REGRESI LINEAR DAN ELIMINASI GAUSS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "REGRESI LINEAR DAN ELIMINASI GAUSS"

Transkripsi

1 REGRESI LINEAR DAN ELIMINASI GAUSS Penulis: Supriyanto, Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Diketahui data eksperimen tersaji dalam tabel berikut ini x i y i x i y i 1 1,3 6 8,8 3,5 7 10,1 3, 8 1,5 5,0 9 13,0 5 7, ,6 Lalu data tersebut di-plot dalam sumbu x dan y. Sekilas, kita bisa melihat bahwa data Y X yang telah di-plot tersebut memiliki pola seperti garis lurus, sehingga sebaran data tersebut dapat didekati dengan sebuah persamaan garis, yaitu a 1 x i +a 0. Artinya, kita melakukan pendekatan secara linear, dimana fungsi pendekatan-nya adalah fungsi persamaan garis yang secara umum dinyatakan sebagai berikut P(x i ) = a 1 x i + a 0 (1) Problemnya adalah berapakah nilai konstanta a 1 dan a 0 yang sedemikian rupa, sehingga posisi garis tersebut paling mendekati atau bahkan melalui titik-titik data yang telah di- 1

2 plot di atas? Dengan kata lain, sebisa mungkin y i sama dengan P(x i ) atau dapat diformulasikan sebagai y i P(x i ) = 0 () y i (a 1 x i + a 0 ) = 0 (3) dimana m = 10, sesuai dengan jumlah data yang cuma 10. Suku yang berada disebelah kiri dinamakan fungsi error, yaitu E(a 0, a 1 ) = y i (a 1 x i + a 0 ) () Semua data yang diperoleh melalui eksperimen, fungsi error-nya tidak pernah bernilai nol. Jadi, tidak pernah didapatkan garis yang berhimpit dengan semua titik data ekperimen. Namun demikian, kita masih bisa berharap agar fungsi error menghasilkan suatu nilai, dimana nilai tersebut adalah nilai yang paling minimum atau paling mendekati nol. Harapan tersebut diwujudkan oleh metode least square dengan sedikit modifikasi pada fungsi error-nya sehingga menjadi E(a 0, a 1 ) = [y i (a 1 x i + a 0 )] (5) Agar fungsi error bisa mencapai nilai minimum, maka syarat yang harus dipenuhi adalah: a i = 0 (6) dimana i = 0 dan 1, karena dalam kasus ini memang cuma ada a 0 dan a 1. Jadi mesti ada dua buah turunan yaitu: a 0 = [y i (a 1 x i + a 0 )] a 0 = 0 (7) (y i a 1 x i a 0 )( 1) = 0 (8) a 0.m + a 1 x i = y i (9)

3 dan a 1 = [y i (a 1 x i + a 0 )] a 1 = 0 (10) (y i a 1 x i a 0 )( x i ) = 0 (11) a 0 x i + a 1 x i = x i y i (1) Akhirnya persamaan (9) dan (1) dapat dicari solusinya berikut ini: a 0 = x i y i x iy i x i m ( x i ) ( x i) (13) dan a 1 = m x iy i x i y i m ( x i ) ( x i) (1) Coba anda bandingkan kedua hasil di atas dengan rumus least square yang terdapat pada buku Praktikum Fisika Dasar keluaran Departemen Fisika-UI. Mudah-mudahan sama persis. OK, berdasarkan data ekperimen yang ditampilkan pada tabel diawal catatan ini, maka didapat: dan a 0 = a 1 = Jadi, fungsi pendekatan-nya, P(x i ), adalah 385(81) 55(57, ) 10(385) (55) = 0, 360 (15) 10(57, ) 55(81) 10(385) (55) = 1, 538 (16) P(x i ) = 1, 538x i 0, 360 (17) Solusi least square dengan pendekatan persamaan garis seperti ini juga dikenal dengan nama lain yaitu regresi linear. Sedangkan nilai a 0 dan a 1 disebut koefisien regresi. Gambar di bawah ini menampilkan solusi regresi linear tersebut berikut semua titik datanya Tentu saja anda sudah bisa menduga bahwa selain regresi linear, mungkin saja terdapat regresi parabola atau quadratik dimana fungsi pendekatannya berupa persamaan parabola, yaitu: P(x i ) = a x i + a 1 x i + a 0 (18) 3

