran Luar Segitiga Untuk melukis lingkaran luar segitiga kita membutuhkan jangka. Langkahlangkahnya adalah sebagai berikut. a. Lukislah garis sumbu dari salah satu sisi segitiga. Garis sumbu merupakan garis yang tegak lurus dan membagi sisi segitiga menjadi dua bagian yang sama panjang. b. Lukis garis sumbu pada sisi lain segitiga. Garis sumbu kedua ini akan memotong garis sumbu yang dihasilkan pada langkah 1. c. Titik potong kedua garis sumbu merupakan titik pusat dari lingkaran luar segitiga. Aturlah jangka sedemikian sehingga pusatnya ada di titik pusat lingkaran luar dan bagian lainnya pada salah satu titik sudut segitiga. Kemudian dengan pengaturan seperti itu buatlah lingkaran penuh. Lingkaran yang dihasilkan pada langkah-langkah di atas merupakan lingkaran luar dari segitiga yang diberikan. Menentukan Jari-jari Lingkaran Luar Segitiga Untuk menentukan jari-jari lingkaran luar segitiga, kita harus mengetahui panjang dari semua sisi segitiga tersebut. Misalkan a, b, dan c adalah panjang sisi-sisi segitiga ABC, dan t adalah tinggi dari segitiga tersebut. 22

26 Pertama, lukislah ruas garis yang melalui salah satu titik sudut segitiga dan titik pusat lingkaran. Misalkan ruas garis tersebut adalah ruas garis BD. Selanjutnya dari ujung ruas garis tersebut yang bukan titik sudut segitiga, yaitu titik B, tariklah ruas garis ke titik sudut segitiga yang lain. Misalkan kita tarik ruas garis dari titik B ke titik sudut A, sehingga terbentuk ruas garis AD. Sudut-sudut ADB dan ACB merupakan sudut keliling yang menghadap busur yang sama, sehingga kedua sudut tersebut kongruen. Sedangkan sudut BAD menghadap diameter, sehingga sudut tersebut memiliki besar 90 atau merupakan sudut siku-siku. Dengan menggunakan prinsip sudut, sudut (sd, sd), kita dapat memperoleh bahwa segitiga BAD sebangun dengan segitiga BEC. Sehingga dengan menggunakan aturan kesebangunan, Perhatikan bahwa luas segitiga ABC dapat ditentukan dengan menggunakan rumus L = (b t)/2. Atau dengan kata lain, t = 2L/b. Sehingga, Apabila segitiga diketahui panjang ketiga sisinya, maka kita dapat menentukan luas segitiga tersebut dengan rumus, L = [s (s a)(s b)(s c)], dengan s adalah setengah dari keliling segitiga, s = (a + b + c)/2. Sehingga, 23

27 BAB III PENUTUP A. Kesimpulan Lingkaran adalah kurva tertutup sederhana yang merupakan tempat kedudukan titiktitik yang berjarak sama terhadap suatu titik tertentu. Jarak yang sama tersebut disebut jarijari lingkaran dan titik tertentu disebut pusat lingkaran. Garis lengkung tersebut kedua ujungnya saling bertemu membentuk keliling lingkaran dan daerah lingkaran (luas lingkaran). Lingkaran memiliki beberapa unsur, yaitu: 1. Titik Pusat Lingkaran 2. Jari-jari Lingkarang 3. Diameter Lingkaran 4. Busur Lingkaran 5. Tembereng 6. Juring Lingkaran 7. Apotema Lingkaran memiliki garis singgung, yaitu garis yang memotong suatu lingkaran di satu titik dan berpotongan tegak lurus dengan jari-jari di titik singgungnya. Jika dihubungkan dengan suatu segitiga, akan ada dua macam lingkaran, yaitu: Lingkaran dalam segitiga dan Lingkaran Luar segitiga. B. Saran Inilah makalah yang telah kami susun, meskipun penulisan makalah ini jauh dari sempurna. Masih banyak kesalahan dari penulisan makalah kelompok kami ini, karna kami manusia yang adalah tempat salah dan dosa, sehingga kami juga butuh saran/ kritikan agar bisa menjadi motivasi untuk masa depan yang lebih baik daripada masa sebelumnya. Kami juga mengucapkan terima kasih atas dosen pembimbing mata kuliah TELAAH KURIKULUM MATEMATIKA SMP, Ibu Effie Efrida Muchlis, S.Pd, M.Pd. yang telah memberi kami tugas kelompok demi kebaikan kami sendiri dan pembaca makalah ini. 24

28 SILABUS PEMBELAJARAN Sekolah Kelas Mata Pelajaran Semester : SMP NEGERI 19 KOTA BENGKULU : VIII (Delapan) : Matematika : II (dua) GEOMETRI DAN PENGUKURAN Standar Kompetensi : 4. Menentukan unsur, bagian lingkaran serta ukurannya Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Teknik Bentuk Contoh Instrumen Alokasi Waktu Sumber Belajar 4.1 Menentu kan unsur dan bagianbagian lingkaran Lingkaran Mendiskusikan unsurunsur dan bagian-bagian lingkaran dengan menggunakan model Menyebutkan unsurunsur dan bagianbagian lingkaran : pusat lingkaran, jarijari, diameter, busur, talibusur, juring dan tembereng. Tes lisan Daftar pertanyaa n C D Disebut apakah ruas garis CD? 2x40mnt Buku teks, lingkaran, dan lingkungan 4.2 Menghitung keliling dan luas lingkaran Lingkaran Menyimpulkan nilai phi dengan menggunakan benda yang berbentuk lingkaran. Menemukan nilai phi Unjuk kerja Tes uji petik kerja Ukurlah keliling (K) sebuah benda berbentuk lingkaran dan juga diameternya (d). k Berapakah nilai? d 2x40mnt 25

