BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2009, hal : 53) simulasi dapat diartikan sebagai suatu

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2009, hal : 53) simulasi dapat diartikan sebagai suatu"

Transkripsi

1 BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2009, hal : 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif untuk melihat kebenaran/kenyataan model tersebut. Kemampuan untuk mensimulasi data acak dengan jenis yang berbeda misalnya, akan memudahkan peneliti/ilmuwan untuk membuat percobaan (eksperimen), dan menjawab pertanyaan-pertanyaan dengan cara yang singkat. Simulasi merupakan suatu pengetahuan yang sangat perlu dimiliki, namun diakui agak sulit untuk mempelajarinya. 2.2 Mengenal Simulasi Simulasi merupakan salah satu cara untuk memecahkan berbagai persoalan yang dihadapi di dunia nyata (real world). Pendekatan yang digunakan untuk memecahkan berbagai masalah yang mengandung ketidakpastian dan kemungkinan jangka panjang yang tidak dapat diperhitungkan dengan seksama adalah dengan simulasi.

2 Simulasi dapat diartikan sebagai suatu sistem yang digunakan untuk memecahkan atau meguraikan persoalan-persoalan dalam kehidupan nyata yang penuh dengan ketidakpastian dengan tidak atau menggunakan model atau metode tertentu dan lebih ditekankan pada pemakaian komputer untuk mendapatkan solusinya Keuntungan Simulasi Ada berbagai keuntungan yang bisa diperoleh dengan memanfaatkan simulasi, yaitu sebagai berikut: Compress Time (Menghemat Waktu) Kemampuan di dalam menghemat waktu ini dapat dilihat dari pekerjaan yang bila dikerjakan akan memakan waktu tahunan tetapi kemudian dapat disimulasikan hanya dalam beberapa menit, bahkan dalam beberapa kasus hanya dalam hitungan detik. Kemampuan ini dapat dipakai oleh para peneliti untuk melakukan berbagai pekerjaan desain operasional yang mana juga memperhatikan bagian terkecil dari waktu untuk kemudian dibandingkan dengan yang terdapat pada sistem yang nyata berlaku.

3 Expand Time (Dapat Melebar-luaskan Waktu) Hal ini terlihat terutama dalam dunia statistik dimana hasilnya diinginkan dapat tersaji dengan cepat. Simulasi dapat digunakan untuk menunjukkan perubahan struktur dari suatu Sistem Nyata (Real System) yang sebenarnya tidak dapat diteliti pada waktu yang seharusnya (Real Time). Dengan demikian simulasi dapat membantu mengubah Real System hanya dengan memasukkan sedikit data Control Sources of Variation (Dapat Mengawasi Sumber-sumber yang Bervariasi) Kemampuan pengawasan dalam simulasi ini tampak terutama apabila analisis statistic digunakan untuk meninjau hubungan antara variable bebas (independent) dengan variable terkait (dependent) yang merupakan faktor-faktor yang akan dibentuk dalam percobaan. Hal ini dalam kehidupan sehari-hari merupakan suatu kegiatan yang harus dipelajari dan ditangani dan tidak dapat diperoleh dengan cepat. Dalam simulasi pengambilan data dan pengolahannya pada komputer, ada beberapa sumber yang dapat dihilangkan atau sengaja ditiadakan untuk memanfaatkan kemampuan ini peneliti harus mengetahui dan mampu menguraikan sejumlah input dari sumber-sumber yang bervariasi yang dibutuhkan oleh simulasi tersebut.

