2 TINJAUAN PUSTAKA 2.1 Sedimen Dasar Laut

Ukuran: px
Mulai penontonan dengan halaman:

Download "2 TINJAUAN PUSTAKA 2.1 Sedimen Dasar Laut"

Transkripsi

1 6 2 TINJAUAN PUSTAKA 2.1 Sedimen Dasar Laut Seluruh permukaan dasar laut ditutupi oleh partikel-partikel sedimen yang telah diendapkan secara perlahan-lahan dalam jangka waktu berjuta-juta tahun. Sedimen ini terutama terdiri dari partikel-partikel yang berasal dari hasil pembongkaran batu-batuan dan potongan-potongan kulit (shell) serta sisa rangkarangka dari organisme laut (Hutabarat & Evans 2000). Sedimen dapat diklasifikasikan berdasarkan sumbernya maupun ukuran partikelnya. Menurut Thurman (1993) sumber sedimen berkaitan dengan asal mula material sedimen, yaitu batuan, air laut, atmosfer, dan organisme. Sedimen yang berasal dari batuan dinamakan lithogenous, pada umumnya mengandung mineral feromagnesian (seperti olivine, augite, dan biotite) dan nonferomagnesian (seperti quartz, feldspar, dan muscovite). Batuan ini mengalami proses pelapukan (secara kimiawi maupun fisika), partikel-partikelnya dilarutkan dan akhirnya diendapkan di dasar laut. Sedimen lithogenous biasanya berada di sekitar batasbatas benua (continents). Sedimen hydrogenous adalah sedimen yang berasal dari reaksi kimia di dalam air laut, umumnya mengandung mineral mangan, fosfor, dan glauconite. Sedimen cosmogenous adalah sedimen yang berasal dari partikel kosmik yang mengenai permukaan bumi, mengalami suspensi dalam jangka waktu yang lama, dan akhirnya terlarut ke dalam air laut dan terendapkan. Material ini umumnya mengandung unsur besi. Sedimen biogenous adalah sedimen yang terbentuk dari sisa-sisa organisme seperti tulang, gigi dan cangkang, umumnya mengandung unsur calcium carbonat (CaCO 3 ) dan silica (SiO 2 ). Ukuran partikel sedimen merupakan cara yang mudah untuk menentukan klasifikasi sedimen. Berdasarkan ukuran partikel ini, Wentworth (1922) mengelompokkan sedimen ke dalam beberapa nama (Tabel 1). Boulder (bongkah batu) merupakan sedimen dengan ukuran partikel berdiameter lebih dari 256 mm. Sand (pasir) adalah sedimen dengan diameter partikel berukuran mm. Silt (lanau) adalah sedimen dengan diameter partikel berukuran

2 7 mm. Kelompok terakhir adalah clay (lempung) yaitu partikel sedimen dengan ukuran diameter kurang dari mm. Tabel 1 Ukuran partikel sedimen skala Wentworth (1922) Fraksi Sedimen Sand Silt Clay Sumber : Thurman (1993) Jenis Partikel Sedimen Ukuran Diameter (mm) Boulder > 256 Cobble Pebble 4 64 Granule 2 4 Very coarse sand 1 2 Coarse sand Medium sand Fine sand Very fine sand Coarse silt Medium silt Fine silt Very fine silt Coarse clay Medium clay Fine clay Very fine clay Colloid < Ukuran partikel sedimen dasar laut ini sangat ditentukan oleh sifat-sifat fisiknya, sehingga berakibat terjadinya perbedaan sifat-sifat sedimen yang berada di berbagai belahan dunia. Sebagian besar dasar laut yang dalam ditutupi oleh jenis partikel yang kecil yang terdiri dari sedimen halus, sedangkan hampir semua pantai ditutupi oleh jenis partikel berukuran besar yang terdiri dari sedimen kasar. (Hutabarat & Evans 2000). Thurman (1993) menyatakan bahwa ukuran partikel juga mengindikasikan tingkat energi pada saat proses pengendapan deposit sedimen. Deposit yang diendapkan di area yang bergelombang kuat (berenergi tinggi) akan tersusun terutama oleh partikel-partikel berukuran besar, seperti cobble dan boulder. Sedangkan partikel-partikel berukuran clay akan diendapkan di area yang memiliki tingkat energi rendah dan kekuatan arus lautnya minimal.

3 8 2.2 Teknik Hidroakustik Dalam medium air, gelombang akustik memiliki karakteristik transmisi yang lebih baik dibandingkan dalam medium udara. Kecepatan perambatannya mencapai empat hingga lima kali lebih besar dari cepat rambatnya dalam medium udara. Sehingga gelombang akustik mampu menempuh jarak yang jauh bahkan mampu menembus perlapisan batuan yang ada di bawah dasar laut. Berbagai informasi yang berasal dari bawah permukaan air (underwater) bisa diberikan oleh gelombang akustik (Lurton 2002). Berbagai kelebihan gelombang akustik tersebut kemudian dimanfaatkan oleh instrumen akustik bawah air (underwater acoustic instrument) untuk : - Mendeteksi dan melokalisasi target bawah air; hal ini merupakan fungsi utama dari sistem sonar yang banyak diaplikasikan dalam bidang militer dan perikanan. - Mengukur (measure) karakteristik lingkungan laut, seperti topografi dasar laut dan kehidupan organisme bawah laut. - Mentransmisikan sinyal, seperti data yang dibutuhkan oleh instrumentasi saintifik bawah air, serta pengiriman pesan antara submarine dan kapal permukaan (Lurton 2002). Prinsip dasar pengoperasian instrumen akustik bisa dijelaskan sebagai berikut (Gambar 2). Energi gelombang akustik akan dipancarkan ke kolom perairan dalam bentuk pulsa suara melalui transducer. Pulsa suara ini akan merambat dalam medium air dengan kecepatan berkisar 1500 m/s. Ketika pulsa suara mengenai suatu obyek atau target, seperti ikan ataupun dasar perairan, sebagian energinya akan dipantulkan kembali ke transducer dalam bentuk echo. Transducer akan mengubah echo menjadi energi listrik dan diteruskan ke amplifier yang berada dalam echosounder untuk diperkuat. Apabila transducer yang digunakan lebih dari satu, maka digunakan multiplexer. Selanjutnya sinyal echo yang sudah diperkuat ini akan diteruskan ke output device seperti digital recorder, chart recorder ataupun video display ( htisonar.com/ what_are_hydroacoustics.htm).

4 9 Sumber : Hydroacoustic Technology Inc. Gambar 2 Prinsip hidroakustik. 2.3 Perambatan Gelombang Akustik Gelombang akustik berasal dari perambatan gangguan mekanik yang akan menimbulkan kompresi dan dilatasi lokal pada partikel-partikel medium yang dilewatinya dengan adanya sifat-sifat elastik medium. Laju perambatan dari gangguan mekanik pada medium dinamakan kecepatan (velocity) (Lurton 2002).