4 16 1 P(x) = 1.538*x dimana koefisien regresinya ada tiga yaitu a 0, a 1 dan a. Kalau anda menduga demikian, maka dugaan anda benar! Bahkan sebenarnya tidak terbatas sampai disitu. Secara umum, fungsi pendekatan, P(x i ), bisa dinyatakan dalam aljabar polinomial berikut ini: P(x i ) = a n x n i + a n 1x n 1 i a x i + a 1x i + a 0 (19) Namun untuk saat ini, saya tidak ingin memperluas pembahasan hingga regresi parabola, dan polinomial. Saya masih ingin melibatkan peranan metode eliminasi gauss dalam menyelesaikan problem least square seperti yang selalu saya singgung pada catatan-catatan kuliah saya yang terdahulu. Nah, kalau metode eliminasi gauss hendak digunakan untuk mencari solusi regresi linear, kita bisa mulai dari persamaan (9) dan (1), yaitu: a 0.m + a 1 x i = a 0 x i + a 1 x i = y i (0) x i y i (1) Keduanya bisa dinyatakan dalam operasi matrik: [ m m x ] [ ] i a0 x = i x i a 1 [ y ] i x iy i () Kalau anda mengikuti catatan-catatan terdahulu, pasti anda tidak asing lagi dengan dengan semua elemen-elemen matrik di atas. Semua sudah saya ulas pada catatan yang berjudul Aplikasi Elimininasi Gauss: Model Garis. Silakan anda lanjutkan perhitungan matrik tersebut hingga diperoleh koefisien regresi a 0 dan a 1. Selamat mencoba!

5 Saya cukupkan sementara sampai disini. Insya Allah akan saya sambung lagi dilain waktu. Kalau ada yang mau didiskusikan, silakan hubungi saya melalui isika.ui.ac.id. 5

METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR

METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com November 12, 2006 Suatu

Lebih terperinci

LU DECOMPOSITION (FAKTORISASI MATRIK)

LU DECOMPOSITION (FAKTORISASI MATRIK) LU DECOMPOSITION (FAKTORISASI MATRIK) Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com 5 Februari 2005 Pada semua catatan

Lebih terperinci

SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS

SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com 5 Februari 2005 Abstract

Lebih terperinci

Pertemuan 6: Metode Least Square. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014

Pertemuan 6: Metode Least Square. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Pertemuan 6: Metode Least Square Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Bagaimana mendapatkan fungsi polinomial untuk mewakili sejumlah titik data Bentuk Permasalahan Permasalahan 1

Lebih terperinci

Interpolasi Cubic Spline

Interpolasi Cubic Spline Interpolasi Cubic Spline Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com December 13, 2006 Figure 1: Fungsi f(x) dengan

Lebih terperinci

METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR

METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR Penulis: Dr. Eng. Supriyanto, M.Sc, email: supri@fisika.ui.ac.id Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Penulisan vektor-kolom Sebelum

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

INVERS MATRIK DAN ELIMINASI GAUSS

INVERS MATRIK DAN ELIMINASI GAUSS INVERS MATRIK DAN ELIMINASI GAUSS Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com 5 Februari 2005 Secara umum, sistem

Lebih terperinci

DASAR- DASAR RISET PEMASARAN

DASAR- DASAR RISET PEMASARAN EDISI KEEMPAT DASAR- DASAR RISET PEMASARAN Jilid 2 GILBERT A. CHURCHILL, JR. Bab 21 Analisis Data: Menyelidiki Hubungan TUJUAN PEMBELAJARAN 1-3 1. Menjelaskan perbedaan antara analisis regresi dan korelasi

Lebih terperinci

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Interpolasi Metode Numerik Zulhaydar Fairozal Akbar zfakbar@pens.ac.id 2017 TOPIK Pengenalan

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Solusi Persamaan Linier Simultan

Solusi Persamaan Linier Simultan Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah

Lebih terperinci

Sistem Persamaan Linier dan Matriks

Sistem Persamaan Linier dan Matriks Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua

Lebih terperinci

Metode Simpleks M U H L I S T A H I R

Metode Simpleks M U H L I S T A H I R Metode Simpleks M U H L I S T A H I R PENDAHULUAN Metode Simpleks adalah metode penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan

Lebih terperinci

Analisis Data Geofisika: Memahami Teori Inversi

Analisis Data Geofisika: Memahami Teori Inversi Analisis Data Geofisika: Memahami Teori Inversi Dr. Eng. Supriyanto, M.Sc Edisi I Departemen Fisika-FMIPA Univeristas Indonesia 007 Untuk Muflih Syamil dan Hasan Azmi... Mottoku : Tenang, Kalem dan Percaya

Lebih terperinci

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan

Lebih terperinci

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya LINEAR PROGRAMMING : METODE GRAFIK Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya terdapat dua variabel keputusan. Untuk menyelesaikan permasalahan tersebut, langkah pertama

Lebih terperinci

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

Lebih terperinci

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat! I. PETUNJUK: Untuk soal nomor sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!. Persamaan ( p + ) x ( p + ) x + ( p ) = 0, p, merupakan persamaan kuadrat dalam x untuk nilai p... p c.

Lebih terperinci

Course Note Numerical Method : Interpolation

Course Note Numerical Method : Interpolation Course Note Numerical Method : Interpolation Pengantar Interpolasi. Kalimat y = f(x), xo x xn adalah kalimat yang mengkorespondensikan setiap nilai x di dalam interval x0 x xn dengan satu atau lebih nilai-nilai

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

III. FUNGSI POLINOMIAL

III. FUNGSI POLINOMIAL III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan

Lebih terperinci

oleh : Edhy Suta tanta

oleh : Edhy Suta tanta ALGORITMA TEKNIK PENYELESAIAN PERMASALAHAN UNTUK KOMPUTASI oleh : Edhy Sutanta i KATA PENGANTAR Puji syukur kami panjatkan ke hadirat Tuhan Yang Maha Esa atas limpahan rahmat dan karunia-nya sehingga buku

Lebih terperinci

Pendahuluan. Angka penting dan Pengolahan data

Pendahuluan. Angka penting dan Pengolahan data Angka penting dan Pengolahan data Pendahuluan Pengamatan merupakan hal yang penting dan biasa dilakukan dalam proses pembelajaran. Seperti ilmu pengetahuan lain, fisika berdasar pada pengamatan eksperimen

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

PERSAMAAN & PERTIDAKSAMAAN

PERSAMAAN & PERTIDAKSAMAAN PERSAMAAN & PERTIDAKSAMAAN PERTEMUAN III Nur Edy, PhD. Tujuan Mengaplikasikan konsep persamaan dan pertidaksamaan Pokok Bahasan: Persamaan (Minggu 3 dan 4) Pertidaksamaan (Minggu 3 dan 4) Harga mutlak

Lebih terperinci

BAB IV. METODE SIMPLEKS

BAB IV. METODE SIMPLEKS BAB IV. METODE SIMPLEKS Penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan dengan memeriksa titik ekstrim (ingat kembali solusi

Lebih terperinci

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA Yuniarsi Rahayu, S.Si, M.Kom Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

Pertemuan 14. persamaan linier NON HOMOGEN

Pertemuan 14. persamaan linier NON HOMOGEN Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

BAB 2 PROGRAM LINEAR

BAB 2 PROGRAM LINEAR BAB 2 PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemenelemen yang disusun secara teratur menurut baris dan kolom berbentuk

Lebih terperinci

BAB ΙΙ LANDASAN TEORI

BAB ΙΙ LANDASAN TEORI 7 BAB ΙΙ LANDASAN TEORI Berubahnya nilai suatu variabel tidak selalu terjadi dengan sendirinya, bisa saja berubahnya nilai suatu variabel disebabkan oleh adanya perubahan nilai pada variabel lain yang

Lebih terperinci

BAB III METODE PENELITIAN. di peroleh dari Website Bank Muamlat dalam bentuk Time series tahun 2009

BAB III METODE PENELITIAN. di peroleh dari Website Bank Muamlat dalam bentuk Time series tahun 2009 17 BAB III METODE PENELITIAN 3.1. Jenis dan Sumber Data Jenis data yang digunakan dalam penelitian ini adalah data sekunder yang di peroleh dari Website Bank Muamlat dalam bentuk Time series tahun 2009