4 Error In Meansurment Correction (Mengoreksi Kesalahan-kesalahan Perhitungan) Dalam prakteknya, pada suatu kegiatan ataupun percobaan dapat saja muncul ketidakbenaran dalam mencatat hasil-hasilnya. Sebaliknya, simulasi komputer jarang ditemukan kesalahan perhitungan terutama bila angka-angka diambil dari komputer secara teratur dan bebas. Komputer mempunyai kemampuan untuk melakukan perhitungan dengan akurat Stop Simulation and Restart (Dapat Dihentikan dan Dijalankan Kembali) Simulasi Komputer dapat dihentikan untuk kepentingan peninjauan ataupun pencatatan semua keadaan yang relevan tanpa berakibat buruk terhadap program simulasi tersebut. Dalam dunia nyata, percobaan tidak dapat dihentikan begitu saja. Dalam simulasi komputer, setelah dilakukan penghentian maka kemudian dapat dengan cepat dijalankan kembali (restart) Easy to Replicate (Mudah Diperbanyak) Dengan simulasi komputer percobaan dapat dilakukan setiap saat dan dapat diulangulang. Pengulangan dilakukan terutama untuk mengubah berbagai komponen dan variabelnya, seperti dengan perubahan pada parameternya, perubahan pada kondisi operasinya ataupun dengan memperbanyak output.

5 2.3 Distribusi Binomial Jika p adalah probabilitas bahwa sebuah peristiwa akan terjadi dalam sebaran percobaan tunggal (disebut sebagai probabilitas dari suatu keberhasilan) dan q = 1 p adalah probabilitas bahwa peristiwa tersebut tidak terjadi dalam sebaran percobaan tunggal (disebut sebagai probabilitas dari suatu kegagalan), maka probabilitas bahwa peristiwa yang dimaksud akan terjadi tepat sebanyak X kali dalam N kali percobaan (artinya, akan terjadi sebanyak X keberhasilan dan N X kegagalan) dirumuskan sebagai berikut : Dimana X = 0, 1, 2,..., N; N! = N(N 1)(N 2)... 1; dan sesuai definisi maka 0! = 1 Distribusi probabilitas diskrit di atas seringkali disebut dengan distribusi binomial karena untuk X = 0, 1, 2,..., N distribusi probabilitas ini akan berkorespondensi dengan deretan suku-suku rumus binomial atau ekspansi binomial dimana 1,,,... disebut sebagai koefisien-koefisien binomial. Distribusi Binomial disebut juga dengan nama distribusi Bernoulli yang diambil dari nama James Bernoulli sebagai penghormatan terhadap jasanya dalam menemukan rumus ini pada akhir abad ke-17. Beberapa sifat distribusi binomial ini diperlihatkan oleh Tabel 2.1 berikut.

6 Tabel 2.1 Sifat Distribusi Binomial Mean Varians Deviasi standar Koefisien momen kemiringan Koefisien momen kurtosis 2.4 Distribusi Poisson Poisson adalah sebuah diskrit yang dipergunakan untuk menduga peluang bahwa peluang keluaran tertentu akan muncul tepat x kali dalam satuan yang dibakukan dengan laju rata-rata munculnya kejadian per satuan adalah konstan (λ). P(x;m) = x =0,1,2,3, ; m>0 Dimana e = 2,71828 dan λ adalah sebuah konstanta yang diberikan, disebut sebagai distribusi poisson, yang diambil dari nama Simeon-Denis Poisson, seorang ilmuwan yang menemukan rumus ini pada awal abad ke-19. Beberapa sifat distribusi Poisson ini diberikan dalam Tabel 2.2.

7 Mean Tabel 2.2 Sifat Distribusi Poisson Varians Deviasi standar Koefisien momen kemiringan Koefisien momen kurtosis Sebaran Poisson tidak berbeda banyak dari sebaran Binomial kecuali bahwa peluang Poisson adalah sangat kecil dan ukuran contoh belum tentu diketahui. Asumsi sebaran Poisson adalah: 1. Terdapat n tindakan bebas dimana n sangat besar 2. Hanya satu keluaran yang dipelajari pada tiap tindakan 3. Terdapat peluang yang konstan dari munculnya kejadian setiap tindakan 4. Peluang lebih dari satu keluaran pada setiap tindakan sangat kecil atau dapat diabaikan. 2.5 Hubungan Antara Distribusi Binomial Dan Distribusi Poisson Dalam distribusi Binomial, jika N cukup besar sementara probabilitas p munculnya sebuah peristiwa nilainya dekat dengan nol, sehingga q = 1 p mendekati 1, maka peristiwa ini disebut sebagai peristiwa yang langka atau jarang terjadi (rare event). Dalam praktiknya, kita akan menganggap suatu peristiwa sebagai peristiwa langka jika banyaknya percobaan yang dilakukan paling sedikit 50 kali atau (N 50) sementara Np lebih kecil dari pada 5. Dalam kasus seperti ini, distribusi binomial akan