5 10 Kecepatan gelombang akustik (suara) dalam medium air laut merupakan sebuah variabel oseanografi yang menunjukkan karakteristik perambatan gelombang akustik di lautan. Kecepatan gelombang suara ini nilainya bervariasi dan dipengaruhi oleh suhu, salinitas, dan tekanan (atau kedalaman) medium yang dilaluinya. Nilai kecepatan suara akan meningkat seiring dengan bertambahnya salah satu dari ketiga parameter tersebut (Etter 1996). Formula untuk perhitungan kecepatan suara dikemukakan oleh Medwin (1975) yang diacu dalam Lurton (2002) sebagai berikut : c = t 0.055t t 3 + ( t)(S 35) z... (1) dimana c = kecepatan suara, dalam m/s t = suhu, dalam ºC S = Salinitas, dalam p.s.u (practical salinity unit) z = kedalaman, dalam m. Dalam perambatan gelombang akustik, akan mengalami proses kehilangan intensitas energi akustiknya yang disebabkan oleh geometrical spreading loss (efek divergensi) dan absorption loss. Hal ini dikenal sebagai propagation loss (transmission loss) yang merupakan salah satu parameter sonar yang mengekspresikan satu nilai kuantitatif dari beberapa fenomena yang berkaitan dengan perambatan gelombang akustik di laut (Urick 1983) Geometrical Spreading Loss Dalam proses perambatan gelombang akustik dari sebuah sumber suara yang berada dalam medium homogen, tak terbatas dan tanpa penyerapan (lossless), daya (power) akan diradiasikan sama besar ke segala arah (Gambar 3). Urick (1983) menyatakan bahwa daya yang menembus bola sferis dengan jari-jari yang makin membesar,akan bernilai sama pada permukaan bola sferis manapun. Karena daya (P) sama dengan intensitas (I) dikalikan luas area (A), maka secara matematis dapat dituliskan (2) P = 4πr 1 ²I 1 = 4πr 2 ²I 2 =... = 4πr²I r... Jika r1 = 1 m, maka transmission loss (TL) pada jarak r 2 adalah

6 11 TL = 10 log I 1 / I 2 = 10 log r 2 ² = 20 log r 2... (3) Hal ini dinamakan spherical spreading dimana intensitas berkurang sesuai dengan kuadrat jarak, dan transmission loss bertambah sesuai dengan kuadrat jarak. Gambar 3 Spreading loss (sumber : Urick 1983). Jika sumber suara dibatasi oleh bidang-bidang paralel berjarak H meter (Gambar 3b), maka daya yang menembus permukaan silindris yang mengelilingi sumber suara dengan radius yang makin bertambah, tetap akan bernilai sama (cylindrical spreading), dinyatakan dengan persamaan (4) P = 2πr 1 HI 1 = 2πr 2 HI 2 =... = 2πrHI r... Jika r1 = 1 m, maka transmission loss (TL) pada jarak r 2 adalah TL = 10 log I1/ I 2 = 10 log r 2... (5) Absorption Loss Pada perambatan gelombang akustik dalam medium air laut, sebagian energi akustiknya secara kontinu akan diserap dan diubah menjadi energi panas. Penyerapan ini (absorption loss) terjadi melalui dua mekanisme utama, yaitu viskositas air laut itu sendiri dan molecular relaxation, dimana molekul-molekul

7 12 magnesium sulfat (MgSO 4 ) dalam air laut tereduksi menjadi ion-ion akibat induksi dari tekanan gelombang akustik. Menurut Urick (1983), molecular relaxation merupakan penyebab utama terjadinya absorption loss pada frekuensi akustik di bawah 100 khz. Pada frekuensi tinggi (lebih dari 500 khz), perubahan tekanan akustik terlalu cepat sehingga tidak terjadi molecular relaxation, dan tidak terjadi penyerapan energi akustik. Sedangkan pada frekuensi kurang dari 2 khz, akan terjadi absorption loss yang disebabkan oleh boric acid relaxation (Waite 2002). Penyerapan energi akustik (koefisien absorpsi = α) dipengaruhi oleh frekuensi alat yang digunakan serta suhu perairan, sesuai dengan persamaan yang dikemukakan oleh Schulkin dan Marsh (1962) diacu dalam Urick (1983) α = A db/kyd... (6) dimana S = salinitas, dalam part per thousand (ppt) A = konstanta, yang nilainya 1.86x B = konstanta, yang nilainya 2.68x f = frekuensi, dalam khz f T f T = frekuensi relaksasi yang bergantung pada suhu, besarnya = 21.9 x (khz)... (7) dengan T adalah suhu perairan, dalam derajad Celcius. Penggabungan pengaruh absorption loss dan spherical spreading pada perambatan gelombang akustik akan memberikan nilai transmission loss sesuai dengan persamaan (Urick 1983), TL = 20 log r + αr x... (8) dimana faktor db/kyard). dimasukkan karena α biasa dinyatakan dalam db/km (atau 2.4 Proses-Proses Akustik pada Dasar Perairan Pada saat gelombang akustik yang merambat dalam kolom air mengenai dasar perairan, maka akan terjadi beberapa proses fisis yang akan memberikan kontribusi bagi pembentukan echo akustik bawah air. Proses-proses fisis ini

8 13 meliputi refleksi (pemantulan), transmisi (pembiasan), dan scattering (hamburan) (Lurton 2002) Refleksi dan Transmisi Proses refleksi dan transmisi gelombang akustik yang mengenai dasar perairan mengikuti hukum Snell-Descartes, sin θ₁ / c 1 = sin θ 2 / c 2... (9) dimana besarnya sudut datang sama dengan sudut pantul (θ₁), dan gelombang yang ditransmisikan akan merambat dalam arah yang berbeda dengan gelombang datang (θ2), sesuai dengan perubahan kecepatan suara yang terjadi dari medium pertama (c 1 ) ke medium kedua (c 2 ) (Gambar 4). Sumber : Lurton 2002 Gambar 4 Refleksi dan transmisi gelombang akustik pada bidang batas antara dua medium. Amplitudo dari gelombang refleksi dan transmisi ditunjukkan oleh koefisien refleksi (V) dan koefisien transmisinya (W) yang memiliki keterkaitan W = 1 + V. Menurut Lurton (2002), gelombang akustik yang merambat dengan sudut datang (θ₁) dari medium pertama dengan densitas (ρ 1 ) dan kecepatan suara (c 1 ) menuju medium kedua dengan densitas (ρ 2 ) dan kecepatan suara (c 2 ), akan memiliki nilai V dan W sesuai dengan persamaan, V(θ₁) = W(θ₁) =... (10)

9 14 Pada kasus normal incidence dimana sudut datang vertikal (θ₁ = 0), maka persamaan (10) akan menjadi, V(θ₁ = 0) = W(θ₁ = 0) =... (11) dimana Z (=ρc) adalah besaran impedansi akustik (acoustic impedance) medium yang bersangkutan. Apabila acoustic impedance medium yang kedua nilainya jauh lebih besar atau jauh lebih kecil, bila dibandingkan dengan medium yang pertama, maka praktis tidak terjadi kehilangan energi. Koefisien refleksi akan mendekati nilai V = 1 ( ), atau V = - 1 ( ), tidak terpengaruh oleh besarnya sudut datang. Dalam akustik bawah air, permukaan pada bidang batas air dengan udara dapat dianggap sebagai reflektor yang sempurna, karena kontras impedance antara kedua medium mendekati 3x. Kontras impedance antara air dengan hard sediment ( dan c m/s) hanya sekitar 2.4 sehingga bukan merupakan reflektor yang sempurna. Jackson dan Richardson (2007) menyatakan bahwa refleksi dasar laut pada vertical incidence telah menjadi cara yang penting dalam pengklasifikasian sedimen Reverberation Gelombang akustik yang ditransmisikan ke bawah permukaan laut akan mengalami hamburan (scattering) yang disebabkan oleh organisme laut, materialmaterial yang terdistribusi dalam laut, struktur tidak homogen dalam air laut, seperti halnya refleksi oleh permukaan dan dasar laut. Bagian dari energi akustik awal yang mengenai suatu obyek dan dipantulkan kembali ke sumber dinamakan backscattering (Waite 2002). Dalam bidang akustik bawah air dikenal istilah reverberation, merujuk pada semua energi akustik yang dikembalikan ke sistem sonar, yang berasal dari segala sesuatu selain echo dari target yang diinginkan. Reverberation merupakan salah satu proses penting yang mempengaruhi sinyal akustik bawah air. Backscattering merupakan bagian dari reverberation (Lurton 2002). Gambar 5 menjelaskan tipe-tipe reverberation.