Lebih terperinci

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4 Regresi Linier Sederhana dan Korelasi Pertemuan ke 4 Pengertian Regresi merupakan teknik statistika yang digunakan untuk mempelajari hubungan fungsional dari satu atau beberapa variabel bebas (variabel

Lebih terperinci

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan

Lebih terperinci

BAB II LANDASAN TEORI. : Ukuran sampel telah memenuhi syarat. : Ukuran sampel belum memenuhi syarat

BAB II LANDASAN TEORI. : Ukuran sampel telah memenuhi syarat. : Ukuran sampel belum memenuhi syarat BAB II LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian ini yang berhubungan dengan kecukupan sampel maka langkah awal yang harus dilakukan adalah pengujian terhadap jumlah sampel. Pengujian

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

Surat Pemberitahuan (SPT) BAB IV ANALISIS HASIL DAN PEMBAHASAN. A. Analisis Deskriptif

Surat Pemberitahuan (SPT) BAB IV ANALISIS HASIL DAN PEMBAHASAN. A. Analisis Deskriptif 62 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Deskriptif 1. Perkembangan Penerimaan Surat Pemberitahuan Pajak Pertambahan Nilai (SPT PPN) Jumlah penerimaan SPT PPN yang terdaftar pada KPP Pratama

Lebih terperinci

Mata Pelajaran MATEMATIKA Kelas X

Mata Pelajaran MATEMATIKA Kelas X Mata Pelajaran MATEMATIKA Kelas X SEKOLAH MENENGAH ATAS dan MADRASAH ALIYAH PG Matematika Kelas X 37 Bab 1 Bentuk Pangkat, Akar, dan Logaritma Nama Sekolah : SMA dan MA Mata Pelajaran : Matematika Kelas

Lebih terperinci

BAB VI ANALISIS REGRESI LINEAR GANDA

BAB VI ANALISIS REGRESI LINEAR GANDA BAB VI ANALISIS REGRESI LINEAR GANDA 1. Pendahuluan Analisis regresi merupakan suatu analisis antara dua variabel yaitu variabel independen (Prediktor) yaitu variabel X dan variabel dependent (Respon)

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis

BAB 2 LANDASAN TEORI. Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan anak.

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Statistik Deskriptif Sebelum melakukan pengujian asumsi klasik dan pengujian regresi, terlebih dahulu disajikan statistik deskriptif yang dapat dilihat dakam tabel

Lebih terperinci

BAB I PENDAHULUAN. menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel

BAB I PENDAHULUAN. menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel respon ( ), dimana

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar belakang

BAB 1 PENDAHULUAN. 1.1 Latar belakang xi BAB 1 PENDAHULUAN 1.1 Latar belakang Assignment problem yang biasa dibentuk dengan matriks berbobot merupakan salah satu masalah dalam dunia teknik informatika, di mana masalah ini merupakan masalah

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. INJAUAN PUSAKA.1 Penduga Area Kecil Rao (003) mengemukakan bahwa suatu area disebut kecil apabila contoh yang diambil pada area tersebut tidak mencukupi untuk melakukan pendugaan langsung dengan hasil

Lebih terperinci

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks

Lebih terperinci

ELIMINASI GAUSS MAKALAH. Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom. Di Susun Oleh: Kelompok VII Matematika C/VII

ELIMINASI GAUSS MAKALAH. Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom. Di Susun Oleh: Kelompok VII Matematika C/VII ELIMINASI GAUSS MAKALAH Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom Di Susun Oleh: Kelompok VII Matematika C/VII Anggota : 1. Eko Kurniawan P. (59451064) 2. Siti Nurhairiyah

Lebih terperinci

Pada umumnya ilmu ekonomi mempelajari hubungan-hubungan antara. variabel ekonomi. Hubungan-hubungan yang fungsional tersebut mendefinisikan

Pada umumnya ilmu ekonomi mempelajari hubungan-hubungan antara. variabel ekonomi. Hubungan-hubungan yang fungsional tersebut mendefinisikan BAB I PENDAHULUAN A. Latar Belakang Masalah Pada umumnya ilmu ekonomi mempelajari hubungan-hubungan antara variabel ekonomi. Hubungan-hubungan yang fungsional tersebut mendefinisikan ketergantungan variabel