8 sangat dekat diaproksimasi oleh distribusi Poisson dengan = Np. Hal ini diindikasikan dengan jalan membandingkan Tabel 2.1 dan 2.2; karena dengan menempatkan = Np, q 1, dan p 0 dalam tabel 2.1, kita akan mendapatkan hasilhasil seperti diperlihatkan dalam tabel 2.2.

BAB I PENDAHULUAN. Kata Statistik dikaitkan dengan kata staat (bahasa Jerman artinya Negara) atau statista

BAB I PENDAHULUAN. Kata Statistik dikaitkan dengan kata staat (bahasa Jerman artinya Negara) atau statista BAB I PENDAHULUAN 1.1 Latar Belakang Kata Statistik dikaitkan dengan kata staat (bahasa Jerman artinya Negara) atau statista (bahasa Italia artinya Negarawan). Jadi Statistika dapat bermakna suatu yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar belakang. Secara langsung atau tidaklangsung kata statitik sering kita dengar dan kita rasakan

BAB I PENDAHULUAN. 1.1 Latar belakang. Secara langsung atau tidaklangsung kata statitik sering kita dengar dan kita rasakan 10 BAB I PENDAHULUAN 1.1 Latar belakang Secara langsung atau tidaklangsung kata statitik sering kita dengar dan kita rasakan dalam kehidupan sehari-hari, sebagai contoh pada saat kita menonton pertandingan

Lebih terperinci

BAB 1 PENDAHULUAN. Kata statistik dikaitkan dengan kata staat (bahasa Jerman artinya negara) atau statista

BAB 1 PENDAHULUAN. Kata statistik dikaitkan dengan kata staat (bahasa Jerman artinya negara) atau statista vii BAB 1 PENDAHULUAN 1.1 Latar Belakang Kata statistik dikaitkan dengan kata staat (bahasa Jerman artinya negara) atau statista (bahasa Italia artinya negarawan). Dari dua kata tersebut, statistika dapat

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu xiv BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Manajemen Operasi Menurut Heizer & Render (2011, p. 36) manajemen operasi adalah sekumpulan aktivitas yang menciptakan nilai dalam bentuk barang dan jasa dengan mengubah input

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

VISUALISASI PERBANDINGAN PERUBAHAN GRAFIK FUNGSI BINOMIAL DENGAN NORMAL DAN FUNGSI BINOMIAL DENGAN HIPERGEOMETRIK; MENGGUNAKAN SUATU SIMULASI

VISUALISASI PERBANDINGAN PERUBAHAN GRAFIK FUNGSI BINOMIAL DENGAN NORMAL DAN FUNGSI BINOMIAL DENGAN HIPERGEOMETRIK; MENGGUNAKAN SUATU SIMULASI VISUALISASI PERBANDINGAN PERUBAHAN GRAFIK FUNGSI BINOMIAL DENGAN NORMAL DAN FUNGSI BINOMIAL DENGAN HIPERGEOMETRIK; MENGGUNAKAN SUATU SIMULASI TUGAS AKHIR SADRAKH 082407111 PROGRAM STUDI DIPLOMA III STATISTIKA

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 17 BAB 2 LANDASAN TEORI 2.1 Pengantar Fenomena menunggu untuk kemudian mendapatkan pelayanan, seperti halnya nasabah yang menunggu pada loket bank, kendaraan yang menunggu pada lampu merah, produk yang

Lebih terperinci

Karakteristik Model & Struktur Model. Ratih Setyaningrum, MT Hanna Lestari, M.Eng