29 Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Teknik Bentuk Contoh Instrumen Alokasi Waktu Sumber Belajar Menemukan rumus keliling dan luas lingkaran dengan menggunakan alat peraga Menentukan rumus keliling dan luas lingkaran Tes lisan Daftar Pertanyaa n Sebutkan rumus keliling lingkaran yang berjari-jari p. Sebutkan rumus luas lingkaran yang berjari-jari q. 4x40mnt Menggunakan rumus keliling dan luas lingkaran dalam pemecahan masalah. Menghitung keliling dan luas lingkaran. Tes tertulis Uraian Hitunglah luas lingkaran jika ukuran jari-jarinya 14 cm. 4x40mnt 4.3 Menggunakan hubungan sudut pusat, panjang busur, luas juring dalam pemecahan masalah. Lingkaran Mengamati hubungan sudut pusat dan sudut keliling yang menghadap busur yang sama Menghitung besar sudut keliling jika menghadap diameter atau busur yang sama. Menjelaskan hubungan sudut pusat dan sudut keliling jika menghadap busur yang sama Menentukan besar sudut keliling jika menghadap diameter dan busur yang sama. Tes tertulis Tes lisan Isian singkat Daftar Pertanyaa n Jika sudut A adalah sudut pusat dan sudut B adalah sudut keliling, sebutkan hubungan antara sudut A dan sudut B jika kedua sudut itu menghadap busur yang sama. Berapa besar sudut keliling jika menghadap diameter lingkaran? 2x40mnt 2x40mnt Menghitung panjang busur, luas juring dan Menentukan panjang busur, luas juring dan luas tembereng. Tes tertulis Uraian Di dalam lingkaran dengan jari-jari 12 cm, terdapat sudut pusat yang 4x40mnt 26

30 Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Teknik Bentuk Contoh Instrumen Alokasi Waktu Sumber Belajar tembereng. besarnya 90 0 Hitunglah: a. Panjang busur kecil b. luas juring kecil Menemukan hubungan sudut pusat, panjang busur, luas juring dan menggunakannya dalam pemecahan masalah Menggunakan hubungan sudut pusat, panjang busur, luas juring dalam pemecahan masalah Tes tertulis Uraian Seorang anak harus minum tablet yang berbentuk lingkaran. Jika anak tersebut harus minum 1/3 tablet itu dan ternyata jari-jari tablet 0,7 cm. Berapakah luas tablet yang diminum? 4x40mnt 4.4 Menghitung panjang garis singgung persekutuan dua lingkaran Lingkaran Mengamati sifat sudut yang dibentuk oleh garis singgung dan garis yang melalui titik pusat. Menemukan sifat sudut yang dibentuk oleh garis singgung dan garis yang melalui titik pusat. Tes tertulis Uraian Perhatikan gambar! O Q P 2x40mnt Berapakah besar sudut P? Jelaskan! 27

31 Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Teknik Bentuk Contoh Instrumen Alokasi Waktu Sumber Belajar Mencermati garis singgung persekutuan dalam dan persekutuan luar dua lingkaran Menjelaskan garis singgung persekutuan dalam dan persekutuan luar dua lingkaran. Tes tertulis Isian singkat Perhatikan gambar! A B K P Q L 2x40mnt Disebut apakah:a) garis AB? b) garis KL? Menghitung panjang garis singgung persekutuan dalam dan persekutuan luar dua lingkaran Menentukan panjang garis singgung persekutuan dalam dan persekutuan luar Tes tertulis Uraian Panjang jari-jari dua lingkaran masing-masing 7cm dan 1cm. Jika jarak antara titik pusatnya 10cm, berapakah panjang garis singgung: a) persekutuan dalam b) persekutuan luar 4x40mnt 4.5 Melukis lingkaran dalam dan lingkaran luar suatu segitiga Lingkaran Menggunakan jangka dan penggaris untuk melukis lingkaran dalam dan lingkaran luar segitiga Melukis lingkaran dalam dan lingkaran luar segitiga Tes tertulis Uraian Dengan menggunakan jangka dan penggaris, lukislah lingkaran: a) dalam suatu segitiga b) luar suatu segitiga 4x40mnt Karakter siswa yang diharapkan : Disiplin ( Discipline ); Rasa hormat dan perhatian ( respect ); Tekun ( diligence ); dan Tanggung jawab ( responsibility ) 28

32 DAFTAR PUSTAKA Hidayanti. (2012). Lingkaran. [Online]. Tersedia : pengertian-lingkaran.html. [29 Mei 2014] Priyadi, P. Gendra, dkk Matematika Program Keahlian Seni, Pariwisata, Sosial, Administrasi Perkantoran dan Tekhnologi Kerumahtanggaan untuk SMK dan MAK Kelas XII. Jakarta : Erlangga Yosep. (2013). Lingkaran Luar dan Lingkaran Dalam Segitiga. [Online]. Tersedia: [29 Mei 2014] 25

Untuk lebih jelasnya, perhatikan uraian berikut.