Lebih terperinci

BAB Ι PENDAHULUAN. 1.1 Latar Belakang

BAB Ι PENDAHULUAN. 1.1 Latar Belakang 1 BAB Ι PENDAHULUAN 1.1 Latar Belakang Belakangan ini peranan metode peramalan sangat diperlukan untuk dapat memberikan gambaran di kemudian hari dalam berbagai bidang, baik itu ekonomi, keuangan, pertanian

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

BAB III METODA LEAST SQUARE

BAB III METODA LEAST SQUARE BAB III ETODA LEAST SQUARE etoda least square merupakan suatu teknik penyelesaian permasalahan yang penting dan dimanfaatkan dalam banyak bidang aplikasi. etoda ini banyak digunakan untuk mencari / mengetahui

Lebih terperinci

Stabilitas Sistem. Nuryono S.W., S.T.,M.Eng. Dasar Sistem Kendali 1

Stabilitas Sistem. Nuryono S.W., S.T.,M.Eng. Dasar Sistem Kendali 1 Stabilitas Sistem Nuryono S.W., S.T.,M.Eng. Dasar Sistem Kendali 1 Definisi Kestabilan Kestabilan sebuah sistem ditentukan oleh tanggapannya terhadap masukan atau gangguan. Secara naluriah, sistem yang

Lebih terperinci

6/28/2016 al muiz

6/28/2016 al muiz 6/28/2016 al muiz 2013 1 Unsur-unsur dalam model matematis Varia bel Kons tanta Para meter Unsur model matematis 6/28/2016 al muiz 2013 2 Variabel adalah sesuatu yang besarnya dapat berubah, misalnya sesuatu

Lebih terperinci

BAB II LANDASAN TEORI. Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan

BAB II LANDASAN TEORI. Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan BAB II LANDASAN TEORI 2.1 Data Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan datum yang berisi fakta-fakta serta gambaran suatu fenomena yang dikumpulkan, dirangkum, dianalisis, dan

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

LEMBAR PENILAIAN KETERAMPILAN PROSES SAINS PRAKTIKUM. KELAS..

LEMBAR PENILAIAN KETERAMPILAN PROSES SAINS PRAKTIKUM. KELAS.. LEMBAR PENILAIAN KETERAMPILAN PROSES SAINS PRAKTIKUM. KELAS.. Observer : Hari/Tanggal : Petujuk Pengisian Berikanlah skor penilaian setiap aspek penilaian dengan cara melingkari angka berdasarkan pengamatan

Lebih terperinci

BAB 4 Hasil dan Pembahasan

BAB 4 Hasil dan Pembahasan BAB 4 Hasil dan Pembahasan Bab ini membahas tentang implementasi pemodelan prediksi produksi panen komoditas padi menggunakan metode regresi linier yang diolah menggunakan R Studio. 4.1 Pengolahan Data

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Kerangka Pikir Penelitian ini ditujukan untuk membuktikan apakah ada hubungan dan pengaruh dari tingkat suku bunga kredit, nilai tukar rupiah terhadap dollar Amerika,

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Kebijakan pemerintah dapat diambil secara tepat apabila berdasar pada informasi

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Kebijakan pemerintah dapat diambil secara tepat apabila berdasar pada informasi BAB 1 PENDAHULUAN 1.1 Latar Belakang Kebijakan pemerintah dapat diambil secara tepat apabila berdasar pada informasi statistik yang akurat dan tepat waktu. Informasi tersebut selain menunjukkan perkembangan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Analisis Regresi Perubahan nilai suatu variabel tidak selalu terjadi dengan sendirinya, namun perubahan nilai variabel itu dapat disebabkan oleh berubahnya variabel lain yang berhubungan

Lebih terperinci

Jika terdapat k variabel bebas, x dan Y merupakan variabel tergantung, maka diperoleh model linier dari regresi berganda seperti rumus [3.1]. [3.

Jika terdapat k variabel bebas, x dan Y merupakan variabel tergantung, maka diperoleh model linier dari regresi berganda seperti rumus [3.1]. [3. Analisis Regresi Analisis regresi merupakan salah satu alat statistika yang sangat populer digunakan user dalam mengolah data statistika. Analisis regresi digunakan untuk mengetahui hubungan satu atau

Lebih terperinci

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik Ahmad Fa iq Rahman 13514081 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Oleh : Anna Nur Nazilah Chamim

Oleh : Anna Nur Nazilah Chamim Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

Pertemuan 13 persamaan linier NON HOMOGEN

Pertemuan 13 persamaan linier NON HOMOGEN Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan fungsional antara variabel respon dengan satu atau beberapa variabel prediktor.

