LAMPIRAN I (Preliminary Gording)

Ukuran: px
Mulai penontonan dengan halaman:

Download "LAMPIRAN I (Preliminary Gording)"

Transkripsi

1 LAMPIRAN I (Preliminary Gording) L.1. Pendimensian gording Berat sendiri gording dapat dihitung dengan menggunakan atau dengan memisalkan berat sendiri gording (q), Pembebanan yang dipikul oleh gording menggunakan persamaan : L1.1. Beban Mati (q) q j VA VB Gambar L1.1 Distribusi Beban Mati Pada Perletakan Sederhana V A = V B = Mma = 1 q j 1 q j 8 L1.. Beban Pekerja (q L) P j VA VB Gambar L.1. Distribusi Beban Hidup Pada Perletakan Sederhana V A = V B = Mma 1 P = 1 4 P j 101 Universitas Kristen Maranatha

2 L1.3. Beban Air Hujan (q hujan) Q hujan j VA VB Gambar L1.3 Distribusi Beban Hujan Pada Perletakan Sederhana V A = V B = 1 (q hujan) j Mma = 1 8 (q a hujan) j L1.4. Beban Angin Beban Angin di hitung menurut peraturan Pembebanan Indonesia untuk gedung Beban angin ditentukan dengan menganggap adanya tekanan positip dari tekanan negatif ( hisapan) yang bekerja tegak lurus pada bidangbidang yang ditinjau. Besarnya tekanan positif dan tekanan negatip ini dinyatakan dalam kg/m. untuk gedung tertutup, koefisien angin ( + berarti tekanan dan berarti hisapan), adalah sebagai berikut : (1) Dinding vertikal : Dipihak angin + 0,9 Di belakang angin - 0,4 Sejajar dengan arah angin - 0,4 () Atap segi tiga dengan sudut kemiringan ɑ Dipihak angin : ɑ < 65 ( 0,00 ɑ - 0,4) 65 < ɑ < 90 ( +0,9) Dibelakang angin untuk semua ɑ - 0,4 10 Universitas Kristen Maranatha

3 Gambar L1.4 Bagan Beban Angin L1.5. Menghitung Pembebanan yang dipikul gording: Gambar L1.5 Pembebanan Yang Dipikul Gording a. Akibat beban mati: Berat gording C = q kg/m Berat sendiri atap (Berat atap Jarak Gording) = 5,85 kg/m q d = (5,85 + q) kg/m 1 1 V A=V B= q d j= ( 5,85 + q) 4 = (3,4 + 4q) kg 103 Universitas Kristen Maranatha

4 ( 5,85 + q) M ma = q d j = 4 = (11,7 + q) kgm d ( + q) D =q sinα = 5,85 sin18 = (1, ,309q ) y d ( + q) kg/ m D =q cosα = 5,85 cos18 = ( 5,56 + 0,951q ) kg/ m b. Akibat beban hidup: 1. Beban Pekerja (La) Berdasarkan pedoman perencanaan pembebanan untuk rumah dan gedung, besarnya beban La = 100 kg 1 1 V A =VB = P = 100 = 50 kg 1 1 M ma = P j = 100 4=100 kgm 4 4 L = P sinα = 100 sin18 = 30,90kg a L = P cosα = 100 cos18 = 95,106 kg. Beban air hujan (H a ) Berdasarkan pedoman perencanaan pembebanan untuk rumah dan gedung, beban terbagi rata-rata per m dari beban air hujan sebesar (40-0,8) kg/m. H a = (40-0,8 α ) = (40 0,8 18 ) = 5,6 kg/m, maka diambil 0 kg/m untuk beban air hujan yang diijinkan q l = H a jarak gording = 0 1,4583 = 9,166 kg/m 1 1 VA = V B= q l j = 9,166 4 = 58,33 kg M ma = ql j = 9,166 4 = 58,33 kgm D = ql sinα = 9,166 sin18 = 9,0178 kg/m D y = ql cosα = 9,166 cos18 = 7,7385 kg/m 104 Universitas Kristen Maranatha

5 3. Beban Angin Perhitungan beban angin berdasarkan peraturan AS/NZS 1170.:00 dilakukan sesuai persamaan (.10), sehingga diperoleh tekanan angin rencana (p). Tekanan angin desain diperoleh dengan mengalikan beberapa koefisien faktor. Kecepatan angin yang digunakan adalah sebesar 10 km/jam (33,333 m/detik), kecepatan angin ini diasumsikan sebagai V R (batas kecepatan angin minimum). Karena cuaca di Jawa barat sering terjadi hujan dan disertai petir, struktur termasuk dalam region A, W dan B. Sementara lokasi struktur yang terletak di pinggiran kota maka struktur atap termasuk ke dalam wilah (Terrain category) 3. Sehingga akan diperoleh nilai M z, cat (faktor pengali untuk ketinggian suatu lahan) sebesar 1,05 yang diambil dari hasil interpolasi pada Tabel Tabel.1, dengan H (tinggi) struktur 14 meter. Faktor pengali yang lain yaitu M d diperoleh berdasarkan data stasiun meteorologikal lokal, karena orientasi struktur di lokasi tidak diketahui maka diasumsikan M d = 1 sedangkan berdasarkan lokasi struktur dapat dilihat kemampuan struktur untuk melawan arah angin, sehingga M s = 1. Dengan permukaan daerah yang bebas dari halangan, yaitu lokasi di atas permukaan laut, maka Mt = 1. Setelah semua koefisien faktor pengali ditentukan maka kecepatan angin rencana diperoleh sebagai berikut: V sit,β = V R M d ( M z,cat M s M ) = 33,333 X 1 ( 1,05 X 1 1) = 35,1 m/detik Nilai V sit, β dibandingkan dengan batas minimum kecepatan yaitu sebesar 50 m/det untuk diambil nilai yang paling besar, sehingga V des, θ (kecepatan angin rencana berdasarkan kecepatan angin di lokasi) adalah 5,6 m/detik. Untuk faktor pengali lainnya yaitu C fig, dengan H (tinggi) struktur = 14 meter dapat diperoleh nilai C p, e =0,7 karena H kurang dari 5 meter. Faktor reduksi area (K a ) dapat dilihat pada Tabel.15, dengan ukuran b (lebar) sruktur = 36 meter, (tinggi) struktur = 8 meter dan h (tinggi) atap = 4 meter, maka besarnya K a adalah : Tinggi struktur A = b tinggi struktur = 36 8 = 360 m ; K a = 0,8 Tinggi atap A = b h = 36 4 = 144 m ; K a = 0,8 105 Universitas Kristen Maranatha