Karakteristik Model & Struktur Model. Ratih Setyaningrum, MT Hanna Lestari, M.Eng Karakteristik Model & Struktur Model Ratih Setyaningrum, MT Hanna Lestari, M.Eng Referensi Prof Dr Ir Soemarno, MS MALANG, 2007 Pemodelan Proses membangun atau membentuk model dari suatu sistem nyata dalam

Lebih terperinci

Lecture 1: Pemodelan Sistem Pendahuluan. Hanna Lestari, M.Eng

Lecture 1: Pemodelan Sistem Pendahuluan. Hanna Lestari, M.Eng Lecture 1: Pemodelan Sistem Pendahuluan Hanna Lestari, M.Eng Agenda Tujuan Materi Konsep Umum Model Sistem Diskusi Tujuan Konseptual Umum : Memberikan pengetahuan tentang pendekatan sistem, pemodelan sistem

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Simulasi 2.1.1 Pengertian Simulasi Banyak para ahli yang memberikan definisi tentang simulasi. Beberapa diantaranya adalah sebagai berikut: Emshoff dan Simun (1970), simulasi didefinisikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Tinjauan Pustaka 2.1.1. Uji Kecukupan Data Untuk menguji sekumpulan data, terlebih dahulu diperlukan untuk menguji kecukupan jumlah pengamatan yang telah dilakukan. Karena itu

Lebih terperinci

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan Tujuan Pembelajaran Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan dan penyebaran distribusi binomial

Lebih terperinci

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

Distribusi Peluang. Kuliah 6

Distribusi Peluang. Kuliah 6 Distribusi Peluang Kuliah 6 1. Diskrit 1. Bernoulli 2. Binomial 3. Poisson Distribution 2. Kontinu 1. Normal (Gaussian) 2. t 3. F 4. Chi Kuadrat Distribusi Peluang 1.1. Distribusi Bernoulli Distribusi

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP STATISTICS WEEK 4 Hanung N. Prasetyo Pendahuluan: Penyajian distribusi probabilitas dalam bentuk grafis, tabel atau melalui rumusan tidak masalah, yang ingin dilukiskan adalah perilaku (kelakuan) perubah

Lebih terperinci

STATISTIK PERTEMUAN IV

STATISTIK PERTEMUAN IV STATISTIK PERTEMUAN IV PRINSIP DAN DISTRIBUSI PROBABILITAS A. PERANAN PROBABILITAS Pembuatan model, analisis matematis, simulasi komputer dan sebagainya, banyak didasarkan atas asumsi-asumsi yang diidealisir,

Lebih terperinci

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian dilakukan di Pasar Bunga Rawabelong, Jakarta Barat yang merupakan Unit Pelaksana Teknis (UPT) Pusat Promosi dan Pemasaran Holtikultura

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian Lokasi penelitian tentang risiko harga sayuran di Indonesia mencakup komoditas kentang, kubis, dan tomat dilakukan di Pasar Induk Kramat Jati, yang

Lebih terperinci

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal)

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal) Modul ke: Fakultas 15Ilmu Komunikasi Uji t-student dan Uji Z (Distribusi Normal) Untuk sebaran distribusi sampel kecil, dikembangkan suatu distribusi khusus yang disebut distribusi t atau t-student Dra.

Lebih terperinci

: Distribusi Peluang. : D. Rizal Riadi

: Distribusi Peluang. : D. Rizal Riadi MATERI 3 Mata Kuliah Dosen : Distribusi Peluang : Statistik : D. Rizal Riadi Mengingat data kuantitatif dipengaruhi faktor-faktor ketidakpastian dan variasi yang disebabkan akurasi instrumen penelitian

Lebih terperinci

SEJARAH DISTRIBUSI POISSON

SEJARAH DISTRIBUSI POISSON SEJARAH DISTRIBUSI POISSON Distribusi poisson disebut juga distribusi peristiwa yang jarang terjadi, ditemukanolehs.d. Poisson (1781 1841), 1841), seorang ahli matematika berkebangsaan Perancis. Distribusi

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari tidak terlepas dari data, baik itu bersifat kuantitatif maupun kualitatif. Apabila dikumpulkan data dari seluruh elemen dalam suatu populasi,