Untuk lebih jelasnya, perhatikan uraian berikut. KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN TENGAH SEMESTER GENAP Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor :

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN 87 RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah : SMP PGRI SUDIMORO Mata Pelajaran : Matematika Kelas/Semester : VIII/II (dua) Materi Pokok : Lingkaran Alokasi Waktu

Lebih terperinci

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN KENAIKAN KELAS Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor : VIII (delapan)

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI DAN PENGUKURAN Standar : 4. Menentukan unsur, bagian serta ukurannya Kegiatan Indikator

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah Kelas Mata Pelajaran Semester : SMP/MTs : VIII (Delapan) : Matematika : II (dua) GEOMETRI DAN PENGUKURAN Standar : 4. Menentukan unsur, bagian serta ukurannya 4.1 Menentukan

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI DAN PENGUKURAN Standar : 4. Menentukan unsur, bagian serta ukurannya Kegiatan 4.1 Menentu

Lebih terperinci

Menemukan Dalil Pythagoras

Menemukan Dalil Pythagoras Dalil Pythagoras Menemukan Dalil Pythagoras 1. Perhatikan gambar di bawah ini. Segitiga ABC adalah sebuah segitiga siku-siku di B dengan sisi miring AC. Jika setiap petak luasnya 1 satuan, tentukan luas

Lebih terperinci

LINGKARAN SMP KELAS VIII

LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII Oleh, Deddy Suharja Januari 2013 A. Pengertian Dan Unsur Unsur Lingkaran Lingkaran adalah tempat kedudukan ( locus ) titik titik yang berjarak sama terhadap

Lebih terperinci

LINGKARAN SMP KELAS VIII

LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII Oleh, Deddy Suharja Januari 2013 A. Pengertian Dan Unsur Unsur Lingkaran Lingkaran adalah tempat kedudukan ( locus ) titik titik yang berjarak sama terhadap suatu titik. Gambar

Lebih terperinci

Lingkaran. 1. Pengertian. 2. Unsur-unsur Lingkaran

Lingkaran. 1. Pengertian. 2. Unsur-unsur Lingkaran Lingkaran 1. Pengertian Lingkaran merupakan suatu kurva tertutup sederhana yang merupakan tempat kedudukan titik-titik yang berjarak sama terhadap suatu titik tertentu. Jarak yang sama tersebut disebut

Lebih terperinci

sdt ACB = = sdt CBA = = 3. Diketahui sebuah segitiga mempunyai keliling 24 cm, luas segitiga tersebut adalah : jawab :

sdt ACB = = sdt CBA = = 3. Diketahui sebuah segitiga mempunyai keliling 24 cm, luas segitiga tersebut adalah : jawab : LATIHAN SOAL MATEMATIKA SMP KELAS 8 SEMESTER GENAP 1. Hitung besar sudut P dan Q pada segitiga berikut : JAWAB : Jumlah ketiga sudut dalam segitiga = jadi :sudut P + sdt Q + sdt R = sdt P= 6 (12) = sdt

Lebih terperinci

Kumpulan Soal dan Pembahasan Himpunan. Oleh: Angga Yudhistira

Kumpulan Soal dan Pembahasan Himpunan. Oleh: Angga Yudhistira Kumpulan Soal dan Himpunan Oleh: Angga Yudhistira http://matematika100.blogspot.com/ Kumpulan Soal dan Matematika SMP dan SMA, Media Pembelajaran,RPP, dan masih banyak lagi Bagian I : Pilihan Ganda 1.

Lebih terperinci

SILABUS (HASIL REVISI)

SILABUS (HASIL REVISI) Sekolah : SMP... Kelas : VIII Mata Pelajaran : Matematika Semester : I(satu) SILABUS (HASIL REVISI) Standar Kompetensi : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus Kompetensi

Lebih terperinci

GARIS SINGGUNG LINGKARAN

GARIS SINGGUNG LINGKARAN GARIS SINGGUNG LINGKARAN Banyak benda-benda di sekitarmu yang tanpa kamu sadari sebenarnya menggunakan konsep lingkaran. Misalnya, rantai sepeda, katrol timba, hingga alat-alat musik seperti drum, banjo,

Lebih terperinci

Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!!

Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!! Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!! LINGKARAN Lingkaran adalah kurva tertutup sederhana yang merupakan tempat

Lebih terperinci

Diktat. Edisi v15. Matematika SMP/MTs Kelas VIII-B. Spesial Siswa Yoyo Apriyanto, S.Pd

Diktat. Edisi v15. Matematika SMP/MTs Kelas VIII-B. Spesial Siswa Yoyo Apriyanto, S.Pd KTSP MAT SMP/MTs Kelas VIII-B P a g e Spesial Siswa Yoyo Apriyanto, S.Pd Diktat Matematika SMP/MTs Kelas VIII-B Edisi v5 + Ringkasan Materi + Soal dan Pembahasan + Soal Uji Kompetensi Siswa + Soal Latihan

Lebih terperinci

Soal No. 1 Perhatikan gambar bangun datar berikut! Tentukan: a) Luas daerah yang diarsir b) Keliling bangun

Soal No. 1 Perhatikan gambar bangun datar berikut! Tentukan: a) Luas daerah yang diarsir b) Keliling bangun 8 SMP Soal Luas Keliling Lingkaran Matematikastudycenter.com- Contoh soal dan pembahasan luas dan keliling materi unsur lingkaran matematika SMP kelas 8 (VIII). Soal No. 1 Perhatikan gambar bangun datar

Lebih terperinci

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan

Lebih terperinci

3. Daerah yang dibatasi oleh dua buah jari-jari dan sebuah busur pada lingkaran adalah

3. Daerah yang dibatasi oleh dua buah jari-jari dan sebuah busur pada lingkaran adalah 1. Unsur-unsur di bawah ini yang merupakan unsur lingkaran adalah. A. Jari-jari, tali busur, juring dan diagonal B. Diameter, busur, sisi dan bidang diagonal C. Juring, tembereng, apotema dan jari-jari