10 15 Sumber : Lurton 2002 Gambar 5 Reverberation yang disebabkan oleh kolom air, dasar perairan dan permukaan air. Menurut Urick (1983), besaran reverberation level (RL) merupakan intensitas dalam unit decibel dari transmisi gelombang bidang yang menghasilkan output yang sama pada hidrofon seperti pada reverberation yang teramati (Gambar 6). Penghambur (scatterer) yang berdimensi volume, akan menghasilkan volume reverberation level (RL v ) sesuai dengan persamaan,... (12) dimana SL = source level (db) = volume backscattering strength = volume backscattering cross section V = volume reverberation c = kecepatan suara (m/s) = panjang pulsa (s) = equivalent ideal solid angle beamwidth r = jarak antara transducer dan scatterer

11 16 Sumber : Urick 1983 Gambar 6 Geometri dari volume scattering. Penghambur yang berdimensi permukaan (surface) seperti pada permukaan dasar laut (Gambar 7), akan menghasilkan surface reverberation level (RL s ) sesuai dengan persamaan,... (13) dimana = surface backscattering strength = surface backscattering cross section A = Area reverberation = beam equivalent aperture in the horizontal plane Parameter backscattering strength pada dasarnya identik dengan parameter target strength untuk target-target sonar (Urick 1983).

12 17 Sumber : Urick 1983 Gambar 7 Geometri dari surface scattering. 2.5 Pendekatan Akustik terhadap Dasar Perairan Dasar perairan merupakan pemantul (reflektor) dan penghambur (scatterer) yang efektif terhadap gelombang akustik yang mengenainya serta bersifat mendistribusikan kembali gelombang yang datang (Urick 1983). Pada permukaan dasar perairan yang halus (smooth) dimana kontras acoustic impedance antara air dengan bottom adalah besar, maka sebagian besar energi gelombang yang datang akan dipantulkan, dan hanya sebagian kecil yang dihamburkan. Pada kasus permukaan dasar perairan yang kasar (rough), maka seluruh energi akustik akan dihamburkan. Untuk kontras acoustic impedance yang kecil antara air dengan bottom, maka energi gelombang akustik yang mengenai dasar perairan mampu menembus ke dalam bottom (Gambar 8). Selain itu, pada saat gelombang akustik mengenai dasar perairan, akan menunjukkan pola jejak gema (echo trace) yang berbeda (Gambar 9). Dasar perairan yang halus dan berlumpur akan menunjukkan echo trace yang memiliki puncak sempit tanpa ekor (narrow peak with no tail) dimana sebagian besar energi akustiknya akan dipantulkan kembali ke transducer, dan juga mengalami absorpsi oleh substrat lumpur. Sedangkan echo trace dari dasar perairan yang kasar, campuran gravel, akan memiliki puncak yang lebar dan berekor (Collins & Lacroix 1997).

13 18 Sumber : Urick 1983 Gambar 8 Pola-pola direksional terhadap gelombang akustik yang mengenai dasar perairan yang memiliki perbedaan kontras acoustic impedance dan tingkat kekasarannya. Sumber : Collins dan Lacroix 1997 Gambar 9 Contoh hipotetik dua dasar perairan dan echo trace yang ditunjukkan. Simbol t melambangkan echo trace dalam waktu. Burczynski (2002) menyatakan bahwa dasar perairan yang keras (hard bottom) akan menghasilkan echo dengan amplitudo yang tajam dan tinggi, sedangkan yang lunak (soft bottom) akan menghasilkan echo dengan amplitudo yang melebar dan rendah (Gambar 10). Bentuk kurva energi kumulatif sinyal yang berasal dari hard bottom dan soft bottom juga menunjukkan adanya perbedaan yang jelas. Hard bottom akan menghasilkan kurva dengan kenaikan yang tajam, sementara pada soft bottom kenaikan kurvanya relatif lebih rendah.

14 19 Sumber : Burczynski 2002 Gambar 10 Bentuk echo dasar perairan yang keras (hard) dan lunak (soft); a). Amplitudo sinyal echo b). Kurva energi kumulatif. Selain kekasaran dan kekerasan dasar laut, perbedaan densitas antara air laut dan dasar laut, amplitudo dan bentuk sinyal akustik yang dipantulkan oleh dasar laut juga dipengaruhi oleh reverberation di dalam substrat (Watt & Eng 1999; Penrose et al. 2005). Penelitian terdahulu menunjukkan bahwa reverberation level dari dasar perairan yang berbatu adalah lebih besar daripada dasar perairan yang berlumpur. Hal ini menjadi landasan untuk mengaitkan bottom backscattering strength (Sb) dengan jenis material dasar laut seperti lumpur, lanau, pasir, bongkah, rock, meskipun pada kenyataannya ukuran partikel penyusun sedimen dasar laut hanya merupakan indikator secara tidak langsung terhadap acoustic scattering (Urick 1983; Waite 2002). Backscattering strength dasar perairan nilainya bervariasi terhadap grazing angle, frekuensi akustik yang digunakan, serta material penyusun dasar perairan. Namun demikian nilainya dapat dianggap konstan pada frekuensi hingga 10 khz dan grazing angle hingga 10º. Menurut Waite (2002), berdasarkan survei di perairan dangkal UK, nilai bottom backscattering strength bervariasi mulai dari yang rendah ( 45 db) yaitu untuk lumpur, hingga tinggi (- 25 db) untuk batuan (rock) (Gambar 11).

15 20 Sumber : Waite 2002 Gambar 11 Distribusi nilai bottom backscattering strength untuk perairan dangkal. Sumber : Urick 1983 Gambar 12 Variasi frekuensi pada bottom backscattering strength. Simbol titik untuk grazing angle 30º; simbol huruf untuk grazing angle 10º. Urick (1983) mengatakan bahwa berdasarkan kompilasi pengukuran bottom backscattering strength dari berbagai sumber, termasuk memasukkan frekuensi 48 khz dan grazing angle yang rendah, diketahui bahwa tidak terdapat

16 21 ketergantungan yang nyata pada frekensi kisaran khz (Gambar 12 dan 13). Sumber : Urick 1983 Gambar 13 Kurva bottom backscattering strength sebagai fungsi grazing angle untuk berbagai tipe substrat. Pada akhirnya, refleksi dasar laut untuk vertical incidence telah menjadi cara yang penting dalam klasifikasi sedimen (Jackson & Richardson 2007). Echo akustik dari dasar laut ini mengandung informasi tentang backscatter, bottom reverberation dan spectral frequencies yang memiliki keterkaitan langsung dengan karakter dasar laut, seperti roughness, tipe sedimen, distribusi ukuran butir (grain size), porositas, dan densitas material. Klasifikasi dasar laut secara akustik merupakan pengorganisasian dasar laut menjadi tipe-tipe dasar laut berdasarkan karakteristik dari respon akustiknya (Watt & Eng 1999). Namun demikian akan tetap menjadi kenyataan bahwa sinyal akustik yang dipantulkan oleh dasar laut adalah kompleks dan tidak ada hubungan yang sederhana antara sinyal backscatter dan tipe sedimen (Anderson et al. 2008).

