Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download ""

Transkripsi

1 Kalkulus II Intgral Fungsi Transndn Dr. Eko Pujiyanto, S.Si., M.T

2 Matri Intgral Fungsi Logaritma dan Eksponn Intgra Invrs Fungsi Trigonomtri Intgra Fungsi Hiprbolik Matri k - 3

3 Intgral Fungsi Logaritma dan Eksponn Torma ( a) d ln ( ) b d Rumus Intgral Parsial udv uv vdu kalkulus - matri k Matri k - 3

4 Intgral Fungsi Logaritma dan Eksponn ontoh ( ) d d d ( ) d d. d d ln kalkulus - matri k Matri k - 3

5 Intgral Fungsi Logaritma dan Eksponn ontoh d d d d. d d ln kalkulus - matri k Matri k - 3

6 Intgral Fungsi Logaritma dan Eksponn ontoh 3 ln d u ln & dv du d & d ln d ln d ln v kalkulus - matri k Matri k - 3

7 Intgral Fungsi Logaritma dan Eksponn Torma a d a ln a, a > 0 & a kalkulus - matri k Matri k - 3

8 Intgral Fungsi Logaritma dan Eksponn ontoh ln u du d u u ln d( u) du u ln ln ln ln ln kalkulus - matri k d ( 0 ) ( ) ln ln ln 0.5*0.69 ( ln ln ) Matri k

9 Intgral Fungsi Logaritma dan Eksponn Latihan. d. sin sin d 3. ln d. sin ( ln ) d kalkulus - matri k Matri k - 3

10 Intgral Fungsi Logaritma dan Eksponn Latihan kalkulus - matri k Matri k - 3

11 Intgral Fungsi Trigonomtri dan Invrsnya ontoh 5 sin cos cos d ln sin sin ( a) tan d d ln cos ( b) cot d kalkulus - matri k Matri k - 3

12 Intgral Fungsi Trigonomtri dan Invrsnya Torma 3 d d sin a a d d tan tan a a a d d sc sc a a ( ) a sin ( b) ( c) a kalkulus - matri k Matri k - 3

13 Intgral Fungsi Trigonomtri dan Invrsnya Intgral Fungsi Trigonomtri dan Invrsnya ontoh 6 ontoh 6 d d kalkulus kalkulus - matri matri k k d d d A B Matri k - 3

14 Intgral Fungsi Trigonomtri dan Invrsnya Intgral Fungsi Trigonomtri dan Invrsnya d u d d A B kalkulus kalkulus - matri matri k k ( ) ( ) u u du d du d u 5 ln ln 3tan ) ( 3 5 Matri k - 3

15 Intgral Fungsi Trigonomtri dan Invrsnya ontoh 7 d d ( ) d d kalkulus - matri k Matri k - 3

16 Intgral Fungsi Trigonomtri dan Invrsnya ontoh 7 u d ( ) du ( ) d sin ( ) du u u kalkulus - matri k Matri k - 3

17 Intgral Fungsi Trigonomtri dan Invrsnya ontoh 8 u ln du ( ) ln d ( ) d & & dv ( ) ( ) ln d ln v d kalkulus - matri k d Matri k - 3

18 Intgral Fungsi Trigonomtri dan Invrsnya ontoh 8 ( ) ( d ln ) ln d ln ln ln ( ) ( ) ( ) ( ) tan kalkulus - matri k d d d Matri k - 3

19 Intgral Fungsi Trigonomtri dan Invrsnya Latihan. tan d. sin d 3.. ln d ( )d kalkulus - matri k Matri k - 3

20 Intgral Fungsi Trigonomtri dan Invrsnya Latihan kalkulus - matri k Matri k - 3

21 Intgral Fungsi Hiprbolik dan Invrsnya Torma 3. sinh d cosh cosh d sinh coth d ln sinh kalkulus - matri k Matri k - 3

22 Intgral Fungsi Hiprbolik dan Invrsnya ontoh 9 d d. sch d tan. sch d d cosh cosh d sinh cosh cosh tan kalkulus - matri k d sinh Matri k - 3

