Ukuran: px
Mulai penontonan dengan halaman:

Download ""

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Persimpangan Jalan Persimpangan adalah simpul pada jaringan jalan yang merupakan pertemuan antar jalan dan perpotongan lintasan kendaraan. Lalulintas pada masing-masing kaki persimpangan menggunakan ruang jalan pada persimpangan secara bersama-sama dengan lalu lintas lainnya. Persimpangan-persimpangan merupakan faktor-faktor yang penting dalam menentukan kapasitas dan waktu perjalanan pada suatu jaringan jalan, khususnya didaerah-daerah perkotaan (Departemen Perhubungan Jenderal Perhubungan Darat., 1995). Terdapat dua jenis persimpangan jalan dari segi pandangan untuk kontrol kendaraan, yaitu persimpangan dengan sinyal dan persimpangan tanpa sinyal (Morlok E. K., 1988). 3,5Persimpangan jalan merupakan simpul transportasi yang terbentuk dari beberapa pendekat dimana arus kendaraan dari beberapa pendekat tersebut bertemu dan memencar meninggalkan persimpangan (Hobbs F.D., 1995). Menurut MKJI (1997), suatu pendekat dapat diartikan sebagai daerah dari suatu lengan persimpangan jalan untuk mengantri sebelum keluar melewati garis henti. Bila gerakan lalulintas kekiri atau kekanan dipisahkan dengan pulau lalulintas, sebuah lengan persimpangan jalan dapat mempunyai dua pendekat. Berdasarkan pengaturan lalulintas untuk simpang bersinyal terdapat dua jenis simpang yaitu simpang tiga lengan dan simpang empat lengan. Pemilihan jenis simpang untuk suatu daerah didasarkan pada pertimbangan ekonomi, pertimbangan keselamatan lalulintas, dan pertimbangan lingkungan. 1. Pertimbangan ekonomi. Pertimbangan ekonomi tersebut menyangkut mengenai masalah pembebasan tanah. Di luar daerah perkotaan harga pembesan II - 1

2 tanah lebih rendah, yang memungkinkan simpang yang lebih besar, tetapi kecepatan rencana biasanya lebih tinggi, yang menyebabkan rencana simpang yang lebih luas untuk tipe yang sama menurut standar Bina Marga. 2. Pertimbangan keselamatan lalulintas. Angka kecelakaan lalulintas pada simpang bersinyal diperkirakan sebesar 0,43 kecelakaan/juta kendaraan dibandingkan dengan 0,60 pada simpang tak bersinyal dan 0,30 pada bundaran. 3. Pertimbangan lingkungan. Pada pertimbangan lingkungan tersebut menyangkut mengenai masalah polusi udara atau pencemaran udara oleh akibat asap kendaraan yang melebihi ambang batas kesehatan. Asap kendaran dan emisi kebisingan umumnya berkurang dalam keadaan-keadaan sebagai berikut. a) Pengaturan sinyal terkoordinasi dan/atau sinyal aktuasi kendaraan akan mengurangi asap kendaraan dan emisi kebisingan bila dibandingkan dengan pengaturan sinyal waktu tetap untuk simpang terisolir. b) Waktu sinyal yang efisien akan mengurangi emisi Sinyal dan Pengaturan Lalulintas Menurut MKJI (1997), pada umumnya sinyal lalulintas dipergunakan untuk beberapa alasan seperti dibawah ini. 1. Untuk menghindari kemacetan simpang akibat adanya konflik arus lalulintas, sehingga terjamin bahwa suatu kapasitas tertentu dapat dipertahankan, bahkan selama kondisi jam puncak. 2. Memberikan mekanisme pengaturan laluintas yang lebih efektif dan murah dibandingkan pengaturan dengan cara manual. 3. Untuk memberi kesempatan kepada kendaraan dan / atau pejalan kaki dari jalan minor memotong jalan mayor. II - 2

3 4. Dengan dipasangnya lampu lalulintas maka kecelakaan yang timbul diharapkan akan berkurang, karena konflik yang timbul antar lalulintas dapat dikurangi. Gambar dibawah ini menunjukkan perbandingan jumlah konflik yang terjadi pada simpang dengan rambu lalulintas dan dengan lampu lalulintas. Mengenai konflik lalulintas yang terjadi pada simpang empat bersinyal dengan rambu lalulintas dan dengan lampu lalulintas dapat dilihat seperti gambar dibawah ini (MKJI., 1997). Gambar 2.1 Konflik Lalulintas pada Simpang Empat Lengan (Sumber : Munawar A., 2004, Manajemen Lalulintas Perkotaan). Lalulintas adalah suatu peralatan yang dioperasikan secara manual, mekanis, atau elektris untuk mengatur kendaraan-kendaraan agar berhenti atau berjalan. Biasanya alat ini terdiri dari tiga warna yaitu merah, kuning, dan hijau. Penggunaan sinyal dengan lampu tiga warna diterapkan untuk memisahkan lintasan dari gerakan-gerakan lalulintas yang saling bertentangan dalam dimensi waktu. Hal ini adalah keperluan yang mutlak bagi gerakan-gerakan lalulintas yang datang dari jalan-jalan yang saling berpotongan atau pada konflik-konflik utama. Sinyal-sinyal dapat juga digunakan untuk memisahkan gerakan membelok dari lalulintas lurus melawan, atau untuk memisahkan gerakan lalulintas membelok dari pejalan kaki yang menyeberang atau pada konflik-konflik kedua. Penggunaan II - 3

4 lebih dari dua fase biasanya akan menambah waktu siklus, namun demikian penggunaan sinyal tidak selalu meningkatkan kapasitas dan keselamatan dari simpang tertentu karena berbagai faktor lalulintas. (Hobbs, F.D, 1995) Gambar dibawah ini menunjukkan adanya beberapa konflik yang terjadi di simpang bersinyal (MKJI, 1997). Gambar 2.2 Titik konflik pada suatu simpang-4 (Sumber : Hightway Trafic Analisys and Design. Penerbit University of Bradford) Menurut Munawar A (2004), sistem pengontrolan lalulintas merupakan pengaturan lalulintas yang berupa perintah atau larangan. Perintah atau larangan tersebut dapat berupa lampu lalulintas, rambu-rambu lalulintas atau marka jalan. Sistem pengontrolan lalulintas pada persimpangan jalan meliputi beberapa hal sebagai berikut. 1. Optimalisasi lampu lalulintas, berupa pengaturan cycle time (waktu siklus), waktu hijau merah/merah dari lampu lalulintas serta jumlah fase. II - 4

5 2. Pemasangan/pemindahan lampu lalulintas, dengan memasang lampu lalulintas di tempat-tempat dengan arus lalulintas yang tinggi. 3. Prioritas kepada bus kota pada persimpangan dengan lampu lalulintas, yakni berupa pemasangan antena pemancar pada bus kota, sehingga jika bus kota tersebut mendekati lampu lalulintas, lampu akan selalu hijau. 4. Koordinasi lampu lalulintas, berupa koordinasi antara lampu-lampu lalulintas, sehingga sebagian kendaraan akan dapat melewati beberapa lampu lalulintas tanpa berhenti 2.3. Satuan Mobil Penumpang Parameter Satuan Mobil Penumpang (SMP) atau Passenger Car Unit (PCU) adalah efek dari beberapa jenis kendaraan dalam kondisi arus lalu lintas yang berakibat kepada mobil penumpang dalam kondisi satu area studi. Kondisi yang mempengaruhi parameter SMP adalah :` 1. Ukuran kendaraan 2. Kekuatan atau berat kendaraan 3. Kondisi pengemudi (metode, perilaku, pendidikan, jenis kelamin) Jumlah lalu-lintas yang datang dan jumlah aliran lalu-lintas jenuh (s) dapat diukur/ dihitung berdasarkan jumlah kendaraan per jam (vesh/h) atau (PCU/h). Bila arus lalu-lintas adalah identik dengan perbandingan (headways) sehingga PCU pada kondisi dalam lalu lintas dapat diperhitungkan sebagai berikut dimana perhitungan perbandingan didapat selama dalam kondisi arus aliran lalu-lintas jenuh (s = saturated). Jenis kendaraan dibagi dalam beberapa tipe yang terdapat pada tabel 2.1 dan memiliki nilai konversi pada tiap pendekatan seperti pada tabel 2.2 II - 5

6 Tabel 2.1 Tipe Kendaraan No. Tipe Kendaraan Definisi 1 Kendaraan tak bermotor (UM) Sepeda, becak, gerobak 2 Sepeda bermotor (MC) Sepeda motor 3 Kendaraan ringan (LV) Sedan, jeep, minibus, pick up, microbus 4 Kendaraan berat (HV) Bus, truk sedang, trailer, truk gandengan Sumber : Manual Kapasitas Jalan Indonesia, 1997 Tabel 2.2 Nilai konversi smp pada simpang untuk jalan perkotaan Nilai konversi smp pada simpang untuk jalan Jenis kendaraan perkotaan Terlindungi (P) Terlawan (O) LV 1 1 HV 1,3 1,3 MC 0,2 0,4 Sumber : Manual Kapasitas Jalan Indonesia, 1997 Untuk rasio kendaraan belok kiri Plt, dan rasio belok kanan Prt dihitung dengan rumus : (2.1) (2.2) Data masukan lalu lintas diperlukan untuk dua hal, yaitu pertama data arus lalu lintas eksisting dan kedua data arus lalu lintas rencana. Data lalu lintas eksisting digunakan untuk melakukan evaluasi kinerja lalu lintas, berupa arus lalu lintas per jam eksisting pada jam-jam tertentu yang dievaluasi, misalnya arus lalu lintas pada jam sibuk pagi atau arus lalu lintas pada jam sibuk sore. Data arus lalu lintas rencana digunakan sebagai dasar untuk menetapkan lebar jalur lalu lintas II - 6

7 atau jumlah lajur lalu lintas, berupa arus lalu lintas jam desain (qjd) yang ditetapkan dari LHRT, menggunakan faktor k. q JD L RT Keterangan : LHRT : adalah volume lalu lintas harian rata-rata tahunan, dinyatakan dalam skr/hari. K : adalah faktor jam rencana, ditetapkan dari kajian fluktuasi arus lalu lintas jam-jaman selama satu tahun. Nilai k yang dapat digunakan untuk jalan perkotaan berkisar antara 7% sampai dengan 12%. LHRT dapat ditaksir menggunakan data survei perhitungan lalu lintas selama beberapa hari tertentu sesuai dengan pedoman survei perhitungan lalu lintas yang berlaku Sinyal Pengguna sinyal a. Penentuan Fase Sinyal Fase adalah suatu rangkaian dari kondisi yang diberlakukan untuk suatu arus atau beberapa arus, yang mendapatkan identifikasi lampu lalu lintas yang sama (Munawar, 2004:45). Jumlah fase yang baik adalah fase yang menghasilkan kapasitas besar danrata-rata tundaan rendah. Pengaturan dua fase dapat dipertimbangkan pada awal analisis karena memberikan kapasitas terbesar dengan tundaan yang terendah dibandingkan dengan pengaturan fase lainnya seperti terlihat pada gambar di bawah ini (Gambar 2.8 dan Gambar 2.4). Jika pengaturan dua fase ini belum memadai, maka perlu dievaluasi arus belok kanan, apakah memungkinkan bila dipisahkan dari arus lurus dan apakah tersedia lajur untuk memisahkannya. Pengaturan arus belok kanan yang terpisah hanya dilakukan bila arusnya melebihi 200 smp/jam, tetapi bisa saja dilakukan pemisahan ini, walaupun arus belok kanan lebihrendah dari 200 smp/jam dengan pertimbangan peningkatan terhadap keselamatan lalu lintas. II - 7

8 Gambar 2.3 Tipikal pengaturan fase APILL pada simpang tiga Sumber : Manual Kapasitas Jalan Indonesia, 1997 Gambar 2.4Tipikal pengaturan 3 fase APILL pada simpang 4, khususnya pemisahan pergerakan belok kanan Sumber : Manual Kapasitas Jalan Indonesia, 1997 II - 8

9 Gambar 2.5 Tipikal pengaturan 4 fase APILL pada simpang 4, khususnya pemisahan pergerakan belok kanan Sumber : Manual Kapasitas Jalan Indonesia, 1997 b. Waktu anatara hijau dan waktu hilang Waktu antar hijau (intergreen), adalah waktu antara berakhirnya hijau suatu fase dengan berawalnya hijau fase berikut. Biasanya disimbolkan sebagai IG. Waktu ini ditentukan berdasarkan pertimbangan keselamatan terhadap waktu yang diperlukan oleh satu kendaraan untuk keluar dari suatu persimpangan sebelum pergerakan yangberlawanan diperbolehkan mulai bergerak. IG = amber (waktu kuning) + all red (semua merah) Waktu semua merah (all red)yang diperlukan untuk pengosongan pada akhir setiap fase harus memberi kesempatan bagi kendaraan terakhir (melewati garis henti pada akhir sinyal kuning) berangkat dari titik konflik sebelum kedatangan kendaraan yang datang pertama dari fase berikutnya (melewati garis henti pada awal sinyal hijau) pada titik yang sama. Jadi merah semua merupakan fungsi dari kecepatan dan jarak dari kendaraan yangberangkat dan yang datang dari garis henti II - 9