2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut

2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut 2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut Sedimen yang merupakan partikel lepas (unconsolidated) yang terhampar di daratan, di pesisir dan di laut itu berasal dari batuan atau material yang mengalami

Lebih terperinci

PENGUKURAN ACOUSTIC BACKSCATTERING STRENGTH DASAR PERAIRAN DENGAN INSTRUMEN SINGLE DAN MULTI BEAM ECHO SOUNDER BAMBANG SUPARTONO

PENGUKURAN ACOUSTIC BACKSCATTERING STRENGTH DASAR PERAIRAN DENGAN INSTRUMEN SINGLE DAN MULTI BEAM ECHO SOUNDER BAMBANG SUPARTONO PENGUKURAN ACOUSTIC BACKSCATTERING STRENGTH DASAR PERAIRAN DENGAN INSTRUMEN SINGLE DAN MULTI BEAM ECHO SOUNDER BAMBANG SUPARTONO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2013 PENGUKURAN ACOUSTIC

Lebih terperinci

2. TINJAUAN PUSTAKA. Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses

2. TINJAUAN PUSTAKA. Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses 2. TINJAUAN PUSTAKA 2.1. Sedimen Dasar Laut Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses hidrologi dari suatu tempat ke tempat yang lain, baik secara vertikal maupun secara

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Sedimen Dasar Perairan Berdasarkan pengamatan langsung terhadap sampling sedimen dasar perairan di tiap-tiap stasiun pengamatan tipe substrat dikelompokkan menjadi 2, yaitu:

Lebih terperinci

BAB 2 DASAR TEORI AKUSTIK BAWAH AIR

BAB 2 DASAR TEORI AKUSTIK BAWAH AIR BAB 2 DASAR TEORI AKUSTIK BAWAH AIR 2.1 Persamaan Akustik Bawah Air Persamaan akustik bawah air diturunkan dari persamaan state, persamaan kekekalan massa (persamaan kontinuitas) dan persamaan kekekalan

Lebih terperinci

SOUND PROPAGATION (Perambatan Suara)

SOUND PROPAGATION (Perambatan Suara) SOUND PROPAGATION (Perambatan Suara) SOUND PROPAGATION (Perambatan Suara) Reflection and Refraction Ketika gelombang suara merambat dalam medium, terjadi sebuah pertemuan antara kedua medium dengan kepadatan

Lebih terperinci

2. TINJAUAN PUSTAKA. Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji

2. TINJAUAN PUSTAKA. Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji 2. TINJAUAN PUSTAKA 2.1 Keadaan Umum Lokasi Penelitian Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji (1987), paparan Arafura (diberi nama oleh Krummel, 1897) ini terdiri dari tiga

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 4 HASIL DAN PEMBAHASAN 4.1 Identifikasi Lifeform Karang Secara Visual Karang memiliki variasi bentuk pertumbuhan koloni yang berkaitan dengan kondisi lingkungan perairan. Berdasarkan hasil identifikasi

Lebih terperinci

Scientific Echosounders

Scientific Echosounders Scientific Echosounders Namun secara secara elektronik didesain dengan amplitudo pancaran gelombang yang stabil, perhitungan waktu yang lebih akuran dan berbagai menu dan software tambahan. Contoh scientific

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Hasil Pengambilan Contoh Dasar Gambar 16 merupakan hasil dari plot bottom sampling dari beberapa titik yang dilakukan secara acak untuk mengetahui dimana posisi target yang

Lebih terperinci

2. TINJAUAN PUSTAKA. (http://id.wikipedia.org/wiki/sonar, 2 April 2009). Berdasarkan sistemnya, ada

2. TINJAUAN PUSTAKA. (http://id.wikipedia.org/wiki/sonar, 2 April 2009). Berdasarkan sistemnya, ada 2. TINJAUAN PUSTAKA 2.1 Sonar Sonar merupakan alat pendeteksian bawah air yang menggunakan gelombang suara untuk mendeteksi kedalaman serta benda-benda di dasar laut (http://id.wikipedia.org/wiki/sonar,

Lebih terperinci

1. PENDAHULUAN 1.1. Latar belakang

1. PENDAHULUAN 1.1. Latar belakang 1. PENDAHULUAN 1.1. Latar belakang Dasar perairan memiliki peranan yang sangat penting yaitu sebagai habitat bagi bermacam-macam makhluk hidup yang kehidupannya berasosiasi dengan lingkungan perairan.

Lebih terperinci

Gambar 8. Lokasi penelitian

Gambar 8. Lokasi penelitian 3. METODOLOGI PENELITIAN 3.1 Waktu dan lokasi penelitian Penelitian ini dilaksanakan pada tanggal 30 Januari-3 Februari 2011 yang di perairan Pulau Gosong, Pulau Semak Daun dan Pulau Panggang, Kabupaten

Lebih terperinci

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan.

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan. METODE PENELITIAN Waktu dan Lokasi Penelitian Pengambilan data lapang dilakukan pada tanggal 16-18 Mei 2008 di perairan gugusan pulau Pari, Kepulauan Seribu, Jakarta (Gambar 11). Lokasi ditentukan berdasarkan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN 4.1 Pengaruh Gangguan Pada Audio Generator Terhadap Amplitudo Gelombang Audio Yang Dipancarkan Pengukuran amplitudo gelombang audio yang dipancarkan pada berbagai tingkat audio generator

Lebih terperinci

Bab 2. Dasar Teori Akustik Bawah Air. Bab 2 Dasar Teori Akustik Bawah Air. 2.1 Persamaan Dasar Akustik

Bab 2. Dasar Teori Akustik Bawah Air. Bab 2 Dasar Teori Akustik Bawah Air. 2.1 Persamaan Dasar Akustik Bab 2 Dasar Teori Akustik Bawah Air 2.1 Persamaan Dasar Akustik Teori dasar akustik menggunakan beberapa asumsi untuk memudahkan penurunan persamaan dasar akustik. Asumsi yang digunakan berupa: 1. Fluida

Lebih terperinci

2. TINJAUAN PUSTAKA. Side Scan Sonar merupakan peralatan observasi dasar laut yang dapat

2. TINJAUAN PUSTAKA. Side Scan Sonar merupakan peralatan observasi dasar laut yang dapat 2. TINJAUAN PUSTAKA 2.1. Side Scan Sonar Side Scan Sonar merupakan peralatan observasi dasar laut yang dapat memancarkan beam pada kedua sisi bagiannya secara horizontal. Side scan sonar memancarkan pulsa

Lebih terperinci

2 TINJAUAN PUSTAKA 2.1 Terumbu Karang Bentuk Pertumbuhan Karang

2 TINJAUAN PUSTAKA 2.1 Terumbu Karang Bentuk Pertumbuhan Karang 2 TINJAUAN PUSTAKA 2.1 Terumbu Karang Terumbu karang merupakan satu kesatuan dari berbagai jenis karang. Terumbu karang adalah endapan-endapan masif yang penting dari kalsium karbonat yang terutama dihasilkan

Lebih terperinci

3. METODE PENELITIAN. Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º º BT

3. METODE PENELITIAN. Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º º BT 3. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º - 138 º BT (Gambar 2), pada bulan November 2006 di Perairan Laut Arafura, dengan kedalaman

Lebih terperinci

ANALISIS MODEL JACKSON PADA SEDIMEN BERPASIR MENGGUNAKAN METODE HIDROAKUSTIK DI GUGUSAN PULAU PARI, KEPULAUAN SERIBU SYAHRUL PURNAWAN

ANALISIS MODEL JACKSON PADA SEDIMEN BERPASIR MENGGUNAKAN METODE HIDROAKUSTIK DI GUGUSAN PULAU PARI, KEPULAUAN SERIBU SYAHRUL PURNAWAN ANALISIS MODEL JACKSON PADA SEDIMEN BERPASIR MENGGUNAKAN METODE HIDROAKUSTIK DI GUGUSAN PULAU PARI, KEPULAUAN SERIBU SYAHRUL PURNAWAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Kajian dasar perairan dapat digunakan secara luas, dimana para ahli sumberdaya kelautan membutuhkannya sebagai kajian terhadap habitat bagi hewan bentik (Friedlander et