Lebih terperinci

BAB III REGRESI PADA DATA SIRKULAR

BAB III REGRESI PADA DATA SIRKULAR BAB III REGRESI PADA DATA SIRKULAR Variabel dalam suatu regresi secara umum terdiri atas variabel bebas (independent variable dan variabel terikat (dependent variable. Jenis data pada variabel-variabel

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

Nilai Harapan / Nilai Ekspektasi

Nilai Harapan / Nilai Ekspektasi EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu

Lebih terperinci

DISTRIBUSI SAMPLING besar

DISTRIBUSI SAMPLING besar DISTRIBUSI SAMPLING besar Distribusi Sampling Sampling = pendataan sebagian anggota populasi = penarikan contoh / pengambilan sampel Sampel yang baik Sampel yang representatif, yaitu diperoleh dengan memperhatikan

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Diskrit 2 Adam Hendra Brata Distribusi Hipergeometrik Distribusi Hipergeometrik Jika sampling dilakukan tanpa pengembalian dari kejadian sampling yang diambil

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Ekonomi No. Dokumen : FE-SSAP-S2-10 Program Studi S1 Akuntansi No. Revisi : 03 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi : 23-06-2010 Tgl. Berlaku : 23-06-2010 Statistik & Probabilitas Halaman

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

III. METODE PENELITIAN. Data yang digunakan dalam penulisan proposal ini adalah data sekunder yang

III. METODE PENELITIAN. Data yang digunakan dalam penulisan proposal ini adalah data sekunder yang 30 III. METODE PENELITIAN A. Jenis dan Sumber Data Data yang digunakan dalam penulisan proposal ini adalah data sekunder yang diperoleh dari Laporan Bank Indonesia, Statistik Ekonomi dan Keuangan Indonesia,

Lebih terperinci

BAB 1 PENDAHULUAN. banyak lagi. Pernah kita mendengar pernyataan seperti: tiap bulan habis

BAB 1 PENDAHULUAN. banyak lagi. Pernah kita mendengar pernyataan seperti: tiap bulan habis BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari tanpa disadari kita telah banyak menggunakan statistika. Melalui media informasi seperti, surat kabar, televisi, dunia pendidikan, dan masih

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

Binomial Distribution. Dyah Adila

Binomial Distribution. Dyah Adila Binomial Distribution Dyah Adila Binomial Distribution adalah bentuk percobaan yang memiliki syarat-syarat sebagai berikut: 1. Percobaan dilakukan sebanyak n kali. 2. Setiap percobaan memiliki dua hasil

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

DISTRIBUSI BINOM. Ciri-ciri: 1.Eksperimen terdiri dari n percobaan yang dapat diulang

DISTRIBUSI BINOM. Ciri-ciri: 1.Eksperimen terdiri dari n percobaan yang dapat diulang DISTRIBUSI PELUANG Distribusi Peluang utk Variabel acak Diskret Distribusi Binom Distribusi Multinom Distribusi Hipergeometrik Distribusi Poison Distribusi Peluang utk Variabel acak Kontinu Distribusi

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

BAB I PENDAHULUAN. mengetahui fenomena yang akan terjadi pada periode mendatang akan

BAB I PENDAHULUAN. mengetahui fenomena yang akan terjadi pada periode mendatang akan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada kehidupan sehari-hari, adanya ketidakmampuan manusia untuk mengetahui fenomena yang akan terjadi pada periode mendatang akan mengakibatkan kurang tepatnya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 \ BAB I PENDAHULUAN 1.1 Latar Belakang Informasi-informasi faktual yang diperoleh berdasarkan hasil observasi maupun penelitian sangatlah beragam. Informasi yang dirangkum sedemikian rupa disebut dengan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia keuangan, investasi bukanlah hal yang baru. Investasi merupakan suatu istilah dengan beberapa pengertian yang berhubungan dengan keuangan dan ekonomi. Istilah

Lebih terperinci

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA.