23 Intgral Fungsi Hiprbolik dan Invrsnya Torma. d ( sinh ln ). d ( ) cosh ln 3. d tanh coth ln ln kalkulus - matri k,, < > Matri k - 3

24 Intgral Fungsi Hiprbolik dan Invrsnya ontoh 0 d d cosh ( ) d kalkulus - matri k Matri k - 3

25 Intgral Fungsi Hiprbolik dan Invrsnya Latihan. cosh d. 3.. sinh d cosh sinh d 3 d 9 kalkulus - matri k Matri k - 3

26 Intgral Fungsi Hiprbolik dan Invrsnya Latihan kalkulus - matri k Matri k - 3

27 Kata Inspirasi Hari Ini Pndngar yang baik akan mampu mnrima informasi dari banyak orang. kalkulus - matri k Matri k - 3

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1 8. FUNGSI TRANSENDEN MA4 KALKULU I 8. Invrs Fungsi Misalkan : D R! y dngan () Dinisi 8. Fungsi y () disbut satu-satu jika (u) (v) maka u v atau jika u v maka ( u) ( v) y y y u v ungsi y satu-satu ungsi

Lebih terperinci

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1

8. FUNGSI TRANSENDEN MA1114 KALKULU I 1 8. FUNGSI TRANSENDEN MA4 KALKULU I 8. Fungsi Invrs Misalkan : D R a y dngan () Dinisi 8. Fungsi y () disbut satu-satu jika (u) (v) maka u v atau jika u v maka ( u) ( v) y y y u v ungsi y satu-satu ungsi

Lebih terperinci

5. FUNGSI TRANSENDEN. Kalkulus 1 MA1104. Dr. I W. Sudarsana

5. FUNGSI TRANSENDEN. Kalkulus 1 MA1104. Dr. I W. Sudarsana Kalkulus MA04 5. FUNGSI TRANSENDEN Dr. I W. Sudarsana Program Studi Matmatika Fakultas Matmatika dan Ilmu Pngtahuan Alam Univrsitas Tadulako 8. Fungsi Invrs Misalkan : D R dngan ( Dinisi 8. Fungsi ( disbut

Lebih terperinci

8. FUNGSI TRANSENDEN

8. FUNGSI TRANSENDEN 8. FUNGSI TRANSENDEN 8. Fngsi Invrs Misalkan : D R dngan Dinisi 8. Fngsi = disbt sat-sat jika = v maka = v ata jika v maka v v ngsi = sat-sat ngsi =- sat-sat ngsi tidak sat-sat INF8 Kalkls Dasar Scara

Lebih terperinci

INTEGRASI Matematika Industri I

INTEGRASI Matematika Industri I INTEGRASI TIP FTP UB Pokok Bahasan Pendahuluan Fungsi dari suatu fungsi linear Integral berbentuk Integrasi hasilkali Integrasi per bagian Integrasi dengan pecahan parsial Integrasi fungsi-fungsi trigonometris

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

FUNGSI EKSPONEN, TRIGONOMETRI DAN HYPERBOLIK BAB I FUNGSI EKSPONEN

FUNGSI EKSPONEN, TRIGONOMETRI DAN HYPERBOLIK BAB I FUNGSI EKSPONEN BAB I FUNGSI EKSPONEN Dfinisi Fungsi ksponn aalah fungsi f yang mnntukan k. Rumusnya ialah f(. Fungsi ksponn ngan pubah bbas + yi ( an y bilangan ral aalah (cos y + i sin y. Dari finisi ini, jika : y 0

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

FUNGSI HIPERBOLIK Matematika

FUNGSI HIPERBOLIK Matematika FUNGSI HIPERBOLIK FTP UB Pokok Bahasan Pendahuluan Grafik dari fungsi hiperbolik Menentukan nilai fungsi hiperbolik Fungsi hiperbolik invers Bentuk log dari fungsi hiperbolik invers Identitas hiperbolik