6 K c = 1(AS/NZS 1170.:00) dan ρair = 1, kg/m 3. Diperoleh C fig adalah C fig = C p,e K a K c = 0,8 0,8 1 = 0,64 Faktor respon dinamik, C dyn = 1.0 ( natural frequencies > 1.0 Hertz) (AS/NZS 1170.:00), sehingga besarnya P a (tekanan angin rencana ) adalah sebagai berikut: P a = (0,5 ρ air ) [ V des,θ] C fig C dyn = ( 0,5 1,) [35,1] 0,64 1 = 473,09184 Pa = 48,5kg/m Setelah besarnya tekanan angin rencana diperoleh, maka dilakukan pendistribusian ga menjadi beban. Tekanan angin (P a ) = 48,5 kg/m Dipihak Angin (w 1 ) Dibelakang angin Untuk α < 65 C = -0,4 (untuk semua) C 1 = 0,0α-0,4 w = C P a d C 1 = 0,0 (18) 0,4 w = -0,4 48,5 1,458 C 1 = -0,04 kg/m w = -8,148 kg w 1 = C1 P a d w 1 = -0,04 48,5 1,458 w 1 = -,8148 kg/m Melalui perhitungan diatas didapatkan nilai w 1 dan w negatif sehingga beban angin bersifat hisapan dan tidak diperhitungkan. Perhitungan beban terfaktor: Diketahui: DL = (1, ,309q ) kg/m DLy La L H Hy = ( 5,56 + 0,951q ) kg/m = 30,90 kg = 95,106 kg = 9,0178 kg/m = 7,7385 kg/m 106 Universitas Kristen Maranatha

7 Kombinasi pembebanan yang digunakan yaitu: Kombinasi 1 = 1,4DL Kombinasi = 1, DL + 1,6 LL + 0,5 L a Kombinasi 3 = 1, DL + 1,6 L a + 0,8 WL Kombinasi 4 = 1, DL + 1,3 WL + 0,5 H a Kombinasi 5 = 1, DL + 0,8 W + 1,6 H a Kombinasi 6 = 0,9 DL + 1,3 WL + 0,5 H a Kombinasi 1 (1,4 DL) M 1 = (1,4 (1, ,309 )) j = 1,4 ((1, ,309q )) = 5, ,865q kgm M y1 = (1,4 DL y) j = 1,4 (5,56 + 0,951q ) = 15,568 +,663q kgm Q 1 = 1 (1,4 DL 1 ) j = 1,4( 1, ,309q ) 4 Q y1 = 5, ,865q kg = 1 (1,4 DL 1 y) j = 1,4(5,56 + 0,951q) 4 = 15,568 +,663q kg Kombinasi (1,DL+1,6LL+0,5 L a or H) M = (1,DL ) j + 0,5 ( L a ) j = (1, (1, ,309q) ) 4 + 0,5 ( 30,90) 4 = 4, ,7416q + 15,451 kgm = ( 19, ,7416q ) kgm M y = (1,DL y) j + 0,5 ( L ) j = (1, (5,56 + 0,951q))4 +0,5( 95,106)4 = 13,344 +,84q + 47,553 kgm = ( 60,897 +,84q ) kgm 107 Universitas Kristen Maranatha

8 1 1,DL j + 0,5 La Q = ( ) 1 1 = (1, ( 1, ,309q)) 4 + 0,5 ( 30,90) = 4, ,1854q + 7,755 kg = ,1854q kg 1 1,DL j + 0,5 L Q y = ( y ) = 1 (1, ( 5,56 + 0, 951q )) 4 + 0, 5 ( 1 95,106) = 13,344 +,8q + 3,7765 kg = 37,1 +,8q kg Kombinasi 3 ( 1,DL+1,6L a +0,8WL) M 3 = (1,DL ) j + 1,6 ( L a ) j = (1, (1, ,309q) ) 4 + 1,6 ( 30,90) 4 = 4, ,7416q + 49,443 kgm = 53,78 + 0,7416q kgm M y3 = (1,DL y ) j + 1,6 ( L ) j = (1, (5,56 + 0,951q) ) 4 + 1,6 ( 95,106) 4 = 13,344 +,84q + 15,17 kgm = 165, q kgm 1 1,DL j + 1,6 L Q 3 = ( ) a 1 1 = (1, ( 1, ,309q)) 4 + 1,6 ( 30,90) = 4, ,1854q + 4,7 kg = 9,06 + 0,1854q kg 1 1,DL j + 1,6 L Q y3 = ( y ) = 1 (1,( 5,56 + 0,951q )) 4+ 1, 6 ( 1 95,106) = 13,344 +,8q + 76,085 kg = 89,49 +,8q kg 108 Universitas Kristen Maranatha

9 Kombinasi 4 (1,DL+1,3WL+0,5 H a ) M 4 = (1,DL ) j + 0,5 ( H a ) j = (1, (1, ,309q) ) 4 + 0,5 ( 9,0178) 4 = 4, ,7416q + 4,51 kgm = 8, ,7416q kgm M y4 = (1,DL y) j + 0,5 ( H ) j = (1, (5,56 + 0,951q)) 4 + 0,5 ( 7,7385) 4 = 13,344 +,84q + 13,87 kgm = 7,13 +,84q kgm 1 1,DL j + 0,5 H Q 4 = ( ) = 1 (1, ( 1, ,309q )) 4 + 0,5 ( 1 9,0178) a = 4, ,1854q +,53 kg = 6,59 + 0,185q kg 1 1,DL j + 0,5 H Q y4 = ( y ) = 1 (1,( 5,56 + 0,951q )) 4 + 0,5 ( 1 7,7385) = 13,344 +,8q + 6,935 kg = 0,8 +,8q kg Kombinasi 5 ( 1,DL+0,8 W +1,6 H a ) M 5 = (1,DL ) j + 1,6 ( H a ) j = (1, (1, ,309q) ) 4 + 1,6 ( 9,0178) 4 = 4, ,7416q + 14,445 kgm = 18,76 + 0,74q kgm M y5 = (1,DL y) j + 1,6 ( H ) j = (1, (5,56 + 0,951q))4 + 1,6 ( 7,7385) 4 = 13,344 +,84q + 44,38 kgm =57,73 +,84q kgm 1 1,DL j + 1,6 H Q 5 = ( ) 109 Universitas Kristen Maranatha

10 = 1 (1, ( 1, ,309q )) 4 + 1,6 ( 1 9,0178) = 4, ,1854q + 7,1 kg = 11,55 + 0,1854q kg 1 1,DL j + 1,6H Q y5 = ( y ) = 1 (1,( 5,56 + 0,951q )) 4 + 1,6 ( 1 7,7385) = 13,344 +,8q +,191 kg = 35,535 +,8q kg Kombinasi 6 ( 0,9DL+1,3 W +0,5 H a ) M 6 = (0,9DL ) j + 0,5 ( H a ) j = (0,9 (1, ,309q ) ) 4 + 0,5 ( 9,0178) 4 = 3,54 + 0,556q + 4,51 kgm = 7, ,556q kgm M y6 = (0,9DL y) j + 0,5 ( H y) j = (0,9 ( 5,56 + 0,951q ) ) 4 + 0,5 ( 7,7385) 4 = 10, ,71q + 13,869 kgm = 3, ,71q kgm 1 0,9DL j + 0,5 H Q 6 = ( ) 1 1 = (0,9(1, ,309q )) 4 + 0,5 ( 9,0178) = 3,54 + 0,556q +,53 kg = 5,51 + 0,556q kg 1 0,9DL j + 0,5H Q y6 = ( y ) 1 1 = (0,9 ( 5,56 + 0,951q )) 4 + 0,5 ( 7,7385) = 10, ,71q + 6,935 kg = 16, ,71q kg 110 Universitas Kristen Maranatha