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Populasi : totalitas dari semua objek/ individu yg memiliki karakteristik tertentu, jelas dan lengkap yang akan diteliti Sampel : bagian dari populasi yang

Lebih terperinci

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI 3.1 Pendahuluan Pada bab sebelumnya telah dibahas mengenai pertidaksamaan Chernoff dengan terlebih dahulu diberi pemaparan mengenai dua pertidaksamaan

Lebih terperinci

SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 4 September 2015

SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 4 September 2015 SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : Teori Probabilitas 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Definisi PPIC Perencanaan dan pengendalian produksi / PPIC (Production Planning and Inventory Control) adalah merupakan suatu perencanaan dan pengendalian arus masuk bahan baku

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Kebijakan pemerintah dapat diambil secara tepat apabila berdasar pada informasi

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Kebijakan pemerintah dapat diambil secara tepat apabila berdasar pada informasi BAB 1 PENDAHULUAN 1.1 Latar Belakang Kebijakan pemerintah dapat diambil secara tepat apabila berdasar pada informasi statistik yang akurat dan tepat waktu. Informasi tersebut selain menunjukkan perkembangan

Lebih terperinci

Analisa Frekuensi dan Probabilitas Curah Hujan

Analisa Frekuensi dan Probabilitas Curah Hujan Analisa Frekuensi dan Probabilitas Curah Hujan Rekayasa Hidrologi Universitas Indo Global Mandiri Norma Puspita, ST.MT Sistem hidrologi terkadang dipengaruhi oleh peristiwa-peristiwa yang luar biasa, seperti

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL

SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL SEMINAR TUGAS AKHIR SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL (STUDI KASUS TERMINAL MIRAH PELABUHAN TANJUNG PERAK SURABAYA) Oleh : Risky Abadi 1203.109.004 Latar Belakang Pelabuhan Tanjung Perak sebagai

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

DISTRIBUSI VARIABEL RANDOM

DISTRIBUSI VARIABEL RANDOM DISTRIBUSI VARIABEL RANDM Distribusi Variabel Diskrit Distribusi variabel diskrit adalah salah satu variabel acak yang diasumsikan memiliki bilangan terbatas dari nilai-nilai yang berbeda. Contoh : Waktu

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. digunakan untuk mengetahui deskripsi suatu data, analisis ini digunakan

BAB IV HASIL DAN PEMBAHASAN. digunakan untuk mengetahui deskripsi suatu data, analisis ini digunakan BAB IV HASIL DAN PEMBAHASAN A. Analisis Statistik Deskriptif Statistik deskriptif digunakan untuk melihat gambaran secara umum data yang telah dikumpulkan dalam penelitian ini. Analisis statistik deskriptif

Lebih terperinci

STATISTIK PERTEMUAN V

STATISTIK PERTEMUAN V STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel

Lebih terperinci

Sampling, Estimasi dan Uji Hipotesis

Sampling, Estimasi dan Uji Hipotesis Sampling, Estimasi dan Uji Hipotesis Tujuan Pembelajaran Memahami perlunya suatu sampling (pengambilan sampel) serta keuntungan- keuntungan melakukannya Menjelaskan pengertian sampel acak untuk sampling

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Distribusi probabilitas binomial adalah distribusi probabilitas diskrit yang paling sering digunakan untuk merepresentasikan kejadian dalam kehidupan sehari-hari.

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari distribusi generalized lambda

Lebih terperinci

KONSISTENSI ESTIMATOR

KONSISTENSI ESTIMATOR KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Antrian Sistem antrian adalah merupakan keseluruhan dari proses para pelanggan atau barang yang berdatangan dan memasuki barisan antrian yang seterusnya memerlukan pelayanan

Lebih terperinci

BAB 1 PENDAHULUAN. ii Bagaimana rata-rata atau nilai tengah dibuat oleh Stimulan eksternal.