Lebih terperinci

Hendra Gunawan. 29 November 2013

Hendra Gunawan. 29 November 2013 MA1101 MATEMATIKA 1A Hndra Gunawan Smstr I, 013/014 9 Novmbr 013 Latihan (Kuliah yang Lalu) Ssorangygtingginya~1,60 m brdiri ditpiatastbing, mlihat lh k laut yang brada ~18,40 m di bawahnya. Pada saatitu

Lebih terperinci

8. Fungsi Logaritma Natural, Eksponensial, Hiperbolik

8. Fungsi Logaritma Natural, Eksponensial, Hiperbolik 8. Fungsi Logaritma Natural, Eksponnsial, Hiprbolik 8.. Fungsi Logarithma Natural. Sudaratno Sudirham Dfinisi. Logaritma natural adalah logaritma dngan mnggunakan basis bilangan. Bilangan ini, sprti halna

Lebih terperinci

DERIVATIVE (continued)

DERIVATIVE (continued) DERIVATIVE (continued) (TURUNAN) Kus Prihantoso Krisnawan December 9 th, 2011 Yogyakarta Turunan Latihan Turunan Latihan sin (cos 1 x) = cos (sin 1 x) = sec (tan 1 x) = tan (sec 1 x) = 1 x 2 1 x 2 1 +

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut.

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut. 64 BAB VII. FUNGSI TRANSEDEN 7.. Fungsi Logaritma Asli Perhatikan adanya kesenjangan tentang turunan berikut. D ( 3 /3) D ( /) D () 0 D (???) - D (- - ) - D (- - /3) -3 Definisi: Fungsi logaritma asli

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral.

Lebih terperinci

Teknik pengintegralan: Integral parsial (Integral by part)

Teknik pengintegralan: Integral parsial (Integral by part) Teknik pengintegralan: Integral parsial (Integral by part) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 06 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 06/02/2017 1 / 14 Mari mengingat

Lebih terperinci

Darpublic Nopember 2013 www.darpublic.com

Darpublic Nopember 2013 www.darpublic.com Darpublic Nopember 0 www.darpublic.com. Integral () (Integral Tak Tentu) Sudaryatno Sudirham Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral. Salah satu cara mudah untuk menghitung

Lebih terperinci

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

Transformasi Laplace BDA, RYN MATERI KULIAH KALKULUS TEP FTP UB

Transformasi Laplace BDA, RYN MATERI KULIAH KALKULUS TEP FTP UB Transformasi Laplace BDA, RYN Referensi Desjardins S J, Vaillancourt R, 11, Ordinary Differential Equations Laplace Transforms and Numerical Methods for Engineers, University of Ottawa, anada. Poularikas

Lebih terperinci

Integral Fungsi Eksponen, Fungsi Trigonometri, Fungsi Logaritma

Integral Fungsi Eksponen, Fungsi Trigonometri, Fungsi Logaritma Modul Intgral Fungsi Eksponn, Fungsi Trigonomtri, Fungsi Logaritma Dr. Subanar D PENDAHULUAN alam mata kuliah Kalkulus I Anda tlah mngnal bahwa intgrasi adalah pross balikan dari difrnsiasi. Jadi untuk

Lebih terperinci

TEKNIK-TEKNIK PENGINTEGRALAN

TEKNIK-TEKNIK PENGINTEGRALAN TEKNIK-TEKNIK PENGINTEGRALAN 1. Teknik Subtitusi Teorema : Misal g fungsi yang terdiferensialkan dan F suatu anti turunan dari f, jika u = g() maka f(g())g () d = f(u) du = F(u) + c = F(g()) + c sin. 1.

Lebih terperinci

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi Kompetensi yang diukur adalah kemampuan mahasiswa menghitung integral fungsi dengan metode substitusi.. UAS Kalkulus Semester Pendek no. b (kriteria:

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral.