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN 87 RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah Mata Pelajaran Kelas/Semester Materi Pokok Alokasi Waktu : SMP PGRI SUDIMORO : Matematika : VIII/II (dua) : Lingkaran : 2 x 40 menit (1x pertemuan) Tahun

Lebih terperinci

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk Sekolah : SMP Kelas : VIII Mata Pelajaran : Matematika Semester : I(satu) SILABUS Standar : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus 1.1 Melakukan operasi aljabar Bentuk

Lebih terperinci

Feni Melinda Safitri. Sudah diperiksa. Pengertian Teorema Phytagoras. Rumus Phytagoras

Feni Melinda Safitri. Sudah diperiksa. Pengertian Teorema Phytagoras. Rumus Phytagoras BY : Feni Malinda Safitri Sudah diperiksa Pengertian Teorema Phytagoras Phytagoras adalah seorang ahli matematika dan filsafat berkebangsaan Yunani pada tahun 569-475 sebelum masehi, ia mengungkapkan bahwa

Lebih terperinci

BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA)

BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA) BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA) ANWARIL HAMIDY NIM. 15709251018 PROGRAM STUDI PENDIDIKAN MATEMATIKA PROGRAM PASCASARJANA

Lebih terperinci

Bab. Lingkaran. A. Lingkaran dan Unsur- Unsurnya B. Keliling dan Luas Lingkaran C. Busur, Juring, dan Tembereng D. Sudut- Sudut pada Lingkaran

Bab. Lingkaran. A. Lingkaran dan Unsur- Unsurnya B. Keliling dan Luas Lingkaran C. Busur, Juring, dan Tembereng D. Sudut- Sudut pada Lingkaran ab 6 Sumber: okumentasi Penulis Lingkaran Pernahkah kamu berekreasi ke unia Fantasi? i tempat tersebut, kamu dapat menikmati berbagai macam permainan yang unik dan menarik. Mulai dari Halilintar, ntang-nting,

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

LATIHAN PERSIAPAN UJIAN KENAIKAN KELAS (UKK) MATEMATIKA 8 TAHUN PELAJARAN 2011/2012

LATIHAN PERSIAPAN UJIAN KENAIKAN KELAS (UKK) MATEMATIKA 8 TAHUN PELAJARAN 2011/2012 LATIHAN PERSIAPAN UJIAN KENAIKAN KELAS (UKK) MATEMATIKA 8 TAHUN PELAJARAN 011/01 No. ALTERNATIF SOAL PEMBAHASAN 1 Unsur-unsur di bawah ini yang merupakan unsur lingkaran adalah. A. Jari-jari, tali busur,

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

Benda-benda di sekitarmu banyak yang permukaannya berbentuk lingkaran. Lingkaran. Bab. Di unduh dari : Bukupaket.com

Benda-benda di sekitarmu banyak yang permukaannya berbentuk lingkaran. Lingkaran. Bab. Di unduh dari : Bukupaket.com ab Lingkaran Tujuan embelajaran Setelah mempelajari bab ini siswa diharapkan mampu: Membedakan lingkaran dan bidang lingkaran serta dapat menyebutkan bagian-bagian lingkaran: pusat lingkaran, jari-jari,

Lebih terperinci

GARIS SINGGUNG LINGKARAN

GARIS SINGGUNG LINGKARAN GARIS SINGGUNG LINGKARAN RENCANA PELAKSANAAN PEMBELAJARAN POKOK BAHASAN GARIS SINGGUNG LINGKARAN Oleh: ZAINUL GUFRON SYAHRONI NIM. 07010191048 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN

Lebih terperinci

SOAL LATIHAN UKK MATEMATIKA KELAS VIII

SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL PILIHAN GANDA 1. Perhatikan gambar berikut. Daerah yang diarsir disebut... a. juring b. busur c. tembereng d. tali busur 2. Perhatikan kembali lingkaran pada

Lebih terperinci

BAB II KAJIAN TEORITIK. Matematika, Regulasi Diri, dan Model Kooperatif tipe Two Stay Two Stray. a. Pengertian pemahaman konsep matematika

BAB II KAJIAN TEORITIK. Matematika, Regulasi Diri, dan Model Kooperatif tipe Two Stay Two Stray. a. Pengertian pemahaman konsep matematika 5 BAB II KAJIAN TEORITIK A. Deskripsi Kontekstual Pada bab ini peneliti akan membahas tentang Pemahaman Konsep Matematika, Regulasi Diri, dan Model Kooperatif tipe Two Stay Two Stray. 1. Pemahaman Konsep

Lebih terperinci

GARIS SINGGUNG LINGKARAN

GARIS SINGGUNG LINGKARAN RENCANA PELAKSANAAN PEMBELAJARAN POKOK BAHASAN GARIS SINGGUNG LINGKARAN Oleh: ZAINUL GUFRON SYAHRONI NIM. 070210191048 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

SOAL UUKK SMP KOTA SURAKARTA MATA PELAJARAN : MATEMATIKA KELAS : VIII

SOAL UUKK SMP KOTA SURAKARTA MATA PELAJARAN : MATEMATIKA KELAS : VIII SOAL UUKK SMP KOTA SURAKARTA MATA PELAJARAN : MATEMATIKA KELAS : VIII 1. Bidang arsiran yang menunjukkan tembereng lingkaran pada gambar berikut adalah.... a. c. b. d. 2. Keliling lingkaran yang panjang

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya 42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya

Lebih terperinci

BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1

BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 BAB FAKTORISASI SUKU ALJABAR SOAL LATIHAN. A. Pilihan Ganda. Bentuk + 48 jika difaktorkan A. ( 6)( 8) B. ( + 8)( 6) C. ( 4)( ) D. ( + 4)( ) + 48 ( + 8)( 6). Faktor dari y 4y A. (y 6) (y + ) B. (y + 6)

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) PEMBELAJARAN KONVENSIONAL. A. Kompetensi Inti, Kompetensi Dasar dan Indikator Pencapaian Kompetensi :

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) PEMBELAJARAN KONVENSIONAL. A. Kompetensi Inti, Kompetensi Dasar dan Indikator Pencapaian Kompetensi : LAMPIRAN 2 Lampiran 2.1 Lampiran 2.2 Lampiran 2.3 Lampiran 2.4 Lampiran 2.5 Lampiran 2.6 Lampiran 2.7 Lampiran 2.8 Lampiran 2.9 Lampiran 2.10 Lampiran 2.11 Lampiran 2.12 Rencana Pelaksanaan Pembelajaran

Lebih terperinci

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu

Lebih terperinci

SD V BANGUN DATAR. Pengertian bangun datar. Luas bangun datar. Keliling bangun datar SD V

SD V BANGUN DATAR. Pengertian bangun datar. Luas bangun datar. Keliling bangun datar SD V SD V BANGUN DATAR Pengertian bangun datar Luas bangun datar Keliling bangun datar SD V Kata Pengantar Puji syukur kehadirat Allah Subahanahu wa Ta ala, yang Maha Kuasa atas rahmat dan karunianya, sehingga

Lebih terperinci

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR.

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR. Bab 3 KONSTRUKSI GEOMETRIS Materi : Konstruksi-konstruksi dasar. Garis-garis lengkung. Gambar proyeksi. Gambar pandangan tunggal. Proyeksi ortogonal (gambar pandangan majemuk). 3.1. KONSTRUKSI-KONSTRUKSI

Lebih terperinci

JARING-JARING BANGUN RUANG

JARING-JARING BANGUN RUANG BAHAN BELAJAR MANDIRI 6 JARING-JARING BANGUN RUANG PENDAHULUAN Bahan Belajar mandiri 6 mempelajari tentang Jaring-jaring Bangun ruang : maksudnya jika bangun ruang seperti kubus, balok, kerucut dan yang

Lebih terperinci

- - LINGKARAN - - dlp5lingkaran. Ð AOB = Sudut pusat Ð ACB = Sudut keliling Ð AOB = 2 Ð ACB Ð ACB = Ð ADB = 90 O

- - LINGKARAN - - dlp5lingkaran. Ð AOB = Sudut pusat Ð ACB = Sudut keliling Ð AOB = 2 Ð ACB Ð ACB = Ð ADB = 90 O - - LINGKARAN - - Mdul ini singkrn dengan Aplikasi Andrid, Dwnlad melalui Play Stre di HP Kamu, ketik di pencarian dlp5lingkaran Jika Kamu kesulitan, Tanyakan ke tentr bagaimana cara dwnladnya. Aplikasi

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah : SMP NEGERI... Mata Pelajaran : Matematika Kelas Semester : VIII (Delapan) : II (Dua) ALJABAR Standar Kompetensi : 4. Menentukan unsur, bagian lingkaran serta ukurannya Kompetensi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP dan MTs Mata Pelajaran : Matematika Kelas : VIII (Delapan) Semester : 2 (Dua)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP dan MTs Mata Pelajaran : Matematika Kelas : VIII (Delapan) Semester : 2 (Dua) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP dan MTs Mata Pelajaran : Matematika Kelas : VIII (Delapan) Semester : 2 (Dua) Standar Kompetensi Kompetensi Dasar : 4. Menentukan unsur, bagian

Lebih terperinci

5.1 KONSTRUKSI-KONSTRUKSI DASAR

5.1 KONSTRUKSI-KONSTRUKSI DASAR KONSTRUKSI GEOMETRI Unsur-unsur geometri sering digunakan seorang juru gambar atau ahli gambar teknik untuk menggambar konstruksi mesin. Unsurunsur goemetri yang dimaksudkan ini adalah busur-busur, lingkaran,

Lebih terperinci

D. GEOMETRI 2. URAIAN MATERI

D. GEOMETRI 2. URAIAN MATERI D. GEOMETRI 1. TUJUAN Setelah mempelajari modul ini diharapkan peserta diklat memahami dan dapat menjelaskan unsur-unsur geometri, hubungan titik, garis dan bidang; sudut; melukis bangun geometri; segibanyak;

Lebih terperinci

KUMPULAN SOAL MATEMATIKA KELAS VIII (BSE DEWI N)

KUMPULAN SOAL MATEMATIKA KELAS VIII (BSE DEWI N) KUMPULAN SOAL MATEMATIKA KELAS VIII (BSE DEWI N) Kumpulan Soal Matematika Kelas VIII (BSE Dewi N) Faktorisasi Suku Aljabar A. Pilihlah salah satu jawaban yang tepat. 1. Pada bentuk aljabar 2x2 + 3xy y2

Lebih terperinci

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas

Lebih terperinci

Kata Pengantar. Jambi, 25 Juni Penulis

Kata Pengantar. Jambi, 25 Juni Penulis Kata Pengantar Puji syukur penulis ucapkan kepada Allah SWT, dengan rahmat dan hidayah-nya penulis dapat melaksanakan dan menyusun makalah ini yang berjudul Penerapan Lingkaran dalam Kehidupan Sehari-Hari.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Titik, Garis, dan Bidang Pada geometri, tepatnya pada sistem aksioma, terdapat istilah tak terdefinisi. Istilah tak terdefinisi adalah istilah dasar yang digunakan dalam membangun