11 Tabel L1.1 Kombinasi Pembebanan No Kombinasi Beban M (kg.m) Q (Kg) Arah Arah y Arah Arah y 1 1,4DL 5, ,865q 15,568 +,663q 5, ,865q 15,568 +,663q 1, DL+1,6 L a +0,5 (La or H) ( 19, ,7416q ) ( 60,897 +,84q ) ,1854q 37,1 +,8q 3 1, DL+1,6 L a +0,8 WL 53,78 + 0,7416q 165, q 9,06 + 0,1854q 89,49 +,8q 4 1, DL+1,3 WL+0,5 H a 8, ,7416q 7,13 +,84q 6,59 + 0,185q 0,8 +,8q 5 1, DL+0,8 W+1,6 H a 18,76 + 0,74q 57,73 +,84q 11,55 + 0,1854q 35,535 +,8q 6 0,9DL +1,3 WL+0,5 H a 7, ,556q 3, ,71q 5,51 + 0,556q 16, ,71q Dalam perhitungan beban terfaktor yang menentukan yaitu kombinasi 3 terbesar: M = 53,78 + 0,7416q kgm My = 165, q kgm Q = 9,06 + 0,1854q kg Qy = 89,49 +,8q kg 111 Universitas Kristen Maranatha

12 LAMPIRAN II VERIFIKASI SOFTWARE L.1 Verifikasi Software Untuk memvalidasi hasil dengan menggunakan profil frame dengan area maka pada Lampiran II ini disertakan hasil perhitungan dengan SAP000, dengan tinjauan studi kasus portal. Secara umum dapat disimpulkan bahwa hasil ga dalam maupun tegangan valid. Diketahui struktur : B = 0, m h = 0, m L = 3 m p = 100 kg H1 = 8 m I = 0,00096 m 4 H = 4 m E = kg/m 100 kg Dengan Menggunakan frame pada program SAP000 didapatkan ga tumpuan sebagai berikut 11 Universitas Kristen Maranatha

13 Gambar L.1 Reaksi Tumpuan Frame Pada Perletakkan Jepit Rol Pada perletakan jepit didapatkan hasil V = 100 kg M = 61,079 kgm H = 17,59 kg Pada perletakan roll didapatkan hasil H = 17,6 kg Dengan Menggunakan area pada program SAP000 didapatkan ga tumpuan sebagai berikut Gambar L. Reaksi Tumpuan Area Pada Perletakkan Jepit Rol 113 Universitas Kristen Maranatha

14 Tabel L..1 Hasil Reaksi Tumpuan Jepit Pada Area V 1 = 301 kg H 1 = -557,70 kg V = 37,84 kg H = 04,87 kg V 3 = -38,83 kg H 3 = 369, kg V total =100,01 kg H total = 16,39 kg Untuk tumpuan rol didapatkan hasil reaksi tumpuan H sebesar 16,39 kg Untuk memvalidasi tegangan dilakukan dengan cara sebagai berikut : Gambar L.3 Hasil Momen Maksimum Pada Frame Dari Gambar L.3 didapatkan momen maksimum sebesar -79,66 kgm maka dapat dihitung tegangan pada daerah dimana momen maksimum terjadi yaitu dengan cara : M Y σ 11= I Dimana : y = 0,1 m dan I = 1, kgm 4 M Y 79,66 0,1 σ = = = 59759,933 kgm 11 4 I 1, Dan untuk pembacaan tegangan dari area didapatkan dari tegangan lentur s11 pada SAP Universitas Kristen Maranatha

15 Gambar L.4 Tegangan S11 pada SAP000 Melalui Gambar L.4 didapatkan hasil tegangan pada area sebesar 54648,164 kgm dan dengan perhitungan manual dari hasil frame sebesar 59759,933 kgm maka dapat disimpulkan bahwa hasil frame dan area pada SAP000 valid. 115 Universitas Kristen Maranatha

16 LAMPIRAN III PERENCANAAN SAMBUNGAN Baja BALOK KE BALOK (a) Sambungan Baja Balok Ke Balok (b) Tegangan Lentur S 11 Balok (c) Tegangan Normal S 1 Balok (d) Detail Sambungan Baja Gambar L3.1 Sambungan Baja 116 Universitas Kristen Maranatha

17 M Y σ 11= I σ 11 I M = Y 4 1, = = 86791,48 kgmm 175 Mu = 867,914 Kgm S 1 = 0,306 kg/mm A = 6314 mm P = S 1 A = 193,084 kg h` = tinggi profil tebal flange = = 339 mm Asumsi menggunakan baut Ø16 mm (jumlah baut diasumsikan terlebih dahulu) SAP000 Mu ma = 867,914 Kgm Vu ma = 193,084 Kg Baut terhadap geser : u Vd = ffv n = φ f r 1 f b Ab A b = ¼ π D = = 00,96 mm Vd = f V = ,96 = 49737,6 N = 4973,76 kg f n Baut terhadap tumpu : R d=φf R n=.4 φf db t p fu R d = (16+) = N = 1384 Kg Dari nilai V d dan R d diambil nilai yang paling kecil untuk menentukan nilai kekuatan yaitu V d 4973,76 Kg 117 Universitas Kristen Maranatha

18 akibat ga geser = 193,084 N / 4 = 483,01 N 4973,76 Kg > 483,01 Kg Baut terhadap tarik : T = φ 0.75f A b d f u b = ¼ π d = 9358 N = 935,8 Kg Pelat Penyambung : Pelat Penyambung Badan t = 10 mm Syarat yang harus dipenuhi ; Vu < Φ.(0.6 fu) An An = ( 6314 (16+).10) = 580 mm Φ.(0.6 fu) An = 0.75.( ).580 = N > Vu = 1930,84 N Pelat penyambung sap : t = 17 cm Ga tarik yang harus dipikul : Tu = Mu / h` Tu = ,8/ 339 = 5583,817 N Syarat yang harus dipenuhi : Tu < Φ.Ag.fy 5583,817 < 0.9 ( ) 40 = N Tu < Φ.An.fu 5583,817 < 0.75 ( (16+).10).370 = N 118 Universitas Kristen Maranatha

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB IV ANALISA PERHITUNGAN

BAB IV ANALISA PERHITUNGAN BAB IV ANALISA PERHITUNGAN 4.1 PERHITUNGAN METODE ASD 4.1.1 Perhitungan Gording Data perencanaan: Jenis baja : Bj 41 Jenis atap : genteng Beban atap : 60 kg/m 2 Beban hujan : 20 kg/m 2 Beban hujan : 100