BAB 1 PENDAHULUAN. ii Bagaimana rata-rata atau nilai tengah dibuat oleh Stimulan eksternal. BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan matematika dan penerapannya dalam berbagai bidang keilmuan selalu mencari metode baru untuk memudahkan dalam memprediksi dan menaksir

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : E124304 / Teori Probabilitas Revisi 4 Satuan Kredit Semester : 2 SKS Tgl revisi : 16 Juli 2015 Jml Jam kuliah dalam seminggu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Kinerja Karyawan Kinerja karyawan adalah seberapa efektif dan efisiennya hasil yang dihasilkan oleh karyawan yang pada umumnya diukur dari beberapa faktor seperti : 2.1.1. Kecepatan

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISKRIT Distribusi binomial Distribusi binomial - Distribusi peluang diskrit Distribusi geometrik Distribusi hipergeometrik Distribusi poison BERNOULLI TRIAL

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

MULTIKOLINEARITAS (Lanjutan)

MULTIKOLINEARITAS (Lanjutan) MULTIKOLINEARITAS (Lanjutan) Tjipto Juwono, Ph.D. September 9, 2015 Pengertian Multikolinearitas Secara historis multikolinearitas menunjukkan hubungan yang sempurna antara variabel-variabel independent

Lebih terperinci

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari

Lebih terperinci

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus : BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak

Lebih terperinci

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( )

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( ) LAMPIRAN 21 Lampiran 1 (Pembuktian Lema 2.1 Lema 2.1 (Eksistensi Fungsi Intensitas global Jika ([ ] adalah proses Poisson periodik dengan fungsi intensitas, maka ([ ] pada Definisi 2.28 ada dan nilainya

Lebih terperinci

PEMODELAN KUALITAS PROSES

PEMODELAN KUALITAS PROSES TOPIK 6 PEMODELAN KUALITAS PROSES LD/SEM II-03/04 1 1. KERANGKA DASAR Sampling Penerimaan Proses Produksi Pengendalian Proses MATERIAL PRODUK PRODUK BAIK SUPPLIER Manufacturing Manufacturing KONSUMEN PRODUK

Lebih terperinci

BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON

BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON 3.1 Regresi Poisson Regresi Poisson merupakan salah satu model regresi dengan variabel responnya tidak berasal

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 9 BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Analisis Regresi Perubahan nilai suatu variabel dapat disebabkan karena adanya perubahan pada variabel - variabel lain yang mempengaruhinya. Misalnya pada kinerja

Lebih terperinci

PENGELOLAAN STATISTIK YANG MENYENANGKAN, oleh Muhammad Rusli Hak Cipta 2014 pada penulis

PENGELOLAAN STATISTIK YANG MENYENANGKAN, oleh Muhammad Rusli Hak Cipta 2014 pada penulis PENGELOLAAN STATISTIK YANG MENYENANGKAN, oleh Muhammad Rusli Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id

Lebih terperinci

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan.

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan. II. TINJAUAN PUSTAKA Distribusi generalized,,, adalah salah satu distribusi probabilitas kontinu. Distribusi ini pertama kali diperkenalkan McDonald dan Newey 988 untuk mengestimasi parameter regresi.

Lebih terperinci

TEORI RESIKO ELEMENTER

TEORI RESIKO ELEMENTER TEORI RESIKO ELEMETER Ringkasan: Pada bagian ini, kita mengembangkan beberapa hubungan antara cadangan, premi, biaya keamanan dan tingkat retensi yang berguna untuk asuransi umum. Hubungan ini didasarkan

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

STATISTIKA LINGKUNGAN

STATISTIKA LINGKUNGAN STATISTIKA LINGKUNGAN TEORI PROBABILITAS Probabilitas -pendahuluan Statistika deskriptif : menggambarkan data Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

Teknik industri adalah suatu rekayasa yang berkaitan dengan desain, pembaruan, dan instalasi dari sistem terintegrasi yang meliputi manusia,

Teknik industri adalah suatu rekayasa yang berkaitan dengan desain, pembaruan, dan instalasi dari sistem terintegrasi yang meliputi manusia, BAB 2 LANDASAN TEORI 2.1 Teknik Industri Definisi menurut institute of industrial and system (IIE) : Teknik industri adalah suatu rekayasa yang berkaitan dengan desain, pembaruan, dan instalasi dari sistem

Lebih terperinci