Lebih terperinci

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS Lecture 5. Integral A. Masalah Luas (The Area Problem) Sebelumnya kita pernah mempelajari rumus-rumus luas dari beberapa bentuk geometri. Misalnya, luas daerah persegi panjang adalah panjang kali lebar,

Lebih terperinci

TURUNAN RANGKUMAN MATERI. '( x) lim. '( x) lim lim 0. Turunan fungsi f(x) terhadap x didefinisikan sebagai berikut. f (x+h) f (x) x x + h

TURUNAN RANGKUMAN MATERI. '( x) lim. '( x) lim lim 0. Turunan fungsi f(x) terhadap x didefinisikan sebagai berikut. f (x+h) f (x) x x + h TURUNAN RANGKUMAN MATERI Turunan fungsi f() traap ifinisikan sbagai brikut f f ( ) f ( ) '( ) lim 0 f (+) f () + Scara gomtri turunan fungsi i = mrupakan grain/kmiringan kurva fungsi trsbut i =. Torma:

Lebih terperinci

TURUNAN FUNGSI (DIFERENSIAL)

TURUNAN FUNGSI (DIFERENSIAL) TURUNAN FUNGSI (DIFERENSIAL) A. Pengertian Derivatif (turunan) suatu fungsi. Perhatikan grafik fungsi f( (pengertian secara geometri) ang melalui garis singgung. f( f( f(+ Q [( +, f ( + ] f( P (, f ( )

Lebih terperinci

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi

Lebih terperinci

23. FUNGSI EKSPONENSIAL

23. FUNGSI EKSPONENSIAL BAB III FUNGSI-FUNGSI ELEMENTER Paa bagian ini kita slalu mmprtimbangkan fungsi lmntr yang iplajari alam kalkulus an mnfinisikan hubungannya ngan fungsi ari suatu variabl komplks. Khususnya, kita finisikan

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY IV. TURUNAN Turunan di satu titik Pendahuluan dua masalah dalam satu tema KONSEP TURUNAN a. Garis Singgung Kemiringan tali busur

Lebih terperinci

A B A B. ( a ) ( b )

A B A B. ( a ) ( b ) BAB. FUNGSI A. Relasi dan Fungsi Misalkan A dan B dua himpunan tak kosong. Relasi T dari himpunan A ke B adalah himpunan bagian dari A B. Jadi relasi A ke B merupakan himpunan (,y), dengan pada himpunan

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

SISTEM BILANGAN KOMPLEKS

SISTEM BILANGAN KOMPLEKS BAB 1 SISTEM BILANGAN KOMPLEKS Pokok Pembahasan : Definisi Bilangan Imajiner Bilangan Kompleks Operasi Aritmatik BAB 1 SISTEM BILANGAN KOMPLEKS 1.1. DEFINISI Bilangan kompleks adalah bilangan yang besaran

Lebih terperinci

Fungsi Elementer (Bagian Kedua)

Fungsi Elementer (Bagian Kedua) Fungsi Elementer (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IX) Outline 1 Fungsi Hiperbolik 2 sin(iz) =

Lebih terperinci

Bab 3 Fungsi Elementer

Bab 3 Fungsi Elementer Bab 3 Fungsi Elementer Bab 3 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Fungsi Eksponensial dan sifat-sifatnya, Fungsi Trigonometri. ()

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG MATEMATIKA DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG BARISAN VS DERET BARISAN (Sequences) Himpunan besaran u 1, u, u 3, yang

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

RUMUS INTEGRAL RUMUS INTEGRAL

RUMUS INTEGRAL RUMUS INTEGRAL TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Berdasarkan Teorema Dasar Kalkulus, maka kita akan mendapatkan integral tak tentu dari fungsi-fungsi yang sudah kita ketahui Beberapa yang telah kita ketahui

Lebih terperinci

BAB IV DIFFERENSIASI

BAB IV DIFFERENSIASI BAB IV DIFFERENSIASI 4. Garis singgung Garis singgung adalah garis yang menyinggung suatu titik tertentu pada suatu kurva. Pengertian garis singgung tersebut dapat dilihat pada Gambar 4.. Akan tetapi jika