Lebih terperinci

BAB I. Perencanaan Atap

BAB I. Perencanaan Atap BAB I Perencanaan Atap 1. Rencana Gording Data perencanaan atap : Penutup atap Kemiringan Rangka Tipe profil gording : Genteng metal : 40 o : Rangka Batang : Kanal C Mutu baja untuk Profil Siku L : BJ

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

PERENCANAAN PEMBANGUNAN GEDUNG PARKIR UNISMA BEKASI DENGAN MENGGUNAKAN STRUKTUR BAJA

PERENCANAAN PEMBANGUNAN GEDUNG PARKIR UNISMA BEKASI DENGAN MENGGUNAKAN STRUKTUR BAJA 25 PERENCANAAN PEMBANGUNAN GEDUNG PARKIR UNISMA BEKASI DENGAN MENGGUNAKAN STRUKTUR BAJA Nana Suryana 1), Eko Darma 2), Fajar Prihesnanto 3) 1,2,3) Teknik Sipil Universitas Islam 45 Bekasi Jl. Cut Mutia

Lebih terperinci

LAMPIRAN 1 SURAT KETERANGAN TUGAS AKHIR

LAMPIRAN 1 SURAT KETERANGAN TUGAS AKHIR LAMPIRAN 1 SURAT KETERANGAN TUGAS AKHIR Sesuai dengan persetujuan dari ketua Jurusan Teknik Sipil, Fakultas Teknik Universitas Kristen Maranatha, melalui surat No.1245/TA/FTS/UKM/II/2011 tanggal 7 Februari

Lebih terperinci

BAB VII PENUTUP 7.1 Kesimpulan

BAB VII PENUTUP 7.1 Kesimpulan BAB VII PENUTUP 7.1 Kesimpulan Dari keseluruhan pembahasan yang telah diuraikan merupakan hasil dari perhitungan perencanaan struktur gedung Fakultas Teknik Informatika ITS Surabaya dengan metode SRPMM.

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun beban

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN JURUSAN DIPLOMA IV TEKNIK SIPIL FTSP ITS SURABAYA MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO Oleh : M. ZAINUDDIN 3111 040 511 Dosen Pembimbing

Lebih terperinci

Perhitungan Struktur Bab IV

Perhitungan Struktur Bab IV Permodelan Struktur Bored pile Perhitungan bore pile dibuat dengan bantuan software SAP2000, dimensi yang diinput sesuai dengan rencana dimensi bore pile yaitu diameter 100 cm dan panjang 20 m. Beban yang

Lebih terperinci

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka:

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: BAB VIII SAMBUNGAN MOMEN DENGAN PAKU KELING/ BAUT Momen luar M diimbangi oleh

Lebih terperinci

Contoh Soal 1: Sambungan Sebidang/Tipe Tumpu Jawab :

Contoh Soal 1: Sambungan Sebidang/Tipe Tumpu Jawab : Contoh Soal 1: Sambungan Sebidang/Tipe Tumpu Suatu sambungan pelat ukuran 250 x 12 dengan baut tipe tumpu Ø25 seperti tergambar. Bila pelat dari baja BJ37 dan baut dari baja BJ50, pembuatan lubang dengan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi saat ini semakin berkembang pesat, meningkatnya berbagai kebutuhan manusia akan pekerjaan konstruksi menuntut untuk terciptanya inovasi dan kreasi

Lebih terperinci

fc ' = 2, MPa 2. Baja Tulangan diameter < 12 mm menggunakan BJTP (polos) fy = 240 MPa diameter > 12 mm menggunakan BJTD (deform) fy = 400 Mpa

fc ' = 2, MPa 2. Baja Tulangan diameter < 12 mm menggunakan BJTP (polos) fy = 240 MPa diameter > 12 mm menggunakan BJTD (deform) fy = 400 Mpa Peraturan dan Standar Perencanaan 1. Peraturan Perencanaan Tahan Gempa untuk Gedung SNI - PPTGIUG 2000 2. Tata Cara Perhitungan Struktur Beton Untuk Gedung SKSNI 02-2847-2002 3. Tata Cara Perencanaan Struktur

Lebih terperinci

ANALISIS KUDA-KUDA BAJA DENGAN SAP (Structure Analysis Program) 2000 V.11. Ninik Paryati

ANALISIS KUDA-KUDA BAJA DENGAN SAP (Structure Analysis Program) 2000 V.11. Ninik Paryati ANALISIS KUDA-KUDA BAJA DENGAN SAP (Structure Analysis Program) 2000 V.11 Ninik Paryati Teknik Sipil Universitas Islam 45 Bekasi Jl. Cut Meutia No. 83 Bekasi Telp. 021-88344436 Email: nparyati@yahoo.com

Lebih terperinci

E. PERENCANAAN STRUKTUR SEKUNDER 3. PERENCANAAN TRAP TRIBUN DIMENSI

E. PERENCANAAN STRUKTUR SEKUNDER 3. PERENCANAAN TRAP TRIBUN DIMENSI 1.20 0.90 0.90 1.20 0.90 0.45 0. E. PERENCANAAN STRUKTUR SEKUNDER. PERENCANAAN TRAP TRIUN DIMENSI 0.0 1.20 0.90 0.12 TRAP TRIUN PRACETAK alok L : balok 0cm x 45cm pelat sayap 90cm x 12cm. Panjang bentang

Lebih terperinci

PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA

PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA SEMINAR TUGAS AKHIR PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA OLEH : AHMAD FARUQ FEBRIYANSYAH 3107100523 DOSEN PEMBIMBING : Ir.

Lebih terperinci

TAMPAK DEPAN RANGKA ATAP MODEL 3

TAMPAK DEPAN RANGKA ATAP MODEL 3 TUGAS STRUKTUR BAJA 11 Bangunan gedung dengan struktur atap dibuat dengan struktur rangka baja. Bentang struktur bangunan, beban gravitasi, beban angin dan mutu bahan, dijelaskan pada data teknis berikut.

Lebih terperinci

BAB IV PERMODELAN DAN ANALISIS STRUKTUR

BAB IV PERMODELAN DAN ANALISIS STRUKTUR BAB IV PERMODELAN DAN ANALISIS STRUKTUR 4.1 Permodelan Elemen Struktur Di dalam tugas akhir ini permodelan struktur dilakukan dalam 2 model yaitu model untuk pengecekan kondisi eksisting di lapangan dan

Lebih terperinci

PERHITUNGAN PANJANG BATANG

PERHITUNGAN PANJANG BATANG PERHITUNGAN PANJANG BATANG E 3 4 D 1 F 2 14 15 5 20 A 1 7 C H 17 13 8 I J 10 K 16 11 L G 21 12 6 B 200 200 200 200 200 200 1200 13&16 0.605 14&15 2.27 Penutup atap : genteng Kemiringan atap : 50 Bahan

Lebih terperinci

Tugas Besar Struktur Bangunan Baja 1. PERENCANAAN ATAP. 1.1 Perhitungan Dimensi Gording