Lebih terperinci

Sumber : Mckenzie (2009) Gambar 2. Morfologi Lamun

Sumber : Mckenzie (2009) Gambar 2. Morfologi Lamun 2. TINJAUAN PUSTAKA 2.1 Deskripsi Lamun Lamun merupakan tumbuhan laut yang hidup di perairan jernih pada kedalaman berkisar antara 2 12 m dengan sirkulasi air yang baik. Hampir semua tipe substrat dapat

Lebih terperinci

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori 4. HASIL DAN PEMBAHASAN 4.1 Profil Peta Batimetri Laut Arafura Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori perairan dangkal dimana kedalaman mencapai 100 meter. Berdasarkan data

Lebih terperinci

3. METODOLOGI. Pengambilan data dengan menggunakan side scan sonar dilakukan selama

3. METODOLOGI. Pengambilan data dengan menggunakan side scan sonar dilakukan selama 3. METODOLOGI 3.1 Waktu dan Lokasi Penelitian Pengambilan data dengan menggunakan side scan sonar dilakukan selama dua hari, yaitu pada 19-20 November 2008 di perairan Aceh, Lhokseumawe (Gambar 3). Sesuai

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 39 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Profil Kecepatan Suara Profil kecepatan suara (SVP) di lokasi penelitian diukur secara detail untuk mengurangi pengaruh kesalahan terhadap data multibeam pada

Lebih terperinci

KELOMPOK 2 JUWITA AMELIA MILYAN U. LATUE DICKY STELLA L. TOBING

KELOMPOK 2 JUWITA AMELIA MILYAN U. LATUE DICKY STELLA L. TOBING SISTEM SONAR KELOMPOK 2 JUWITA AMELIA 2012-64-0 MILYAN U. LATUE 2013-64-0 DICKY 2013-64-0 STELLA L. TOBING 2013-64-047 KARAKTERISASI PANTULAN AKUSTIK KARANG MENGGUNAKAN ECHOSOUNDER SINGLE BEAM Baigo Hamuna,

Lebih terperinci

AKUSTIK REMOTE SENSING/PENGINDERAAN JAUH

AKUSTIK REMOTE SENSING/PENGINDERAAN JAUH P. Ika Wahyuningrum AKUSTIK REMOTE SENSING/PENGINDERAAN JAUH Suatu teknologi pendeteksian obyek dibawah air dengan menggunakan instrumen akustik yang memanfaatkan suara dengan gelombang tertentu Secara

Lebih terperinci

1. PENDAHULUAN 1.1 Latar Belakang

1. PENDAHULUAN 1.1 Latar Belakang 1. PENDAHULUAN 1.1 Latar Belakang Substrat dasar perairan memiliki peranan yang sangat penting yaitu sebagai habitat bagi bermacam-macam biota baik itu mikrofauna maupun makrofauna. Mikrofauna berperan

Lebih terperinci

Pemodelan Kanal Komunikasi Akustik pada Perairan Dangkal dengan Kondisi LOS. By: dferyando.wordpress.com

Pemodelan Kanal Komunikasi Akustik pada Perairan Dangkal dengan Kondisi LOS. By: dferyando.wordpress.com Pemodelan Kanal Komunikasi Akustik pada Perairan Dangkal dengan Kondisi LOS By: dferyando.wordpress.com 1/3/2017 1. Pendahuluan Teknik komunikasi di bawah air merupakan teknik bertukar informasi yang dilakukan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Batimetri Selat Sunda Peta batimetri adalah peta yang menggambarkan bentuk konfigurasi dasar laut dinyatakan dengan angka-angka suatu kedalaman dan garis-garis yang mewakili

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1. Waktu dan Lokasi Penelitian Pengambilan data akustik dilakukan pada tanggal 29 Januari sampai 3 Februari 2011 di perairan Kepulauan Seribu. Wilayah penelitian mencakup di

Lebih terperinci

3 METODOLOGI PENELITIAN

3 METODOLOGI PENELITIAN 3 METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan dari bulan Desember 2010 Juli 2011 yang meliputi tahapan persiapan, pengukuran data lapangan, pengolahan dan analisis

Lebih terperinci

3,15 Very Fine Sand 1,24 Poorlysorted -0,21 Coarse-Skewed. 4,97 Coarse Silt 1,66 Poorlysorted -1,89 Very Coarse-Skewed

3,15 Very Fine Sand 1,24 Poorlysorted -0,21 Coarse-Skewed. 4,97 Coarse Silt 1,66 Poorlysorted -1,89 Very Coarse-Skewed BAB 5. HASIL DAN PEMBAHASAN 5.1. Hasil 5.1.1. Sedimen dasar permukaan Hasil analisis sedimen permukaan dari 30 stasiun diringkas dalam parameter statistika sedimen yaitu Mean Size (Mz Ø), Skewness (Sk

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, diperoleh data yang diuraikan pada Tabel 4. Lokasi penelitian berada

Lebih terperinci

PEMODELAN KANAL KOMUNIKASI AKUSTIK PADA PERAIRAN DANGKAL

PEMODELAN KANAL KOMUNIKASI AKUSTIK PADA PERAIRAN DANGKAL PEMODELAN KANAL KOMUNIKASI AKUSTIK PADA PERAIRAN DANGKAL Taufani Rizal Nofriansyah NRP. 2207 100 004 Dosen Pembimbing : Dr. Ir. Wirawan, DEA Ir. Endang Widjiati, M.Eng.Sc Latar Belakang Kondisi perairan

Lebih terperinci

PERTEMUAN IV SURVEI HIDROGRAFI. Survei dan Pemetaan Universitas IGM Palembang

PERTEMUAN IV SURVEI HIDROGRAFI. Survei dan Pemetaan Universitas IGM Palembang PERTEMUAN IV SURVEI HIDROGRAFI Survei dan Pemetaan Universitas IGM Palembang Konfigurasi Survei Hidrografi 1. Penentuan posisi (1) dan penggunaan sistem referensi (7) 2. Pengukuran kedalaman (pemeruman)

Lebih terperinci

BAB III METODOLOGI. Gambar 1. Peta Lokasi penelitian

BAB III METODOLOGI. Gambar 1. Peta Lokasi penelitian BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian ini dilaksanakan di perairan Pulau Bintan Timur, Kepulauan Riau dengan tiga titik stasiun pengamatan pada bulan Januari-Mei 2013. Pengolahan data dilakukan

Lebih terperinci

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik BAB II GELOMBANG ELEKTROMAGNETIK 2.1 Umum elektromagnetik adalah gelombang yang dapat merambat walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik seperti yang diilustrasikan pada

Lebih terperinci

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan 4. HASIL PEMBAHASAN 4.1 Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, ditemukan 3 jenis spesies lamun yakni Enhalus acoroides, Cymodocea

Lebih terperinci

II BAHAN DAN METODE. II.1 Faktor yang Mengontrol Pergerakan Sedimen

II BAHAN DAN METODE. II.1 Faktor yang Mengontrol Pergerakan Sedimen II BAHAN DAN METODE Sedimen merupakan fragmentasi material yang berasal dari pemecahan batuan akibat proses fisis dan kimiawi (van Rijn, 1993). Di kawasan pesisir, pasokan sedimen terutama berasal dari