10 sampai ke titik konflik, dan panjang dari kendaraan yang berangkat, seperti terlihat pada gambar di bawah ini. Gambar 2.6Titik konflik kritis dan jarak untuk keberangkatan dan kedatangan Sumber : Manual Kapasitas Jalan Indonesia, 1997 Titik konflik kritis pada masing-masing fase(i) adalah titik yang menghasilkan Waktu Merah Semua terbesar : Dimana : LEV, LAV IEV VEV, VAV (2.3) = jarak dari garis henti ke titik konflik masingmasing untuk kendaran yang berangkat dan yang datang (m). = panjang kendaraan yang berangkat (m) = kecepatan masing-masing untuk kendaraan yang II - 10

11 berangkat dan yang datang (m/detik). Nilai-nilai yang dipilih untuk VEV, VAV, dan IEV tergantung dari komposisi lalu lintas dan kondisi kecepatan pada lokasi. Nilai-nilai sementara berikut dapat dipilih untuk kondisi di Indonesia. Kecepatan kendaraan yang datang (VAV) = 10 m/detik (kendaraan bermotor) Kecepatan kendaraan yang berangkat (VEV) = 10 m/detik (kendaraan bermotor) 3 m/detik (kend. tak bermotor) 1,2 m/detik (pejalan kaki) Panjang kendaraan yang berangkat, IEV = 5 m (LV atau HV) 2 m (MC atau UM) Waktu hilang, apabila periode merah semua untuk masing-masing akhir fase telah ditetapkan, maka waktu hilang (LTI) untuk simpang dapat dihitung sebagai jumlah dari waktu-waktu antar hijau : LTI = (merah semua + kuning) I = Igi (2.4) Panjang waktu kuning pada sinyal lalu lintas perkotaan di Indonesia biasanya adalah 3,0 detik. 1. Penentuan Waktu Sinyal a. Pemilihan tipe pendekat (approach) Pemilihan tipe pendekat (approach) yaitu termasuk tipe terlindung (protected = P) atau tipe terlawan (opossed = O). b. Lebar pendekat efektif, We = effective Width Lebar pendekat efektif dengan pulau lalu lintas atau tanpa pulau lalu lintas menggunakan rumus di bawah ini : II - 11

12 Gambar 2.7 Lebar pendekat dengan dan tanpa pulau lalu lintas Sumber : Manual Kapasitas Jalan Indonesia, ) Untuk pendekat tipe O (terlawan) Jika WLTOR 2.0 meter, maka We= WA-WLTOR Jika WLTOR 2.0 meter, maka We= WAx (1+PLTOR) - WLTOR. Keterangan: WA= lebar pendekat WLTOR= lebar pendekat dengan belok kiri langsung 2) Untuk pendekat tipe P (terlindung) Jika Wkeluar < Wex(1-PRT-PLTOR), Wesebaiknya diberi nilai baru = Wkeluar Keterangan: PRT= rasio kendaraan belok kanan PLTOR= rasio kendaraan belok kiri langsung c. Arus jenuh nyata (S) Arus jenuh nyata dapat dinyatakan sebagai hasil perkalian dari arus jenuh dasar (So) untuk keadaan yang standar dengan faktor penyesuaian (F) untuk penyimpangan dari kondisi yang sebenarnya. Arus jenuh dasar merupakan besarnya keberangkatan antrian di dalam pendekat selama kondisi ideal (smp/ jam hijau ). II - 12

13 Gambar 2.8 Model dasar untuk arus jenuh (Akcelik, 1989) Sumber : Manual Kapasitas Jalan Indonesia, 1997 Arus jenuh nyata dapat dinyatakan sebagai hasil perkalian dari arus jenuh dasar (So) untuk keadaan yang standar dengan faktor penyesuaian (F) untuk penyimpangan dari kondisi yang sebenarnya, dari suatu kumpulan kondisi-kondisi (ideal) yang telah ditetapkan sebelumnya. S = SOx F1x F2xF3x F4x...Fn Untuk tipe pendekat P (arus berangkat terlindung) : keberangkatan tanpa konflik antara gerakan lalu lintas belok kanan dan lurus, arus jenuh dasar ditentukan sebagai fungsi dari lebar efektif pendekat (We). (Sumber : MKJI) So = 600 x We (2.5) Keterangan : So = arus jenuh dasar (smp/jam waktu hijau) We = lebar efektif pendekat (m) II - 13

14 ini: Penyesuaian kemudian dilakukan untuk kondisi-kondisi berikut Ukuran kota CS, jutaan penduduk Hambatan samping SF, kelas hambatan samping dari lingkungan jalan dan kendaraan tak bermotor Kelandaian G, % naik (+) atau turun(-) Parkir P, jarak garis hentikendaraan parker pertama Gerakan membelok RT, % belok-kanan RT, % belok Untuk tipe pendekat O, (arus berangkat terlawan): keberangkatan dari antrian sangat dipengaruhi oleh kenyataan bahwa sopir-sopir di Indonesia tidak menghormati aturan hak jalan dari sebelah kiri yaitu kendaraan-kendaraan belok kanan memaksa menerobos lalu-lintas lurus yang berlawanan. Model-model dari Negara barat tentang keberangkatan ini,yang didasarkan pada teori penerimaan celah (gap-acceptance), tidak dapat diterapkan. Suatu model penjelasan yang didasarkan pada pengamatan perilaku pengemudi telah dikembangkan dan diterapkan dalam MKJI Apabilaterdapat gerakan belok kanan dengan rasio tinggi, umumnya menghasilkan kapasitas-kapasitas yang lebih rendah jika dibandingkan dengan model barat yang sesuai. Nilai-nilai smp yang berbeda untuk pendekat terlawan juga digunakan seperti diuraikan diatas Tipe Simpang Simpang adalah bagian yang sulit dihindarkan dalam jaringan jalan, karena persimpangan jalan merupakan tempat bertemu dan berganti arah arus lalu lintas dari dua jalan atau lebih. Ketika berkendara didalam kota orang dapat melihat bahwa kebanyakan jalan didaerah perkotaan biasanya memiliki persimpangan, II - 14

15 dimana pengemudi dapat memutuskan untuk jalan terus atau berbelok dan pindah jalan. Berikut adalah jenis simpang empat lengan, Gambar 2.9 Jenis-jenis simpang empat lengan Sumber : Manual Kapasitas Jalan Indonesia, 1997 Tabel 2.3 Definisi Jenis Simpang Bersinyal Empat Lengan Kode Pendekat jalan utama Pendekat jalan minor Janis fase Jenis Jumlah lajur Median LTOR Jumlah lajur Media LTOR LT/RT % 10/10 25/ N N 1 N N Y N 1 N N Y N 2 Y N L 2 Y Y 2 Y Y Y N 2 Y N 43A 43C Y N 3 Y N 44C 44B 433L 3 Y Y 3 Y Y 44 44B Y N 3 Y N 44C 44B Y N 3 Y N 44C 44B 444L 4 Y Y 4 Y Y 44C L 5 Y Y 4 Y Y 44C 44B 455L 5 Y Y 5 Y Y 44C 44B Sumber : MKJI 1997 Hal 2-25 II - 15

16 2.6. Arus Jenuh Arus jenuh lalulintas (saturation flow) adalah tingkat arus maksimal yang dinyatakan dalam ekivalen mobil penumpang (emp) yang dapat mengalir secara terus menerus melewati garis henti suatu kaki persimpangan selama periode nyala hijau (Salter R. J, 1980). Suatu siklus dianggap jenuh apabila pada akhir siklus (akhir nyala hijau) masih terdapat kendaraan yang antri. Model keberangkatan kendaraan dibuat dengan asumsi bahwa tidak ada kendaraan yang melewati garis henti pada saat lampu merah sedang menyala efektif (Malkhamah S., 1994). Menurut MKJI besarnya penelitian yang dilakukan Munawar ternyata nilai arus jenuh dasar dilapangan ternyata lebih besar dari nilai tersebut, yaitu sekitar 1,3 kali, sehingga nilai variabel pengali arus jenuh dasar tersebut dikoreksi menjadi 780. (Munawar, A, 2004). Estimasi arus jenuh didasarkan pada hasil penelitian sebelumnya dari sejumlah persimpangan pada masa tertentu. Aspek-aspek yang mempengaruhi arus jenuh secara umum adalah faktor lingkungan, tipe lajur, kemiringan dan komposisi lalulintas. Estimasi empiris yang pernah dilakukan pada setiap metode pengukuran arus jenuh dikembangkan atas dasar pertimbangan pengaruh faktorfactor tersebut Metode perhitungan arus jenuh yang diberikan Manual Kapasitas Jalan Indonesia (MKJI) 1997 ditentukan bahwa arus lalulintas yang mengalir pada saat waktu hijau dapat disalurkan oleh suatu pendekatan. Penentuan arus jenuh dasar (S 0 ) untuk setiap pendekatan yang diuraikan dibawah ini : Untuk pendekatan tipe P (Protected), yaitu arus terlindung: S 0 = 600 x We smp/jam hijau (2.6) II - 16

17 Dimana, S 0 = arus jenuh dasar (smp/jam) We = lebar jalan efektif (m) Gambar 2.10 Arus jenuh dasar untuk pendekat tipe P Sumber, Manual Kapasitas Jalan Indonesia 1997 Berdasarkan pada nilai jenuh dasar S 0 yang menggunakan lebar pendekatan, maka besar arus jenuh dipengaruhi oleh komposisi kendaraan yakni dengan kendaraan yang lewat atas jenis kendaraan penumpang, kendaraan berat dan sepeda motor yang merupakan bagian dari arus lalulintas. Faktor-faktor yang mempengaruhi besar arus jenuh adalah jumlah lajur dalam kelompok lajur yang bersangkutan, lebar jalur, persentase kendaraan yang lewat, kemiringan memanjang jalan, adanya lajur parkir dan jumlah manuver parkir perjam, pengaruh penyesuaian kota dan penduduk, hambatan samping sebagai fungsi fungsi dari jenis lingkungan jalan dan pengaruh membelok ke II - 17

18 kanan dan kekiri. Persamaan matematis untuk menyatakan hal diatas dapat digunakan dalam perhitungan arus jenuh sebagai berikut: S = S 0 x F cs x F sf x F g x F p x F rt x F lt smp/jam (2.6) Dimana: S = Arus jenuh untuk kelompok lajur yang dianalisi, dalam kendaraan perjam waktu hijau (smp/jam) S 0 F CS Fsf = Arus jenuh dasar untuk setiap pendekat (smp/jam) = Faktor penyesuaian ukuran kota dengan jumlah penduduk = Faktor penyesuaian hambatan samping sebagai fungsi dari jenis lingkungan C = Faktor penyesuain kelandaian jalan Fp = Faktor penyesuaian terhadap parker F st = Faktor penyesuaian belok kanan (hanya berlaku untuk pendekat tipe P, jalan dua arah) F lt = Faktor penyesuaian belok kiri (hanya berlaku untuk pendekat tipe P,tanpa belok kiri langsung) a) Rasio Arus / Arus Jenuh (Fr) Rasio arus jenuh (flow ratio) yang terjadi pada tiap-tiap pendekat pada kaki simpang dengan fase yang sama, merupakan perbandingan antara arus (flow: Q) dan arus jenuh (saturation flow: S). Nilai arus jenuh untuk setiap pendekat dihitung dengan rumus : R (2.7) dimana, Q = Arus lalu lintas (smp/jam) S = Arus jenuh (smp/jam) Nilai kritis dari FRcrit (maksimum) dari arusyang ada dihitung pada simpang dengan penjumlahan rasio arus kritis tersebut: II - 18

19 IFR = (FRcrit) (2.8) Dari kedua nilai di atas maka diperoleh rasio fase PR (Phase Ratio)untuk tipe fase yaitu : R (2.9) b) Waktu Siklus dan Waktu Hijau 1) Waktu Siklus, adalah waktu untuk urutan lengkap dan indikasi sinyal dari awal waktu hijau sampai waktu hijau berikutnya. Waktu siklus sebelum penyesuaian (Cua) untuk pengendalian waktu tetap dihitung dengan rumus: Cua = (1,5. LTI + 5) / (1-IFR) (2.10) Dimana : Cua = Panjang Siklus (detik) LTI = Jumlah waktu yang hilang setiap siklus (detik) IFR = Rasio arus perbandingan dari arus terhadap arus jenuh Waktu siklus penyesuaian juga dapat diperoleh dari gambar di bawah ini : Gambar 2.11 Penetapan waktu siklus sebelum penyesuaian Sumber : Manual Kapasitas Jalan Indonesia, 1997 II - 19

20 Untuk memperoleh waktu siklus optimal (Co), sebaiknya memperhatikan batasan-batasan yang dianjurkan sebagai berikut : Tabel 2.4 Daftar batasan waktu siklus yang dianjurkan Tipe Pengatur Waktu siklus yang layak (detik) Pengaturan 2 Fase Pengaturan 3 Fase Pengaturan 4 Fase Sumber : Manual Kapasitas Jalan Indonesia, ) Waktu hijau adalah waktu nyala hiajau dari suatu pendekat dan dieri symbol gi. Waktu hijau dihitung dengan rumus : gi = (Cua LTI) x PRi (2.11) dimana : gi = tampilan waktu hijau pada fase I (detik) CUA = waktu siklus sebelum waktu penyesuaian sinyal (detik) LTI = waktu hilang total persiklus (detik) PRi = rasio arus simpang RFcrt / (FRcrit) II - 20