Tugas Besar Struktur Bangunan Baja 1. PERENCANAAN ATAP. 1.1 Perhitungan Dimensi Gording 1.1 Perhitungan Dimensi Gording 1. PERENCANAAN ATAP 140 135,84 cm 1,36 m. Direncanakan gording profil WF ukuran 100x50x5x7 A = 11,85 cm 2 tf = 7 mm Zx = 42 cm 2 W = 9,3 kg/m Ix = 187 cm 4 Zy = 4,375 cm

Lebih terperinci

Penyelesaian : Penentuan beban kerja (Peraturan Pembebanan Indonesia untuk Gedung 1983) : Penutup atap (genteng) = 50 kg/m2

Penyelesaian : Penentuan beban kerja (Peraturan Pembebanan Indonesia untuk Gedung 1983) : Penutup atap (genteng) = 50 kg/m2 II. KONSEP DESAIN Soal 2 : Penelesaian : Penentuan beban kerja (Peraturan Pembebanan Indonesia untuk Gedung 1983) : Penutup atap (genteng) = 50 kg/m2 = 0,50 kn/m2 Air hujan = 40 - (0,8*a) dengan a = kemiringan

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PRESENTASI TUGAS AKHIR oleh : PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 LATAR BELAKANG SMA Negeri 17 Surabaya merupakan salah

Lebih terperinci

ANALISIS PYLON TINGGI BETON BERTULANG PADA JEMBATAN CABLE STAYED TERHADAP BEBAN ANGIN

ANALISIS PYLON TINGGI BETON BERTULANG PADA JEMBATAN CABLE STAYED TERHADAP BEBAN ANGIN ANALISIS PYLON TINGGI BETON BERTULANG PADA JEMBATAN CABLE STAYED TERHADAP BEBAN ANGIN Tiara Egamadya Rachmanda NRP : 0521015 Pembimbing : Olga Pattipawaej, Ph.D Pembimbing Pendamping : Yosafat Aji Pranata,

Lebih terperinci

Tugas Akhir Perencanaan Struktur Salon, fitness & Spa 2 lantai TUGAS AKHIR. Disusun Oleh : Enny Nurul Fitriyati I

Tugas Akhir Perencanaan Struktur Salon, fitness & Spa 2 lantai TUGAS AKHIR. Disusun Oleh : Enny Nurul Fitriyati I Tugas Akhir Perencanaan Struktur Salon, fitness & Spa lantai A- TUGAS AKHIR PERENCANAAN STRUKTUR SALON FITNES DAN SPA LANTAI Disusun Oleh : Enny Nurul Fitriyati I.85060 PROGRAM DIPLOMA III TEKNIK SIPIL

Lebih terperinci

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK SEMINAR TUGAS AKHIR JULI 2011 MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK Oleh : SETIYAWAN ADI NUGROHO 3108100520

Lebih terperinci

MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK

MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK SEMINAR TUGAS AKHIR MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK OLEH : FIRENDRA HARI WIARTA 3111 040 507 DOSEN PEMBIMBING : Ir. IBNU PUDJI RAHARDJO, MS JURUSAN

Lebih terperinci

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON 03-2847-2002 DAN SNI GEMPA 03-1726-2002 Rinto D.S Nrp : 0021052 Pembimbing : Djoni Simanta,Ir.,MT FAKULTAS TEKNIK JURUSAN

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN 2 LANTAI

PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN 2 LANTAI PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN LANTAI Oleh: Fredy Fidya Saputra I.8505014 FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET PROGRAM D III JURUSAN TEKNIK SIPIL SURAKARTA 009 BAB I PENDAHULUAN 1.1 Latar

Lebih terperinci

DAFTAR PUSTAKA. Analisis Harga Satuan Pekerjaan Kota Bandung. Dinas Tata Kota Propinsi Jawa Barat

DAFTAR PUSTAKA. Analisis Harga Satuan Pekerjaan Kota Bandung. Dinas Tata Kota Propinsi Jawa Barat DAFTAR PUSTAKA Analisis Harga Satuan Pekerjaan Kota Bandung. Dinas Tata Kota Propinsi Jawa Barat. 2004. Catatan Kuliah Konstruksi Kayu Dr. Ir Saptahari Soegiri, MP. Catatan Kuliah Manajemen Konstruksi

Lebih terperinci

CAHYA PUTRI KHINANTI Page 3

CAHYA PUTRI KHINANTI Page 3 BAB II PERHITUNGAN KAP A. Perhitungan Gording Gambar 2.1 Rencana Kap 1. Data Perhitungan Bentang kuda kuda = 10 m Jarak antar kuda-kuda = 4 m Kemiringan atap = 20 Berat penutup atap = 10 kg/m² (Seng Gelombang)

Lebih terperinci

PERBANDINGAN STRUKTUR BETON BERTULANG DENGAN STRUKTUR BAJA DARI ELEMEN BALOK KOLOM DITINJAU DARI SEGI BIAYA PADA BANGUNAN RUMAH TOKO 3 LANTAI

PERBANDINGAN STRUKTUR BETON BERTULANG DENGAN STRUKTUR BAJA DARI ELEMEN BALOK KOLOM DITINJAU DARI SEGI BIAYA PADA BANGUNAN RUMAH TOKO 3 LANTAI PERBANDINGAN STRUKTUR BETON BERTULANG DENGAN STRUKTUR BAJA DARI ELEMEN BALOK KOLOM DITINJAU DARI SEGI BIAYA PADA BANGUNAN RUMAH TOKO 3 LANTAI Wildiyanto NRP : 9921013 Pembimbing : Ir. Maksum Tanubrata,

Lebih terperinci

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR 3.. Denah Bangunan Dalam tugas akhir ini penulis merancang suatu struktur bangunan dengan denah seperti berikut : Gambar 3.. Denah bangunan 33 34 Dilihat dari bentuk

Lebih terperinci

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS BAB III STUDI KASUS Pada bagian ini dilakukan 2 pemodelan yakni : pemodelan struktur dan juga pemodelan beban lateral sebagai beban gempa yang bekerja. Pada dasarnya struktur yang ditinjau adalah struktur

Lebih terperinci

Modifikasi Struktur Jetty pada Dermaga PT. Petrokimia Gresik dengan Metode Beton Pracetak

Modifikasi Struktur Jetty pada Dermaga PT. Petrokimia Gresik dengan Metode Beton Pracetak TUGAS AKHIR RC-09 1380 Modifikasi Struktur Jetty pada Dermaga PT. Petrokimia Gresik dengan Metode Beton Pracetak Penyusun : Made Peri Suriawan 3109.100.094 Dosen Pembimbing : 1. Ir. Djoko Irawan MS, 2.