Lebih terperinci

MATRIK DAN KOMPUTASI

MATRIK DAN KOMPUTASI MATRIK DAN KOMPUTASI Penulis: Supriyanto, email: supri@fisika.ui.ac.id Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Fukuoka, 5 Feb 2005 Catatan ini bermaksud menjelaskan secara singkat

Lebih terperinci

PENAKSIRAN FUNGSI PERMINTAAN ESTIMASI PERMINTAAN PASAR

PENAKSIRAN FUNGSI PERMINTAAN ESTIMASI PERMINTAAN PASAR PENAKSIRAN FUNGSI PERMINTAAN ESTIMASI PERMINTAAN PASAR ESTIMASI PERMINTAAN PASAR Bagi para manajer produksi, estimasi atau perkiraan secara kuantitatif permintaan terhadap suatu produk penting untuk diketahui

Lebih terperinci

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB KURVA DAN PENCOCOKAN KURVA TIP FTP UB Pokok Bahasan Pendahuluan Kurva-kurva standar Asimtot Penggambaran kurva secara sistematis, jika persamaan kurvanya diketahui Pencocokan kurva Metode kuadrat terkecil

Lebih terperinci

HASIL DAN PEMBAHASAN. Algoritma Cepat Penduga GS

HASIL DAN PEMBAHASAN. Algoritma Cepat Penduga GS HASIL DAN PEMBAHASAN Algoritma Cepat Penduga GS Sebagaimana halnya dengan algoritma cepat penduga S, algoritma cepat penduga GS dikembangkan dengan mengkombinasikan algoritma resampling dan algoritma I-step.

Lebih terperinci

BAB III. Model Regresi Linear 2-Level. Sebuah model regresi dikatakan linear jika parameter-parameternya bersifat

BAB III. Model Regresi Linear 2-Level. Sebuah model regresi dikatakan linear jika parameter-parameternya bersifat BAB III Model Regresi Linear 2-Level Sebuah model regresi dikatakan linear jika parameter-parameternya bersifat linear. Untuk data berstruktur hirarki 2 tingkat, analisis regresi yang dapat digunakan adalah

Lebih terperinci

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan

Lebih terperinci

Penyelesaian Teka-Teki Matematika Persegi Ajaib Menggunakan Aljabar Lanjar

Penyelesaian Teka-Teki Matematika Persegi Ajaib Menggunakan Aljabar Lanjar Penyelesaian Teka-Teki Matematika Persegi Ajaib Menggunakan Aljabar Lanjar Gaudensius Dimas Prasetyo Suprapto / 13514059 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

Tanah Homogen Isotropis

Tanah Homogen Isotropis Tanah Homogen Isotropis adalah tanah homogen yang mempunyai nilai k sama besar pada semua arah (kx = kz = ks). ks kx x z kz s Tanah Homogen Anisotropis adalah tanah homogen yang memiliki nilai k tidak

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

INVERSI GEOFISIKA (geophysical inversion) Dr. Hendra Grandis

INVERSI GEOFISIKA (geophysical inversion) Dr. Hendra Grandis INVERSI GEOFISIKA (geophysical inversion) Dr. Hendra Grandis Teknik Geofisika FTTM - ITB Tujuan kuliah Memberikan landasan teori dan konsep pemodelan inversi geofisika (linier dan non- linier) serta penerapannya

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

BAB IX ANALISIS REGRESI

BAB IX ANALISIS REGRESI BAB IX ANALISIS REGRESI 1. Model Analisis Regresi-Linear Analisis regresi-linear adalah metode statistic yang dapat digunakan untuk mempelajari hubungan antarsifat permasalahan yang sedang diselidiki.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi

BAB II TINJAUAN PUSTAKA. Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi BAB II TINJAUAN PUSTAKA Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi linear, metode kuadrat terkecil, restriksi linear, multikolinearitas, regresi ridge, uang primer, dan koefisien

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini diuraikan beberapa tinjauan pustaka sebagai landasan teori pendukung penulisan penelitian ini. 2.1 Analisis Regresi Suatu pasangan peubah acak seperti (tinggi, berat)

Lebih terperinci