Lebih terperinci

2. TINJAUAN PUSTAKA. sekitar 100 tahun. Pada awal 1800-an teori elastis propagasi gelombang mulai

2. TINJAUAN PUSTAKA. sekitar 100 tahun. Pada awal 1800-an teori elastis propagasi gelombang mulai 2. TINJAUAN PUSTAKA 2.1 Sejarah Teknologi Seismik Seismologi adalah ilmu yang relatif muda yang diteliti secara kuantitatif sekitar 100 tahun. Pada awal 1800-an teori elastis propagasi gelombang mulai

Lebih terperinci

Pemodelan Kanal Komunikasi Akustik pada Perairan Dangkal

Pemodelan Kanal Komunikasi Akustik pada Perairan Dangkal Pemodelan Kanal Komunikasi Akustik pada Perairan Dangkal Taufani Rizal Nofriansyah, Wirawan, Endang Widjiati Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Abstrak Komunikasi melalui medium

Lebih terperinci

PENGUKURAN HAMBUR BALIK AKUSTIK DASAR LAUT DI SEKITAR KEPULAUAN SERIBU MENGGUNAKAN SPLIT BEAM ECHOSOUNDER

PENGUKURAN HAMBUR BALIK AKUSTIK DASAR LAUT DI SEKITAR KEPULAUAN SERIBU MENGGUNAKAN SPLIT BEAM ECHOSOUNDER PENGUKURAN HAMBUR BALIK AKUSTIK DASAR LAUT DI SEKITAR KEPULAUAN SERIBU MENGGUNAKAN SPLIT BEAM ECHOSOUNDER KORSUES LUMBAN GAOL SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

2. TINJAUAN PUSTAKA. kondisinya dipengaruhi oleh karakteristik oseanik Samudra Hindia dan sifat

2. TINJAUAN PUSTAKA. kondisinya dipengaruhi oleh karakteristik oseanik Samudra Hindia dan sifat 2. TINJAUAN PUSTAKA 2.1. Keadaan Umum Lokasi Penelitian Perairan Selat Sunda terletak di antara Pulau Sumatera dan Pulau Jawa serta berhubungan dengan Laut Jawa dan Samudera Hindia. Pada perairan ini terdapat

Lebih terperinci

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian 3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini merupakan bagian dari Ekspedisi Selat Makassar 2003 yang diperuntukkan bagi Program Census of Marine Life (CoML) yang dilaksanakan oleh

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG - GELOMBANG

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG - GELOMBANG LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Nama : Kelas/No : / Gelombang - - GELOMBANG - GELOMBANG ------------------------------- 1 Gelombang Gelombang Berjalan

Lebih terperinci

Model integrasi echo dasar laut Blok diagram scientific echosounder ditampilkan pada Gambar I. echo pada pre-amplifier, ERB :

Model integrasi echo dasar laut Blok diagram scientific echosounder ditampilkan pada Gambar I. echo pada pre-amplifier, ERB : N AWSTIK SCATTERINGSTRENGTH DASAR LAUT DAN IDENTIFIKASI WABIcrAT I DENGAN ECHOSOUNDER (Measurement of Acoustic ScatGering Strength of Sea Bottom and Identification of Fish Habitat Using Echosounder) Oleh:

Lebih terperinci

Pengujian Sifat Anechoic untuk Kelayakan Pengukuran Perambatan Bunyi Bawah Air pada Akuarium

Pengujian Sifat Anechoic untuk Kelayakan Pengukuran Perambatan Bunyi Bawah Air pada Akuarium JURNAL TEKNIK POMITS Vol., No. 1, (13) ISSN: 31-971 D-7 Pengujian Sifat Anechoic untuk Kelayakan Pengukuran Perambatan Bunyi Bawah Air pada Akuarium Indan Pratiwi, Wiratno Argo Asmoro, dan Dhany Arifianto

Lebih terperinci

Terbentuknya Batuan Sedimen

Terbentuknya Batuan Sedimen Partikel Sedimen Terbentuknya Batuan Sedimen Proses terbentuknya batuan sedimen dari batuan yang telah ada sebelumnya. Material yang berasal dari proses pelapukan kimiawi dan mekanis, ditransportasikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1 Batuan Sedimen Batuan Sedimen adalah salah satu kelompok utama dari batuan di muka bumi. Batuan ini sering membentuk reservoir berpori dan permeabel pada cekungan sedimen dengan

Lebih terperinci

DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR

DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR 1) Soetjie Poernama Sari 2) Henry M. Manik 1) Alumni Departemen Ilmu dan Teknologi Kelautan FPIK IPB 2) Dosen Bagian

Lebih terperinci

3. METODOLOGI. Gambar 10. Lokasi penelitian

3. METODOLOGI. Gambar 10. Lokasi penelitian 3. METODOLOGI 3.1. Waktu dan lokasi penelitian Penelitian ini dilaksanakan pada tanggal 29 Januari 2 Februari 2011 yang berlokasi di sekitar perairan Pulau Pramuka, Pulau Panggang, Pulau Karya dan Pulau

Lebih terperinci

BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK. Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau

BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK. Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK 3.1 Gelombang Ultrasonik Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau gelombang bunyi dengan persamaan

Lebih terperinci

DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR

DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR SOETJIE POERNAMA SARI SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN

Lebih terperinci

Gelombang Bunyi. Keterangan: γ = konstanta Laplace R = tetapan umum gas (8,31 J/mol K)

Gelombang Bunyi. Keterangan: γ = konstanta Laplace R = tetapan umum gas (8,31 J/mol K) Gelombang Bunyi Bunyi termasuk gelombang mekanik, karena dalam perambatannya bunyi memerlukan medium perantara. Ada tiga syarat agar terjadi bunyi yaitu ada sumber bunyi, medium, dan pendengar. Bunyi dihasilkan

Lebih terperinci

Radio dan Medan Elektromagnetik

Radio dan Medan Elektromagnetik Radio dan Medan Elektromagnetik Gelombang Elektromagnetik Gelombang Elektromagnetik adalah gelombang yang dapat merambat, Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa

Lebih terperinci

KARAKTERISTIKA ALIRAN DAN BUTIR SEDIMEN

KARAKTERISTIKA ALIRAN DAN BUTIR SEDIMEN KARAKTERISTIKA ALIRAN DAN BUTIR SEDIMEN May 14 Transpor Sedimen Karakteristika Aliran 2 Karakteristika fluida air yang berpengaruh terhadap transpor sedimen Rapat massa, ρ Viskositas, ν Variabel aliran

Lebih terperinci

Setelah mengikuti praktikum mata kuliah ini mahasiswa akan mampu memahami komponenkomponen

Setelah mengikuti praktikum mata kuliah ini mahasiswa akan mampu memahami komponenkomponen 2. Konsep-Konsep Dasar Tujuan: Setelah mengikuti praktikum mata kuliah ini mahasiswa akan mampu memahami komponenkomponen gelombang suara. Deskripsi: Praktikum ini akan meliputi beberapa kegiatan seperti:

Lebih terperinci

KUANTIFIKASI DAN KARAKTERISASI ACOUSTIC BACKSCATTERING DASAR PERAIRAN DI KEPULAUAN SERIBU JAKARTA OBED AGTAPURA TARUK ALLO

KUANTIFIKASI DAN KARAKTERISASI ACOUSTIC BACKSCATTERING DASAR PERAIRAN DI KEPULAUAN SERIBU JAKARTA OBED AGTAPURA TARUK ALLO KUANTIFIKASI DAN KARAKTERISASI ACOUSTIC BACKSCATTERING DASAR PERAIRAN DI KEPULAUAN SERIBU JAKARTA OBED AGTAPURA TARUK ALLO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI TESIS