21 Gambar 2.12 Grafik arus jalan dasar untuk pendekat tipe O Sumber : Manual Kapasitas Jalan Indonesia, II - 21

22 d. Faktor faktor penyesuaian 1) Penetapan faktor koreksi untuk nilai arus lalu lintas dasar kedua tipe pendekat (protecteddan opposed)pada simpang adalah sebagai berikut: a) Faktor ukuran kota (Fcs) Yaitu ukuran besarnya jumlah penduduk yang tinggal dalam suatu daerah perkotaan. Untuk menentukan nilai faktor ukuran kota digunakan tabel berikut : Tabel 2.5 Faktor penyesuaian ukuran kota (Fcs) Penduduk kota (juta Faktor penyesuaian (Fcs) jiwa) > 3,0 1,05 1,0 3,0 1,00 0,5 1,0 0,94 0,1 0,5 0,83 < 0,1 0,82 Sumber : Manual Kapasitas Jalan Indonesia, 1997 b) Faktor koreksi hambatan samping (Fsf) Faktor koreksi hambatan samping (Fsf) ditentukan dari tabel di bawah ini sebagai fungsi dari jenis tikungan jalan, tingkat hambatan samping dan ratio kendaraan tak bermotor. Jika hambatan samping tidak diketahui, dapat dianggap tinggi agar tidak menilai kapasitas terlalu besar. II - 22

23 Lingkungan Jalan Tabel 2.6 Faktor koreksi hambatan samping (Fsf) Rasio Kendaraan Tak Bermotor Hambatan Tipe Fase Samping 0,00 0,05 0,1 0,15 0,2 0,25 Tinggi Terlawan Terlindung 0,93 0,88 0,84 0,79 0,74 0,7 0,93 0,91 0,88 0,87 0,85 0,81 Komersial (COM) Sedang Terlawan Terlindung 0,94 0,89 0,85 0,8 0,75 0,81 0,94 0,92 0,89 0,88 0,86 0,82 Kecil Terlawan Terlindung 0,95 0,9 0,86 0,81 0,76 0,72 0,95 0,93 0,9 0,89 0,87 0,83 Pemukiman (RES) Tinggi Terlawan Terlindung 0,96 0,91 0,86 0,81 0,78 0,72 0,96 0,94 0,92 0,89 0,86 0,84 Sedang Terlawan Terlindung 0,97 0,92 0,87 0,82 0,79 0,73 0,97 0,95 0,93 0,9 0,87 0,85 Kecil Terlawan Terlindung 0,98 0,93 0,88 0,83 0,80 0,74 0,98 0,96 0,94 0,91 0,88 0,86 Akses terbatas (RA) Tinggi / sedang / kecil Terlawan Terlindung 1,00 0,95 0,90 0,85 0,90 0,75 1,00 0,98 0,98 0,93 0,90 0,88 Sumber : Manual Kapasitas Jalan Indonesia, 1997 c) Faktor kelandaian (Fg) Faktor penyesuaian kelandaian ditentukan gambar di bawah ini sebagai fungsi kelandaian (G). II - 23

24 Gambar 2.13 Faktor penyesuaian untuk kelandaian (Fg) Sumber : Manual Kapasitas Jalan Indonesia, 1997 d) Faktor koreksi parkir (Fp) Parkir kendaraan berpengaruh terhadap penentuan waktu sinyal karena lokasi parkir di sekitar simpang mengganggu arus lalu lintas. Faktor koreksi parkir ditentukan dari gambar di bawah ini sebagai fungsi jarak dari garis henti sampai kendaraan yang diparkir pertama dan lebar pendekat. II - 24

25 Gambar 2.13 Faktor penyesuaian untuk pengaruh parkir dan lajur belok kiri yang pendek (Fp) Sumber : Manual Kapasitas Jalan Indonesia, 1997 FP juga dapat dihitung dengan menggunakan rumus berikut yang mencakup panjang waktu hijau : FP = [Lp/3 (WA 2) x (Lp/3 g)/ WA] / g (2.12) dimana : LP = jarak antara garis henti dan kendaraan yang diparkir pertama (m) atau panjang dari lajur pendek. WA = lebar pendekat (m) G = waktu hijau pada pendekat (nilai normal 26 detik) 2) Faktor penyesuaian untuk nilai arus jenuh dasar hanya untuk pendekat tipe terlindung (P) II - 25

26 a) Faktor koreksi belok kanan (Frt) Faktor koreksi terhadap arus belok kanan pada pendekat yang ditinjau, dapat dihitung dengan rumus berikut ini atau dapatkan nilainya dari gambar di bawah. Frt = 1 + Prt 0,26 (2.13) Dimana Prt = rasio arus belok kanan pada pendekat. Gambar 2.14 Faktor penyesuaian untuk belok kanan (Frt) Sumber : Manual Kapasitas Jalan Indonesia, 1997 b) Faktor koreksi belok kiri (Flt) Pengaruh arus belok kiri dihitung dengan rumus : FLT= 1 PLTx 0,16 (2.14) dimana PLT = rasio arus belok kiri pada pendekat Atau dapatkan nilainya dari gambar berikut : II - 26

27 Gambar 2.15 Faktor penyesuaian untuk belok kiri (Flt) Sumber : Manual Kapasitas Jalan Indonesia, Perilaku Lalulintas Perilaku lalulintas adalah ukuran kuantitas yang menerangkan kondisi operasional fasilitas dari lalulintas. Pengukuran kuantitas sendiri diartikan sebagai kemampuan maksimum yang dapat melintasi suatu penampang jalan dalam melayani lalulintas ditinjau dari volume kendaraan yang dapat ditampung oleh jalan tersebut pada kondisi tertentu. Perilaku lalulintas pada simpang bersinyal meliputi kapasitas, rasio kendaraan henti, panjang antrian, tundaan rerata, derajat kejenuhan, waktu siklus dan arus lalulintas (MKJI., 1997) Kapasitas Kapasitas suatu ruas jalan dalam satu sistem jalan raya adalah jumlah kendaraan maksimum yang memiliki kemungkinan yang cukup untuk melewati ruas jalan tersebut (dalam satu maupun kedua arah) dalam periode waktu tertentu dan dibawah kondisi jalan dan lalulintas yang umum. Kondisi jalan yang umum menyangkut ciri fisik sebuah jalan yang mempengaruhi kapasitas, seperti lebar II - 27

28 jalur dan bahu jalan, jarak pandang, serta landai jalan. Kondisi lalulintas yang umum mencerminkan perubahan karakter arus lalulintas (Oglesby C. H dan Gary Hicks. R., 1990). Evaluasi mengenai kapasitas bukan saja bersifat mendasar pada permasalahan pengoperasian dan perancangan lalulintas tetapi juga dihubungkan dengan aspek keamanan dan ekonomi dalam pengoperasian jalan raya. Kapasitas merupakan ukuran kinerja (performance), pada kondisi yang bervariasi, dapat diterapkan pada suatu lokasi tertentu atau pada suatu jaringan jalan yang sangat kompleks. Berhubung beragamnya geometri jalan-jalan, kendaraan, pengendara dan kondisi lingkungan, serta sifat saling keterkaitannya, kapasitas bervariasi menurut kondisi lingkungannya (Hobbs F. D., 1995). Kapasitas didefinisikan sebagai arus maksimum yang melalui suatu titik di jalan yang dapat dipertahankan per satuan jam pada kondisi tertentu. Untuk jalan dua-lajur dua-arah, kapasitas ditentukan untuk arus dua arah (kombinasi dua arah), tetapi untuk jalan dengan banyak lajur, arus dipisahkan per arah dan kapasitas ditentukan perlajur (MKJI., 1997). Selain kecepatan, kapasitas merupakan salah satu dari dua karakteristik utama arus kendaraan yang melelui ruas jalan dan persimpangan. Besar kapasitas pada suatu jalur gerak mempunyai pengaruh yang besar terhadap kecepatan volume kendaraan. Kapasitas sendiri dapat diartikan sebagai volume maksimum yang dapat ditampung oleh ruas jalan atau persimpangan (Morlok E. K., 1988). Berdasar Highway Capacity Manual (2000) dalam Munawar A.(2004), kapasitas simpang didasarkan atas 2 faktor sebagai berikut. 1. Distribusi celah dalam arus lalulintas jalan utama. 2. Pertimbangan pengemudi dalam memilih celah sebelum melakukan gerakan belok atau lurus. Kapasitas lengan persimpangan atau kelompok dinyatakan dengan persamaan 2.1 yang merupakan persamaan dalam penentuan kapasitas untuk setiap metode. II - 28

29 C = S x g/c (2.15) Dimana: C = Kapasitas untuk lengan atau kelompok lajur (smp/jam) S = Arus jenuh, yaitu arus berangkat rata-rata dari antrian dalam pendekat selama sinyal hijau (smp/jam hijau) g = Waktu hijau (det) c = Waktu siklus, yaitu selang waktu untuk perubahan sinyal yang lengkap (yaitu antara dua awal hijau yang berurutan pada fase yang sama) 2.9. Rasio kendaraan henti Rasio kendaraan henti adalah rasio kendaraan yang harus berhenti akibat sinyal merah sebelum melewati simpangan atau rasio dari arus lalulintas yang terpaksa berhenti sebelum melewati garis henti akibat pengendalian sinyal (MKJI 1997) Panjang antrian Panjang antrian (queve length) merupakan jumlah kendaraan yang antri pada suatu pendekat. Pendekat adalah daerah suatu lengan persimpangan jalan untuk kendaraan mengantri sebelum keluar melewati garis henti. Satuan panjang antrian yang digunakan adalah satuan mobil penumpang (MKJI., 1997). Jumlah rata-rata antrian kendaraan (smp) pada awal isyarat lampu hijau (NQ)dihitung sebagai jumlah kendaraan terhenti (smp) yang tersisa dari fase hijau sebelumnya (NQ1) ditambah jumlah kendaraan (smp) yang datang dan terhenti dalam antrian selama fase merah (NQ2), dihitung menggunakan persamaan : NQ = NQ1 + NQ2 (2.16) Untuk derajat kejenuhan (DS) > 0,5 : [ D ] (2.17) Untuk derajat kejenuhan (DS) 0,5 maka NQ1 = 0 : D (2.18) II - 29

30 Dimana : NQ1= jumlah smp yang tersisa dari fase hijau sebelumnya NQ2= jumlah smp yang datang selama fase merah DS = derajat kejenuhan GR = rasio hijau c = waktu siklus (detik) Qmasuk= arus lalu-lintas pada tempat masuk diluar LTOR (smp/jam) Nilai NQ1dapat pula diperoleh dengan menggunakan diagram pada Gambar2.16 dan nilai NQ2 menggunakan diagram pada Gambar2.17. Gambar 2.16 Jumlah kendaraan tersisa (smp) dari sisa fase sebelumnya Sumber : Manual Kapasitas Jalan Indonesia, 1997 II - 30

31 Gambar 2.17 Jumlah kendaraan yang datang kemudian antri pada fase merah Sumber : Manual Kapasitas Jalan Indonesia, 1997 Gambar 2.18 Jumlah kendaraan yang datang kemudian antri pada fase merah Sumber : Manual Kapasitas Jalan Indonesia, 1997 II - 31

32 Panjang antrian (QL) diperoleh dari perkalian NQ (smp) dengan luas area rata-rata yang digunakan oleh satu kendaraan ringan (smp) yaitu 20m2, dibagi lebar masuk (m), sehingga persamaannya adalah sebagai berikut : L (2.19) 1) Kendaraan terhenti (NS) Angka henti (NS) masing-masing pendekat yang didefinisikan sebagai jumlah rata-rata kendaraan berhenti per smp, ini termasuk henti berulang sebelum melewati garis stop simpang. Persamaan dari angka henti (NS) adalah sebagai berikut : x 3600 (2.20) Dimana : c = waktu siklus (detik) Q = Arus lalu lintas (smp/jam) Jumlah rata-rata kendaraan berhenti, Nsv, adalah jumlah berhenti rata rata per kendaraan (termasuk berhenti terulang dalam antrian) sebelum melewati suatu simpang, dihitung menggunakan persamaan : Laju henti untuk seluruh simpang : (2.21) (2.22) 2) Tundaan (delay) Tundaan (D) pada suatu simpang dapat terjadi karena 2 hal, yaitu : II - 32

33 a) Tundaan lalu lintas (DT) yang disebabkan oleh interaksi lalu lintas dengan gerakan lainnya pada suatu simpang; b) Tundaan geometri (DG) yang disebabkan oleh perlambatan dan percepatan saat membelok pada suatu simpang dan atau terhenti karena lampu merah. Tundaan rata-rata untuk suatu pendekat j merupakan jumlah tundaan lalu lintas rata-rata (DTj) dengan tundaan geometrik rata-rata (DGj) yang persamaannya dapat dituliskan seperti berikut ini : Dj = DTj + DGj (2.23) Dimana : Dj = Tundaan rata-rata pendekat j (detik/smp). DTj = Tundaan lalu lintas rata-rata pendekat j (detik/smp). DGj = Tundaan geometrik rata-rata pendekat (detik/smp). Tundaan lalu lintas (DT) yaitu akibat interaksi antar lalu lintas pada simpang dengan faktor luar seperti kemacetan pada hilir (pintu keluar) dan pengaturan manual oleh polisi, dengan rumus : T c A dimana: DT c 1 = Tundaan lalu-lintas rata-rata (detik/smp) = waktu siklus yang disesuaikan (detik) (2.24) A = atau lihat Gambar 2.19) GR = rasio hijau (g/c) DS = derajat kejenuhan NQ1 = jumlah smp yang tersisa dari fase hijau sebelumnya C = kapasitas (smp/jam) II - 33

34 Gambar 2.19 Penetapan tundaan lalu lintas rata rata (DT) Sumber : Manual Kapasitas Jalan Indonesia, 1997 Tundaan geometrik (DG) adalah tundaan akibat perlambatan atau percepatan pada simpang atau akibat terhenti karena lampu merah. Persamaan dari tundaan geometrik adalah sebagai berikut : sv 6 sv 4 ` (2.26) dimana : DGj = Tundaan geometrik rata-rata untuk pendekat j (det/smp) PSV = Rasio kendaraan terhenti pada pendekat = Min (NS, 1) PT = Rasio kendaraan berbelok pada pendekat Nilai normal DGj untuk kendaraan belok tidak berhenti adalah 6 detik, dan untuk yang berhenti adalah 4 detik. Nilai normal ini didasarkan pada anggapan - anggapan bahwa : a) kecepatan = 40 km/jam b) kecepatan belok tidak berhenti =10 km/jam c) percepatan dan perlambatan = 1,5 m/det2 II - 34

35 d) kendaraan berhenti melambat untuk meminimumkan tundaan, sehingga menimbulkan hanya tundaan percepatan Tundaan rerata Menurut Hobbs F. D. (1995), tundaan rata-rata memiliki pengertian bahwa waktu tempuh yang diperlukan untuk melalui simpang apabila dibandingkan lintasan tanpa melalui suatu simpang. Ada 2 macam tundaan yang terdiri dari beberapa hal seperti dibawah ini. 1. Tundaan lalulintas memiliki pengertian bahwa waktu menunggu yang disebabkan interaksi lalulintas dengan gerakan lalulintas yang bertentangan. 2. Tundaan Geometri memiliki pengertian bahwa disebabkan oleh perlambatan dan percepatan kendaraan yang berbelok disimpangan atau yang terhenti oleh lampu merah. Tundaan karena pertemuan jalan (junction) adalah area interaksi lalulintas yang komplek, maka sifatnya (jumlah jalur, jenis permukaan, tata letak geometrik, pemberhentian bis dan penyeberangan pejalan kaki) dan bentuk pengendalian lalulintas (rambu-rambu, pengaturan arus/jalur, bundaran di persimpangan, pengendalian pembelokan, pemisahan dengan ketinggian permukaan) semuanya mempengaruhi jenis dan jumlah penundaan yang terdistribusi pada para pemakai (Hobbs F. D., 1995). Menurut MKJI (1997), tundaan lalulintas simpang didasarkan pada asumsi-asumsi sebagai berikut. 1. Kecepatan kendaraan dalam kota 40 km/jam. 2. Kecepatan kendaraan tak terhenti 10 km/jam. 3. Tingkat percepatan dan perlambatan 1,5 m/det². 4. Kendaraan terhenti mengurangi kecepatan untuk menghindari tundaan perlambatan, sehingga hanya menimbulkan tundaan percepatan. II - 35

36 2.12. Derajat kejenuhan Derajat kejenuhan lalulintas (degree of saturation) menunjukkan rasio dari suatu arus lalulintas terhadap kapasitas untuk suatu pendekat (MKJI., 1997) Waktu siklus Waktu siklus merupakan waktu untuk urutan lengkap dari indikasi sinyal (antara dua saat permulaan hijau yang berurutan didalam pendekat yang sama) waktu siklus yang paling memanjangnya antrian kendaraan dan panjangnya tundaan, sehingga akan mengurangi kapasitas keseluruhan simpang (MKJI, 1997). Waktu siklus (cycle time) merupakan waktu urutan lengkap dari indikasi sinyal atau satu periode lampu lalulintas, misalnya pada saat suatu arus di suatu ruas jalan mulai hijau, hingga pada ruas jalan tersebut mulai hijau kembali (Munawar A., 2004) Arus lalulintas Arus lalulintas adalah jumlah unsur lalulintas yang melalui titik tak terganggu di hulu, pendekat persatuan waktu. Sebagai contoh kebutuhan lalulintas kendaraan/jam; smp/jam (MKJI., 1997) Konflik pada simpang Menurut Hobbs F. D. (1995), arus lalulintas dari berbagai arah akan bertemu pada suatu titik persimpangan, kondisi tersebut menyebabkan terjadinya konflik antara pengendara dari arah yang berbeda. Konflik antar pengendara dibedakan menjadi dua titik konflik yang meliputi beberapa hal sebagai berikut. 1. Konflik Primer, konflik antara lalu-lintas dari arah memotong 2. Konflik sekunder, konflik antara arus lalu-lintas kanan dan arus lalu-lintas arah lainnya atau antara arus lalulintas belok kiri dengan pejalan kaki II - 36

37 Gambar 2.20 Konflik primer dan sekunder pada persimpangan (Sumber : Hobbs, 1995, Perencanaan dan Teknik Lalulintas). Jumlah konflik yang terjadi setiap jamnya pada masing-masing pertemuan jalan dapat langsung diketahui dengan cara mengukur volume aliran untuk seluruh gerakan kendaraan. Masing-masing titik berkemungkinan menjadi tempat terjadinya kecelakaan dan tingkat keparahan kecelakaan berkaitan dengan kecepatan relatif suatu kendaraan. Apabila ada pejalan kaki yang menyeberang jalan pada pertemuan jalan tersebut, konflik langsung kendaraan dan pejalan kaki akan meningkat; frekuensinya sekali lagi tergantung pada jumlah dan arah pejalan kaki. Pada saat pejalan kaki menyeberang jalur pendekat, 24 titik konflik kendaraan/pejalan kaki terjadi pada pertemuan jalan tersebut, dengan mengabaikan gerakan diagonal yang dilakukan oleh pejalan kaki. Suatu operasi yang paling sederhana ialah hanya melibatkan suatu mouneuvre bergabung, berpencar, atau berpotongan dan memang hal ini diinginkan sepanjang memungkinkan, untuk menghindari gerakan yang banyak dan berkombinasi yang kesemuanya ini agar diperoleh pengoperasian yang sederhana. Biasanya terdapat II - 37

38 batas pemisah dari aliran yang paling disenangi (prioritas) dan kemudian gerakan yang terkontrol dibuat terhadap dan dari sebuah aliran sekunder. Keputusan untuk menerima atau menolak sebuah gap diserahkan kepada pengemudi dari aliran yang bukan prioritas (Hobbs F. D., 1995) Volume Lalulintas Menurut Sukirman Silvia. (1994), pengukur jumlah dari arus lalu lintas digunakanlah volume. Volume lalu lintas menunjukkan jumlah kendaraan yang melintasi satu titik pengamatan dalam satu satuan waktu (hari, jam, menit). Volume lalu lintas yang tinggi membutuhkan lebar perkerasan jalan yang lebih lebar, sehingga tercipta kenyamanan dan keamanan. Sebaliknya jalan yang terlalu lebar untuk volume lalu lintas rendah cenderung membahayakan, karena pengemudi cenderung mengemudikan kendaraannya pada kecepatan yang lebih tinggi sedangkan kondisi jalan belum tentu memungkinkan. Dan disamping itu mengakibatkan peningkatan biaya pembangunan jalan yang jelas tidak pada tempatnya. Volume lalulintas merupakan variabel yang penting dalam teknik lalulintas dan pada dasarnya merupakan proses perhitungan yang penting dalam teknik lalulintas dan pada dasarnya merupakan proses perhitungan yang berhubungan dengan jumlah gerakan per satuan waktu pada lokasi tertentu. Pada perhitungan volume lalulintas secara manual, pengamat selama periode tersebut. Satuan volume lalu lintas yang umum dipergunakan sehubungan dengan penentuan jumlah dan lebar lajur adalah sebagai berikut. 1. Lalu lintas harian rerata 2. Volume jam perencanaan. 3. Kapasitas. Arus atau volume lalulintas pada suatu jalan raya diukur berdasarkan jumlah kendaraan yang melewati titik tertentu selama selang waktu tertentu. Dalam beberapa hal, lalulintas dinyatakan dengan Lalulintas Harian Rerata per II - 38

39 tahun yang disebut AADT (average annual daily traffic) atau Lalulintas Harian Rerata (LHR) bila periode pengamatanya kurang dari satu tahun. Disamping itu, volume lalulintas juga dapat diukur dan dinyatakan atas dasar jam-jaman, seperti volume lalulintas yang diamati tiap jam. (Oglesby C. H dan Gary Hicks. R., 1990) Kecepatan Menurut Hobbs F. D. (1995), kecepatan merupakan indikator dari kualitas gerakan lalulintas yang digambarkan sebagai suatu jarak yang dapat ditempuh dalam waktu tertntu dan biasanya dinyatakan dalam km/jam, kecepatan ini menggambarkan nilai gerak dari kendaraan. Perencanaan jalan yang baik tentu saja haruslah berdasarkan kecepatan yang dipilih dari keyakinan bahwa kecepatan tersebut sesuai dengan kondisi dan fungsi jalan yang diharapkan. Kecepatan terbagi menjadi 3 macam yang meliputi beberapa hal seperti dibawah ini. 1. Kecepatan perjalanan (journey speed), adalah kecepatan efektif kendaraan yang sedang dalam perjalanan antara dua tempat dan merupakan jarak antara dua tempat dibagi dengan lama waktu kendaraan untuk menempuh perjalanan antara tempat tersebut. 2. Kecepatan setempat (spotspeed), adalah kecepatan kendaraan pada suatu saat diukur dari tempat yang ditentukan. 3. Kecepatan bergerak (running speed), adalah kecepatan kendaraan rerata pada suatu jalur pada saat kendaraan bergerak yang didapat dengan membagi jalur dengan waktu kendaraan bergerak menempuh jalur tersebut. Kecepatan adalah besaran yang menunujukkan jarak yang ditempuh, biasanya dinyatakan dalam km/jam. Kecepatan ini menggambarkan nilai gerak dari kendaraan. Perencanaan jalan yang baik tentu saja haruslah berdasarkan kecepatan yang dipilih dari keyakinan bahwa kecepatan tersebut sesuai dengan kondisi dan fungsi jalan yang diharapkan (Sukirman Silvia., 1994). II - 39

40 2.18. Karakteristik Geometrik Menurut Sukirman Silvia (1994), tujuan dari perencanaan geometrik jalan adalah menghasilkan infrastruktur yang aman, efisiensi pelayanan arus lalu lintas, dan memaksimalkan ratio tingkat penggunaan/biaya pelaksanaan. Ruang, bentuk, dan ukuran jalan dikatakan baik, jika dapat memberikan rasa aman dan nyaman kepada pemakai jalan. Yang menjadi dasar perencanaan geometrik adalah sifat gerakan, dan ukuran kendaraan, sifat pengemudi dalam mengendalikan gerak kendaraannya, dan karakteristik arus lalu lintas. Hal-hal tersebut bentuk dan ukuran jalan, serta ruang gerak kendaraan yang memenuhi tingkat kenyamanan dan keamanan yang diharapkan. Dalam perencanaan geomertrik jalan dibagi menjadi beberapa macam sebagai berikut. 1. Klasikasi jalan Sesuai dengan fungsinya jalan dapat diklasifikasikan menjadi tiga golongan yang terdiri dari beberapa hal sebagai berikut. a) Jalan arteri, yaitu jalan yang melayani angkutan utama dengan ciri-ciri perjalanan jarak jauh, kecepatan rerata tinggi dan jumlah jalan masuk dibatasi secara efisian. b) Jalan kolektor, yaitu jalan angkutan pengumpul dan pembagian, dengan ciri-ciri perjalanan jarak sedang, kecepatan rerata sedang dan jumlah jalan masuk dibatasi. c) Jalan lokal, yaitu jalan yang melayani angkutan setempat dengan ciri-ciri perjalanan jarak dekat, kecepatan rerata rendah dan jalan masuk tidak dibatasi. 2. Jalur dan lajur lalulintas Jalur lalulintas adalah keseluruhan bagian perkerasan jalan yang diperuntukkan untuk lalu lintas kendaraan. Jalur lalu lintas terdiri dari beberapa lajur (lane) kendaraan. Lajur kendaraan yaitu bagian dari jalur lalu lintas yang khusus diperuntukkan untuk dilewati oleh satu rangkaian kendaraan beroda empat atau lebih dalam satu arah. Jadi jumlah lajur minimal untuk jalan 2 arah II - 40

41 adalah 2 dan pada umumnya disebut sebagai jalan 2 lajur 2 arah. Jalur lalulintas untuk 1 arah minimal terdiri dari 1 lajur lalulintas. Lebar lajur lalulintas merupakan bagian jalan yang paling menentukan lebar melintang jalan secara keseluruhan. Besarnya lebar lajur lalulintas hanya dapat ditentukan dengan pengamatan langsung dilapangan, ini disebabkan oleh beberapa hal sebagai berikut. a) Lintasan kendaraan yang satu tidak mungkin akan dapat diikuti oleh lintasan kendaraan lain dengan tepat. b) Lajur lalulintas tidak mungkin tepat sama dengan lebar kendaraan maksimum. Untuk keamanan dan kenyamanan setiap pengemudi membutuhkan ruang gerak antara kendaraan. c) Lintasan kendaraan tidak mungkin dibuat tetap sejajar sumbu lajur lalulintas, karena kendaraan selama bergerak akan mengalami gaya-gaya samping seperti tidak ratanya permukaan, gaya sentrifugal di tikungan, dan gaya angin akibat kendaraan lain yang menyiap. 3. Bahu jalan (shoulder) Bahu jalan (shoulder) adalah suatu jalur yang letaknya berdampingan dengan jalur lalulintas yang berfungsi sebagai berikut. a) Ruangan untuk tempat berhenti sementara kendaraan yang mogok atau sekedar berhenti karena pengemudi ingin berorientasi mengenai jurusan yang akan ditempuh, atau untuk beristirahat. b) Ruangan untuk menghidari diri dari saat-saat darurat, sehingga dapat mencegah terjadinya kecelakaan. II - 41

42 c) Memberikan kelegaan pada pengemudi, dengan demikian dapat meningkatkan kapasitas jalan yang bersangkutan. d) Memberikan sokongan pada konstruksi perkerasan jalan dari arah samping. e) Ruangan pembantu pada waktu mengadakan pekerjaan pernaikan atau pemeliharaan jalan (untuk penempatan alat-alat dan penimbun bahan material). f) Ruangan untuk lintasan kendaraan-kendaraan patroli, ambulan, yang sangat dibutuhkan pada keadaan darurat seperti terjadinya kecelakaan. Berdasarkan tipe perkerasannya, bahu jalan dapat dibedakan menjadi dua macam sebagai berikut. a) Bahu yang tidak diperkeras, yaitu bahu yang hanya dibuat dari material perkerasan jalan tanpa bahan pengikat, biasanya digunakan material agregat bercampur sedikit lempung. Bahu yang tidak diperkeras ini dipergunakan untuk daerah-daerah yang tidak begitu penting. Kendaraan yang berhenti dan tidak mempergunakan bahu tidak begitu banyak jumlahnya. b) Bahu yang diperkeras, yaitu bahu yang dibuat dengan mempergunakan bahan pengikat sehingga lapisan tersebut lebih kedap air dibandingkan dengan bahu yang tidak diperkeras. Bahu jenis ini dipergunakan untuk jalan-jalan untuk kendaraan yang akan berhenti dan memakai bagian tersebut besar jumlahnya. Contoh bahu jalan yang diperkeras dapat kita jumpai di sepanjang jalan tol, disepanjang jalan arteri yang melintasi kota, dan di tikungan-tikungan yang tajam. Dilihat dari letaknya bahu terhadap arah arus lalulintas, maka bahu jalan dapat dibedakan atas beberapa hal sebagai berikut. a) Bahu kiri/bahu luar (left/outer shoulder), adalah bahu yang terletak di tepi sebelah kiri dari jalur lalulintas. II - 42

43 b) Bahu kanan/bahu dalam (right/inner shulder), adalah bahu yang terletak di tepi sebelah kanan dari jalur lalulintas. Besarnya lebar bahu jalan sangat dipengaruhi oleh beberapa hal penting seperti dibawah ini. a) Fungsi jalan Menurut fungsinya, jalan arteri direncanakan untuk kecepatan yang lebih tinggi dibandingkan dengan jalan lokal. Dengan demikian jalan arteri membutuhkan kebebasan samping, keamanan, dan kenyamanan yang lebih besar, atau menuntut lebar bahu yang lebih lebar dari jalan lokal. b) Volume lalulintas Volume lalulintas yang tinggi membutuhkan lebar bahu yang lebih lebar dibandingkan dengan volume lalulintas yang lebih rendah. c) Kegiatan di sekitar jalan. Kegiatan di sekitar jalan tersebut memiliki arti bahwa jalan yang melintasi daerah perkotaan, pasar, sekolah, membutuhkan lebar bahu jalan yang lebih lebar daripada jalan yang melintasi daerah rural. Hal tersebut dikarenakan bahu jalan di sisi-sisi ruas jalan dipergunakan pula sebagai tempat parkir dan pejalan kaki. d) Ada atau tidaknya trotoar. e) Biaya yang tersedia sehubungan dengan biaya pembebasan tanah dan biaya untuk konstruksi. 4. Trotoar Troroar (side walk) adalah jalur yang terletak berdampingan dengan jalur lalulintas yang khusus digunakan pejalan kaki (pedestrian). Untuk keamanan pejalan kaki maka trotoar ini harus dibuat terpisah dari jalur lalulintas oleh struktur fisik berupa kereb. II - 43

44 Perlu atau tidaknya trotoar disediakan sangat tergantung dari volume pejalan kaki dan volume lalulintas pemakai jalan tersebut. Lebar trotoar yang dibutuhkan ditentukan oleh volume pejalan kaki, tingkat pelayanan pejalan kaki yang diinginkan, dan fungsi jalan. Untuk lebar 1,5-3,0 meter merupakan nilai yang umum dipergunakan. 5. Kereb Kereb adalah penonjolan atau peninggian tepi perkerasan dan bahu jalan yang terutama untuk keperluan drainasi dan mencegah keluarnya kendaraan dari tepi perkerasan serta memberikan ketegasan tepi perkerasan. Pada ummnya kereb digunakan pada jalan-jalan di daerah perkotaan, sedangkan untuk jalan-jalan antar kota kereb hanya dipergunakan jika jalan tersebut direncanakan untuk lalulintas dengan kecepatan tinggi atau apabila melintasi perkampungan.berdasarkan fungsi dari kereb, maka kereb dapat dibedakan menjadi empat macam sebagai berikut. a) Kereb peninggi (mountable curb), adalah kereb yang direncanakan agar dapat didaki kendaraan, biasanya terdapat di tempat parkir di pinggir jalan atau jalur laulintas. Untuk kemudahan didaki oleh kendaraan maka kereb harus mempunyai bentuk permukaan lengkung yang baik, tingginya berkisar antar cm. b) Kereb penghalang (barriar curb), adalah kereb yang direncanakan untuk menghalangi atau mencegah kendaraan meninggalkan jalur lalulintas, terutama di median, trotoar, pada jalan-jalan tanpa pagar pengaman. Tingginya berkisar antara cm. c) Kereb berparit (gutter curb), adalah kereb yang direncanakan untuk membentuk drainase perkerasan jalan. Kereb ini dianjurkan pada jalan yang memerlukan sistem drainase perkerasan lebih baik. Pada jalan lurus diletakkan di tepi luar II - 44

45 dari perkerasan, sedangkan pada tikungan diletakkan pada tepi dalam. Tingginya berkisar antara cm. d) Kereb penghalang berparit (barrier gutter curb), adalah kereb penghalang yang direncanakan untuk membentuk sistem drainase perkerasan jalan. Tingginya berkisar antara cm. 6. Median jalan Pada arus lalulintas yang tinggi sering dibutuhkan median guna memisahkan arus lalulintas yang berlawanan arah. Jadi median adalah jalur yang terletak ditengah jalan, yang berfungsi untuk membagi jalan dalam masing-masing arah. Secara garis besar median jalan berfungsi sebagai berikut. a) Menyediakan daerah netral yang cukup lebar dimana pengemudi masih dapat mengontrol kendaraannya pada saat darurat. b) Menyediakan jarak yang cukup untuk membatasi/mengurangi kesilauan terhadap lampu besar dari kendaraan yang berlawanan arah. c) Menambah rasa kelegaan, kenyamanan, dan keindahan bagi setiap pengemudi. d) Mengamankan kebebasan samping dari masing-masing arah arus lalulintas. Untuk memenuhi keperluan-keperluan tersebut diatas, maka median serta batas-batasnya harus nyata oleh setiap mata pengemudi baik pada siang hari ataupun malam hari, serta segala cuaca dan keadaan. Lebar median bervariasi antara 1-12 meter. Median dengan lebar sampai 5 meter sebaiknya ditinggikan dengan kereb atau dilengkapi dengan pembatas agar tidak dilanggar II - 45

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Persimpangan Jalan Persimpangan jalan merupakan simpul transportasi yang terbentuk dari beberapa pendekat dimana arus kendaraan dari beberapa pendekat tersebut bertemu dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pertemuan antar jalan dan perpotongan lintasan kendaraan. Lalulintas pada

BAB II TINJAUAN PUSTAKA. pertemuan antar jalan dan perpotongan lintasan kendaraan. Lalulintas pada BAB II TINJAUAN PUSTAKA 2.1 Persimpangan Jalan Persimpangan adalah simpul pada jaringan jalan yang merupakan pertemuan antar jalan dan perpotongan lintasan kendaraan. Lalulintas pada masing-masing kaki

Lebih terperinci

BAB II TINJAUAN PUSTAKA. biasanya orang yang mengevaluasi mengambil keputusan tentang nilai atau

BAB II TINJAUAN PUSTAKA. biasanya orang yang mengevaluasi mengambil keputusan tentang nilai atau BAB II TINJAUAN PUSTAKA 2.1. Evaluasi Evaluasi adalah proses penilaian. Penilaian ini bisa menjadi netral, positif atau negatif atau merupakan gabungan dari keduanya. Saat sesuatu dievaluasi biasanya orang

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Kondisi Simpang 3.1.1. Kondisi geometri dan lingkungan Kondisi geometri digambarkan dalam bentuk gambar sketsa yang memberikan informasi lebar jalan, lebar bahu dan lebar median

Lebih terperinci

BAB II TINJAUAN PUSTAKA. simpang terutama di perkotaan membutuhkan pengaturan. Ada banyak tujuan dilakukannya pengaturan simpang sebagai berikut:

BAB II TINJAUAN PUSTAKA. simpang terutama di perkotaan membutuhkan pengaturan. Ada banyak tujuan dilakukannya pengaturan simpang sebagai berikut: BAB II TINJAUAN PUSTAKA 2.1. Simpang Simpang adalah suatu area yang kritis pada suatu jalan raya yang merupakan tempat titik konflik dan tempat kemacetan karena bertemunya dua ruas jalan atau lebih (Pignataro,

Lebih terperinci

Nursyamsu Hidayat, Ph.D.

Nursyamsu Hidayat, Ph.D. Civil Engineering Diploma Program Vocational School Gadjah Mada University Nursyamsu Hidayat, Ph.D. Menghindari kemacetan akibat adanya konflik arus lalulintas Untuk memberi kesempatan kepada kendaraan

Lebih terperinci

BAB III LANDASAN TEORI. lebih sub-pendekat. Hal ini terjadi jika gerakan belok-kanan dan/atau belok-kiri

BAB III LANDASAN TEORI. lebih sub-pendekat. Hal ini terjadi jika gerakan belok-kanan dan/atau belok-kiri BAB III LANDASAN TEORI 3.1 Simpang Bersinyal 3.1.1 Geometrik Perhitungan dikerjakan secara terpisah untuk setiap pendekat. Satu lengan simpang dapat terdiri lebih dari satu pendekat, yaitu dipisahkan menjadi

Lebih terperinci

2.6 JALAN Jalan Arteri Primer Jalan Kolektor Primer Jalan Perkotaan Ruas Jalan dan Segmen Jalan...

2.6 JALAN Jalan Arteri Primer Jalan Kolektor Primer Jalan Perkotaan Ruas Jalan dan Segmen Jalan... DAFTAR ISI Halaman Judul... i Pengesahan... ii Persetujuan... iii Motto dan Persembahan... iv ABSTRAK... v ABSTRACT... vi KATA PENGANTAR... vii DAFTAR ISI... ix DAFTAR TABEL... xiv DAFTAR GAMBAR... xvii

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kondisi Simpang 3.1.1 Kondisi geometri dan lingkungan Kondisi geometri persimpangan juga memberikan pengaruh terhadap lalu lintas pada simpang, sehingga harus digambarkan dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA. berpotongan/bersilangan. Faktor faktor yang digunakan dalam perancangan suatu

BAB II TINJAUAN PUSTAKA. berpotongan/bersilangan. Faktor faktor yang digunakan dalam perancangan suatu BAB II TINJAUAN PUSTAKA 2.1. Simpang Persimpangan adalah daerah di mana dua atau lebih jalan bergabung atau berpotongan/bersilangan. Faktor faktor yang digunakan dalam perancangan suatu persimpangan adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. buah ruas jalan atau lebih yang saling bertemu, saling berpotongan atau bersilangan.

BAB II TINJAUAN PUSTAKA. buah ruas jalan atau lebih yang saling bertemu, saling berpotongan atau bersilangan. BAB II TINJAUAN PUSTAKA II.1 Pengertian Persimpangan Jalan Persimpangan menurut Manual Kapasitas Jalan Indonesia (1997) adalah dua buah ruas jalan atau lebih yang saling bertemu, saling berpotongan atau

Lebih terperinci

Pengaruh Pemberlakuan Rekayasa Lalulintas Terhadap Derajat Kejenuhan Pada Simpang Jalan Pajajaran dan Jalan Pasirkaliki

Pengaruh Pemberlakuan Rekayasa Lalulintas Terhadap Derajat Kejenuhan Pada Simpang Jalan Pajajaran dan Jalan Pasirkaliki Pengaruh Pemberlakuan Rekayasa Lalulintas Terhadap Derajat Kejenuhan Pada Simpang Jalan Pajajaran dan Jalan Pasirkaliki Jurusan Teknik Sipil, Politeknik Negeri Bandung, Bandung 40012 E-mail: risnars@polban.ac.id

Lebih terperinci

DAFTAR ISTILAH KARAKTERISTIK LALU LINTAS. Arus Lalu Lintas. UNSUR LALU LINTAS Benda atau pejalan kaki sebagai bagian dari lalu lintas.

DAFTAR ISTILAH KARAKTERISTIK LALU LINTAS. Arus Lalu Lintas. UNSUR LALU LINTAS Benda atau pejalan kaki sebagai bagian dari lalu lintas. 283 KARAKTERISTIK LALU LINTAS Arus Lalu Lintas DAFTAR ISTILAH UNSUR LALU LINTAS Benda atau pejalan kaki sebagai bagian dari lalu lintas. Kend KENDARAAN Unsur lalu lintas diatas roda LV HV KENDARAAN RINGAN

Lebih terperinci

di kota. Persimpangan ini memiliki ketinggian atau elevasi yang sama.

di kota. Persimpangan ini memiliki ketinggian atau elevasi yang sama. BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Umum Persimpangan jalan adalah simpul transportasi yang terbentuk dari beberapa pendekat, dimana arus kendaraan dari berbagai pendekat bertemu dan memencar meninggalkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. saling berhubungan atau berpotongan dimana lintasan-lintasan kendaraan

BAB II TINJAUAN PUSTAKA. saling berhubungan atau berpotongan dimana lintasan-lintasan kendaraan BAB II TINJAUAN PUSTAKA 2.1 Simpang Persimpangan didefinisikan sebagai titik pertemuan antara dua atau lebih jalan yang saling berhubungan atau berpotongan dimana lintasan-lintasan kendaraan berpotongan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Jalan Raya Jalan raya adalah jalan yang menghubungkan satu kawasan dengan kawasan yang lain. Biasanya jalan besar ini mempunyai ciri sebagai berikut: 1. Digunakan untuk kendaraan

Lebih terperinci

KONDISI DAN KARAKTERISTIK LALU LINTAS

KONDISI DAN KARAKTERISTIK LALU LINTAS DAFTAR ISTILAH KONDISI DAN KARAKTERISTIK LALU LINTAS Emp smp Type 0 Type P EKIVALEN MOBIL PENUMPANG SATUAN MOBIL PENUMPANG ARUS BERANGKAT TERLAWAN ARUS BERANGKAT TERLINDUNG Faktor dari berbagai tipe kendaraan

Lebih terperinci

ANALISIS KARAKTERISTIK DAN KINERJA SIMPANG EMPAT BERSINYAL (Studi Kasus Simpang Empat Telukan Grogol Sukoharjo) Naskah Publikasi Tugas Akhir

ANALISIS KARAKTERISTIK DAN KINERJA SIMPANG EMPAT BERSINYAL (Studi Kasus Simpang Empat Telukan Grogol Sukoharjo) Naskah Publikasi Tugas Akhir ANALISIS KARAKTERISTIK DAN KINERJA SIMPANG EMPAT BERSINYAL (Studi Kasus Simpang Empat Telukan Grogol Sukoharjo) Naskah Publikasi Tugas Akhir untuk memenuhi sebagian persyaratan mencapai derajat Sarjana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Simpang Bersinyal Simpang bersinyal adalah titik bertemunya arus kendaraan yang diatur dengan lampu lalu lintas. Umumnya penggunaan simpang bersinyal yaitu : 1. Untuk menghindari

Lebih terperinci

Efektifitas Persimpangan Jalan Perkotaan Kasus : Simpang Sudirman & Simpang A.Yani Kota Pacitan. Ir. Sri Utami, MT

Efektifitas Persimpangan Jalan Perkotaan Kasus : Simpang Sudirman & Simpang A.Yani Kota Pacitan. Ir. Sri Utami, MT NEUTRON, Vol.4, No. 1, Februari 2004 21 Efektifitas Persimpangan Jalan Perkotaan Kasus : Simpang Sudirman & Simpang A.Yani Kota Pacitan Ir. Sri Utami, MT ABSTRAK Pada daerah tertentu di Kota Pacitan sering

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Persimpangan adalah titik pada jaringan jalan tempat jalan-jalan bertemu dan

BAB II TINJAUAN PUSTAKA. Persimpangan adalah titik pada jaringan jalan tempat jalan-jalan bertemu dan BAB II TINJAUAN PUSTAKA 2.1 Simpang Persimpangan adalah titik pada jaringan jalan tempat jalan-jalan bertemu dan tempat lintasan-lintasan kendaraan yang saling berpotongan Persimpangan dapat berfariasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. manfaatnya (http://id.wikipedia.org/wiki/evaluasi).

BAB II TINJAUAN PUSTAKA. manfaatnya (http://id.wikipedia.org/wiki/evaluasi). BAB II TINJAUAN PUSTAKA 2.1. Evaluasi Evaluasi adalah proses penilaian. Penilaian ini bisa menjadi netral, positif, atau negatif atau merupakan gabungan dari keduanya. Saat sesuatu dievaluasi biasanya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Simpang Simpang merupakan bagian yang tidak terpisahkan dari jaringan jalan. Di daerah perkotaan biasanya banyak memiliki simpang, dimana pengemudi harus memutuskan

Lebih terperinci

BAB III LANDASAN TEORI. lintas (traffic light) pada persimpangan antara lain: antara kendaraan dari arah yang bertentangan.

BAB III LANDASAN TEORI. lintas (traffic light) pada persimpangan antara lain: antara kendaraan dari arah yang bertentangan. BAB III LANDASAN TEORI 3.1. Simpang Bersinyal Simpang bersinyal adalah suatu persimpangan yang terdiri dari beberapa lengan dan dilengkapi dengan pengaturan sinyal lampu lalu lintas (traffic light). Berdasarkan

Lebih terperinci

DAFTAR ISI JUDUL LEMBAR PENGESAHAN LEMBAR PERSETUJUAN ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN

DAFTAR ISI JUDUL LEMBAR PENGESAHAN LEMBAR PERSETUJUAN ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN vii DAFTAR ISI JUDUL LEMBAR PENGESAHAN LEMBAR PERSETUJUAN ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi vii xii xiv

Lebih terperinci

EVALUASI KINERJA SIMPANG HOLIS SOEKARNO HATTA, BANDUNG

EVALUASI KINERJA SIMPANG HOLIS SOEKARNO HATTA, BANDUNG EVALUASI KINERJA SIMPANG HOLIS SOEKARNO HATTA, BANDUNG Marsan NRP : 9921019 Pembimbing : Prof. Dr. Ir. Bambang I.S., M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG ABSTRAK

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA

BAB IV PENGOLAHAN DATA DAN ANALISA BAB IV PENGOLAHAN DATA DAN ANALISA 4.1 UMUM Analisa kinerja lalu lintas dilakukan untuk mengetahui tingkat pelayanan, dan dimaksudkan untuk melihat apakah suatu jalan masih mampu memberikan pelayanan yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA 2.1 Simpang Persimpangan merupakan bagian yang tidak terpisahkan dari semua sistem jalan. Ketika berkendara di dalam kota, orang dapat melihat bahwa kebanyakan jalan di daerah

Lebih terperinci

SIMPANG BER-APILL. Mata Kuliah Teknik Lalu Lintas Departemen Teknik Sipil dan Lingkungan, FT UGM

SIMPANG BER-APILL. Mata Kuliah Teknik Lalu Lintas Departemen Teknik Sipil dan Lingkungan, FT UGM SIMPANG BER-APILL 1 Mata Kuliah Teknik Lalu Lintas Departemen Teknik Sipil dan Lingkungan, FT UGM PENDAHULUAN Lampu lalu lintas merupakan alat pengatur lalu lintas yang mempunyai fungsi utama sebagai pengatur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II Bab II Tinjauan Pustaka TINJAUAN PUSTAKA 2.1 Hirarki jalan Jalan merupakan sarana yang paling penting dalam sebuah kota, karena dengan dilihat dari penataan jalan, sebuah kota dapat dikatakan sudah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Jalan Perkotaan Menurut Manual Kapasitas Jalan Indonesia (MKJI 1997), jalan perkotaan merupakan segmen jalan yang mempunyai perkembangan secara permanen dan menerus sepanjang

Lebih terperinci

ANALISIS PENGARUH KINERJA LALU-LINTAS TERHADAP PEMASANGAN TRAFFIC LIGHT PADA SIMPANG TIGA (STUDI KASUS SIMPANG KKA)

ANALISIS PENGARUH KINERJA LALU-LINTAS TERHADAP PEMASANGAN TRAFFIC LIGHT PADA SIMPANG TIGA (STUDI KASUS SIMPANG KKA) ANALISIS PENGARUH KINERJA LALU-LINTAS TERHADAP PEMASANGAN TRAFFIC LIGHT PADA SIMPANG TIGA (STUDI KASUS SIMPANG KKA) Lili Anggraini¹, Hamzani², Zulfhazli³ 1) Alumni Jurusan Teknik Sipil, 2), 3) Jurusan

Lebih terperinci

STUDI KINERJA SIMPANG LIMA BERSINYAL ASIA AFRIKA AHMAD YANI BANDUNG

STUDI KINERJA SIMPANG LIMA BERSINYAL ASIA AFRIKA AHMAD YANI BANDUNG STUDI KINERJA SIMPANG LIMA BERSINYAL ASIA AFRIKA AHMAD YANI BANDUNG Oleh : Hendy NRP : 0021109 Pembimbing : Budi Hartanto S, Ir., M.Sc FAKULTAS TEKNIK JURUSAN TEKHIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN. 5.1 Ruas Jalan A. Data Umum, Kondisi Geometrik, Gambar dan Detail Ukuran

BAB V HASIL DAN PEMBAHASAN. 5.1 Ruas Jalan A. Data Umum, Kondisi Geometrik, Gambar dan Detail Ukuran BAB V HASIL DAN PEMBAHASAN 5.1 Ruas Jalan A. Data Umum, Kondisi Geometrik, Gambar dan Detail Ukuran Tabel 5.1 Data Umum dan Kondisi Geomterik Ruas Jalan Prof. dr. Sardjito PENDEKAT TIPE LINGKUNGAN JALAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA. jalan. Ketika berkendara di dalam kota, orang dapat melihat bahwa kebanyakan

BAB II TINJAUAN PUSTAKA. jalan. Ketika berkendara di dalam kota, orang dapat melihat bahwa kebanyakan BAB II TINJAUAN PUSTAKA 2.1. Simpang Persimpangan merupakan bagian yang tidak terpisahkan dari semua sistem jalan. Ketika berkendara di dalam kota, orang dapat melihat bahwa kebanyakan jalan di daerah

Lebih terperinci

langsung. Survei dilakukan dengan pengukuran lebar pendekat masing-masing

langsung. Survei dilakukan dengan pengukuran lebar pendekat masing-masing BABV HASIL PENELITIAN DAN ANALISIS 5.1 Hasil Penelitian 5.1.1 Kondisi Geometrik Jalan Kondisi geometrik jalan didapat dari hasil pengumpulan data primer yang telah dilakukan dengan melakukan survei kondisi

Lebih terperinci

Gambar 2.1 Rambu yield

Gambar 2.1 Rambu yield BAB II TINJAUAN PUSTAKA 2.1 Pengaturan Simpang Tak Bersinyal Secara lebih rinci, pengaturan simpang tak bersinyal dapat dibedakan sebagai berikut : 1. Aturan Prioritas Ketentuan dari aturan lalu lintas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Simpang bersinyal diterapkan dengan maksud sebagai berikut:

BAB II TINJAUAN PUSTAKA. Simpang bersinyal diterapkan dengan maksud sebagai berikut: BAB II TINJAUAN PUSTAKA 2.1 Simpang Bersinyal. Simpang bersinyal diterapkan dengan maksud sebagai berikut: a. Untuk memisahkan lintasan dari gerakan-gerakan lalu lintas yang saling berpotongan. Hal ini

Lebih terperinci

TUNDAAN DAN TINGKAT PELAYANAN PADA PERSIMPANGAN BERSIGNAL TIGA LENGAN KAROMBASAN MANADO

TUNDAAN DAN TINGKAT PELAYANAN PADA PERSIMPANGAN BERSIGNAL TIGA LENGAN KAROMBASAN MANADO TUNDAAN DAN TINGKAT PELAYANAN PADA PERSIMPANGAN BERSIGNAL TIGA LENGAN KAROMBASAN MANADO Johanis Lolong ABSTRAK Persimpangan adalah salah satu bagian jalan yang rawan terjadi konflik lalu lintas karena

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Rekayasa Lalulintas Kode : CES 5353 Semester : V Waktu : 1 x 2 x 50 menit Pertemuan : 10 (Sepuluh)

SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Rekayasa Lalulintas Kode : CES 5353 Semester : V Waktu : 1 x 2 x 50 menit Pertemuan : 10 (Sepuluh) SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Rekayasa Lalulintas Kode : CES 5353 Semester : V Waktu : 1 x 2 x 50 menit Pertemuan : 10 (Sepuluh) A. Tujuan Instruksional 1. Umum Mahasiswa dapat memahami

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Klasifikasi Jalan Undang-Undang Republik Indonesia nomor 38 tahun 2004 tentang jalan, klasifikasi jalan berdasarkan fungsinya dibedakan atas: 1. Jalan Arteri adalah jalan umum

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN. Tabel 5.1 Kondisi Lingkungan Jalan Simpang Bersinyal Gejayan KODE PENDEKAT

BAB V HASIL DAN PEMBAHASAN. Tabel 5.1 Kondisi Lingkungan Jalan Simpang Bersinyal Gejayan KODE PENDEKAT BAB V HASIL DAN PEMBAHASAN A. DATA SURVEI LAPANGAN 1. Kondisi Lingkungan dan Geometrik Jalan Kondisi lingkungan dan geometrik jalan pada masing-masing pendekat dapat di lihat pada Tabel 5.1 berikut ini.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Persimpangan adalah simpul dalam jaringan transportasi dimana dua atau

BAB II TINJAUAN PUSTAKA. Persimpangan adalah simpul dalam jaringan transportasi dimana dua atau BAB II TINJAUAN PUSTAKA 2.1. Pengertian Simpang Menurut Departemen Pendidikan dan Kebudayaan dalam Kamus Besar Bahasa Indonesia (1995), simpang adalah tempat berbelok atau bercabang dari yang lurus. Persimpangan

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN A. Data Masukan 1. Kondisi geometrik dan lingkungan persimpangan Berdasarkan hasil survei kondisi lingkungan dan geometrik persimpangan Monumen Jogja Kembali dilakukan dengan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Tinjauan Pustaka Simpang merupakan pertemuan dari ruas ruas jalan yang berfungsi untuk melakukan perubahan arus lalu-lintas. Pada dasarnya persimpangan adalah bagian terpenting

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keadaan yang sebenarnya, atau merupakan suatu penjabaran yang sudah dikaji.

BAB II TINJAUAN PUSTAKA. keadaan yang sebenarnya, atau merupakan suatu penjabaran yang sudah dikaji. BAB II TINJAUAN PUSTAKA 2.1 Simpang Analisis adalah penyelidikan terhadap suatu peristiwa untuk mengetahui keadaan yang sebenarnya, atau merupakan suatu penjabaran yang sudah dikaji. Simpang adalah simpul

Lebih terperinci

BAB IV PEMBAHASAN. arus dan komposisi lalu lintas. Kedua data tersebut merupakan data primer

BAB IV PEMBAHASAN. arus dan komposisi lalu lintas. Kedua data tersebut merupakan data primer BAB IV Pembahasan BAB IV PEMBAHASAN 4.1 Hasil Survey Data lalu lintas yang digunakan dalam penelitian adalah data mengenai arus dan komposisi lalu lintas. Kedua data tersebut merupakan data primer yang

Lebih terperinci

EVALUASI DAN PERENCANAAN LAMPU LALU LINTAS KATAMSO PAHLAWAN

EVALUASI DAN PERENCANAAN LAMPU LALU LINTAS KATAMSO PAHLAWAN EVALUASI DAN PERENCANAAN LAMPU LALU LINTAS KATAMSO PAHLAWAN Winoto Surya NRP : 9921095 Pembimbing : Prof. Ir. Bambang Ismanto S. MSc. Ph.D. FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Jalan. Jalan secara umum adalah suatu lintasan yang menghubungkan lalu lintas

II. TINJAUAN PUSTAKA. 2.1 Jalan. Jalan secara umum adalah suatu lintasan yang menghubungkan lalu lintas 5 II. TINJAUAN PUSTAKA 2.1 Jalan Jalan secara umum adalah suatu lintasan yang menghubungkan lalu lintas antar suatu daerah dengan daerah lainnya, baik itu barang maupun manusia. Seiring dengan pertambahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Umum Menurut Kamala (1993), transportasi merupakan fasilitas yang sangat penting dalam pergerakan manusia dan barang. Jalan sebagai prasarana transportasi darat memiliki

Lebih terperinci

Efektifitas Persimpangan Jalan Perkotaan Kasus : Simpang Jemursari & Simpang A.Yani Kota Surabaya. A. Muchtar, ST ABSTRAK

Efektifitas Persimpangan Jalan Perkotaan Kasus : Simpang Jemursari & Simpang A.Yani Kota Surabaya. A. Muchtar, ST ABSTRAK Efektifitas Persimpangan Jalan Perkotaan Kasus : Simpang Jemursari & Simpang A.Yani Kota Surabaya A. Muchtar, ST ABSTRAK Pada daerah tertentu di Kota Pacitan sering terjadi kemacetan pada jalan-jalan tertentu

Lebih terperinci

BAB 4 PERHITUNGAN DAN PEMBAHASAN

BAB 4 PERHITUNGAN DAN PEMBAHASAN BAB 4 PERHITUNGAN DAN PEMBAHASAN 4.1 Gambaran Umum Setelah data data yang diperlukan didapat, maka dengan cara memasukkan nilainya dalam perhitungan dapat diketahui kondisi lalu lintas yang terjadi sehingga

Lebih terperinci

EVALUASI KINERJA SIMPANG RE.MARTADINATA- JALAN CITARUM TERHADAP LARANGAN BELOK KIRI LANGSUNG ABSTRAK

EVALUASI KINERJA SIMPANG RE.MARTADINATA- JALAN CITARUM TERHADAP LARANGAN BELOK KIRI LANGSUNG ABSTRAK EVALUASI KINERJA SIMPANG RE.MARTADINATA- JALAN CITARUM TERHADAP LARANGAN BELOK KIRI LANGSUNG ARDILES GERDEN NRP : 0621025 Pembimbing : TAN LIE ING, S.T., M.T. ABSTRAK Volume lalulintas Kota Bandung mengalami

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 8 BAB II TINJAUAN PUSTAKA 2.1. Jalan Perkotaan Menurut MKJI 1997, jalan perkotaan merupakan segmen jalan yang mempunyai perkembangan secara permanen dan menerus sepanjang seluruh atau hampir seluruh jalan,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Kerangka Umum Pendekatan Metodologi yang digunakan dalam penelitian ini adalah metode survei lapangan dan analisis data yang mengacu pada Manual Kapasitas Jalan Indonesia

Lebih terperinci

pendekat/lengan, dimana arus kendaraan dari beberapa pendekat tersebut bertemu dan

pendekat/lengan, dimana arus kendaraan dari beberapa pendekat tersebut bertemu dan BAB III LANDASAN TEORI 3.1 PERSIMPANGAN Simpang jalan merupakan simpul transportasi yang terbentuk dari beberapa pendekat/lengan, dimana arus kendaraan dari beberapa pendekat tersebut bertemu dan memencar

Lebih terperinci

BAB 2 PENAMPANG MELINTANG JALAN

BAB 2 PENAMPANG MELINTANG JALAN BAB 2 PENAMPANG MELINTANG JALAN Penampang melintang jalan adalah potongan melintang tegak lurus sumbu jalan, yang memperlihatkan bagian bagian jalan. Penampang melintang jalan yang akan digunakan harus

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada dasarnya jaringan jalan diadakan karena adanya kebutuhan

BAB II TINJAUAN PUSTAKA. Pada dasarnya jaringan jalan diadakan karena adanya kebutuhan 6 BAB II TINJAUAN PUSTAKA 2.1. Umum Pada dasarnya jaringan jalan diadakan karena adanya kebutuhan perpindahan barang dan manusia dari suatu tempat ke tempat lain. Adanya pasaran suatu produk dan penanaman

Lebih terperinci

BAB 3 METODOLOGI. Tahapan pengerjaan Tugas Akhir secara ringkas dapat dilihat dalam bentuk flow chart 3.1 dibawah ini : Mulai

BAB 3 METODOLOGI. Tahapan pengerjaan Tugas Akhir secara ringkas dapat dilihat dalam bentuk flow chart 3.1 dibawah ini : Mulai BAB 3 METODOLOGI 3.1. Metode Pengamatan Pada umumnya suatu pengamatan mempunyai tujuan untuk mengembangkan dan menguji kebeneran suatu pengetahuan. Agar dapat menghasilkan data yang akurat dan tak meragukan,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kendaraan dengan pejalan kaki (Abubakar I, 1995).

BAB II TINJAUAN PUSTAKA. kendaraan dengan pejalan kaki (Abubakar I, 1995). 5 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Umum Persimpangan adalah simpul pada jaringan jalan dimana lebih dari satu jalan bertemu dan lintasan kendaraan berpotongan. Persimpangan merupakan tempat rawan

Lebih terperinci

sementara (Direktorat Jenderal Perhubungan Darat, 1996).

sementara (Direktorat Jenderal Perhubungan Darat, 1996). BAB II TINJAUAN PUSTAKA 2.1 Kinerja Ruas jalan Menurut Suwardi (2010) dalam Gea dan Harianto (2011) kinerja ruas jalan adalah kemampuan ruas jalan untuk melayani kebutuhan arus lalu lintas sesuai dengan

Lebih terperinci

TINJAUAN PUSTAKA. derajat kejenuhan mencapai lebih dari 0,5 (MKJI, 1997).

TINJAUAN PUSTAKA. derajat kejenuhan mencapai lebih dari 0,5 (MKJI, 1997). II. TINJAUAN PUSTAKA A. Pengertian Kemacetan Lalu Lintas Kemacetan adalah kondisi dimana arus lalu lintas yang lewat pada ruas jalan yang ditinjau melebihi kapasitas rencana jalan tersebut yang mengakibatkan

Lebih terperinci

Studi Efektifitas Persimpangan Jalan Perkotaan Kasus : Simpang Kertajaya Kota Surabaya. Sapto Budi Wasono, ST, MT ABSTRAK

Studi Efektifitas Persimpangan Jalan Perkotaan Kasus : Simpang Kertajaya Kota Surabaya. Sapto Budi Wasono, ST, MT ABSTRAK NEUTRON, Vol.4, No. 2, Agustus 2004 57 Studi Efektifitas Persimpangan Jalan Perkotaan Kasus : Simpang Kertajaya Kota Surabaya Sapto Budi Wasono, ST, MT ABSTRAK Kepadatan arus lalulintas dikota Surabaya

Lebih terperinci

DAFTAR ISI. Halaman HALAMAN JUDUL LEMBAR PENGESAHAN LEMBAR PERSETUJUAN HALAMAN PERSEMBAHAN ABSTRAK ABSTRACT KATA PENGANTAR

DAFTAR ISI. Halaman HALAMAN JUDUL LEMBAR PENGESAHAN LEMBAR PERSETUJUAN HALAMAN PERSEMBAHAN ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI Halaman HALAMAN JUDUL i LEMBAR PENGESAHAN ii LEMBAR PERSETUJUAN iii HALAMAN PERSEMBAHAN iv ABSTRAK v ABSTRACT vi KATA PENGANTAR vii DAFTAR ISI viii DAFTAR TABEL xi DAFTAR GAMBAR xii DAFTAR ISTILAH

Lebih terperinci

Studi Efektifitas Waktu Siklus Jaringan Jalan Perkotaan Kasus : Simpang Antang Kota Palangkaraya Kalimantan Tengah. Sapto Budi Wasono, ST, MT

Studi Efektifitas Waktu Siklus Jaringan Jalan Perkotaan Kasus : Simpang Antang Kota Palangkaraya Kalimantan Tengah. Sapto Budi Wasono, ST, MT Efektifitas Siklus Jaringan Jalan Perkotaan (Sapto BW) 29 Studi Efektifitas Siklus Jaringan Jalan Perkotaan Kasus : Simpang Antang Kota Palangkaraya Kalimantan Tengah Sapto Budi Wasono, ST, MT ABSTRAK

Lebih terperinci

MANAJEMEN LALU LINTAS DI SEKITAR JALAN RAYA ABEPURA DI JAYAPURA

MANAJEMEN LALU LINTAS DI SEKITAR JALAN RAYA ABEPURA DI JAYAPURA MANAJEMEN LALU LINTAS DI SEKITAR JALAN RAYA ABEPURA DI JAYAPURA YONES YUBILIA BIRING¹, A. A. GDE KARTIKA, ST, MSc², BUDI RAHARJO, ST, MT² ¹Mahasiswa Pasca Sarjana Bidang Manajemen dan Rekayasa Transportasi

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN BAB 4 ANALISIS DAN PEMBAHASAN 4.1 Data Penelitian Berdasarkan survei yang dilakukan pada Simpang Gintung, maka diperoleh data geometrik simpang dan besar volume lalu lintas yang terjadi pada simpang tersebut.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kuantitatif yang menerangkan kondisi operasional fasilitas simpang dan secara

BAB II TINJAUAN PUSTAKA. kuantitatif yang menerangkan kondisi operasional fasilitas simpang dan secara BAB II TINJAUAN PUSTAKA Kinerja suatu simpang menurut MKJI 1997 didefinisikan sebagai ukuran kuantitatif yang menerangkan kondisi operasional fasilitas simpang dan secara umum dinyatakan dalam kapasitas

Lebih terperinci

ANALISIS KINERJA SIMPANG BERSINYAL SECARA TEORITIS DAN PRAKTIS

ANALISIS KINERJA SIMPANG BERSINYAL SECARA TEORITIS DAN PRAKTIS ANALISIS KINERJA SIMPANG BERSINYAL SEARA TEORITIS DAN PRAKTIS Risna Rismiana Sari Staf Pengajar Jurusan Teknik Sipil Politeknik Negeri Bandung Jl. Gegerkalong Hilir Ds.iwaruga Bandung 40012. Email: risna_28@yahoo.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sebagai pertemuan dari jalan-jalan yang terlibat pada sistem jaringan jalan

BAB II TINJAUAN PUSTAKA. sebagai pertemuan dari jalan-jalan yang terlibat pada sistem jaringan jalan BAB II TINJAUAN PUSTAKA 2.1 PERSIMPANGAN Simpang merupakan sebuah bagian dari suatu jaringan jalan dan berfungsi sebagai pertemuan dari jalan-jalan yang terlibat pada sistem jaringan jalan tersebut. Dalam

Lebih terperinci

EVALUASI GEOMETRIK DAN PENGATURAN LAMPU LALU LINTAS PADA SIMPANG EMPAT POLDA PONTIANAK

EVALUASI GEOMETRIK DAN PENGATURAN LAMPU LALU LINTAS PADA SIMPANG EMPAT POLDA PONTIANAK EVALUASI GEOMETRIK DAN PENGATURAN LAMPU LALU LINTAS PADA SIMPANG EMPAT POLDA PONTIANAK Dian Idyanata 1) Abstrak Kemacetan merupakan suatu konflik pada ruas jalan yang menyebabkan antrian pada ruas jalan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI A. Pengertian Transportasi Trasnportasi adalah untuk menggerakkan atau memindahkan orang dan/atau barang dari satu tempat ke tempat lain dengan menggunakan sistem

Lebih terperinci

EVALUASI SIMPANG BERSINYAL ANTARA JALAN BANDA JALAN ACEH BANDUNG

EVALUASI SIMPANG BERSINYAL ANTARA JALAN BANDA JALAN ACEH BANDUNG EVALUASI SIMPANG BERSINYAL ANTARA JALAN BANDA JALAN ACEH BANDUNG Angga Hendarsyah Astadipura NRP : 0221055 Pembimbing : Ir. V. Hartanto, M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Transportasi Transportasi adalah suatu sistem yang terdiri dari sarana/prasarana dan sistem yang memungkinkan adanya pergerakan keseluruh wilayah sehingga terokomodasi mobilitas

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1 Analisis Ruas Jalan Raya Ciledug Berikut adalah hasil survey total arus lalu lintas per jam. Nilai total arus ini di lihat dari tiap hari sibuk dan jam sibuk. Tabel 4.1

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Manajemen adalah suatu rentetan langkah yang terpadu yang. lalu lintas adalah gerak kendaraan, orang, dan hewan di jalan.

BAB II TINJAUAN PUSTAKA. Manajemen adalah suatu rentetan langkah yang terpadu yang. lalu lintas adalah gerak kendaraan, orang, dan hewan di jalan. BAB II TINJAUAN PUSTAKA 2.1. Manajemen Lalu lintas Manajemen adalah suatu rentetan langkah yang terpadu yang mengembangkan suatu organisasi sebagai suatu sistem yang bersifat sosio, ekonomis dan teknis

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sangat diperlukan pengaturan menggunakan lampu lalulintas. Pengaturan dengan

BAB II TINJAUAN PUSTAKA. sangat diperlukan pengaturan menggunakan lampu lalulintas. Pengaturan dengan BAB II TINJAUAN PUSTAKA II.1. Umum Pengaturan lalulintas pada persimpangan merupakan hal yang paling kritis dalam pergerakan lalulintas. Pada simpang dengan arus lalulintas yang besar, sangat diperlukan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 15 BAB III LANDASAN TEORI A. Penggunaan dan Perlengkapan Jalan Berdasarkan Undang Undang Nomor Tahun 009 Tentang lalulintas dan Angkutan jalan, setiap jalan yang digunakan untuk lalu lintas umum wajib

Lebih terperinci

DAFTAR ISTILAH DAN DEFINISI

DAFTAR ISTILAH DAN DEFINISI DAFTAR ISTILAH DAN DEFINISI 1. Simpang Tak Bersinyal Notasi, istilah dan definisi khusus untuk simpang bersinyal terdapat dibawah : KONDISI GEOMETRIK LENGAN SIMPANG-3 DAN SIMPANG-4 Bagian persimpangan

Lebih terperinci

Kata kunci : Simpang Bersinyal, Kinerja, Bangkitan Pergerakan

Kata kunci : Simpang Bersinyal, Kinerja, Bangkitan Pergerakan ABSTRAK Kampus Universitas Udayana terletak disalah satu jalan tersibuk di Kota Denpasar yaitu jalan P.B. Sudirman, sehingga sering kali terjadi kemacetan. Peningkatan jumlah mahasiswa setiap tahunnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut Manual Kapasitas Jalan Indonesia (MKJI) 1997, jalan perkotaan

BAB II TINJAUAN PUSTAKA. Menurut Manual Kapasitas Jalan Indonesia (MKJI) 1997, jalan perkotaan 21 BAB II TINJAUAN PUSTAKA 2.1. Jalan Perkotaan Menurut Manual Kapasitas Jalan Indonesia (MKJI) 1997, jalan perkotaan merupakan segmen jalan yang mempunyai perkembangan secara permanen dan menerus sepanjang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1. Umum Pengaturan lalu lintas pada persimpangan merupakan hal yang paling kritis dalam pergerakan lalu lintas. Pada persimpangan dengan arus lalulintas yang besar, sangat diperlukan

Lebih terperinci

PERENCANAAN LAMPU PENGATUR LALU LINTAS PADA PERSIMPANGAN JALAN SULTAN HASANUDIN DAN JALAN ARI LASUT MENGGUNAKAN METODE MKJI

PERENCANAAN LAMPU PENGATUR LALU LINTAS PADA PERSIMPANGAN JALAN SULTAN HASANUDIN DAN JALAN ARI LASUT MENGGUNAKAN METODE MKJI PERENCANAAN LAMPU PENGATUR LALU LINTAS PADA PERSIMPANGAN JALAN SULTAN HASANUDIN DAN JALAN ARI LASUT MENGGUNAKAN METODE MKJI Febrina Ishak Syahabudin Theo K. Sendow, Audie L. E.Rumayar Universitas Sam Ratulangi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kemacetan Lalu Lintas Kemacetan adalah kondisi dimana arus lalu lintas yang lewat pada ruas jalan yang ditinjau melebihi kapasitas rencana jalan tersebut yang mengakibatkan

Lebih terperinci

BAB 1 PENDAHULUAN Umum

BAB 1 PENDAHULUAN Umum 1.1. Umum BAB 1 PENDAHULUAN Padatanya penduduk di kota-kota besar merupakan faktor yang menyebabkan permasalahan lalu lintas. adalah kota terbesar ke 2 di Indonesia yang memiliki tingkat mobilitas dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. untuk membantu kelancaran pergerakan lalulintas di lokasi tersebut.

BAB II TINJAUAN PUSTAKA. untuk membantu kelancaran pergerakan lalulintas di lokasi tersebut. BAB II TINJAUAN PUSTAKA II.1. Persimpangan Persimpangan adalah suatu lokasi dimana dua atau lebih ruas jalan bertemu atau berpotongan dan termasuk di dalamnya fasilitas yang diperlukan untuk membantu kelancaran

Lebih terperinci

Pengaturan lampu lalu lintas pada simpang merupakan hal yang paling

Pengaturan lampu lalu lintas pada simpang merupakan hal yang paling BAB III LANDASAN TEORI 3.1 Umum Pengaturan lampu lalu lintas pada simpang merupakan hal yang paling kritis dalam pergerakan lalu lintas. Pada simpang dengan arus lalu lintas yang besar telah diperlukan

Lebih terperinci

BAB IV ANALISA PEMBAHASAN DAN PEMECAHAN MASALAH

BAB IV ANALISA PEMBAHASAN DAN PEMECAHAN MASALAH BAB IV ANALISA PEMBAHASAN DAN PEMECAHAN MASALAH 4.1 Data Geografis Simpang BEKASI CYBER PARK JL. KH. NOER ALI (KALI MALANG) KALI MALANG KALI MALANG MALL METROPOLITAN Gambar 4.1 Simpang Jalan Jenderal Ahmad

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Persimpangan adalah titik-titik pada jaringan jalan dimana jalan-jalan bertemu dan

BAB II TINJAUAN PUSTAKA. Persimpangan adalah titik-titik pada jaringan jalan dimana jalan-jalan bertemu dan BAB II TINJAUAN PUSTAKA 2.1 Persimpangan Persimpangan adalah titik-titik pada jaringan jalan dimana jalan-jalan bertemu dan lintasan-lintasan kendaraan berpotongan. Lalu lintas pada masing-masing kaki

Lebih terperinci

BAB IV ANALISIS DATA. Data simpang yang dimaksud adalah hasil survey volume simpang tiga

BAB IV ANALISIS DATA. Data simpang yang dimaksud adalah hasil survey volume simpang tiga BAB IV Bab IV Analisis Data ANALISIS DATA 4.1 Data Simpang Data simpang yang dimaksud adalah hasil survey volume simpang tiga kaki RC Veteran yang telah dilakukan pada kedua simpang pada jam sibuk dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. jalan. Kemacetan banyak terjadi di kota-kota besar, terutamanya yang tidak

BAB II TINJAUAN PUSTAKA. jalan. Kemacetan banyak terjadi di kota-kota besar, terutamanya yang tidak 6 BAB II TINJAUAN PUSTAKA 2.1. Kemacetan Kemacetan adalah situasi atau keadaan tersendatnya atau bahkan terhentinya lalu lintas yang disebabkan oleh banyaknya jumlah kendaraan melebihi kapasitas jalan.

Lebih terperinci

(2) Untuk approach dengan belok kiri langsung (LTOR) W E dapat dihitung untuk pendekat dengan atau tanpa pulau lalulintas, seperti pada Gambar 3.2.

(2) Untuk approach dengan belok kiri langsung (LTOR) W E dapat dihitung untuk pendekat dengan atau tanpa pulau lalulintas, seperti pada Gambar 3.2. BAB III LANDASAN TEORI A. Proses Analasis Data Pada proses analisa data, dari hasil analisa data pada saat pengamaatan dikumpulkan selanjutnya akan dilakukan proses analisa perhitungan dengan menggunakan

Lebih terperinci

STUDI KINERJA SIMPANG BERSINYAL JALAN CIPAGANTI BAPA HUSEN BANDUNG

STUDI KINERJA SIMPANG BERSINYAL JALAN CIPAGANTI BAPA HUSEN BANDUNG STUDI KINERJA SIMPANG BERSINYAL JALAN CIPAGANTI BAPA HUSEN BANDUNG Pembimbing Nama : Yuda NRP : 0621017 : Dr. Budi Hartanto Susilo Ir., M.Sc. FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kendaraan satu dengan kendaraan lainnya ataupun dengan pejalan kaki.

BAB II TINJAUAN PUSTAKA. kendaraan satu dengan kendaraan lainnya ataupun dengan pejalan kaki. BAB II TINJAUAN PUSTAKA 2.1. Persimpangan Jalan Menurut Hobbs (1995), persimpangan jalan adalah simpul transportasi yang terbentuk dari beberapa pendekat, dimana arus kendaraan dari berbagai pendekat bertemu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Persimpangan (Intersection) Persimpangan jalan adalah daerah atau tempat dimana dua atau lebih jalan raya yang berpencar, bergabung, bersilangan dan berpotongan,

Lebih terperinci

REKAYASA TRANSPORTASI LANJUT UNIVERSITAS PEMBANGUNAN JAYA

REKAYASA TRANSPORTASI LANJUT UNIVERSITAS PEMBANGUNAN JAYA REKAYASA TRANSPORTASI LANJUT UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224 KOMPONEN SIKLUS SINYAL Siklus. Satu siklus sinyal adalah satu putaran penuh

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Analisis Dampak Lalu Lintas Dikun dan Arif (1993) mendefinisikan analisis dampak lalu-lintas sebagai suatu studi khusus dari dibangunnya suatu fasilitas gedung dan penggunaan

Lebih terperinci

EVALUASI KINERJA SIMPANG BERSINYAL JALAN 17 AGUSTUS JALAN BABE PALAR KOTA MANADO

EVALUASI KINERJA SIMPANG BERSINYAL JALAN 17 AGUSTUS JALAN BABE PALAR KOTA MANADO EVALUASI KINERJA SIMPANG BERSINYAL JALAN 17 AGUSTUS JALAN BABE PALAR KOTA MANADO Dwi Anita M. J. Paransa, Lintong Elisabeth Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi Manado E-mail:whiedwie19@gmail.com

Lebih terperinci

ANALISA KINERJA PELAYANAN SIMPANG CHARITAS KOTA PALEMBANG

ANALISA KINERJA PELAYANAN SIMPANG CHARITAS KOTA PALEMBANG ANALISA KINERJA PELAYANAN SIMPANG CHARITAS KOTA PALEMBANG Ferli Febrian Rhaptyalyani Wirawan Djatmiko Student Alumni Department of Civil Engineering, Faculty of Engineering Sriwijaya University Jln. Palembang-Prabumulih

Lebih terperinci

ANALISIS KINERJA SIMPANG BERSINYAL PADA JALAN KALIGARANG JALAN KELUD RAYA JALAN BENDUNGAN RAYA

ANALISIS KINERJA SIMPANG BERSINYAL PADA JALAN KALIGARANG JALAN KELUD RAYA JALAN BENDUNGAN RAYA ANALISIS KINERJA SIMPANG BERSINYAL PADA JALAN KALIGARANG JALAN KELUD RAYA JALAN BENDUNGAN RAYA Warsiti 1),Sukoyo 1),Galih Pamungkas 2), Muhamad Ryan Herdiansyah 2) 1) Staf PengajarJurusan Teknik Sipil

Lebih terperinci