Lebih terperinci

ANALISA DIMENSI DAN STRUKTUR ATAP MENGGUNAKAN METODE DAKTILITAS TERBATAS

ANALISA DIMENSI DAN STRUKTUR ATAP MENGGUNAKAN METODE DAKTILITAS TERBATAS Analisa Dimensi dan Struktur Atap Menggunakan Metode Daktilitas Terbatas 1 - ANALISA DIMENSI DAN STRUKTUR ATAP MENGGUNAKAN METODE DAKTILITAS TERBATAS M. Ikhsan Setiawan ABSTRAK Sttruktur gedung Akademi

Lebih terperinci

Studi Geser pada Balok Beton Bertulang

Studi Geser pada Balok Beton Bertulang Dosen Pembimbing : 1. Tavio, ST, MT, Ph.D 2. Prof.Ir. Priyo Suprobo, MS, Ph.D 3. Ir. Iman Wimbadi, MS Oleh : Nurdianto Novansyah Anwar 3107100046 Studi Geser pada Balok Beton Bertulang Pendahuluan Tinjauan

Lebih terperinci

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan.

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. II. KONSEP DESAIN A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. Beban yang bekerja pada struktur bangunan dapat bersifat permanen (tetap)

Lebih terperinci

perpustakaan.uns.ac.id digilib.uns.ac.id commit to user

perpustakaan.uns.ac.id digilib.uns.ac.id commit to user 1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Pesatnya perkembangan dunia teknik sipil menuntut bangsa Indonesia untuk dapat menghadapi segala kemajuan dan tantangan. Hal itu dapat terpenuhi apabila sumber daya

Lebih terperinci

PENGUJIAN GESER BALOK BETON BERTULANG DENGAN MENGGUNAKAN SENGKANG KONVENSIONAL

PENGUJIAN GESER BALOK BETON BERTULANG DENGAN MENGGUNAKAN SENGKANG KONVENSIONAL PENGUJIAN GESER BALOK BETON BERTULANG DENGAN MENGGUNAKAN SENGKANG KONVENSIONAL Muhammad Igbal M.D.J. Sumajouw, Reky S. Windah, Sesty E.J. Imbar Fakultas Teknik, Jurusan Teknik Sipil, Universitas Sam Ratulangi

Lebih terperinci

Sambungan diperlukan jika

Sambungan diperlukan jika SAMBUNGAN Batang Struktur Baja Sambungan diperlukan jika a. Batang standar kurang panjang b. Untuk meneruskan gaya dari elemen satu ke elemen yang lain c. Sambungan truss d. Sambungan sebagai sendi e.

Lebih terperinci

Gambar Gambar Perencanaan Tangga Tampak Samping. Ukuran antrede = 2 optrede + 1antrede = 65 A = 65-2(17,5)

Gambar Gambar Perencanaan Tangga Tampak Samping. Ukuran antrede = 2 optrede + 1antrede = 65 A = 65-2(17,5) 66 3.3 Perhitungan Tangga 3.3.1 Perencanaan Ukuran Lantai Dasar ± 0,00 Lantai 1 ± 4,20 30 4200 17,5 3300 2150 Gambar 3.3.1 Gambar Perencanaan Tangga Tampak Samping Maka tinggi bordes = = 2,10 Ukuran optrede

Lebih terperinci

Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol

Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol HUKUM I NEWTON Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol ΣF = 0 maka benda tersebut : - Jika dalam keadaan diam akan tetap diam, atau - Jika dalam keadaan bergerak lurus

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

BAB 4 PENGUJIAN LABORATORIUM

BAB 4 PENGUJIAN LABORATORIUM BAB 4 PENGUJIAN LABORATORIUM Uji laboratorium dilakukan untuk mengetahui kekuatan dan perilaku struktur bambu akibat beban rencana. Pengujian menjadi penting karena bambu merupakan material yang tergolong

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN III.1 Metodologi Umum Secara garis besar metode penyelesaian tugas akhir ini tergambar dalam flow chart dibawah ini: Mulai Analisa 1.1 Analisa 1.2 Analisa 1.3 Mengumpulkan

Lebih terperinci

BAB IV ANALISA STRUKTUR GEDUNG. Berat sendiri pelat = 156 kg/m 2. Berat plafond = 18 kg/m 2. Berat genangan = 0.05 x 1000 = 50 kg/m 2

BAB IV ANALISA STRUKTUR GEDUNG. Berat sendiri pelat = 156 kg/m 2. Berat plafond = 18 kg/m 2. Berat genangan = 0.05 x 1000 = 50 kg/m 2 BAB IV ANALISA STRUKTUR GEDUNG. Pembebanan a. Beban ati (DL) Beba mati pelat atap : Berat sendiri pelat = 56 kg/m Berat plaond = 8 kg/m Berat genangan = 0.05 000 = 50 kg/m DL = kg/m Beban mati untuk lantai

Lebih terperinci

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( ) TUGAS AKHIR STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7 Oleh : RACHMAWATY ASRI (3109 106 044) Dosen Pembimbing: Budi Suswanto, ST. MT. Ph.D

Lebih terperinci

LEMBAR PENGESAHAN PERENCANAAN GEDUNG PERUM PERHUTANI UNIT I JAWA TENGAH, SEMARANG

LEMBAR PENGESAHAN PERENCANAAN GEDUNG PERUM PERHUTANI UNIT I JAWA TENGAH, SEMARANG LEMBAR PENGESAHAN PERENCANAAN GEDUNG PERUM PERHUTANI UNIT I JAWA TENGAH, SEMARANG (Design of Perum Perhutani Unit I Central Java Building, Semarang ) Disusun Oleh : ADE IBNU MALIK L2A3 02 095 SHINTA WENING

Lebih terperinci

MENGGAMBAR RENCANA PELAT LANTAI BANGUNAN

MENGGAMBAR RENCANA PELAT LANTAI BANGUNAN MENGGAMBAR RENCANA PELAT LANTAI BANGUNAN mbaran konstruksi beton untuk keperluan pelaksanaan pembangunan gedung sangat berperan. Untuk itu perlu dikuasai oleh seseorang yang berkecimpung dalam pelaksanaan

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

Gambar 5.1. Proses perancangan

Gambar 5.1. Proses perancangan 5. PERANCANGAN SAMBUNGAN BAMBU 5.1. Pendahuluan Hasil penelitian tentang sifat fisik dan mekanik bambu yang telah dilakukan, menunjukkan bahwa bambu, khususnya bambu tali, cukup baik untuk digunakan sebagai

Lebih terperinci

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem BAB III METODOLOGI PENELITIAN 3.1 Alur Penelitian Dalam penelitian ini akan dilakukan analisis sistem struktur penahan gempa yang menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan

Lebih terperinci

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal BAB III LANDASAN TEORI 3.1. Analisis Penopang 3.1.1. Batas Kelangsingan Batas kelangsingan untuk batang yang direncanakan terhadap tekan dan tarik dicari dengan persamaan dari Tata Cara Perencanaan Struktur

Lebih terperinci

BAB V PENULANGAN BAB V PENULANGAN. 5.1 Tulangan Pada Pelat. Desain penulangan pelat dihitung berdasarkan beban yang dipikul oleh