Lebih terperinci

LINGKARAN. Sumber: Jendela Iptek, 2001

LINGKARAN. Sumber: Jendela Iptek, 2001 6 LINGKRN Sumber: Jendela Iptek, 00 Sejak zaman abilonia, manusia sudah terkagum-kagum oleh bangun matematika yang dinilai sebagai bentuk yang sempurna, yaitu lingkaran. Kita semua pasti tidak asing lagi

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 5 LINGKARAN A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

BAB IV ANALISA KECEPATAN

BAB IV ANALISA KECEPATAN BAB IV ANALISA KECEPATAN PUSAT SESAAT Pusat sesaat adalah : - sebuah titik dalam suatu benda dimana benda lain berputar terhadapnya. - Sebuah titik sekutu yang terletak pada 2 buah benda yang mempunyai

Lebih terperinci

Faktorisasi Bentuk Aljabar. Suku Tunggal dan Suku Banyak. (suku banyak) disebut bentuk Aljabar.

Faktorisasi Bentuk Aljabar. Suku Tunggal dan Suku Banyak. (suku banyak) disebut bentuk Aljabar. 569 Lembar Kerja Siswa Faktorisasi Bentuk Aljabar Materi Singkat: 1. Pengertian Suku pada Bentuk Aljabar 1.1.1 Suku Tunggal dan Suku Banyak 4a, 5a 2 b, 6 x 2 3 xy 8 y Bentuk-bentuk seperti (suku satu/tunggal)

Lebih terperinci

KAJI LATIH 1. menutupi daerah seluas 2 cm 2, maka jarijarinya. cm (C) cm (D) 2

KAJI LATIH 1. menutupi daerah seluas 2 cm 2, maka jarijarinya. cm (C) cm (D) 2 0. Diameter sebuah lingkaran cm. Untuk =,4, maka kelilingnya adalah. (),4 cm (),6 cm () 6,8 cm (D) 5, cm 0. Keliling daerah pada gambar di bawah ( = ) () 64 cm () 8 cm () 8 cm (D) 00 cm 0. Luas arsiran

Lebih terperinci

Uraian Materi. Keliling dan Luas Bangun Datar. A. Macam-Macam Bangun Datar Beraturan. Perlu Tahu

Uraian Materi. Keliling dan Luas Bangun Datar. A. Macam-Macam Bangun Datar Beraturan. Perlu Tahu Keliling dan Luas angun atar Segala sesuatu di muka bumi ini memunyai bentuk dan ukuran. i dalam matematika, benda yang memunyai ukuran dapat dilakukan perhitungan terhadap benda tersebut. Ilmu yang mempelajari

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 1. Hasil dari 17 - ( 3 x (-8) ) adalah... A. 49 B. 41 C. 7 D. -41 BAB II Bentuk Aljabar - perkalian/pembagian mempunyai tingkat

Lebih terperinci

BAB I PENDAHULUAN. 2. Membagi keliling lingkaran sama besar.

BAB I PENDAHULUAN. 2. Membagi keliling lingkaran sama besar. BAB I PENDAHULUAN A. Deskripsi Judul modul ini adalah lingkaran, sedangkan yang akan dibahas ada tiga unit yaitu : 1. Menggambar lingkaran 2. Membagi keliling lingkaran sama besar. 3. Menggambar garis

Lebih terperinci

MATEMATIKA. Pertemuan 2 N.A

MATEMATIKA. Pertemuan 2 N.A MATEMATIKA Pertemuan 2 N.A smile.akbar@yahoo.co.id Awali setiap aktivitas dengan membaca Basmallah Soal 1 (Operasi Bentuk Aljabar) Bentuk Sederhana dari adalah a. b. c. d. Pembahasan ( A ) Soal 2 (Pola

Lebih terperinci

PEMBELAJARAN SEGIEMPAT, SEGITIGA DAN LINGKARAN LAPORAN. Diajukan untuk memenuhi salah satu tugas mata kuliah Pendidikan Matematika II

PEMBELAJARAN SEGIEMPAT, SEGITIGA DAN LINGKARAN LAPORAN. Diajukan untuk memenuhi salah satu tugas mata kuliah Pendidikan Matematika II PEMBELAJARAN SEGIEMPAT, SEGITIGA DAN LINGKARAN LAPORAN Diajukan untuk memenuhi salah satu tugas mata kuliah Pendidikan Matematika II Dosen Dr. Karso, M.Pd Disusun oleh : Indri Nur Oktaviani 1003282 Saeful

Lebih terperinci

01. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah... (A) 78 cm (B) 52 cm (C) 26 cm (D) 13 cm

01. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah... (A) 78 cm (B) 52 cm (C) 26 cm (D) 13 cm 0. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah.... (A) 78 cm (B) 52 cm (C) 26 cm (D) 3 cm 02. Bangun di bawah ini merupakan bangun yang memiliki simetri putar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang digunakan pada bagian pembahasan. Tinjauan yang dilakukan dengan memaparkan definisi mengenai unsur-unsur kajian geometri, aksioma kekongruenan,

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui

Lebih terperinci

A. MENGHITUNG LUAS BERBAGAI BANGUN DATAR

A. MENGHITUNG LUAS BERBAGAI BANGUN DATAR A. MENGHITUNG LUAS BERBAGAI BANGUN DATAR Dalam bab ini kamu akan mempelajari: 1. menghitung luas bangun datar; 2. menghitung luas segi banyak; 3. menghitung luas gabungan dua bangun datar; dan 4. menghitung