Lebih terperinci

7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z

7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z MATEMATIKA 6 TEKNIK Residu dan Penggunaan 6 7. RESIDU DAN PENGGUNAAN 7.. RESIDU DAN KUTUB disebut titik singular dari f() bila f() gagal analitik di tetapi analitik pada suatu titik dari setiap lingkungan

Lebih terperinci

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah :

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah : 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendahuluan dua masalah dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adalah : m PQ c c Q -c Jika c, maka tali busur PQ akan berubah

Lebih terperinci

A. 3 x 3 + 2x + C B. 2x 3 + 2x + C. C. 2 x 3 + 2x + C. D. 3 x 3 + 2x + C. E. 3 x 3 + 2x 2 + C A. 10 B. 20 C. 40 D. 80 E. 160

A. 3 x 3 + 2x + C B. 2x 3 + 2x + C. C. 2 x 3 + 2x + C. D. 3 x 3 + 2x + C. E. 3 x 3 + 2x 2 + C A. 10 B. 20 C. 40 D. 80 E. 160 7. UN-SMA-- Diketahui sebidang tanah berbentuk persegi panjang luasnya 7 m. Jika panjangnya tiga kali lebarnya, maka panjang diagonal bidang tanah tersebut m m m m m 7. UN-SMA-- Pak Musa mempunyai kebun

Lebih terperinci

(a) (b) Gambar 1. garis singgung

(a) (b) Gambar 1. garis singgung BAB. TURUNAN Sebelm membahas trnan, terlebih dahl ditinja tentang garis singgng pada sat krva. A. Garis singgng Garis singgng adalah garis yang menyinggng sat titik tertent pada sat krva. Pengertian garis

Lebih terperinci

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T. Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 2 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 24 Daftar

Lebih terperinci

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain

Lebih terperinci

BAB VI. FUNGSI TRANSENDEN

BAB VI. FUNGSI TRANSENDEN BAB VI. FUNGSI TRANSENDEN Fungsi Logaritma Natural Fungsi Balikan (Invers) Fungsi Eksponen Natural Fungsi Eksponen Umum an Fungsi Logaritma Umum Masalah Laju Perubahan Seerhana Fungsi Trigonometri Balikan

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI FUNGSI LOGARITMA ASLI............ Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln (Daerah asalnya adalah., 0 Turunan Logaritma Asli ln, 0 Lebih umumnya, Jika 0 dan f terdifferensialkan,

Lebih terperinci

Turunan Fungsi. h asalkan limit ini ada.

Turunan Fungsi. h asalkan limit ini ada. Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim

Lebih terperinci

INTEGRAL PARSIAL DENGAN TEKNIK TURIN. Mintarjo SMK Negeri 2 Gedangsari Gunungkidul

INTEGRAL PARSIAL DENGAN TEKNIK TURIN. Mintarjo SMK Negeri 2 Gedangsari Gunungkidul INTEGRAL PARSIAL DENGAN TEKNIK TURIN Mintarjo SMK Negeri Gedangsari Gunungkidul email : tarjamint@gmailcom Abstrak Matematika merupakan ilmu pengetahuan yang memiliki sifat universal Salah satu cabang

Lebih terperinci

I N T E G R A L (Anti Turunan)

I N T E G R A L (Anti Turunan) I N T E G R A L (Anti Turunan) I. Integral Tak Tentu A. Rumus Integral Bentuk Baku. Derifatif d/ X n = nx n- xn = Integral x n+ n. d/ cos x = - sin x sin x = - cos x. d/ sin x = cos x cos x = sin x 4.

Lebih terperinci

DASAR-DASAR MATLAB. Seperti bahasa pemrograman lainnnya, MATLAB JUGA memiliki metode dan symbol tersendiri dalam penulisan syntax-nya.