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Penelitian dunia yang berkenaan dengan gelombang ultrasonik bukan hal yang baru melainkan sudah berlangsung cukup lama sehingga pemahaman ilmuwan mengenai sifat dan interaksinya

Lebih terperinci

3. DISTRIBUSI IKAN DI LAUT CINA SELATAN

3. DISTRIBUSI IKAN DI LAUT CINA SELATAN 3. DISTRIBUSI IKAN DI LAUT CINA SELATAN Pendahuluan Keberadaan sumberdaya ikan, baik ikan pelagis maupun demersal dapat diduga dengan menggunakan metode hidroakustik (Mitson 1983). Beberapa keuntungan

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS 1 Doc. Name: AR12FIS01UAS Version: 2016-09 halaman 1 01. Sebuah bola lampu yang berdaya 120 watt meradiasikan gelombang elektromagnetik ke segala arah dengan sama

Lebih terperinci

BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan

BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan Dalam suatu eksplorasi sumber daya alam khususnya gas alam dan minyak bumi, para eksplorasionis umumnya mencari suatu cekungan yang berisi

Lebih terperinci

5. ESTIMASI STOK SUMBERDAYA IKAN BERDASARKAN METODE HIDROAKUSTIK

5. ESTIMASI STOK SUMBERDAYA IKAN BERDASARKAN METODE HIDROAKUSTIK 5. ESTIMASI STOK SUMBERDAYA IKAN BERDASARKAN METODE HIDROAKUSTIK Pendahuluan Sumberdaya perikanan LCS merupakan kontribusi utama yang sangat penting di tingkat lokal, regional dan internasional untuk makanan

Lebih terperinci

HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011

HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 Jurnal Teknologi Perikanan dan Kelautan. Vol. 4. No. 1 Mei 2013: 31-39 ISSNN 2087-4871 HUBUNGAN TIPE DASAR PERAIRAN DENGAN DISTRIBUSI IKAN DEMERSAL DI PERAIRAN PANGKAJENE SULAWESI SELATAN 2011 (THE RELATION

Lebih terperinci

2 TINJAUAN PUSTAKA 2.1 Keadaan Umum Daerah Penelitian

2 TINJAUAN PUSTAKA 2.1 Keadaan Umum Daerah Penelitian TINJAUAN PUSTAKA.1 Keadaan Umum Daerah Penelitian Perairan Indonesia merupakan perairan di mana terjadi lintasan arus yang membawa massa air dari Samudera Pasifik ke Samudera Hindia yang biasanya disebut

Lebih terperinci

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa 2 Metode yang sering digunakan untuk menentukan koefisien serap bunyi pada bahan akustik adalah metode ruang gaung dan metode tabung impedansi. Metode tabung impedansi ini masih dibedakan menjadi beberapa

Lebih terperinci

BAB II TEORI DASAR (2.1) sin. Gambar 2.1 Prinsip Huygen. Gambar 2.2 Prinsip Snellius yang menggambarkan suatu yang merambat dari medium 1 ke medium 2

BAB II TEORI DASAR (2.1) sin. Gambar 2.1 Prinsip Huygen. Gambar 2.2 Prinsip Snellius yang menggambarkan suatu yang merambat dari medium 1 ke medium 2 BAB II TEORI DASAR.1 Identifikasi Bentuk Gelombang Perambatan gelombang pada media bawah permukaan mengikuti beberapa prinsip fisika sebagai berikut : a. Prinsip Huygen menyatakan bahwa setiap titik yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Analisa dengan metode uji ultrasonik terhadap material didasarkan pada pengukuran dengan beberapa parameter propagasinya, dimana propagasi atau perambatan gelombang ultrasonik erat

Lebih terperinci

BAB III TEORI DASAR Tinjauan Umum Seismik Eksplorasi

BAB III TEORI DASAR Tinjauan Umum Seismik Eksplorasi BAB III TEORI DASAR 3. 1. Tinjauan Umum Seismik Eksplorasi Metode seismik merupakan metode eksplorasi yang menggunakan prinsip penjalaran gelombang seismik untuk tujuan penyelidikan bawah permukaan bumi.

Lebih terperinci

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M0207025 Di terjemahkan dalam bahasa Indonesia dari An introduction by Heinrich Kuttruff Bagian 6.6 6.6.4 6.6 Penyerapan Bunyi Oleh

Lebih terperinci

Besar butir adalah ukuran (diameter dari fragmen batuan). Skala pembatasan yang dipakai adalah skala Wentworth

Besar butir adalah ukuran (diameter dari fragmen batuan). Skala pembatasan yang dipakai adalah skala Wentworth 3. Batuan Sedimen 3.1 Kejadian Batuan Sedimen Batuan sedimen terbentuk dari bahan yang pernah lepas dan bahan terlarut hasil dari proses mekanis dan kimia dari batuan yang telah ada sebelumnya, dari cangkang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Permukaan bumi mempunyai beberapa lapisan pada bagian bawahnya, masing masing lapisan memiliki perbedaan densitas antara lapisan yang satu dengan yang lainnya, sehingga

Lebih terperinci

EFEK UKURAN BUTIRAN, KEKASARAN, DAN KEKERASAN DASAR PERAIRAN TERHADAP NILAI HAMBUR BALIK HASIL DETEKSI HYDROAKUSTIK ABSTRACT

EFEK UKURAN BUTIRAN, KEKASARAN, DAN KEKERASAN DASAR PERAIRAN TERHADAP NILAI HAMBUR BALIK HASIL DETEKSI HYDROAKUSTIK ABSTRACT P P Staf P P Peneliti E-Jurnal Ilmu dan Teknologi Kelautan Tropis, Vol. 2, No. 1, Hal. 59-67, Juni 2010 EFEK UKURAN BUTIRAN, KEKASARAN, DAN KEKERASAN DASAR PERAIRAN TERHADAP NILAI HAMBUR BALIK HASIL DETEKSI

Lebih terperinci

BAB III DASAR DASAR GELOMBANG CAHAYA

BAB III DASAR DASAR GELOMBANG CAHAYA BAB III DASAR DASAR GELOMBANG CAHAYA Tujuan Instruksional Umum Pada bab ini akan dijelaskan mengenai perambatan gelombang, yang merupakan hal yang penting dalam sistem komunikasi serat optik. Pembahasan

Lebih terperinci

Horizontal. Kedalaman. Laut. Lintang. Permukaan. Suhu. Temperatur. Vertikal

Horizontal. Kedalaman. Laut. Lintang. Permukaan. Suhu. Temperatur. Vertikal Temperatur Air Laut Dalam oseanografi dikenal dua istilah untuk menentukan temperatur air laut yaitu temperatur insitu (selanjutnya disebut sebagai temperatur saja) dan temperatur potensial. Temperatur

Lebih terperinci

BAB I PENDAHULUAN. Ground Penetrating Radar (GPR) merupakan sistem yang saat ini marak

BAB I PENDAHULUAN. Ground Penetrating Radar (GPR) merupakan sistem yang saat ini marak BAB I PENDAHULUAN 1.1 Latar Belakang Ground Penetrating Radar (GPR) merupakan sistem yang saat ini marak dikembangkan baik dari sisi teknologi maupun segi bisnis. GPR adalah sistem radar yang digunakan

Lebih terperinci

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS )

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) LEMBARAN SOAL Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) PETUNJUK UMUM 1. Tulis nomor dan nama Anda pada lembar jawaban yang disediakan 2. Periksa dan bacalah

Lebih terperinci

BAB 5 PEMBAHASAN. 39 Universitas Indonesia

BAB 5 PEMBAHASAN. 39 Universitas Indonesia BAB 5 PEMBAHASAN Dua metode penelitian yaitu simulasi dan eksperimen telah dilakukan sebagaimana telah diuraikan pada dua bab sebelumnya. Pada bab ini akan diuraikan mengenai analisa dan hasil yang diperoleh