Lebih terperinci

1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4

1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4 1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4 C. 6 B. 5 D. 7 Kunci : B B = (bilangan prima kurang dan 13) Anggota himpunan B = (2, 3, 5, 7, 11) Sehingga banyaknya

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : B5 1 Hasil dari 17 (3 ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 41 Dalam kurung 1 C. 7 Pangkat ; Akar D. 41 Kali

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

B A B I PENDAHULUAN A. Latar Belakang

B A B I PENDAHULUAN A. Latar Belakang B A B I PENDAHULUAN A. Latar Belakang Matematika adalah suatu alat untuk mengembangkan cara berpikir. Untuk menguasai dan mencipta teknologi di masa depan diperlukan penguasaan matematika yang kuat sejak

Lebih terperinci

PEMBAHASAN SOAL MATEMATIKA UN 2014 Jawaban : Pembahasan : (operasi bilangan pecahan) ( ) Jawaban : (A) Pembahasan : (perbandingan senilai) 36 buku 8 mm x x 3. 0 X buku 24 mm Jawaban : (C) Pembahasan :

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN Sekolah : SMP... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : I (satu) SILABUS PEMBELAJARAN BILANGAN Standar : 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan

Lebih terperinci

1 Bilangan. 2 A. MACAM-MACAM BILANGAN B. SIFAT OPERASI PADA BILANGAN BULAT. b dan b 0. Contoh: 1 à a = 1 dan b = 4.

1 Bilangan. 2 A. MACAM-MACAM BILANGAN B. SIFAT OPERASI PADA BILANGAN BULAT. b dan b 0. Contoh: 1 à a = 1 dan b = 4. Matematika 1 Bilangan A. MACAM-MACAM BILANGAN 1. Bilangan Asli 1, 2, 3, 4, 5, 6,, dan seterusnya. 2. Bilangan Cacah 0, 1, 2, 3, 4, 5, 6, 7, dan seterusnya. 3. Bilangan Prima Bilangan prima yaitu bilangan

Lebih terperinci

Kumpulan Soal Matematika Kelas VIII (BSE Dewi N)

Kumpulan Soal Matematika Kelas VIII (BSE Dewi N) Faktorisasi Suku Aljabar A. Pilihlah salah satu jawaban yang tepat. 1. Pada bentuk aljabar 2x 2 + 3xy y 2 terdapat... variabel. a. 1 c. 3 b. 2 d. 4 2. Suku dua terdapat pada bentuk aljabar... a. 2x 2 +

Lebih terperinci

PREDIKSI UN 2012 MATEMATIKA SMP

PREDIKSI UN 2012 MATEMATIKA SMP Dibuat untuk persiapan menghadapi UN 2012 PREDIKSI UN 2012 MATEMATIKA SMP Lengkap dengan kisi-kisi dan pembahasan Mungkin (tidak) JITU 12 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada

Lebih terperinci

PENDAHULUAN. Gambar potongan kerucut berbentuk lingkaran, ellips, parabola dan hiperbola

PENDAHULUAN. Gambar potongan kerucut berbentuk lingkaran, ellips, parabola dan hiperbola 1 PENDAHULUAN A. Deskripsi Dalam modul ini kita akan mempelajari lengkungan yang dihasilkan dari potongan kerucut dengan bidang datar. Jika suatu kerucut dipotong oleh sebuah bidang, maka garis potong

Lebih terperinci

matematika WAJIB Kelas X SUDUT Kurikulum 2013 A. Definisi Sudut

matematika WAJIB Kelas X SUDUT Kurikulum 2013 A. Definisi Sudut Kurikulum 20 Kelas X matematika WAJIB SUDUT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi sudut. 2. Memahami sudut kterminal.. Memahami

Lebih terperinci

GARIS SINGGUNG LINGKARAN

GARIS SINGGUNG LINGKARAN 7 GI INGGUNG LINGKN ernahkah kalian memerhatikan sebuah kerekan atau katrol? Gambar di samping adalah alat pada abad ke-8 yang memperagakan daya angkat sebuah kerekan yang prinsip kerjanya menggunakan

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

Inisiasi 2 Geometri dan Pengukuran

Inisiasi 2 Geometri dan Pengukuran Inisiasi 2 Geometri dan Pengukuran Apa kabar Saudara? Semoga Anda dalam keadaan sehat dan semangat selalu. Selamat berjumpa pada inisiasi kedua pada mata kuliah Pemecahan Masalah Matematika. Kali ini topik

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30 Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 005 Nomor Soal: -30. Garis 5y 60 memotong sumbu X dan sumbu Y masing-masing di titik A dan B, sehingga OAB membentuk segitiga siku-siku. Sebuah lingkaran

Lebih terperinci

SILABUS PEMELAJARAN Sekolah : SMP Negeri 1 Poncol Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI

SILABUS PEMELAJARAN Sekolah : SMP Negeri 1 Poncol Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Lampiran 1.1 45 Lampiran 1.2 46 47 Lampiran 2.1 SILABUS PEMELAJARAN Sekolah : SMP Negeri 1 Poncol Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembilan) Mata Pelajaran : Matematika Semester : I (satu) SILABUS PEMBELAJARAN GEOMETRI DAN PENGUKURAN Standar : 1. Memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan

Lebih terperinci

BAB II TABUNG, KERUCUT, DAN BOLA. Memahami sifat-sifat tabung, kerucut dan bola, serta menentukan ukurannya

BAB II TABUNG, KERUCUT, DAN BOLA. Memahami sifat-sifat tabung, kerucut dan bola, serta menentukan ukurannya BAB II TABUNG, KERUCUT, DAN BOLA Tujuan Pembelajaran Memahami sifat-sifat tabung, kerucut dan bola, serta menentukan ukurannya A. Pendahuluan Istilah tabung, kerucut, dan bola di sini adalah istilah-istilah

Lebih terperinci

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut Kode: P8 MATEMATIKA IX SMP SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P8). Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut (A) 7 dan. (C) 8 dan 8. dan 7. (D) 8 dan

Lebih terperinci

SEGITIGA DAN SEGIEMPAT

SEGITIGA DAN SEGIEMPAT SEGITIGA DAN SEGIEMPAT A. Pengertian Segitiga Jika tiga buah titik A, B dan C yang tidak segaris saling di hubungkan,dimana titik A dihubungkan dengan B, titik B dihubungkan dengan titik C, dan titik C

Lebih terperinci

Soal Babak Penyisihan MIC LOGIKA 2011

Soal Babak Penyisihan MIC LOGIKA 2011 Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang

Lebih terperinci

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C Pertemuan ke Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C B Empat persegi panjang d D E a c C B b B = CD dan B // CD D = BC dan D //

Lebih terperinci

GEOMETRI LINGKARAN YANG MENANTANG

GEOMETRI LINGKARAN YANG MENANTANG GOMTRI LINGKRN YNG MNNTNG entuk lingkaran banyak ditemui dalam kehidupan sehari-hari, mulai dari ban kendaraan, logo, cermin, tatakan gelas, dan masih banyak lagi yang lainnya. kan menjadi sangat menarik

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D45 NO SOAL PEMBAHASAN 5 Hasil dari 8 adalah... 5. a = a a a a a A. 0 B. 5. = C.. = D. 64 Hasil dari 8 adalah... A. 6 B. 8 C. 6 D. 4 6 4 Hasil dari 7 ( ( 8)) adalah...

Lebih terperinci

BAB I PENDAHULUAN. Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan

BAB I PENDAHULUAN. Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan BAB I PENDAHULUAN A. Latar Belakang Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan metria artinya pengukuran. Menurut sejarahnya, Geometri tumbuh pada zaman jauh sebelum masehi karena

Lebih terperinci

LAMPIRAN A. A.1 Kisi-kisi Soal Pretes dan Postes. A.2 Format Soal Pretes dan Postes. A.3 Kunci Jawaban Soal Pretes dan Postes

LAMPIRAN A. A.1 Kisi-kisi Soal Pretes dan Postes. A.2 Format Soal Pretes dan Postes. A.3 Kunci Jawaban Soal Pretes dan Postes 127 LAMPIRAN A A.1 Kisi-kisi Soal Pretes dan Postes A.2 Format Soal Pretes dan Postes A.3 Kunci Jawaban Soal Pretes dan Postes A.4 Kisi-kisi Skala Self-Regulated Learning A.5 Format Skala Self-Regulated

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) SILABUS PEMELAJARAN ALJABAR Standar : 4. Menggunakan konsep dan diagram Venn dalam pemecahan masalah Kegiatan 4.1 Mema-hami

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : I (satu) ALJABAR Standar : 1. Memahami bentuk aljabar, relasi,, dan persamaan garis lurus Indikator Kegiatan

Lebih terperinci

PROGRAM PEMBELAJARAN KELAS VII SEMESTER I. Mata Pelajaran : Matematika

PROGRAM PEMBELAJARAN KELAS VII SEMESTER I. Mata Pelajaran : Matematika PROGRAM PEMBELAJARAN KELAS VII SEMESTER I Mata Pelajaran : Matematika 191 PROGRAM SEMESTER TAHUN PELAJARAN 20 / 20 Nama Sekolah : Kelas/ Semester : VII/1 Mata Pelajaran : Matematika Aspek : BILANGAN Standar

Lebih terperinci

BAB. GARIS SINGGUNG LINGKARAN. A. PENGERTIAN GARIS SINGGUNG LINGKARAN B. GARIS SINGGUNG DUA LINGKARAN C. LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA

BAB. GARIS SINGGUNG LINGKARAN. A. PENGERTIAN GARIS SINGGUNG LINGKARAN B. GARIS SINGGUNG DUA LINGKARAN C. LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA A. GAIS SINGGUNG LINGKAAN. A. ENGETIAN GAIS SINGGUNG LINGKAAN. GAIS SINGGUNG DUA LINGKAAN C. LINGKAAN LUA DAN LINGKAAN DALAM SEGITIGA ab 7 Sumb e r: w w w.homepages.tesco Garis Singgung Lingkaran Lingkaran

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

C. 9 orang B. 7 orang

C. 9 orang B. 7 orang 1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua

Lebih terperinci

DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KABUPATEN BANDUNG BARAT UJI KOMPETENSI KENAIKAN KELAS TAHUN PELAJARAN 2010/2011. Mata Pelajaran : Matematika

DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KABUPATEN BANDUNG BARAT UJI KOMPETENSI KENAIKAN KELAS TAHUN PELAJARAN 2010/2011. Mata Pelajaran : Matematika INS PENIIKN PEMU N OLHRG KUPTEN NUNG RT UJI KOMPETENSI KENIKN KELS THUN PELJRN 2010/2011 Mata Pelajaran : Matematika Kelas : VIII Waktu : 120 menit Hari/tanggal :. Pilihan Ganda 1. entuk sederhana dari

Lebih terperinci