DASAR-DASAR MATLAB. Seperti bahasa pemrograman lainnnya, MATLAB JUGA memiliki metode dan symbol tersendiri dalam penulisan syntax-nya. DASAR-DASAR MATLAB Seperti bahasa pemrograman lainnnya, MATLAB JUGA memiliki metode dan symbol tersendiri dalam penulisan syntax-nya. Dalam pemrograman MATLAB dikenal hanya dua tipe data, yaitu Numeric

Lebih terperinci

BAB VI INTEGRAL TAK TENTU DAN PENGGUNAANNYA

BAB VI INTEGRAL TAK TENTU DAN PENGGUNAANNYA BAB VI INTEGRAL TAK TENTU DAN PENGGUNAANNYA Jika dari suatu fungsi kita dapat memperoleh turunannya, bagaimana mengembalikan turunan suatu fungsi ke fungsi semula? Operasi semacam ini disebut operasi balikan

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

Jawaban. atau 1 xkt. h c = = = atau. 4,965k

Jawaban. atau 1 xkt. h c = = = atau. 4,965k Jawaban Diketahui F( λ) π 5 λ hc ex( hc / λk ) a Untuk menemukan nilai maksimum F( λ ), diambil derivatif F( λ ) ke λ kemudian nilanya sama dengan 0 Misalnya Sehingga hc x λk atau xk λ hc Dengan Maka 5

Lebih terperinci

PERSAMAAN DIFERENSIAL (PD)

PERSAMAAN DIFERENSIAL (PD) PERSAMAAN DIFERENSIAL (PD) A. PENGERTIAN Persamaan yang mengandung variabel dan beberapa fungsi turunan terhadap variabel tersebut. CONTOH : + 5 5 0 disebut PD orde I + 6 + 7 0 disebut PD orde II B. PEMBENTUKAN

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN KALKULUS S- Teknik Industri Outline Integral Parsial Integral Fungsi Trigonometri Substitusi Trigonometri Integral Fungsi Rasional . Integral Parsial Formula Integral Parsial : u

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU

BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU BAB PERSAAA DIFERESIAL ORDER SATU PEDAHULUA Persamaan Diferensial adalah salah satu cabang ilmu matematika ang banak digunakan dalam memahami permasalahan-permasalahan di bidang fisika dan teknik Persamaan

Lebih terperinci

FUNGSI VARIABEL KOMPLEKS. Oleh: Endang Dedy

FUNGSI VARIABEL KOMPLEKS. Oleh: Endang Dedy FUNGSI VARIABEL KOMPLEKS Oleh: Endang Dedy Diskusikan! Sistem Bilangan Kompleks 1 Perhatikan definisi berikut: Bilangan kompleks adalah suatu bilangan yang didefinisikan dengan =+iy,, y R dan i 1.Coba

Lebih terperinci

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : riccayusticia@gmail.com Abstrak Hubungan antara Differensial dan

Lebih terperinci

DIFERENSIAL (Derivatif) A. Simbol Deferensial Jika ada Persamaan y = 3x, maka simbol dari. atau ditulis

DIFERENSIAL (Derivatif) A. Simbol Deferensial Jika ada Persamaan y = 3x, maka simbol dari. atau ditulis DIFERENSIAL (Derivatif) A. Simbol Deferensial Jika ada Persamaan y = 3, maka simbol dari Turunan pertama y 1 atau Turunan kea y 11 atau d( ) B. Rumus Dasar Deferensial Jika y = n maka d (3) atau ditulis

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI Afrizal, S.Pd, M.PMat Matematika MAN Kampar Juli 2010 Afrizal, S.Pd, M.PMat (Matematika) Luas Daerah Dibawah Kurva Juli 2010 1 / 29 Outline Outline 1 Limit dan Turunan

Lebih terperinci

RESUME INTEGRAL. Oleh : : Siti Fatimatul Umaroh NIM : TEKNOLOGI INDUSTRI PERTANIAN TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA

RESUME INTEGRAL. Oleh : : Siti Fatimatul Umaroh NIM : TEKNOLOGI INDUSTRI PERTANIAN TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA RESUME INTEGRAL Oleh : Nama : Siti Fatimatul Umaroh NIM : 125100300111038 Kelas Jurusan : L : TIP TEKNOLOGI INDUSTRI PERTANIAN TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA 2012 INTEGRAL Integral dilambangkan

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 27 Januari 2017 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial 7.3 Integral Trigonometrik

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Studi Mandiri Fungsi dan Grafik Diferensial dan Integral oleh Sudaryatno Sudirham i Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaryatmo Sudirham Darpublic,

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisan Modul e Learning ini diiayai oleh dana DIPA BLU UNY TA 00 Sesuai dengan Surat Perjanjian Pelaksanaan

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 010 Pengantar Kalkulus 1 & merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB I PENDAHULUAN 1.1 Latar Belakang Matematika sebagai salah satu ilmu dasar, semakin dirasakan interaksinya dengan bidangbidang ilmu lainnya, seperti ekonomi dan teknologi. Peran matematika dalam interaksi

Lebih terperinci

RUMUS INTEGRAL TAK TENTU MELALUI POLA INTEGRAL TUGAS AKHIR

RUMUS INTEGRAL TAK TENTU MELALUI POLA INTEGRAL TUGAS AKHIR RUMUS INTEGRAL TAK TENTU MELALUI POLA INTEGRAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh SUTIKA DEWI 0854004458 FAKULTAS SAINS DAN

Lebih terperinci

BAGIAN 1 SINTAK DASAR MATLAB

BAGIAN 1 SINTAK DASAR MATLAB BAGIAN 1 SINTAK DASAR MATLAB Pada bagian 1 ini, akan diuraikan tentang bagaimana mendefinisikan data, operasi data dan teknik mengakses data pada Matlab. Untuk lebih memahami, pembaca sebaiknya mecobanya

Lebih terperinci

FUNGSI Matematika Industri I

FUNGSI Matematika Industri I FUNGSI TIP FTP UB Pokok Bahasan Memproses bilangan Komposisi fungsi dari fungsi Jenis fungsi Fungsi trigonometrik Fungsi eksponensial dan logaritmik Fungsi ganjil dan fungsi genap Pokok Bahasan Memproses

Lebih terperinci

SILABUS MATEMATIKA II (FIS 6219, Wajib, 3 SKS)

SILABUS MATEMATIKA II (FIS 6219, Wajib, 3 SKS) SILABUS MATEMATIKA II (FIS 6219, Wajib, 3 SKS) Kompetensi Umum Teknik integral, penggunaan integral, barisan dan deret tak hingga, fungsi dua peubah, turunan parsial dan integral ganda, persamaan differensial

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

ANALISA KOMPLEKS. 1. Bilangan Kompleks Bentuk umum bilangan kompleks yang digunakan pada persamaan (1) berikut. z = a + ib (1)

ANALISA KOMPLEKS. 1. Bilangan Kompleks Bentuk umum bilangan kompleks yang digunakan pada persamaan (1) berikut. z = a + ib (1) ANALISA KOMPLEKS. Bilangan Kompleks Bentuk umum bilangan kompleks yang digunakan pada persamaan () berikut = a + ib () dimana - : ekspresi bilangan kompleks dalam bentuk rectangular - a : bilangan nyata

Lebih terperinci

Bab II Fungsi Kompleks

Bab II Fungsi Kompleks Bab II Fungsi Kompleks Variabel kompleks z secara fisik ditentukan oleh dua variabel lain, yakni bagian realnya x dan bagian imajinernya y, sehingga dituliskan z z(x,y). Oleh sebab itu fungsi variabel

Lebih terperinci

TURUNAN FUNGSI IKA ARFIANI, S.T.