BAB V PENULANGAN BAB V PENULANGAN. 5.1 Tulangan Pada Pelat. Desain penulangan pelat dihitung berdasarkan beban yang dipikul oleh BAB V PENULANGAN 5.1 Tulangan Pada Pelat Desain penulangan pelat dihitung berdasarkan beban yang dipikul oleh pelat itu sendiri. Setelah mendapat nilai luasan tulangan yang dibutuhkan maka jumlah tulangan

Lebih terperinci

Mencari garis netral, yn. yn=1830x200x x900x x x900=372,73 mm

Mencari garis netral, yn. yn=1830x200x x900x x x900=372,73 mm B. Perhitungan Sifat Penampang Balok T Interior Menentukan lebar efektif balok T B ef = ¼. bentang balok = ¼ x 19,81 = 4,95 m B ef = 1.tebal pelat + b w = 1 x 200 + 400 = 00 mm =, m B ef = bentang bersih

Lebih terperinci

LAPORAN PERHITUNGAN STRUKTUR

LAPORAN PERHITUNGAN STRUKTUR LAPORAN PERHITUNGAN STRUKTUR Disusun oleh : Irawan Agustiar, ST DAFTAR ISI DATA PEMBEBANAN METODE PERHITUNGAN DAN SPESIFIKASI TEKNIS A. ANALISA STRUKTUR 1. Input : Bangunan 3 lantai 2 Output : Model Struktur

Lebih terperinci

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6.

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6. LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan Bab 6 Penulangan Bab 6 Penulangan Perancangan Dermaga dan Trestle Tipe

Lebih terperinci

BAB V PEMBAHASAN. terjadinya distribusi gaya. Biasanya untuk alasan efisiensi waktu dan efektifitas

BAB V PEMBAHASAN. terjadinya distribusi gaya. Biasanya untuk alasan efisiensi waktu dan efektifitas BAB V PEMBAHASAN 5.1 Umum Pada gedung bertingkat perlakuan stmktur akibat beban menyebabkan terjadinya distribusi gaya. Biasanya untuk alasan efisiensi waktu dan efektifitas pekerjaan dilapangan, perencana

Lebih terperinci

Bab 6 DESAIN PENULANGAN

Bab 6 DESAIN PENULANGAN Bab 6 DESAIN PENULANGAN Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan 6.1 Teori Dasar Perhitungan Kapasitas Lentur

Lebih terperinci

STUDI PENGGUNAAN BAJA RINGAN SEBAGAI KOLOM PADA RUMAH SEDERHANA TAHAN GEMPA PRAYOGA NUGRAHA NRP

STUDI PENGGUNAAN BAJA RINGAN SEBAGAI KOLOM PADA RUMAH SEDERHANA TAHAN GEMPA PRAYOGA NUGRAHA NRP STUDI PENGGUNAAN BAJA RINGAN SEBAGAI KOLOM PADA RUMAH SEDERHANA TAHAN GEMPA PRAYOGA NUGRAHA NRP 3105 100 080 Dosen Pembimbing : Endah Wahyuni, ST.MSc.PhD Ir. Isdarmanu MSc JURUSAN TEKNIK SIPIL Fakultas

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Salah satu tujuan pendidikan Program Diploma III Fakultas Teknik Universitas Sebelas Maret adalah menciptakan Ahli madya yang terampil dan profesional serta kompeten

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 Perencanaan Material Baja Perlu ditetapkan kriteria untuk menilai tercapai atau tidaknya penyelesaian optimum Biaya minimum Berat minimum Bahan minimum Waktu konstruksi

Lebih terperinci

DIAGRAM BAGAN ALIR PENELITIAN

DIAGRAM BAGAN ALIR PENELITIAN LAMPIRAN 86 Lampiran 1 87 DIAGRAM BAGAN ALIR PENELITIAN Mulai Data Hasil Uji Eksperimental - Tegangan Geser di Titik E - Regangan Geser di Titik E - Lendutan Maksimum Perhitungan Analitis (Perhitungan

Lebih terperinci

PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN BIAYA (RAB) GEDUNG PERPUSTAKAAN 2 LANTAI

PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN BIAYA (RAB) GEDUNG PERPUSTAKAAN 2 LANTAI digilib.uns.ac.id PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN BIAYA (RAB) GEDUNG PERPUSTAKAAN 2 LANTAI TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Ahli Madya pada Program D-III

Lebih terperinci

BAB 1 PERHITUNGAN PANJANG BATANG

BAB 1 PERHITUNGAN PANJANG BATANG BAB 1 PERHITUNGAN PANJANG BATANG A4 A5 A3 A6 T4 A1 T1 A2 D1 T2 D2 T3 D3 D4 T5 D5 T6 A7 D6 T7 A8 A 45 B1 B2 B3 B4 B5 B6 B7 B8 B 30 1.1 Perhitungan Secara Matematis Panjang Batang Bawah B 1 B 2 B 3 B 4 B

Lebih terperinci

BAB IV ANALISA STRUKTUR

BAB IV ANALISA STRUKTUR BAB IV ANALISA STRUKTUR 4.1 Data-data Struktur Pada bab ini akan membahas tentang analisa struktur dari struktur bangunan yang direncanakan serta spesifikasi dan material yang digunakan. 1. Bangunan direncanakan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur.

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Balok Lentur Pertemuan 11, 12 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

BAB IV ANALISIS A1=1.655 L2=10. Gambar 4.1 Struktur 1/2 rangka atap dengan 3 buah kuda-kuda

BAB IV ANALISIS A1=1.655 L2=10. Gambar 4.1 Struktur 1/2 rangka atap dengan 3 buah kuda-kuda BAB IV ANAISIS 4.. ANAISIS PEMBEBANAN 4.3.4. Beban Mati (D) Beban mati adalah berat dari semua bagian dari suatu struktur atap ang bersifat tetap, termasuk segala unsur tambahan, penelesaian-penelesaian,

Lebih terperinci

BAB 4 STUDI KASUS. Sandi Nurjaman ( ) 4-1 Delta R Putra ( )

BAB 4 STUDI KASUS. Sandi Nurjaman ( ) 4-1 Delta R Putra ( ) BAB 4 STUDI KASUS Struktur rangka baja ringan yang akan dianalisis berupa model standard yang biasa digunakan oleh perusahaan konstruksi rangka baja ringan. Model tersebut dianggap memiliki performa yang

Lebih terperinci

BAB IV ANALISIS DAN DESAIN

BAB IV ANALISIS DAN DESAIN BAB IV ANALISIS DAN DESAIN 4.1 Data Penampang Penampang yang akan ditelusuri merupakan penampang yang dimodelkan dengan pemodelan balok sederhana diatas dua peletakan, sebelum melakukan perhitungan telah