Lebih terperinci

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga Bab Teori Gelombang Elastik Metode seismik secara refleksi didasarkan pada perambatan gelombang seismik dari sumber getar ke dalam lapisan-lapisan bumi kemudian menerima kembali pantulan atau refleksi

Lebih terperinci

Analisis Model Propagasi Kraken pada Pengiriman Sinyal Akustik Bawah Air

Analisis Model Propagasi Kraken pada Pengiriman Sinyal Akustik Bawah Air Analisis Model Propagasi Kraken pada Pengiriman Sinyal Akustik Bawah Air Destianti Dwi Pravitasari 2206100164 Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Surabaya 60111

Lebih terperinci

PENENTUAN LOKASI SUMBER

PENENTUAN LOKASI SUMBER PENENTUAN LOKASI SUMBER DENGAN MENGGUNAKAN HYDROPHONE TUNGGAL Annisa Firasanti 2207100159 Dosen Pembimbing: Dr. Ir. Wirawan, DEA Ir. Endang Widjiati, M.Eng.Sc LATAR BELAKANG Potensi perairan Indonesia

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Gambaran Umum Lokasi Penelitian Daerah penelitian merupakan daerah yang memiliki karakteristik tanah yang mudah meloloskan air. Berdasarkan hasil borring dari Balai Wilayah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. GELOMBANG ULTRASONIK SEBAGAI BAGIAN DARI SUARA Suara merupakan bagian dari energi, suara berjalan melalui vibrasi dari kehadiran atom dan molekul, merambat dengan kecepatan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Dasar Teori Serat Alami

BAB II DASAR TEORI. 2.1 Dasar Teori Serat Alami BAB II DASAR TEORI 2.1 Dasar Teori Serat Alami Secara umum serat alami yang berasal dari tumbuhan dapat dikelompokan berdasarkan bagian tumbuhan yang diambil seratnya. Berdasarkan hal tersebut pengelompokan

Lebih terperinci

III METODE PENELITIAN

III METODE PENELITIAN III METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian ini dilakukan di Waduk Ir. H. Djuanda dan Laboratorium Akustik Fakultas Perikanan dan Ilmu Kelautan IPB Bogor. Kegiatan penelitian ini terbagi

Lebih terperinci

PR ONLINE MATA UJIAN: FISIKA (KODE A07)

PR ONLINE MATA UJIAN: FISIKA (KODE A07) PR ONLINE MATA UJIAN: FISIKA (KODE A07) 1. Gambar di samping ini menunjukkan hasil pengukuran tebal kertas karton dengan menggunakan mikrometer sekrup. Hasil pengukurannya adalah (A) 4,30 mm. (D) 4,18

Lebih terperinci

III. TEORI DASAR. gelombang akustik yang dihasilkan oleh sumber gelombang (dapat berupa

III. TEORI DASAR. gelombang akustik yang dihasilkan oleh sumber gelombang (dapat berupa III. TEORI DASAR 3.1 Konsep Seismik Refleksi Seismik refleksi merupakan salah satu metode geofisika yang digunakan untuk mengetahui keadaan di bawah permukaan bumi. Metode ini menggunakan gelombang akustik

Lebih terperinci

DIKTAT KULIAH RADAR DAN NAVIGASI

DIKTAT KULIAH RADAR DAN NAVIGASI DIKTAT KULIAH RADAR DAN NAVIGASI Disusun Oleh Wahyu Pamungkas,ST.MT Akademi Teknik Telekomunikasi Sandhy Putra 011 DIKTAT KULIAH RADAR & NAVIGASI A. ELEMENTARY CONCEPTS Radar merupakan nama dari sebuah

Lebih terperinci

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Sifat gelombang elektromagnetik Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Pantulan (Refleksi) Pemantulan gelombang terjadi ketika gelombang

Lebih terperinci

PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER. Septian Nanda dan Aprillina Idha Geomatics Engineering

PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER. Septian Nanda dan Aprillina Idha Geomatics Engineering PENGOLAHAN DATA SINGLE BEAM ECHOSOUNDER Septian Nanda - 3311401055 dan Aprillina Idha - 3311401056 Geomatics Engineering Marine Acoustic, Batam State Politechnic Email : prillyaprillina@gmail.com ABSTRAK

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 1 PENDAHULUAN 1.1 Latar Belakang Saat ini teknologi hidroakustik atau perangkat lunak pengolah sinyal akustik masih sulit untuk dapat mengetahui jenis dan panjang ikan secara langsung dan akurat. Selama

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Tipe Estuari dan Debit Sungai. Tipe estuari biasanya dipengaruhi oleh kondisi pasang surut. Pada saat pasang, salinitas perairan akan didominasi oleh salinitas air laut karena

Lebih terperinci

III. TEORI DASAR. melalui bagian dalam bumi dan biasa disebut free wave karena dapat menjalar

III. TEORI DASAR. melalui bagian dalam bumi dan biasa disebut free wave karena dapat menjalar III. TEORI DASAR 3.1. Jenis-jenis Gelombang Seismik 3.1.1. Gelombang Badan (Body Waves) Gelombang badan (body wave) yang merupakan gelombang yang menjalar melalui bagian dalam bumi dan biasa disebut free

Lebih terperinci

Transmisi Bunyi di Dalam Pipa

Transmisi Bunyi di Dalam Pipa Transmisi Bunyi di Dalam Pipa Didalam Bab 4.1 telah dijelaskan bahwa gelombang suara di dalam fluida tidak dipengaruhi oleh permukaan luarnya yang sejajar dengan arah suara propagasi. Hal ini dikarenakan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam perkembangan dunia pengetahuan sekarang ini, gelombang bunyi dapat dimanfaatkan dalam berbagai keperluan penelitian. Di bidang kelautan misalnya untuk mengukur

Lebih terperinci

BAB. IV SIMULASI DAN EKSPERIMEN SISTEM PENCITRAAN ULTRASONIK

BAB. IV SIMULASI DAN EKSPERIMEN SISTEM PENCITRAAN ULTRASONIK BAB. IV SIMULASI DAN EKSPERIMEN SISTEM PENCITRAAN ULTRASONIK 4.1 Simulasi Simulasi merupakan penggambaran suatu sistem atau proses dengan memperagakan atau menirukan (menyerupai) sesuatu yg besar dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bauksit Bauksit merupakan bahan yang heterogen, yang mengandung mineral dari oksida aluminium, yaitu berupa mineral buhmit (Al 2 O 3.H 2 O) dan mineral gibsit (Al 2 O 3.3H 2

Lebih terperinci

GELOMBANG SEISMIK Oleh : Retno Juanita/M

GELOMBANG SEISMIK Oleh : Retno Juanita/M GELOMBANG SEISMIK Oleh : Retno Juanita/M0208050 Gelombang seismik merupakan gelombang yang merambat melalui bumi. Perambatan gelombang ini bergantung pada sifat elastisitas batuan. Gelombang seismik dapat

Lebih terperinci

2. TINJAUAN PUSTAKA. memantul atau membias diantara lapisan bumi (Bullen, 1959). Penggunaan

2. TINJAUAN PUSTAKA. memantul atau membias diantara lapisan bumi (Bullen, 1959). Penggunaan 2. TINJAUAN PUSTAKA 2.1 Teori Dasar Seismik Pantul Sistem seismik adalah sistem yang didasari oleh gerakan gelombang yang memantul atau membias diantara lapisan bumi (Bullen, 1959). Penggunaan gelombang

Lebih terperinci