TURUNAN FUNGSI IKA ARFIANI, S.T. TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ' ' ( lim h 0 ( h-( h RUMUS DASAR TURUNAN ' n n n k k ' 0 k ' u' nu u n n '( ( '( ( '( ( '( ( 0 '( ( n

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

ada. x 1 2, maka x 1 tidak ada.

ada. x 1 2, maka x 1 tidak ada. PEMBAHASAN SOAL UJIAN KALKULUS TIPE SOAL :. Dengan menggunakan definisi, buktikan Ambil sebarang 0, 0, yakni sedemikian sehingga Jika o, maka Terbukti bahwa. Diberikan g( ), dengan menggunakan definisi

Lebih terperinci

SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I

SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I Trigonometri umumnya terdiri dari beberapa bab yang dibahas secara bertahap sesuai dengan tingkatannya. untuk kelas X, biasanya pelajaran trigonometri

Lebih terperinci

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah : TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.

Lebih terperinci

Senin, 18 JUNI 2001 Waktu : 2,5 jam

Senin, 18 JUNI 2001 Waktu : 2,5 jam UJIAN AKHIR SEMESTER KALKULUS I Senin, 8 JUNI Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT. Tentukan (a) x + sin x dx (b) x x p x dx. Tentukan dy dx jika (a) y +) (x + ln x (b) y sin p x. Tentukan ln x p

Lebih terperinci

Jurusan Matematika FMIPA-IPB

Jurusan Matematika FMIPA-IPB Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara 4 BAB II TINJAUAN PUSTAKA A. Aljabar Definisi II.A.: Aljabar (Wahyudin, 989:) Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu,

Lebih terperinci

m= f x -f x (1) l 1 A Kemiringan garis l 1 =m 1 Kemiringan garis l = m x x x 1 h Gambar 11.3

m= f x -f x (1) l 1 A Kemiringan garis l 1 =m 1 Kemiringan garis l = m x x x 1 h Gambar 11.3 TURUNAN 11.1 GARIS SINGGUNG Garis singgung adalah garis yang menyinggung suatu titik tertentu pada suatu kurva. Pengertian garis singgung tersebut dapat dilihat pada Gambar 11.1 Akan tetapi jika terdapat

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

TURUNAN FUNGSI IKA ARFIANI, S.T.

TURUNAN FUNGSI IKA ARFIANI, S.T. TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ( lim h 0 ( h-( h RUMUS DASAR TURUNAN n n n k k 0 k u nu u n n ( ( ( ( ( ( ( ( 0 ( ( n n n c RUMUS JUMLAH

Lebih terperinci

Fungsi eksponensial : menerangkan perkembangan populasi bakteri, peluruhan radioaktif

Fungsi eksponensial : menerangkan perkembangan populasi bakteri, peluruhan radioaktif FUNGSI TRANSEDENTAL Aplikasi mmuahkan manusia mmbuat gambaran pristiwa alam Fungsi ksponnsial : mnrangkan prkmbangan populasi baktri, pluruhan raioaktif Fungsi hiprbolik : mmbri bntuk jaringan listrik

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II c. Metoda Persamaan Differensial Pasti (Exact) Pada kalkulus bahwa jika suatu fungsi u(x,y) mempunyai turunan parsial yang sifatnya kontinyu, turunan pasti

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA Makalah Ini Disusun Guna Memenuhi Tugas Mata Kuliah Kalkulus Dosen Pengampu : Muhammad Istiqlal, M.Pd. Disusun Oleh:. Mukhammad Rif an Alwi (070600).

Lebih terperinci

KALKULUS DAN ALJABAR LINEAR

KALKULUS DAN ALJABAR LINEAR UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 2004/2005 Oktober 2004 ZCA 110/4 - KALKULUS DAN ALABAR LINEAR Masa: 3 jam Sila pastikan ba,hawa kertas peperiksaan ini mengandungi

Lebih terperinci

Matematika Dasar INTEGRAL PERMUKAAN

Matematika Dasar INTEGRAL PERMUKAAN Matematika asar INTEGRAL PERMUKAAN Misal suatu permukaan yang dinyatakan dengan persamaan z = f( x,y ) dan merupakan proyeksi pada bidang XOY. Bila diberikan lapangan vektor F( x,y,z ) = f( x,y,z ) i +

Lebih terperinci