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

PERENCANAAN ULANG GEDUNG PERKULIAHAN POLITEKNIK ELEKTRONIKA NEGERI SURABAYA (PENS) DENGAN MENGGUNAKAN METODE PRACETAK

PERENCANAAN ULANG GEDUNG PERKULIAHAN POLITEKNIK ELEKTRONIKA NEGERI SURABAYA (PENS) DENGAN MENGGUNAKAN METODE PRACETAK JURNAL TEKNIK POMITS Vol. 2, No. 1, (2014) 1-6 1 PERENCANAAN ULANG GEDUNG PERKULIAHAN POLITEKNIK ELEKTRONIKA NEGERI SURABAYA (PENS) DENGAN MENGGUNAKAN METODE PRACETAK Whisnu Dwi Wiranata, I Gusti Putu

Lebih terperinci

BAB I PENDAHULUAN Konsep Perencanaan Struktur Beton Suatu struktur atau elemen struktur harus memenuhi dua kriteria yaitu : Kuat ( Strength )

BAB I PENDAHULUAN Konsep Perencanaan Struktur Beton Suatu struktur atau elemen struktur harus memenuhi dua kriteria yaitu : Kuat ( Strength ) BAB I PENDAHULUAN 1. Data Teknis Bangunan Data teknis dari bangunan yang akan direncanakan adalah sebagai berikut: a. Bangunan gedung lantai tiga berbentuk T b. Tinggi bangunan 12 m c. Panjang bangunan

Lebih terperinci

Jl. Banyumas Wonosobo

Jl. Banyumas Wonosobo Perhitungan Struktur Plat dan Pondasi Gorong-Gorong Jl. Banyumas Wonosobo Oleh : Nasyiin Faqih, ST. MT. Engineering CIVIL Design Juli 2016 Juli 2016 Perhitungan Struktur Plat dan Pondasi Gorong-gorong

Lebih terperinci

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING )

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) [C]2011 : M. Noer Ilham Gaya tarik pada track stank akibat beban terfaktor, T u = 50000 N 1. DATA BAHAN PLAT SAMBUNG DATA PLAT SAMBUNG Tegangan leleh baja, f

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : KEVIN IMMANUEL

Lebih terperinci

Kata Kunci : Tegangan batang tarik, Beban kritis terhadap batang tekan

Kata Kunci : Tegangan batang tarik, Beban kritis terhadap batang tekan ANALISIS BAJA RINGAN SEBAGAI BAHAN KONSTRKSI ATAP PADA PEMBANGUNAN RUMAH DINAS BANK INDONESIA PALANGKA RAYA AFRIJONI, ST Alumni Mahasiswa Program Studi Teknik Sipil Universitas Muhammadiyah Palangka Raya

Lebih terperinci

BAB III METODE DESAIN DAN PERENCANAAN RANGKA BALOK BAJA

BAB III METODE DESAIN DAN PERENCANAAN RANGKA BALOK BAJA BAB III METODE DESAIN DAN PERENCANAAN RANGKA BALOK BAJA 3.1 Diagram Alir Perencanaan Kuda kuda Mulai KUDA KUDA TYPE 1 KUDA KUDA TYPE 2 KUDA KUDA TYPE 3 PRE/DESIGN GORDING PEMBEBANAN PRE/DESIGN GORDING

Lebih terperinci

4.3.5 Perencanaan Sambungan Titik Buhul Rangka Baja Dasar Perencanaan Struktur Beton Bertulang 15

4.3.5 Perencanaan Sambungan Titik Buhul Rangka Baja Dasar Perencanaan Struktur Beton Bertulang 15 3.3 Dasar Perencanaan Struktur Beton Bertulang 15 3.3.1 Peraturan-Peraturan 15 3.3.2 Pembebanan ]6 3.3.3 Analisis Struktur 18 3.3.4 Perencanaan Pelat 18 3.3.5 Perencanaan Struktur Portal Beton Bertulang

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung

BAB III METODOLOGI PERANCANGAN. Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung BAB III METODOLOGI PERANCANGAN 3.1 Data Perencanaan Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung bertingkat 5 lantai dengan bentuk piramida terbalik terpancung menggunakan struktur

Lebih terperinci

PERBANDINGAN BIAYA STRUKTUR BAJA NON-PRISMATIS, CASTELLATED BEAM, DAN RANGKA BATANG

PERBANDINGAN BIAYA STRUKTUR BAJA NON-PRISMATIS, CASTELLATED BEAM, DAN RANGKA BATANG PERBANDINGAN BIAYA STRUKTUR BAJA NON-PRISMATIS, CASTELLATED BEAM, DAN RANGKA BATANG Jason Chris Kassidy 1, Jefry Yulianus Seto 2, Hasan Santoso 3 ABSTRAK : Pesatnya perkembangan dalam dunia konstruksi

Lebih terperinci

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450 PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI 02-1726-2002 DAN FEMA 450 Eben Tulus NRP: 0221087 Pembimbing: Yosafat Aji Pranata, ST., MT JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PUSAT KEGIATAN MAHASISWA POLITEKNIK NEGERI MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM)

PERENCANAAN STRUKTUR GEDUNG PUSAT KEGIATAN MAHASISWA POLITEKNIK NEGERI MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) PERENCANAAN STRUKTUR GEDUNG PUSAT KEGIATAN MAHASISWA POLITEKNIK NEGERI MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) Oleh : TRIA CIPTADI 3111 030 013 M. CHARIESH FAWAID 3111 030 032 Dosen

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

ANALISA PELAT LANTAI DUA ARAH METODE KOEFISIEN MOMEN TABEL PBI-1971

ANALISA PELAT LANTAI DUA ARAH METODE KOEFISIEN MOMEN TABEL PBI-1971 ANALISA PELAT LANTAI DUA ARAH METODE KOEFISIEN MOMEN TABEL PBI-97 Modul-3 Sistem lantai yang memiliki perbandingan bentang panjang terhadap bentang pendek berkisar antara,0 s.d. 2,0 sering ditemui. Ada

Lebih terperinci

GEDUNG ASRAMA DUA LANTAI

GEDUNG ASRAMA DUA LANTAI digilib.uns.ac.id PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN BIAYA (RAB) GEDUNG ASRAMA DUA LANTAI TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Ahli Madya pada Program D-III Teknik

Lebih terperinci

PERENCANAAN BANGUNAN GEDUNG KULIAH DIPLOMA III FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG

PERENCANAAN BANGUNAN GEDUNG KULIAH DIPLOMA III FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG TUGAS AKHIR PERENCANAAN BANGUNAN GEDUNG KULIAH DIPLOMA III FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG Diajukan sebagai syarat untuk menempuh ujian akhir Jurusan Sipil Program Studi Diploma III Fakultas

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM. PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh

Lebih terperinci

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Konferensi Nasional Teknik Sipil 3 (KoNTekS 3) Jakarta, 6 7 Mei 2009 KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Estika 1 dan Bernardinus Herbudiman 2 1 Jurusan Teknik Sipil,

Lebih terperinci

OLEH : ANDREANUS DEVA C.B DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS

OLEH : ANDREANUS DEVA C.B DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS SEMINAR TUGAS AKHIR OLEH : ANDREANUS DEVA C.B 3110 105 030 DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS JURUSAN TEKNIK SIPIL LINTAS JALUR FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci