PENGENDALIAN KECEPATAN PUTARAN GAS ENGINE

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGENDALIAN KECEPATAN PUTARAN GAS ENGINE"

Transkripsi

1 1 PENGENDALIAN KECEPATAN PUTARAN GAS ENGINE PADA RC AIRPLANE MENGGUNAKAN KONTROLER PROPORSIONAL INTEGRAL DEFERENSIAL (PID) BERBASIS MIKROKONTROLER ATMEGA 328 Ferditya Krisnanda, Pembimbing 1: Purwanto, Pembimbing 2: Bambang Siswoyo. Abstrak Saat ini penggunaan UAV (unmanned aerial vehicle) atau pesawat tanpa awak sering digunakan sebagai alat observasi tempat yang sulit dijangkau oleh manusia ataupun sebagai penyalur hobi aeromodeling. UAV pada umumnya menggunakan motor DC sebagai pendorong utamanya, hal ini memiliki beberapa kelemahan seperti kecepatan putaran, torsi, dan lama terbang yang terbatas. Salah satu alternatif penggantinya adalah dengan penggunaan Gas Engine, UAV saat ini yang mulai menggunakannya adalah RC Airplane. Motor ini adalah motor bakar yang bekerja secara mekanik sehingga perlu dikendalikan secara elektrik, dalam hal ini kecepatan putarannya. Salah satu solusi dari hal tersebut yaitu mengendalikan throttle melalui aktuator motor servo secara otomatis dengan menggunakan metode kontrol PID. Salah satu keuntungan kontrol PID adalah memiliki respon yang halus dan cepat. Pada penelitian ini digunakan metode hand tunning dan Arduino Uno berbasis mikrokontroler ATmega328 digunakan sebagai pusat pengendali sistem. Dari hasil pengujian terhadap aplikasi kontroler PID dengan menggunakan metode hand tuning ini didapat Kp = 1, Ki = 0,01, dan Kd = 0,12. Sistem dapat memberikan respon yang baik dengan toleransi 5% dari setpoint yang ditentukan dan mampu kembali steady ketika mendapatkan gangguan melalui pengujian windtunnel/ terowongan angin. Hal ini menunjukkan bahwa kontroler PID dapat mengendalikan kecepatan putaran dengan baik. Kata kunci : Gas Engine, Kecepatan Putaran, PID, UAV P I. PENDAHULUAN esawat tanpa awak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin terbang yang berfungsi dengan kendali jarak jauh oleh pilot atau mampu mengendalikan dirinya sendiri, menggunakan hukum aerodinamika untuk melaukan gerakan dalam media aerodinamis. Penggunaan UAV biasanya digunakan sebagai penyalur hobi aeromodeling atau untuk mengobservasi lapangan dimana medan yang diobservasi tidak memungkinkan manusia untuk melakukannya. UAV secara umum menggunakan motor DC sebagai penggerak utama, motor DC memiliki beberapa kendala kendala seperti kecepatan putaran, torsi, dan lama terbang yang kurang maksimal. Sehingga perlu adanya suatu inovasi agar alat dapat bekerja sesuai dengan yang diharapkan. Alternatifnya adalah penggantian motor DC dengan Gas Engine sebagai pendorong utama. Salah satu UAV saat ini yang mulai menggunakan Gas Engine adalah RC Airplane. Permasalahannya, Gas Engine atau mesin pembakaran dalam, adalah sebuah mesin di mana bahan bakarnya dibakar langsung di dalam silinder [1]. Mesin ini bekerja secara mekanik sehingga kinerjanya perlu disinkronisasikan secara elektrik dalam hal ini pengaturan kecepatan putarannya. Dari permasalahan tersebut maka diperlukan rancangan sistem kontrol baik secara hardware maupun software untuk dapat mengendalikan kecepatan putaran Gas Engine dengan cara mengendalikan besar bukaan thorttle. Tujuan yang ingin dicapai dari penelitian ini adalah menjaga kestabilan kecepatan putaran Gas Engine untuk RC Airplane saat terjadi perubahan beban karena gangguan (disturbance) menggunakan kontroler PID dengan Arduino Uno berbasis ATmega328. PID adalah kontroler yang terdiri dari kontroler proporsional, kontroler integral dan kontroler diferensial. Setiap kekurangan dan kelebihan dari masing-masing kontroler Proporsional (P), Integral (I) dan Deferensial (D) dapat saling menutupi dengan menggabungkan ketiganya secara paralel menjadi kontroler Proporsional Integral Deferensial (PID) [2]. Manfaat kedepannya diharapkan penelitian ini juga dapat dikembangkan pada UAV lainnya seperti tricopter, quadcopter, dan multicopter yang lebih bertenaga dan berdaya jelajah tinggi dengan menggunakan Gas Engine. II. IDENTIFIKASI SISTEM A. Gas Engine Gas Engine merupakan motor yang menghasilkan putaran melalui proses pembakaran dalam, yaitu pencampuran antara bahan bakar cair (oktan 90) dengan udara. Pada dasarnya putarannya dikendalikan dengan megatur buka-tutup katup melalui throttle-nya. Spesifikasi yang dipilih berdasarkan kebutuhan standar untuk aeromodeling, mesin dengan tipe 2 tak, kapasitas displacement 9cc ini memiliki kekuatan maksimal 0,8 HP/ RPM. Pada motor ini sensor hall effect sudah terpasang menjadi satu. Gambar 1 Gas Engine 2 tak dengan displacement 9 CC

2 2 B. Sensor Hall effect Sensor hall effect yang digunakan pada perancangan alat ini terpasang menjadi satu pada Gas Engine, bekerja sebagai pengolah sinyal yang dihasilkan dari magnet/ reluktor yang berputar. Sinyal kemudian diolah oleh CDI menghasilkan keluaran berupa sinyal digital, kemudian diolah kembali oleh rangkaian Frequency to Voltage untuk menghasilkan keluaran berupa sinyal analog. E. UBEC (Universal Baterry Elimination Circuit) UBEC (Universal Battery Elimination Circuit) berfungsi sebagai pengondisi sinyal tegangan agar lebih stabil ketika disalurkan pada CDI. Rangkaian ini bekerja pada tegangan 6-23V dan menghasilkan output 5,1 atau 6,1 V. F. Propeller Propeller yang digunakan pada ujung shaft motor adalah propeller tipe S2 series 11 x 5 inch. Pemilihan ini didasarkan pada rekomendasi pabrik yaitu propeller 11 x 5 inch atau 11 x 6 inch jika digunakan pada Gas Engine displacement 9 CC. Gambar 2 Sensor Hall Effect pada Gas Engine B. Rangkaian Frequency to Voltage Rangkaian Frequency to Voltage digunakan untuk mengubah sinyal digital dari keluaran sensor hall effect yang diproses oleh CDI menjadi sinyal analog agar dapat dimasukkan pada board Arduino Uno. Rankaian ini menggunakan integrated circuit (IC) LM2917 yang memiliki tegangan kerja +12 volt DC hingga +24 volt DC. Skema rangakainnya dapat ditunjukkan pada Gambar 3. Gambar 4 Propeller tipe S2 series 11 x 5 inch G. Motor Servo Motor servo yang digunakan dalam perancangan kali ini berguna sebagai pengatur buka-tutup throttle pada Gas Engine. Throttle sendiri berguna untuk menaikkan dan merunkan kecepatan putaran pada Gas Engine. Motor servo ini juga dapat langsung terhubung ke Arduino Uno tanpa menggunakan driver karena bekerja pada maksimum tegangan masukan 4,8 V dan memiliki torsi sebesar 3,1 kg-cm. Gambar 3 Skematik Rangkaian Frequency to Voltage Sumber: Datasheet LM2917 Berdasarkan pada datasheet dengan rangkaian seperti pada gambar 4.4, maka tegangan keluaran dapat dihitung dengan menggunakan persamaan:...(1) Atau secara umum perhitungan yang digunakan pada rangkaian yang mengunakan IC LM2907/2917 dapat dijelaskan pada persamaan berikut [3]....(2) dimana : Fin = Frekuensi sinyal input (Hz) Vcc = Tegangan sumber yang digunakan (volt) R1 = Resistor pada pin 3 IC LM2917 (Ohm) C1 = Kapasitor pada pin 2 IC LM2917 (Farad) D. CDI (Capacitor Discharge Ignition) CDI atau Capacitor Discharge Ignition disini digunakan untuk membantu sistem pengapian pada proses pembakaran dalam, sehingga semakin maksimal pengapian maka busi juga akan memantik campuran gas dalam ruang bakar secara maksimal juga. Bekerja pada tegangan 4,8 6 V. Disamping itu CDI juga berfungsi sebagai pengolah sinyal yang dihasilkan dari sensor hall effect. Gambar 5 Motor Servo H. Windtunnel (Terowongan Angin) Windtunnel/ terowongan angin ini memiliki fungsi untuk menguji Gas Engine apakah dapat stabil ketika mendapatkan gangguan perubahan aliran angin. Selain itu juga mempunyai fungsi sebagai peyangga Gas Engine saat melakukan penyalaan mesin ataupun saat melakukan setting. Spesifikasi Windtunnel/ terowongan angin ini memiliki diameter dalam 32 cm dan panjang 70 cm. Gambar 6 Windtunnel (Terowongan Angin)

3 3 I. Perancangan Kontroler PID Kontroler PID dapat di tuning dalam beberapa cara, antara lain Ziegler-Nichols tuning, loop tuning, metode analitis, optimasi, pole placement, auto tuning, dan hand tuning [4][5]. Pada perancangan kontroler PID sistem pengendalian kecepatan putaran Gas Engine ini, menggunakan metode hand tuning untuk menentukan parameter Kp, Ki, dan Kd. Proses pencarian parameter PID ini dilakukan dengan cara mengatur nilai Kp hingga didapatkan respon sistem yang mendekatai setpoint 5000 RPM. Hasil tuning nilai Kp ditunjukkan pada tabel 1. Tabel 1 Hasil Tuning Nilai Kp No. Kp ess (%) , , Pemilihan parameter Kp didapatkan dari data tabel diatas, yaitu parameter Kp= 1 karena dari tiga hasil tuning berbeda ess terkecil adalah pada saat Kp= 1 dan juga secara keseluruhan terletak dibawah setpoint sehingga bisa ditambahkan parameter Ki untuk dapat mendekati setpoint yang diinginkan. Setelah mendapatkan hasil Kp, maka dilanjutkan dengan mencari parameter nilai Ki untuk dapat memperbaiki respon sistem. Tabel 2 Hasil Tuning Nilai Ki No. Kp Ki Mp (%) (%) ,92 17, ,4 13, ,28 18,44 Pemilihan parameter Ki didapatkan dari data tabel diatas, yaitu parameter Ki= 0,01 karena dari beberapa hasil tuning berbeda ess terkecil adalah pada saat Ki= 0,01. Meskipun nilai ess selisihnya tidak terlalu jauh dari sebelum diberikan parameter Ki tetapi saat steady nilainya sudah berada di daerah setpoint, hal ini berbeda sebelum diberikan parameter Ki yang nilainya masih belum mendekati/ dibawah setpoint. Setelah mendapatkan hasil Ki, maka dilanjutkan dengan mencari parameter nilai Kd untuk dapat mengurangi maximum overshoot (Mp) pada respon sistem. Tabel 2 Hasil Tuning Nilai Kd Td Tr Ts No Kp Ki Kd (ms) (ms) (s) Tp (s) Mp (%) ,01 0,05 138,2 329,65 1,6 1,25 7, ,01 0,1 123,6 349,15 2,0 1,32 4, ,01 0,12 137,9 324,91 1,6 1,05 3,96 Pemilihan parameter Kd didapatkan dari data tabel diatas, yaitu parameter Kd= 0,12 dengan nilai maximum overshoot (Mp) sebesar 3,96% yang mana lebih kecil dibandingkan dengan hasil tuning lainnya, saat Kd= 0,05 dan 0,1 yaitu sebesar 7,54% dan 4,58%. Terdapat beberapa nilai ess lebih dari toleransi 5% dari setpoint yaitu sebanyak 8,1%, hal ini dikarenakan adanya gangguan internal seperti bahan bakar dan udara yang kurang lancar. Tetapi secara keseluruhan sistem dapat memberikan respon keluaran yang baik. Respon sistem dengan nilai Kp = 1, Ki = 0,01, dan Kd= 0,12 ditunjukkan pada gambar 7. Gambar 7 Hasil Respon dengan Kp = 1, Ki = 0,01, dan Kd= 0,12 Berdasarkan hasil tuning ketiga parameter Kp, Ki, dan Kd dengan menggunakan metode Hand Tuning (Hand Eksperimen), maka dapat ditentukan parameter penguatan kontroler yang akan digunakan pada sistem yaitu Kp = 1, Ki = 0.01, dan Kd = 0,12. III. PENGUJIAN DAN ANALISIS DATA Pengujian ini bertujuan untuk mengetahui kinerja dan respon dari sensor hall effect, sinyal kontrol motor servo, motor servo terhadap Gas Engine, sistem saat tanpa kontroler, dan sistem secara keseluruhan. A. Pengujian Sensor Hall effect Pengujian ini dilakukan untuk mengetahui tingkat kelinieran dari sensor hall effect dalam membaca perubahan kecepatan putaran Gas Engine No RPM Ukur Tabel 4 Hasil Pengujian Sensor Hall Effect Tegangan Perhitungan (V) Tegangan Terukur (V) Error (%) ,091 0,105 15, ,253 0,252 0, ,379 0,372 1, ,505 0,496 1, ,631 0,621 1, ,758 0,743 1, ,884 0,861 2, ,010 0,989 2, ,136 1,106 2, ,263 1,301 3, ,389 1,335 3, ,515 1,462 3, ,641 1,578 3, ,768 1,700 3, ,894 1,832 3, ,020 1,937 4, ,146 2,053 4, ,273 2,186 3,82

4 Duty Cycle (%) ,399 2,292 4, ,525 2,413 4, ,652 2,525 4, ,778 2,642 4, ,904 2,778 4, ,030 2,887 4,73 Gambar 8 Grafik Perbandingan Keluaran Sensor Dari hasil pengujian yang dilakukan, sensor dapat bekerja dengan maksimal dan terlihat kelinieran yang baik sehingga ideal untuk digunakan sebagai pendeteksi kecepatan putaran pada Gas Engine. B. Pengujian Sinyal Kontrol Motor Servo Pengujian sinyal kontrol motor servo ini bertujuan untuk melihat bagaimana bentuk sinyal saat berada pada posisi sudut yang telah ditentukan untuk menggerakkan throttle serta melihat tegangan yang dikeluarkan untuk setiap perubahan sudut motor servo Tabel 5 Pengujian Duty Cycle Motor Servo Sudut ( ) Duty Cycle (%) 2, ,78 7,33 8,9 Gambar 6 Grafik Perbahan Derajat terhadap Duty Cycle Motor Servo Derajat Duty Cycle Dari hasil pengujian sinyal kontrol motor servo yang dilakukan, dapat dilihat bahwa semakin besar nilai derajat maka duty cycle juga akan semakin besar. C. Pengujian Motor Servo terhadap Gas Engine Pengujian ini dilakukan untuk mengetahui pengaruh perubahan pergerakan motor servo terhadap kecepatan putaran pada Gas Engine. Tabel 6 Hasil Pengujian Servo terhadap Gas Engine No Pergerakan Servo ( o ) RPM

5 Kecepatan Putaran (RPM) % ess = x 100% = 0,189 x 100% = 18,9% Grafik respon sistem dengan kontroler dapat dilihat pada Gambar Kecepatan Gas Engine Derajat (o) Gambar 7 Grafik Hubungan Pergerakan Servo dengan Kecepatan Putaran Dari hasil pengujian yang dilakukan, dalam grafik masih terdapat beberapa gangguan yang membuat kelinieran kecepatan putaran tidak sempurna. Tetapi secara keseluruhan dapat dilihat bahwa semakin besar perubahan derajat pergerakan servo yang diberikan, maka kecepatan putarannya juga semakin besar. Jika dicari RPM tiap kenaikan derajatnya: Gambar 9 Pengujian Sistem menggunakan Kontoler dengan Setpoint= 6000 RPM E. Pengujian Sistem Keseluruhan Pengujian ini bertujuan untuk mengetahui bagaimana kinerja sistem secara keseluruhan dan mengamati respons kontroler terhadap setpoint ketika mendapatkan gangguan berupa perubahn aliran angin melalui windtunnel/ terowongan angin. Setpoint=6000 RPM sehingga besar nilai derajat saat RPM tertentu dapat dicari dengan persamaan: D. Pengujian tanpa Kontroler Pengujian ini bertujuan untuk mengetahui bagaimana perbedaan respon sistem terhadap setpoint ketika tanpa kontroler dengan menggunakan kontroler, sehingga dapat ditentukan bahwa sistem memerlukan sebuah sistem pengontrolan. Gangguan 1 Gangguan 2 Gambar 10 Respon Sistem dengan Setpoint 6000 RPM terhadap Gangguan Perubahan Aliran Angin yaitu: Pada grafik diatas, terjadi % error steady state Setpoint= 7000 RPM Gambar 8 Pengujian Sistem tanpa Kontoler dengan Setpoint= 6000 RPM Dalam grafik diatas, sistem masih belum mencapai nilai dari setpoint yang ditentukan. Gangguan 1 Gangguan 2 Gambar 11 Respon Sistem dengan Setpoint 7000 RPM terhadap Gangguan Perubahan Aliran Angin

6 6 3. Dilakukan analisis tentang torsi beban sehingga dapat merealisasikan pembuatan multicopter dengan menggunakan Gas Engine. Setpoint =8000 RPM Gangguan 1 Gangguan 2 DAFTAR PUSTAKA [1] Mehrtens, August Christian, B Gas Engine Theory and Design. New York: Wiley [2] Gunterus, Frans Falsafah Dasar : Sistem Pengendalian Proses. Jakarta: Elex Media Komputindo. [3] National Semiconductor LM2907/LM2917 Frequency to Voltage Converter. [4] Astrom, K. J, & Hagglund, Tore PID Controllers: Theory, Design and Tuning. Research Triangle Park: Instrument Society of America. [5] Smith, L. C Fundamentals of control theory. Deskbook issue. Gambar 12 Respon Sistem dengan Setpoint 8000 RPM terhadap Gangguan Perubahan Aliran Angin Dari grafik hasil pengujian, dapat dilihat respon sistem terhadap gangguan berupa perubahan aliran angin. Sistem dapat kembali pada keadaan steady setelah terjadinya gangguan. Dengan begitu dapat dikatakan sistem kontrol pada perancangan ini telah bekerja dengan baik. IV. PENUTUP A. Kesimpulan Kesimpulan yang dapat diambil dalam pembuatan penilitian ini adalah sebagai berikut: 1. Dari hasil pengujian pengendalian kecepatan putaran Gas Engine 2 tak displacement 9 CC dengan menggunakan metode hand tuning (hand eksperimen) untuk menentukan nilai penguatan kontroler PID, didapatkan parameter terbaik dengan Kp=1, Ki=0,01, Kd=0.12. Setelah diimplementasikan pada sistem, respon sistem secara keseluruhan dapat mempertahankan kecepatan putaran dengan batas toleransi 5% dari setpoint yang ditentukan. 2. Hasil pengujian dengan menggunakan windtunnel/ terowongan angin terhadap kontroler PID menggunakan Arduino Uno berbasis ATmega328 menunjukkan bahwa respon sistem dapat kembali pada keadaan steady setelah terjadinya gangguan. B. Saran Dalam perancangan dan pembuatan alat ini masih terdapat kelemahan. Untuk memperbaiki kinerja alat dan pengembangan lebih lanjut disarankan : 1. Kecepatan putaran disarankan tidak ada batasan atau lebih dari 8000 RPM untuk memaksimalkan keceptan putaran maksimum dari Gas Engine serta menggunakan aktutator yang lebih teliti seperti motor stepper. 2. Meminimalisir gangguan internal seperti distribusi dan pencampuran bahan bakar, serta pengaturan angin yang lebih baik.

SISTEM PENGENDALIAN SUHU PADA TUNGKU BAKAR MENGGUNAKAN KONTROLER PID

SISTEM PENGENDALIAN SUHU PADA TUNGKU BAKAR MENGGUNAKAN KONTROLER PID SISTEM PENGENDALIAN SUHU PADA TUNGKU BAKAR MENGGUNAKAN KONTROLER PID Raditya Wiradhana, Pembimbing 1: M. Aziz Muslim, Pembimbing 2: Purwanto. 1 Abstrak Pada saat ini masih banyak tungku bakar berbahan

Lebih terperinci

KONTROL DAYA DORONG PESAWAT TERHADAP PERUBAHAN FLOW UDARA MAKALAH SEMINAR HASIL KONSENTRASI TEKNIK SISTEM KONTROL

KONTROL DAYA DORONG PESAWAT TERHADAP PERUBAHAN FLOW UDARA MAKALAH SEMINAR HASIL KONSENTRASI TEKNIK SISTEM KONTROL KONTROL DAYA DORONG PESAWAT TERHADAP PERUBAHAN FLOW UDARA MAKALAH SEMINAR HASIL KONSENTRASI TEKNIK SISTEM KONTROL Disusun Oleh : HERNAWAN KRISTIANTO NIM : 0710630028-63 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Lebih terperinci

Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID

Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID 1 Ahmad Akhyar, Pembimbing 1: Purwanto, Pembimbing 2: Erni Yudaningtyas. Abstrak Alat penyiram tanaman yang sekarang

Lebih terperinci

Sistem Pengaturan Kecepatan Motor DC pada Alat Ektraktor Madu Menggunakan Kontroler PID

Sistem Pengaturan Kecepatan Motor DC pada Alat Ektraktor Madu Menggunakan Kontroler PID 1 Sistem Pengaturan Kecepatan Motor DC pada Alat Ektraktor Madu Menggunakan Kontroler PID Rievqi Alghoffary, Pembimbing 1: Purwanto, Pembimbing 2: Bambang siswoyo. Abstrak Pengontrolan kecepatan pada alat

Lebih terperinci

SISTEM PENGENDALIAN SUHU PADA PROSES DISTILASI VAKUM BIOETANOL DENGAN MENGGUNAKAN ARDUINO

SISTEM PENGENDALIAN SUHU PADA PROSES DISTILASI VAKUM BIOETANOL DENGAN MENGGUNAKAN ARDUINO 1 SISTEM PENGENDALIAN SUHU PADA PROSES DISTILASI VAKUM BIOETANOL DENGAN MENGGUNAKAN ARDUINO Akhmad Salmi Firsyari, Pembimbing 1: Ir. Purwanto MT., Pembimbing 2: dan M Aziz Muslim ST., MT., Ph.D. Abstrak

Lebih terperinci

SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560

SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560 1 SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560 Adityan Ilmawan Putra, Pembimbing 1: Purwanto, Pembimbing 2: Bambang Siswojo.

Lebih terperinci

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID Joko Prasetyo, Purwanto, Rahmadwati. Abstrak Pompa air di dunia industri sudah umum digunakan sebagai aktuator

Lebih terperinci

APLIKASI KONTROLER PID DALAM PENGENDALIAN POSISI STAMPING ROD BERBASIS PNEUMATIC MENGGUNAKAN ARDUINO UNO

APLIKASI KONTROLER PID DALAM PENGENDALIAN POSISI STAMPING ROD BERBASIS PNEUMATIC MENGGUNAKAN ARDUINO UNO APLIKASI KONTROLER PID DALAM PENGENDALIAN POSISI STAMPING ROD BERBASIS PNEUMATIC MENGGUNAKAN ARDUINO UNO Dimas Budi Prasetyo, Pembimbing : M. Aziz Muslim, Pembimbing : Purwanto. Abstrak Pada saat ini perkembangan

Lebih terperinci

PROPOSAL SKRIPSI PENGENDALIAN KECEPATAN PUTARAN GAS ENGINE PADA UAV RC AIRPLANE MENGGUNAKAN KONTROL LOGIKA FUZZY

PROPOSAL SKRIPSI PENGENDALIAN KECEPATAN PUTARAN GAS ENGINE PADA UAV RC AIRPLANE MENGGUNAKAN KONTROL LOGIKA FUZZY PROPOSAL SKRIPSI PENGENDALIAN KECEPATAN PUTARAN GAS ENGINE PADA UAV RC AIRPLANE MENGGUNAKAN KONTROL LOGIKA FUZZY Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik DISUSUN OLEH : REZA

Lebih terperinci

Sistem Pengaturan Kecepatan Motor DC pada Alat Pengaduk Adonan Dodol Menggunakan Kontroler PID

Sistem Pengaturan Kecepatan Motor DC pada Alat Pengaduk Adonan Dodol Menggunakan Kontroler PID Sistem Pengaturan Kecepatan Motor DC pada Alat Pengaduk Adonan Dodol Menggunakan Kontroler PID Arga Rifky Nugraha, Pembimbing 1: Rahmadwati, Pembimbing 2: Retnowati. 1 Abstrak Pengontrolan kecepatan pada

Lebih terperinci

Perancangan Alat Fermentasi Kakao Otomatis Berbasis Mikrokontroler Arduino Uno

Perancangan Alat Fermentasi Kakao Otomatis Berbasis Mikrokontroler Arduino Uno 1 Perancangan Alat Fermentasi Kakao Otomatis Berbasis Mikrokontroler Arduino Uno Anggara Truna Negara, Pembimbing 1: Retnowati, Pembimbing 2: Rahmadwati. Abstrak Perancangan alat fermentasi kakao otomatis

Lebih terperinci

PERANCANGAN KONTROLER PENGGANTI ELECTRONIC CONTROL UNIT UNTUK MENGATUR POSISI SUDUT FLAP PADA MODEL MINIATUR PESAWAT N-219

PERANCANGAN KONTROLER PENGGANTI ELECTRONIC CONTROL UNIT UNTUK MENGATUR POSISI SUDUT FLAP PADA MODEL MINIATUR PESAWAT N-219 1 PERANCANGAN KONTROLER PENGGANTI ELECTRONIC CONTROL UNIT UNTUK MENGATUR POSISI SUDUT FLAP PADA MODEL MINIATUR PESAWAT N-219 Hakiki Bagus Putro W., Pembimbing 1: Ir. Purwanto.MT, Pembimbing 2: Ir. Bambang

Lebih terperinci

Identifikasi Self Tuning PID Kontroler Metode Backward Rectangular Pada Motor DC

Identifikasi Self Tuning PID Kontroler Metode Backward Rectangular Pada Motor DC Identifikasi Self Tuning PID Kontroler Metode Backward Rectangular Pada Motor DC Andhyka Vireza, M. Aziz Muslim, Goegoes Dwi N. 1 Abstrak Kontroler PID akan berjalan dengan baik jika mendapatkan tuning

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN BAB 1. 1.1 Latar Belakang Gerak terbang pada pesawat tanpa awak atau yang sering disebut Unmanned Aerial Vehicle (UAV) ada berbagais macam, seperti melayang (hovering), gerak terbang

Lebih terperinci

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO Jalan MT Haryono 167 Telp & Fax. 0341 554166 Malang 65145 KODE PJ-01 PENGESAHAN PUBLIKASI HASIL PENELITIAN

Lebih terperinci

SISTEM KONTROL KECEPATAN MOTOR DC D-6759 BERBASIS ARDUINO MEGA 2560

SISTEM KONTROL KECEPATAN MOTOR DC D-6759 BERBASIS ARDUINO MEGA 2560 1 SISTEM KONTROL KECEPATAN MOTOR DC D-6759 BERBASIS ARDUINO MEGA 2560 Muhamad Faishol Arif, Pembimbing 1: Erni Yudaningtyas, Pembimbing 2: Rahmadwati. Abstrak Hampir seluruh industri didunia saat ini memanfaatkan

Lebih terperinci

IV. PERANCANGAN SISTEM

IV. PERANCANGAN SISTEM SISTEM PENGATURAN KECEPATAN PUTARAN MOTOR PADA MESIN PEMUTAR GERABAH MENGGUNAKAN KONTROLER PROPORSIONAL INTEGRAL DEFERENSIAL (PID) BERBASIS MIKROKONTROLER Oleh: Pribadhi Hidayat Sastro. NIM 8163373 Jurusan

Lebih terperinci

DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT)

DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) Oleh : Raga Sapdhie Wiyanto Nrp 2108 100 526 Dosen Pembimbing : Dr. Ir. Bambang Sampurno,

Lebih terperinci

PERANCANGAN SISTEM KESEIMBANGAN BALL AND BEAM DENGAN MENGGUNAKAN PENGENDALI PID BERBASIS ARDUINO UNO. Else Orlanda Merti Wijaya.

PERANCANGAN SISTEM KESEIMBANGAN BALL AND BEAM DENGAN MENGGUNAKAN PENGENDALI PID BERBASIS ARDUINO UNO. Else Orlanda Merti Wijaya. PERANCANGAN SISTEM KESEIMBANGAN BALL AND BEAM DENGAN MENGGUNAKAN PENGENDALI PID BERBASIS ARDUINO UNO Else Orlanda Merti Wijaya S1 Teknik Elektro, Fakultas Teknik, Universitas Negeri Surabaya e-mail : elsewijaya@mhs.unesa.ac.id

Lebih terperinci

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin 1 BAB I PENDAHULUAN 1.1. Latar Belakang Motor DC atau motor arus searah yaitu motor yang sering digunakan di dunia industri, biasanya motor DC ini digunakan sebagai penggerak seperti untuk menggerakan

Lebih terperinci

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO KEMETERIA PEDIDIKA DA KEBUDAYAA UIVERSITAS BRAWIJAYA FAKULTAS TEKIK JURUSA TEKIK ELEKTRO Jalan MT Haryono 167 Telp & Fax. 0341 554166 Malang 65145 KODE PJ-01 PEGESAHA PUBLIKASI HASIL PEELITIA SKRIPSI JURUSA

Lebih terperinci

II. PERANCANGAN SISTEM

II. PERANCANGAN SISTEM Sistem Pengaturan Intensitas Cahaya Dengan Perekayasaan Kondisi Lingkungan Pada Rumah Kaca Alfido, Ir. Purwanto, MT., M.Aziz muslim, ST., MT.,Ph.D. Teknik Elektro Universitas Brawijaya Jalan M.T Haryono

Lebih terperinci

MINIATUR PENGENDALI TEKANAN LIQUID

MINIATUR PENGENDALI TEKANAN LIQUID MINIATUR PENGENDALI TEKANAN LIQUID MENGGUNAKAN KONTROLER PID BERBASIS PLC DENGAN PNEUMATIK Wiyogo darmawan 1, Ir. Purwanto, M.Sc 2, Ir. Bambang Siswoyo, MT. 3 1 Mahasiswa Teknik Elektro, 2.3 Dosen Teknik

Lebih terperinci

Sistem Pengaturan Kecepatan Stasioner Mesin Bensin Menggunakan Kontroler PID

Sistem Pengaturan Kecepatan Stasioner Mesin Bensin Menggunakan Kontroler PID Sistem Pengaturan Kecepatan Stasioner Mesin Bensin Menggunakan Kontroler PID Primadani Kurniawan, 2207100041 Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, kampus

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dijelaskan mengenai pengujian dan analisis alat peraga sistem kendali pendulum terbalik yang meliputi pengujian dimensi mekanik, pengujian dimensi dan massa

Lebih terperinci

Perancangan dan Implementasi Kontroler PID untuk Pengaturan Waktu Injeksi dan Waktu Pengapian Saat Kecepatan Stasioner pada Spark Ignition Engine

Perancangan dan Implementasi Kontroler PID untuk Pengaturan Waktu Injeksi dan Waktu Pengapian Saat Kecepatan Stasioner pada Spark Ignition Engine Perancangan dan Implementasi Kontroler PID untuk Pengaturan Waktu dan Waktu Pengapian Saat Kecepatan Stasioner pada Spark Ignition Engine M. Luqman Hakim 1) Ari Santoso 2) Joko Susila 3) 1) Jurusan Teknik

Lebih terperinci

Kata kunci: Arduino Mega 2560, Pengendalian Suhu Kelembaban Relatif, Kontroler PID

Kata kunci: Arduino Mega 2560, Pengendalian Suhu Kelembaban Relatif, Kontroler PID 1 PENGENDALIAN SUHU KELEMBABAN RUANG EKSTRAKSI METODE MASERASI MINYAK ATSIRI MELATI KONTROLER PID BERBASIS ARDUINO MEGA Laksana Widya Peryoga¹, Ir. Retnowati, MT.², Dr. Ir. Bambang Siswoyo, MT. ³ ¹Mahasiswa

Lebih terperinci

MINIATUR ALAT PENGENDALI SUHU RUANG PENGOVENAN BODY MOBIL MENGGUNAKAN KONTROLER PID BERBASIS PLC DENGAN SISTEM CASCADE

MINIATUR ALAT PENGENDALI SUHU RUANG PENGOVENAN BODY MOBIL MENGGUNAKAN KONTROLER PID BERBASIS PLC DENGAN SISTEM CASCADE MINIATUR ALAT PENGENDALI SUHU RUANG PENGOVENAN BODY MOBIL MENGGUNAKAN KONTROLER PID BERBASIS PLC DENGAN SISTEM CASCADE Dimas Okta Ardiansyah 1, Ir. Purwanto., MT 2, Ir.Bambang S.,MT 3. 1 Mahasiswa Teknik

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN BAB IV PENGUJIAN DAN ANALISA RANGKAIAN Setelah perancangan alat selesai, selanjutnya yang perlu dilakukan adalah pengujian dan analisa alat yang bertujuan untuk melihat tingkat keberhasilan dalam perancangan

Lebih terperinci

PERANCANGAN KONTROLER PI ANTI-WINDUP BERBASIS MIKROKONTROLER ATMEGA 32 PADA KONTROL KECEPATAN MOTOR DC

PERANCANGAN KONTROLER PI ANTI-WINDUP BERBASIS MIKROKONTROLER ATMEGA 32 PADA KONTROL KECEPATAN MOTOR DC Presentasi Tugas Akhir 5 Juli 2011 PERANCANGAN KONTROLER PI ANTI-WINDUP BERBASIS MIKROKONTROLER ATMEGA 32 PADA KONTROL KECEPATAN MOTOR DC Pembimbing: Dr.Ir. Moch. Rameli Ir. Ali Fatoni, MT Dwitama Aryana

Lebih terperinci

SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) ABSTRAK

SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) ABSTRAK SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) Tri Prasetya F. Ir. Yahya C A, MT. 2 Suhariningsih, S.ST MT. 3 Mahasiswa Jurusan Elektro Industri, Dosen Pembimbing 2 Dosen Pembimbing

Lebih terperinci

BAB I PENDAHULUAN. dibutuhkan sistem kendali yang efektif, efisien dan tepat. Sesuai dengan

BAB I PENDAHULUAN. dibutuhkan sistem kendali yang efektif, efisien dan tepat. Sesuai dengan BAB I PENDAHULUAN 1.1 Latar Belakang Motor DC (Direct Current) adalah motor yang menggunakan sumber tegangan searah. Terdapat beberapa jenis motor DC yang tersedia, diantaranya adalah motor DC dengan kumparan

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari 2015. Perancangan dan pengerjaan perangkat keras (hardware) dan laporan

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Dalam perancangan dan implementasi jari animatronik berbasis mikrokontroler ini menggunakan beberapa metode rancang bangun yang pembuatannya terdapat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Mikrokontroller AVR Mikrokontroller adalah suatu alat elektronika digital yang mempunyai masukan serta keluaran serta dapat di read dan write dengan cara khusus. Mikrokontroller

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI SISTEM KENDALI PID SEBAGAI PENGONTROL KECEPATAN ROBOT MOBIL PADA LINTASAN DATAR, TANJAKAN, DAN TURUNAN TUGAS AKHIR

PERANCANGAN DAN IMPLEMENTASI SISTEM KENDALI PID SEBAGAI PENGONTROL KECEPATAN ROBOT MOBIL PADA LINTASAN DATAR, TANJAKAN, DAN TURUNAN TUGAS AKHIR PERANCANGAN DAN IMPLEMENTASI SISTEM KENDALI PID SEBAGAI PENGONTROL KECEPATAN ROBOT MOBIL PADA LINTASAN DATAR, TANJAKAN, DAN TURUNAN TUGAS AKHIR Oleh : Imil Hamda Imran NIM : 06175062 Pembimbing I : Ir.

Lebih terperinci

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER Nursalim Jurusan Teknik Elektro, Fakultas Sains dan Teknik, Universitas Nusa Cendana Jl. Adisucipto-Penfui Kupang,

Lebih terperinci

PENGENDALIAN TEKANAN PADA SISTEM HOMOGENISASI SUSU DENGAN KONTROLER PID BERBASIS ARDUINO UNO

PENGENDALIAN TEKANAN PADA SISTEM HOMOGENISASI SUSU DENGAN KONTROLER PID BERBASIS ARDUINO UNO PENGENDALIAN TEKANAN PADA SISTEM HOMOGENISASI SUSU DENGAN KONTROLER PID BERBASIS ARDUINO UNO Garneta Rizke Ayu Cempaka, Purwanto, Rahmadwati Teknik Elektro Universitas Brawijaya Jalan M.T Haryono No.167

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini akan dijelaskan mengenai perancangan dan realisasi dari perangkat keras, serta perangkat lunak dari trainer kendali kecepatan motor DC menggunakan kendali PID dan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari skripsi meliputi gambaran alat, cara kerja sistem dan modul yang digunakan. Gambar 3.1 merupakan diagram cara

Lebih terperinci

BAB 4 PENGUJIAN DAN ANALISA. 4.1 Pengujian Fungsi Alih Tegangan (Duty Cycle) terhadap Motor

BAB 4 PENGUJIAN DAN ANALISA. 4.1 Pengujian Fungsi Alih Tegangan (Duty Cycle) terhadap Motor BAB 4 PENGUJIAN DAN ANALISA Ada beberapa percobaan yang dilakukan. 4.1 Pengujian Fungsi Alih Tegangan (Duty Cycle) terhadap Motor Pengujian ini dilakukan dengan memberikan input PWM pada motor kemudian

Lebih terperinci

M.FADHILLAH RIFKI ( ) Pembimbing: Dr.Ir. Bambang Sampurno, MT

M.FADHILLAH RIFKI ( ) Pembimbing: Dr.Ir. Bambang Sampurno, MT IMPLEMENTASI KONTROL PD UNTUK MENGATUR KECEPATAN MOTOR DC PADA ECVT (ELECTRIKAL CONTINUOUSLY VARIABLE TRANSMISSION) M.FADHILLAH RIFKI (2108.100.512) Pembimbing: Dr.Ir. Bambang Sampurno, MT Latar Belakang

Lebih terperinci

Kendali Perancangan Kontroler PID dengan Metode Root Locus Mencari PD Kontroler Mencari PI dan PID kontroler...

Kendali Perancangan Kontroler PID dengan Metode Root Locus Mencari PD Kontroler Mencari PI dan PID kontroler... DAFTAR ISI LEMBAR PENGESAHAN DOSEN PEMBIMBING... i LEMBAR PENGESAHAN DOSEN PENGUJI... ii HALAMAN PERSEMBAHAN... iii HALAMAN MOTTO... iv KATA PENGANTAR... v ABSTRAK... vii DAFTAR ISI... ix DAFTAR TABEL...

Lebih terperinci

Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative)

Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative) Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative) Koko Joni* 1, Achmad Fiqhi Ibadillah 2, Achmad Faidi 3 1,2,3 Teknik Elektro,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pesawat udara tanpa awak atau Unmanned Aerial Vehicle (UAV) adalah sebuah pesawat terbang yang dapat dikendalikan secara jarak jauh oleh pilot atau dengan mengendalikan

Lebih terperinci

metode pengontrolan konvensional yaitu suatu metode yang dapat melakukan penalaan secara mandiri (Pogram, 2014). 1.2 Rumusan Masalah Dari latar

metode pengontrolan konvensional yaitu suatu metode yang dapat melakukan penalaan secara mandiri (Pogram, 2014). 1.2 Rumusan Masalah Dari latar BAB I PENDAHULUAN 1.1 Latar Belakang Quadrotor adalah sebuah pesawat tanpa awak atau UAV (Unmanned Aerial Vehicle) yang memiliki kemampuan lepas landas secara vertikal atau VTOL (Vertical Take off Landing).

Lebih terperinci

IMPLEMENTASI SISTEM KESEIMBANGAN ROBOT BERODA DUA DENGAN MENGGUNAKAN KONTROLER PROPORSIONAL INTEGRAL DIFERENSIAL

IMPLEMENTASI SISTEM KESEIMBANGAN ROBOT BERODA DUA DENGAN MENGGUNAKAN KONTROLER PROPORSIONAL INTEGRAL DIFERENSIAL IMPLEMENTASI SISTEM KESEIMBANGAN ROBOT BERODA DUA DENGAN MENGGUNAKAN KONTROLER PROPORSIONAL INTEGRAL DIFERENSIAL Muhammad Miftahur Rokhmat Teknik Elektro Universitas Brawijaya Dosen Pembimbing: 1. Purwanto,

Lebih terperinci

DAFTAR ISI. Halaman Judul. Lembar Pengesahan Pembimbing. Lembar Pengesahan Penguji. Halaman Persembahan. Halaman Motto. Kata Pengantar.

DAFTAR ISI. Halaman Judul. Lembar Pengesahan Pembimbing. Lembar Pengesahan Penguji. Halaman Persembahan. Halaman Motto. Kata Pengantar. DAFTAR ISI Halaman Judul Lembar Pengesahan Pembimbing Lembar Pengesahan Penguji Halaman Persembahan Halaman Motto Kata Pengantar Abstraksi Daftar Isi Daftar Gambar Daftar Tabel i ii iii iv v vi ix x xiv

Lebih terperinci

IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN

IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN Dimas Silvani F.H 1*, Abd. Rabi 1, Jeki Saputra 2 1 Program Studi Teknik Elektro, Fakultas Teknik,

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO Jalan MT Haryono 167 Telp & Fax. 341 554166 Malang 65145 KODE PJ-1 PENGESAHAN PUBLIKASI HASIL PENELITIAN

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang UAV (Unmanned Aireal Vehicle) adalah pesawat tanpa awak yang dapat berotasi secara mandiri atau dikendalikan dari jarak jauh oleh seorang pilot (Bone, 2003). Pada

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN SISTEM

BAB III PERANCANGAN DAN PEMBUATAN SISTEM BAB III PERANCANGAN DAN PEMBUATAN SISTEM Pada bab ini menjelaskan tentang perancangan dan pembuatan sistem kontrol, baik secara software maupun hardware yang digunakan untuk mendukung keseluruhan sistem

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang UAV (Unmanned Aerial Vehicle) atau biasa disebut pesawat tanpa awak saat ini sedang mengalami perkembangan yang sangat pesat di dunia. Penggunaan UAV dikategorikan

Lebih terperinci

SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8

SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8 SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8 I Nyoman Benny Rismawan 1, Cok Gede Indra Partha 2, Yoga Divayana 3 Jurusan Teknik Elektro, Fakultas Teknik Universitas

Lebih terperinci

Rancang Bangun Sistem Kontrol Level dan Pressure Steam Generator pada Simulator Mixing Process di Workshop Instrumentasi

Rancang Bangun Sistem Kontrol Level dan Pressure Steam Generator pada Simulator Mixing Process di Workshop Instrumentasi JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) F-153 Rancang Bangun Sistem Kontrol Level dan Pressure Steam Generator pada Simulator Mixing Process di Workshop Instrumentasi

Lebih terperinci

RESPON SISTEM DITINJAU DARI PARAMETER KONTROLER PID PADA KONTROL POSISI MOTOR DC

RESPON SISTEM DITINJAU DARI PARAMETER KONTROLER PID PADA KONTROL POSISI MOTOR DC RESPON SISTEM DITINJAU DARI PARAMETER KONTROLER PID PADA KONTROL POSISI MOTOR DC Dwiana Hendrawati Prodi Teknik Konversi Energi Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. H. Sudarto, SH.,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Proses alur penelitian Dalam penelitian ini ada beberapa tahap atau langkah-langkah yang peneliti lakukan mulai dari proses perancangan model hingga hasil akhir dalam

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN ALAT

BAB IV ANALISA DAN PENGUJIAN ALAT BAB IV ANALISA DAN PENGUJIAN ALAT 4.1 Umum Robot merupakan kesatuan kerja dari semua kerja perangkat penyusunnya. Perancangan robot dimulai dengan menggali informasi dari berbagai referensi, temukan ide,

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Sensor Ultrasonik HCSR04. Gambar 2.2 Cara Kerja Sensor Ultrasonik.

BAB II DASAR TEORI. Gambar 2.1 Sensor Ultrasonik HCSR04. Gambar 2.2 Cara Kerja Sensor Ultrasonik. BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem. Teori-teori yang digunakan dalam pembuatan skripsi ini terdiri dari sensor

Lebih terperinci

Perancangan dan Pembuatan Alat Pengurai Asap Rokok pada Smoking Room Menggunakan Kontroler PID I. PENDAHULUAN

Perancangan dan Pembuatan Alat Pengurai Asap Rokok pada Smoking Room Menggunakan Kontroler PID  I. PENDAHULUAN 1 Perancangan dan Pembuatan Alat Pengurai Asap Rokok pada Smoking Room Menggunakan Kontroler PID Oleh: M. Aldiki Febriantono. NIM 0910630074 Jurusan Teknik Elektro Fakultas Teknik Universitas Brawijaya

Lebih terperinci

Sedangkan untuk hasil perhitungan dengan parameter tuning PID diperoleh :

Sedangkan untuk hasil perhitungan dengan parameter tuning PID diperoleh : 4.2 Self Tuning PID Controller Untuk lebih memaksimalkan fungsi controller maka perlu dilakukan tuning lebih lanjut terhadap parameter PID pada controller yaitu pada nilai PB, Ti, dan Td. Seperti terlihat

Lebih terperinci

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. Gambar 4.1 Blok Diagram Sistem. bau gas yang akan mempengaruhi nilai hambatan internal pada sensor gas

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. Gambar 4.1 Blok Diagram Sistem. bau gas yang akan mempengaruhi nilai hambatan internal pada sensor gas BAB IV CARA KERJA DAN PERANCANGAN SISTEM 4.1 Blok Diagram Sistem Sensor Gas Komparator Osilator Penyangga/ Buffer Buzzer Multivibrator Bistabil Multivibrator Astabil Motor Servo Gambar 4.1 Blok Diagram

Lebih terperinci

BAB I PENDAHULUAN. kelangsungan hidup manusia. Dapat dikatakan pula bahwa energi listrik menjadi

BAB I PENDAHULUAN. kelangsungan hidup manusia. Dapat dikatakan pula bahwa energi listrik menjadi BAB I PENDAHULUAN 1.1 Latar Belakang Energi lsitrik merupakan salah satu kebutuhan penting dalam kelangsungan hidup manusia. Dapat dikatakan pula bahwa energi listrik menjadi salah satu faktor yang menentukan

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN SISTEM

BAB IV ANALISA DAN PENGUJIAN SISTEM BAB IV ANALISA DAN PENGUJIAN SISTEM 4.1 Pengujian Perangkat Keras (Hardware) Pengujian perangkat keras sangat penting dilakukan karena melalui pengujian ini rangkaian-rangkaian elektronika dapat diuji

Lebih terperinci

SISTEM PENGATURAN KECEPATAN MOTOR PADA ROBOT LINE FOLLOWER BERBEBAN MENGGUNAKAN KONTROLER PID

SISTEM PENGATURAN KECEPATAN MOTOR PADA ROBOT LINE FOLLOWER BERBEBAN MENGGUNAKAN KONTROLER PID 1 SISTEM PENGATURAN KECEPATAN MOTOR PADA ROBOT LINE FOLLOWER BERBEBAN MENGGUNAKAN KONTROLER PID Eka Bayu Prinandika Pembimbing 1:Rahmadwati, ST.,MT.,Ph.D, Pembimbing 2:Ir. Bambang Siswoyo, MT Abstrak Laporan

Lebih terperinci

IMPLEMENTASI KONTROL RPM UNTUK MENGHASILKAN PERUBAHAN RASIO SECARA OTOMATIS PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT)

IMPLEMENTASI KONTROL RPM UNTUK MENGHASILKAN PERUBAHAN RASIO SECARA OTOMATIS PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) IMPLEMENTASI KONTROL RPM UNTUK MENGHASILKAN PERUBAHAN RASIO SECARA OTOMATIS PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) I Gede Hartawan 2108 030 002 DOSEN PEMBIMBING Dr. Ir. Bambang Sampurno,

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang Unmanned Aerial Vehicle (UAV) banyak dikembangkan dan digunakan di bidang sipil maupun militer seperti pemetaan wilayah, pengambilan foto udara, pemantauan pada lahan

Lebih terperinci

YONI WIDHI PRIHANA DOSEN PEMBIMBING Dr.Muhammad Rivai, ST, MT. Ir. Siti Halimah Baki, MT.

YONI WIDHI PRIHANA DOSEN PEMBIMBING Dr.Muhammad Rivai, ST, MT. Ir. Siti Halimah Baki, MT. IMPLEMENTASI SENSOR KAPASITIF PADA SISTEM PENGERING GABAH OTOMATIS YONI WIDHI PRIHANA 2210100194 DOSEN PEMBIMBING Dr.Muhammad Rivai, ST, MT. Ir. Siti Halimah Baki, MT. LATAR BELAKANG Indonesia merupakan

Lebih terperinci

BAB I PENDAHULUAN. Salah satu perkembangan pengaplikasian teknologi yang telah lama

BAB I PENDAHULUAN. Salah satu perkembangan pengaplikasian teknologi yang telah lama BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dalam perkembangan teknologi elektronika dewasa ini, sudah sangat maju baik dibidang industri, pertanian, kesehatan, pertambangan, perkantoran, dan lain-lain.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi UAV (Unmanned Aerial Vehicle) atau UAS (Unmanned Aircraft System) merupakan salah satu teknologi kedirgantaraan yang saat ini sedang berkembang dengan pesat.

Lebih terperinci

SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA

SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA 1022: Ahmad Ashari dkk. TI-59 SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA Ahmad Ashari, Danang Lelono, Ilona Usuman, Andi Dharmawan, dan Tri Wahyu Supardi Jurusan Ilmu

Lebih terperinci

Pembuatan Model Quadcopter yang Dapat Mempertahankan Ketinggian Tertentu

Pembuatan Model Quadcopter yang Dapat Mempertahankan Ketinggian Tertentu Jurnal Teknik Elektro, Vol. 9, No. 2, September 26, 49-55 ISSN 4-87X Pembuatan Model Quadcopter yang Dapat Mempertahankan Ketinggian Tertentu DOI:.9744/jte.9.2.49-55 Wili Kumara Juang, Lauw Lim Un Tung

Lebih terperinci

BAB III PEMBUATAN ALAT Tujuan Pembuatan Tujuan dari pembuatan alat ini yaitu untuk mewujudkan gagasan dan

BAB III PEMBUATAN ALAT Tujuan Pembuatan Tujuan dari pembuatan alat ini yaitu untuk mewujudkan gagasan dan BAB III PEMBUATAN ALAT 3.. Pembuatan Dalam pembuatan suatu alat atau produk perlu adanya sebuah rancangan yang menjadi acuan dalam proses pembuatanya, sehingga kesalahan yang mungkin timbul dapat ditekan

Lebih terperinci

Alat Penentu Parameter PID dengan Metode Ziegler-Nichols pada Sistem Pemanas Air

Alat Penentu Parameter PID dengan Metode Ziegler-Nichols pada Sistem Pemanas Air Alat Penentu Parameter PID dengan Metode Ziegler-Nichols pada Sistem Pemanas Air Rachmat Agung H, Muhammad Rivai, Harris Pirngadi Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi

Lebih terperinci

Bab IV Pengujian dan Analisis

Bab IV Pengujian dan Analisis Bab IV Pengujian dan Analisis Setelah proses perancangan, dilakukan pengujian dan analisis untuk mengukur tingkat keberhasilan perancangan yang telah dilakukan. Pengujian dilakukan permodul, setelah modul-modul

Lebih terperinci

Sistem Pengaturan Kecepatan Stasioner dengan Pengapian Multispark Menggunakan Kontroler PID. Primadani Kurniawan

Sistem Pengaturan Kecepatan Stasioner dengan Pengapian Multispark Menggunakan Kontroler PID. Primadani Kurniawan Sistem Pengaturan Kecepatan Stasioner dengan Pengapian Multispark Menggunakan Kontroler PID Primadani Kurniawan 2207100041 Macet Berhenti sejenak Stasioner Sebagian besar kendaraan menggunakan mesin bensin

Lebih terperinci

2 METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Januari 2015 hingga Oktober 2015

2 METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Januari 2015 hingga Oktober 2015 10 2 METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Januari 2015 hingga Oktober 2015 di Laboratorium Teknik Elektronika, Jurusan Teknik Elektro, Universitas Lampung.

Lebih terperinci

IMPLEMENTASI MICROKONTROLLER UNTUK SISTEM KENDALI KECEPATAN BRUSHLESS DC MOTOR MENGGUNAKAN ALGORITMA HYBRID PID FUZZY

IMPLEMENTASI MICROKONTROLLER UNTUK SISTEM KENDALI KECEPATAN BRUSHLESS DC MOTOR MENGGUNAKAN ALGORITMA HYBRID PID FUZZY Implementasi Microkontroller untuk Sistem Kendali Kecepatan (Kristiyono dkk.) IMPLEMENTASI MICROKONTROLLER UNTUK SISTEM KENDALI KECEPATAN BRUSHLESS DC MOTOR MENGGUNAKAN ALGORITMA HYBRID PID FUZZY Roedy

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Pesawat tanpa awak atau Unmanned Aerial Vehicle (UAV) kini menjadi suatu kebutuhan di dalam kehidupan untuk berbagai tujuan dan fungsi. Desain dari

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 1.1 Metode Pengasapan Cold Smoking Ikan asap merupakan salah satu makanan khas dari Indonesia. Terdapat dua jenis pengasapan yang dapat dilakukan pada bahan makanan yaitu hot smoking

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin

BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin terbang yang berfungsi dengan kendali jarak jauh oleh pilot

Lebih terperinci

IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM

IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM Aretasiwi Anyakrawati, Pembimbing : Goegoes D.N, Pembimbing 2: Purwanto. Abstrak- Pendulum terbalik mempunyai

Lebih terperinci

Bab IV PENGOLAHAN DATA DAN ANALISA

Bab IV PENGOLAHAN DATA DAN ANALISA 51 Bab IV PENGOLAHAN DATA DAN ANALISA Dalam perancangan perangkat keras dan perangkat lunak suatu sistem yang telah dibuat ini dimungkinkan terjadi kesalahan karena faktor-faktor seperti human error, proses

Lebih terperinci

CLOSED LOOP CONTROL MENGGUNAKAN ALGORITMA PID PADA LENGAN ROBOT DUA DERAJAT KEBEBASAN BERBASIS MIKROKONTROLER ATMEGA16

CLOSED LOOP CONTROL MENGGUNAKAN ALGORITMA PID PADA LENGAN ROBOT DUA DERAJAT KEBEBASAN BERBASIS MIKROKONTROLER ATMEGA16 CLOSED LOOP CONTROL MENGGUNAKAN ALGORITMA PID PADA LENGAN ROBOT DUA DERAJAT KEBEBASAN BERBASIS MIKROKONTROLER ATMEGA16 Diajukan Sebagai Salah Satu Syarat Menyelesaikan Program Studi S-1 Jurusan Teknik

Lebih terperinci

BAB 5. Pengujian Sistem Kontrol dan Analisis

BAB 5. Pengujian Sistem Kontrol dan Analisis BAB 5 Pengujian Sistem Kontrol dan Analisis 5.1. Aplikasi Display Controller Pengujian sistem kontrol dilakukan dengan menggunakan aplikasi program Visual C# untuk menampilkan grafik, dan mengambil data

Lebih terperinci

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. kelembaban di dalam rumah kaca (greenhouse), dengan memonitor perubahan suhu

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. kelembaban di dalam rumah kaca (greenhouse), dengan memonitor perubahan suhu BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM 3.1 Metode Penelitian Metode yang digunakan pada penelitian ini adalah cara mengatur suhu dan kelembaban di dalam rumah kaca (greenhouse), dengan memonitor

Lebih terperinci

Kampus PENS-ITS Sukolilo, Surabaya

Kampus PENS-ITS Sukolilo, Surabaya 1. JUDUL PROYEK AKHIR Rancang Bangun Sistem Monitoring dan Kontrol Kecepatan Motor DC Secara Nirkabel Untuk Jarak Jauh. 2. ABSTRAK Untuk menunjang teori yang telah dipelajari, praktikum menjadi suatu bagian

Lebih terperinci

Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Azimuth Turret Pada Turret-gun Kaliber 20mm

Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Azimuth Turret Pada Turret-gun Kaliber 20mm A512 Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Azimuth Turret Pada Turret-gun Kaliber 20mm Danu Wisnu, Arif Wahjudi, dan Hendro Nurhadi Jurusan Teknik Mesin, Fakultas Teknik Industri, Institut

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN Hasil Perancangan Perangkat Keras

BAB 4 HASIL DAN PEMBAHASAN Hasil Perancangan Perangkat Keras BAB 4 HASIL DAN PEMBAHASAN 4.1 Hasil Perancangan Pada bab ini akan dijelaskan mengenai hasil perancangan meliputi hasil perancangan perangkat keras dan perancangan sistem kendali. 4.1.1 Hasil Perancangan

Lebih terperinci

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO Jalan MT Haryono 167 Telp & Fax. 031 55166 Malang 6515 KODE PJ-01 PENGESAHAN PUBLIKASI HASIL PENELITIAN

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi sistem yang dibuat. Gambar 3.1 menunjukkan blok diagram sistem secara keseluruhan. Anak Tangga I Anak Tangga II Anak

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini akan dijelaskan mengenai gambaran alat, perancangan dan realisasi dari perangkat keras, serta perangkat lunak dari alat peraga sistem kendali pendulum terbalik. 3.1.

Lebih terperinci

Analisis Karakteristik Perangkat Keras Pengubah Frekuensi ke Tegangan untuk Pengukuran Kecepatan MASTS

Analisis Karakteristik Perangkat Keras Pengubah Frekuensi ke Tegangan untuk Pengukuran Kecepatan MASTS JTERA - Jurnal Teknologi Rekayasa, Vol. 1, No. 1, Desember 2016, Hal. 47-52 ISSN 2548-737X Analisis Karakteristik Perangkat Keras Pengubah Frekuensi ke Tegangan untuk Pengukuran Kecepatan MASTS Arif Sumardiono

Lebih terperinci

Aplikasi Kamera Pengawas untuk Deteksi dan Tracking Objek

Aplikasi Kamera Pengawas untuk Deteksi dan Tracking Objek Aplikasi Kamera Pengawas untuk Deteksi dan Tracking Objek Gembong Edhi Setyawan ) Meivi Kartikasari ) Mukhlis Amien ) STIKI, Malang, email: ) gembong@stiki.ac.id, ) meivi.k@stiki.ac.id, ) amien@stiki.ac.id

Lebih terperinci

PEMBUATAN SISTEM PENGATURAN PUTARAN MOTOR DC MENGGUNAKAN KONTROL PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) DENGAN MEMANFAATKAN SENSOR KMZ51

PEMBUATAN SISTEM PENGATURAN PUTARAN MOTOR DC MENGGUNAKAN KONTROL PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) DENGAN MEMANFAATKAN SENSOR KMZ51 Jurnal MIPA 35 (2): 130-139 (2012) Jurnal MIPA http://journal.unnes.ac.id/sju/index.php/jm PEMBUATAN SISTEM PENGATURAN PUTARAN MOTOR DC MENGGUNAKAN KONTROL PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) DENGAN

Lebih terperinci

Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah

Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: 2301-9271 F-50 Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah Bardo Wenang, Rudy Dikairono, ST., MT.,

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Oktober 2013 sampai dengan Maret 2014,

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Oktober 2013 sampai dengan Maret 2014, 41 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Oktober 2013 sampai dengan Maret 2014, bertempat di Laboratorium Instrumentasi Jurusan Fisika Fakultas Matematika

Lebih terperinci

III. METODE PENELITIAN. dari bulan November 2014 s/d Desember Alat dan bahan yang digunakan dalam perancangan Catu Daya DC ini yaitu :

III. METODE PENELITIAN. dari bulan November 2014 s/d Desember Alat dan bahan yang digunakan dalam perancangan Catu Daya DC ini yaitu : III. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilakukan di laboratorium Teknik Kendali Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung yang dilaksanakan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. DIAGRAM ALUR PENELITIAN Metode penelitian merupakan sebuah langkah yang tersusun secara sistematis dan menjadi pedoman untuk menyelesaikan masalah. Metode penelitian merupakan

Lebih terperinci